上海市黄浦区2015年中考数学一模试卷答案解析版

合集下载

2015年上海市中考数学试卷答案与解析

2015年上海市中考数学试卷答案与解析

2015年上海市中考数学试卷参考答案与试题解析一、选择题1.(4分)(2015•上海)下列实数中,是有理数的为()A.B.C.πD.0考点:实数.分析:根据有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数进行判断即可.解答:解:是无理数,A不正确;是无理数,B不正确;π是无理数,C不正确;0是有理数,D正确;故选:D.点评:此题主要考查了无理数和有理数的区别,解答此题的关键是要明确:有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数.2.(4分)(2015•上海)当a>0时,下列关于幂的运算正确的是()A.a0=1 B.a﹣1=﹣a C.(﹣a)2=﹣a2D.a=考点:负整数指数幂;有理数的乘方;分数指数幂;零指数幂.分析:分别利用零指数幂的性质以及负指数幂的性质和分数指数幂的性质分别分析求出即可.解答:解:A、a0=1(a>0),正确;B、a﹣1=,故此选项错误;C、(﹣a)2=a2,故此选项错误;D、a=(a>0),故此选项错误.故选:A.点评:此题主要考查了零指数幂的性质以及负指数幂的性质和分数指数幂的性质等知识,正确把握相关性质是解题关键.3.(4分)(2015•上海)下列y关于x的函数中,是正比例函数的为()A.y=x2B.y=C.y=D.y=考点:正比例函数的定义.分析:根据正比例函数的定义来判断即可得出答案.解答:解:A、y是x的二次函数,故A选项错误;B、y是x的反比例函数,故B选项错误;C、y是x的正比例函数,故C选项正确;D、y是x的一次函数,故D选项错误;故选C.点评:本题考查了正比例函数的定义:一般地,两个变量x,y之间的关系式可以表示成形如y=kx(k为常数,且k≠0)的函数,那么y就叫做x的正比例函数.4.(4分)(2015•上海)如果一个正多边形的中心角为72°,那么这个多边形的边数是()A.4B.5C.6D.7考点: 多边形内角与外角.分析:根据正多边形的中心角和为360°和正多边形的中心角相等,列式计算即可.解答:解:这个多边形的边数是360÷72=5,故选:B.点评:本题考查的是正多边形的中心角的有关计算,掌握正多边形的中心角和为360°和正多边形的中心角相等是解题的关键.5.(4分)(2015•上海)下列各统计量中,表示一组数据波动程度的量是()A.平均数B.众数C.方差D.频率考点:统计量的选择.分析:根据平均数、众数、中位数反映一组数据的集中趋势,而方差、标准差反映一组数据的离散程度或波动大小进行选择.解答:解:能反映一组数据波动程度的是方差或标准差,故选C.点评:本题考查了标准差的意义,波动越大,标准差越大,数据越不稳定,反之也成立.6.(4分)(2015•上海)如图,已知在⊙O中,AB是弦,半径OC⊥AB,垂足为点D,要使四边形OACB为菱形,还需要添加一个条件,这个条件可以是()A.A D=BD B.O D=CD C.∠CAD=∠CBD D.∠OCA=∠OCB考点: 菱形的判定;垂径定理.分析:利用对角线互相垂直且互相平分的四边形是菱形,进而求出即可.解答:解:∵在⊙O中,AB是弦,半径OC⊥AB,∴AD=DB,当DO=CD,则AD=BD,DO=CD,AB⊥CO,故四边形OACB为菱形.故选:B.点评:此题主要考查了菱形的判定以及垂径定理,熟练掌握菱形的判定方法是解题关键.二、填空题7.(4分)(2015•上海)计算:|﹣2|+2=4.考点:有理数的加法;绝对值.分析:先计算|﹣2|,再加上2即可.解答:解:原式=2+2=4.故答案为4.点评:本题考查了有理数的加法,以及绝对值的求法,负数的绝对值等于它的相反数.8.(4分)(2015•上海)方程=2的解是x=2.考点:无理方程.分析:首先根据乘方法消去方程中的根号,然后根据一元一次方程的求解方法,求出x的值是多少,最后验根,求出方程=2的解是多少即可.解答:解:∵=2,∴3x﹣2=4,∴x=2,当x=2时,左边=,右边=2,∵左边=右边,∴方程=2的解是:x=2.故答案为:x=2.点评:此题主要考查了无理方程的求解,要熟练掌握,解答此题的关键是要明确:(1)解无理方程的基本思想是把无理方程转化为有理方程来解,在变形时要注意根据方程的结构特征选择解题方法.常用的方法有:乘方法,配方法,因式分解法,设辅助元素法,利用比例性质法等.(2)注意:用乘方法(即将方程两边各自乘同次方来消去方程中的根号)来解无理方程,往往会产生增根,应注意验根.9.(4分)(2015•上海)如果分式有意义,那么x的取值范围是x≠﹣3.考点:分式有意义的条件.分析:根据分式有意义的条件是分母不为0,列出算式,计算得到答案.解答:解:由题意得,x+3≠0,即x≠﹣3,故答案为:x≠﹣3.点评:本题考查的是分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.10.(4分)(2015•上海)如果关于x的一元二次方程x2+4x﹣m=0没有实数根,那么m的取值范围是m<﹣4.考点:根的判别式.分析:根据关于x的一元二次方程x2+4x﹣m=0没有实数根,得出△=16﹣4(﹣m)<0,从而求出m的取值范围.解答:解:∵一元二次方程x2+4x﹣m=0没有实数根,∴△=16﹣4(﹣m)<0,∴m<﹣4,故答案为m<﹣4.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.11.(4分)(2015•上海)同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数关系是y=x+32,如果某一温度的摄氏度数是25℃,那么它的华氏度数是77℉.考点:函数值.分析:把x的值代入函数关系式计算求出y值即可.解答:解:当x=25°时,y=×25+32=77,故答案为:77.点评:本题考查的是求函数值,理解函数值的概念并正确代入准确计算是解题的关键.12.(4分)(2015•上海)如果将抛物线y=x2+2x﹣1向上平移,使它经过点A(0,3),那么所得新抛物线的表达式是y=x2+2x+3.考点:二次函数图象与几何变换.分析:设平移后的抛物线解析式为y=x2+2x﹣1+b,把点A的坐标代入进行求值即可得到b 的值.解答:解:设平移后的抛物线解析式为y=x2+2x﹣1+b,把A(0,3)代入,得3=﹣1+b,解得b=4,则该函数解析式为y=x2+2x+3.故答案是:y=x2+2x+3.点评:主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.会利用方程求抛物线与坐标轴的交点.13.(4分)(2015•上海)某校学生会提倡双休日到养老院参加服务活动,首次活动需要7位同学参加,现有包括小杰在内的50位同学报名,因此学生会将从这50位同学中随机抽取7位,小杰被抽到参加首次活动的概率是.考点:概率公式.分析:由某校学生会提倡双休日到养老院参加服务活动,首次活动需要7位同学参加,现有包括小杰在内的50位同学报名,直接利用概率公式求解即可求得答案.解答:解:∵学生会将从这50位同学中随机抽取7位,∴小杰被抽到参加首次活动的概率是:.故答案为:.点评:此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.14.(4分)(2015•上海)已知某校学生“科技创新社团”成员的年龄与人数情况如下表所示:年龄(岁)11 12 13 14 15人数 5 5 16 15 12那么“科技创新社团"成员年龄的中位数是14岁.考点: 中位数.分析:一共有53个数据,根据中位数的定义,把它们按从小到大的顺序排列,第27名成员的年龄就是这个小组成员年龄的中位数.解答:解:从小到大排列此数据,第27名成员的年龄是14岁,所以这个小组成员年龄的中位数是14.故答案为14.点评:本题属于基础题,考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.15.(4分)(2015•上海)如图,已知在△ABC中,D、E分别是边AB、边AC的中点,=,=,那么向量用向量,表示为﹣.考点:*平面向量.分析:由=,=,利用三角形法则求解即可求得,又由在△ABC中,D、E分别是边AB、边AC的中点,可得DE是△ABC的中位线,然后利用三角形中位线的性质求解即可求得答案.解答:解:∵=,=,∴=﹣=﹣,∵在△ABC中,D、E分别是边AB、边AC的中点,∴==(﹣)=﹣.故答案为:﹣.点评:此题考查了平面向量的知识以及三角形中位线的性质.注意掌握三角形法则的应用.16.(4分)(2015•上海)已知E是正方形ABCD的对角线AC上一点,AE=AD,过点E作AC的垂线,交边CD于点F,那么∠FAD=22.5度.考点:正方形的性质;全等三角形的判定与性质.分析:根据正方形的性质可得∠DAC=45°,再由AD=AE易证△ADF≌△AEF,求出∠FAD.解答:解:如图,在Rt△AEF和Rt△ADF中,∴Rt△AEF≌Rt△ADF,∴∠DAF=∠EAF,∵四边形ABCD为正方形,∴∠CAD=45°,∴∠FAD=22.5°.故答案为:22.5.点评:本题考查了正方形的性质,全等三角形的判定与性质,求证Rt△AEF≌Rt△ADF是解本题的关键.17.(4分)(2015•上海)在矩形ABCD中,AB=5,BC=12,点A在⊙B上,如果⊙D与⊙B 相交,且点B在⊙D内,那么⊙D的半径长可以等于14(答案不唯一).(只需写出一个符合要求的数)考点: 圆与圆的位置关系;点与圆的位置关系.专题:开放型.分析:首先求得矩形的对角线的长,然后根据点A在⊙B上得到⊙B的半径为5,再根据⊙D 与⊙B相交,得到⊙D的半径R满足8<R<18,在此范围内找到一个值即可.解答:解:∵矩形ABCD中,AB=5,BC=12,∴AC=BD=13,∵点A在⊙B上,∴⊙B的半径为5,∵如果⊙D与⊙B相交,∴⊙D的半径R满足8<R<18,∵点B在⊙D内,∴R>13,∴13<R<18,∴14符合要求,故答案为:14(答案不唯一).点评:本题考查了圆与圆的位置关系、点与圆的位置关系,解题的关键是首先确定⊙B的半径,然后确定⊙D的半径的取值范围,难度不大.18.(4分)(2015•上海)已知在△ABC中,AB=AC=8,∠BAC=30°,将△ABC绕点A旋转,使点B落在原△ABC的点C处,此时点C落在点D处,延长线段AD,交原△ABC的边BC 的延长线于点E,那么线段DE的长等于4﹣4.考点: 解直角三角形;等腰三角形的性质.专题:计算题.分析:作CH⊥AE于H,根据等腰三角形的性质和三角形内角和定理可计算出∠ACB=(180°﹣∠BAC)=75°,再根据旋转的性质得AD=AB=8,∠CAD=∠BAC=30°,则利用三角形外角性质可计算出∠E=45°,接着在Rt△ACH中利用含30度的直角三角形三边的关系得CH=AC=4,AH=CH=4,所以DH=AD﹣AH=8﹣4,然后在Rt△CEH中利用∠E=45°得到EH=CH=4,于是可得DE=EH﹣DH=4﹣4.解答:解:作CH⊥AE于H,如图,∵AB=AC=8,∴∠B=∠ACB=(180°﹣∠BAC)=(180°﹣30°)=75°,∵△ABC绕点A旋转,使点B落在原△ABC的点C处,此时点C落在点D处,∴AD=AB=8,∠CAD=∠BAC=30°,∵∠ACB=∠CAD+∠E,∴∠E=75°﹣30°=45°,在Rt△ACH中,∵∠CAH=30°,∴CH=AC=4,AH=CH=4,∴DH=AD﹣AH=8﹣4,在Rt△CEH中,∵∠E=45°,∴EH=CH=4,∴DE=EH﹣DH=4﹣(8﹣4)=4﹣4.故答案为4﹣4.点评:本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.也考查了等腰三角形的性质和旋转的性质.三、解答题19.(10分)(2015•上海)先化简,再求值:÷﹣,其中x=﹣1.考点:分式的化简求值.分析:先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.解答:解:原式=•﹣=﹣=,当x=﹣1时,原式==﹣1.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.20.(10分)(2015•上海)解不等式组:,并把解集在数轴上表示出来.考点:解一元一次不等式组;在数轴上表示不等式的解集.分析:先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.解答:解:∵解不等式①得:x>﹣3,解不等式②得:x≤2,∴不等式组的解集为﹣3<x≤2,在数轴上表示不等式组的解集为:.点评:本题考查了解一元一次不等式组,在数轴上表示不等式组的解集的应用,解此题的关键是能根据不等式的解集求出不等式组的解集,难度适中.21.(10分)(2015•上海)已知:如图,在平面直角坐标系xOy中,正比例函数y=x的图象经过点A,点A的纵坐标为4,反比例函数y=的图象也经过点A,第一象限内的点B在这个反比例函数的图象上,过点B作BC∥x轴,交y轴于点C,且AC=AB.求:(1)这个反比例函数的解析式;(2)直线AB的表达式.考点:反比例函数与一次函数的交点问题.分析:(1)根据正比例函数y=x的图象经过点A,点A的纵坐标为4,求出点A的坐标,根据反比例函数y=的图象经过点A,求出m的值;(2)根据点A的坐标和等腰三角形的性质求出点B的坐标,运用待定系数法求出直线AB的表达式.解答:解:∵正比例函数y=x的图象经过点A,点A的纵坐标为4,∴点A的坐标为(3,4),∵反比例函数y=的图象经过点A,∴m=12,∴反比例函数的解析式为:y=;(2)如图,连接AC、AB,作AD⊥BC于D,∵AC=AB,AD⊥BC,∴BC=2CD=6,∴点B的坐标为:(6,2),设直线AB的表达式为:y=kx+b,由题意得,,解得,,∴直线AB的表达式为:y=﹣x+6.点评:本题主要考查了待定系数法求反比例函数与一次函数的解析式和一次函数与反比例函数的解得的求法,注意数形结合的思想在解题中的应用.22.(10分)(2015•上海)如图,MN表示一段笔直的高架道路,线段AB表示高架道路旁的一排居民楼,已知点A到MN的距离为15米,BA的延长线与MN相交于点D,且∠BDN=30°,假设汽车在高速道路上行驶时,周围39米以内会受到噪音(XRS)的影响.(1)过点A作MN的垂线,垂足为点H,如果汽车沿着从M到N的方向在MN上行驶,当汽车到达点P处时,噪音开始影响这一排的居民楼,那么此时汽车与点H的距离为多少米? (2)降低噪音的一种方法是在高架道路旁安装隔音板,当汽车行驶到点Q时,它与这一排居民楼的距离QC为39米,那么对于这一排居民楼,高架道路旁安装的隔音板至少需要多少米长?(精确到1米)(参考数据:≈1。

2015年上海市中考数学试卷答案与解析

2015年上海市中考数学试卷答案与解析

2015 年上海市中考数学试卷答案与分析2015 年上海市中考数学试卷参照答案与试题分析一、选择题1.(4 分)(2015?上海)以下实数中,是有理数的为()A .B.C.πD.0考实数.点:分依占有理数能写成有限小数和无穷循环小析:数,而无理数只好写成无穷不循环小数进行判断即可.解解:是无理数,A不正确;答:是无理数,B不正确;π是无理数, C 不正确;0 是有理数, D 正确;应选: D.点本题主要考察了无理数和有理数的差别,解评:答本题的重点是要明确:有理数能写成有限小数和无穷循环小数,而无理数只好写成无穷不循环小数.2.(4 分)(2015?上海)当 a>0 时,以下对于幂的运算正确的选项是()A .a0=1B.a﹣1=﹣a C.(﹣a)D.a=2=﹣a2考负整数指数幂;有理数的乘方;分数指数点:幂;零指数幂.分分别利用零指数幂的性质以及负指数幂的析:性质和分数指数幂的性质分别剖析求出即可.解解: A 、a0=1(a>0),正确;答: B、a﹣1= ,故此选项错误;C、(﹣ a)2=a2,故此选项错误;D、a =(a>0),故此选项错误.应选: A.点本题主要考察了零指数幂的性质以及负指评:数幂的性质和分数指数幂的性质等知识,正确掌握有关性质是解题重点.3.(4 分)(2015?上海)以下 y 对于 x 的函数中,是正比率函数的为()3考正比率函数的定义.点:分依据正比率函数的定义来判断即可得出答析:案.解解:A、y 是 x 的二次函数,故 A 选项错误;答: B、y 是 x 的反比率函数,故B 选项错误;C、y 是 x 的正比率函数,故 C 选项正确;D、y是 x 的一次函数,故 D 选项错误;应选 C.点本题考察了正比率函数的定义:一般地,两评:个变量 x,y 之间的关系式能够表示成形如 y=kx (k 为常数,且 k ≠0)的函数,那么 y就叫做 x 的正比率函数.4.(4 分)(2015?上海)假如一个正多边形的中心角为 72°,那么这个多边形的边数是()A .4B.5C.6D.7考多边形内角与外角.点:分依据正多边形的中心角和为360°和正多边析:形的中心角相等,列式计算即可.解解:这个多边形的边数是360÷72=5,答:应选: B.点本题考察的是正多边形的中心角的有关计评:算,掌握正多边形的中心角和为360°和正多边形的中心角相等是解题的重点.5.(4 分)(2015?上海)以下各统计量中,表示一组数据颠簸程度的量是()A .均匀数 B.众数C.方差D.频次考统计量的选择.点:分依据均匀数、众数、中位数反应一组数据的析:集中趋向,而方差、标准差反应一组数据的失散程度或颠簸大小进行选择.解解:能反应一组数据颠簸程度的是方差或标答:准差,应选 C.点本题考察了标准差的意义,颠簸越大,标准评:差越大,数据越不稳固,反之也建立.6.(4 分)(2015?上海)如图,已知在⊙O 中,AB 是弦,半径OC ⊥AB ,垂足为点D,要使四边形 OACB 为菱形,还需要增添一个条件,这个条件能够是()A.A D= B.OD= C.∠CAD= ∠ D.∠OCA= ∠BD CD CBD OCB考菱形的判断;垂径定理.点:分利用对角线相互垂直且相互均分的四边形析:是菱形,从而求出即可.解解:∵在⊙ O 中,AB 是弦,半径 OC⊥AB ,答:∴AD=DB ,当 DO=CD ,则 AD=BD ,DO=CD ,AB ⊥CO,故四边形 OACB 为菱形.应选: B.点本题主要考察了菱形的判断以及垂径定评:理,娴熟掌握菱形的判断方法是解题重点.二、填空题7.(4 分)(2015?上海)计算: |﹣2|+2= 4.考有理数的加法;绝对值.点:分先计算 |﹣2|,再加上 2 即可.析:解解:原式 =2+2答: =4.故答案为 4.点本题考察了有理数的加法,以及绝对值的求评:法,负数的绝对值等于它的相反数.8.(4 分)(2015?上海)方程=2 的解是x=2.考无理方程.点:分第一依据乘方法消去方程中的根号,而后根析:据一元一次方程的求解方法,求出 x 的值是多少,最后验根,求出方程=2 的解是多少即可.解解:∵=2,答:∴3x﹣2=4,∴x=2,当 x=2 时,左侧=,右侧 =2,∵左侧 =右侧,∴方程=2 的解是: x=2.故答案为: x=2.点本题主要考察了无理方程的求解,要娴熟掌评:握,解答本题的重点是要明确:(1)解无理方程的基本思想是把无理方程转变为有理方程来解,在变形时要注意依据方程的结构特色选择解题方法.常用的方法有:乘方法,配方法,因式分解法,设协助元素法,利用比率性质法等.(2)注意:用乘方法(马上方程两边各自乘同次方来消去方程中的根号)来解无理方程,常常会产生增根,应注意验根.9.(4 分)(2015?上海)假如分式存心义,那么 x 的取值范围是 x≠﹣ 3 .考分式存心义的条件.点:分依据分式存心义的条件是分母不为0,列出析:算式,计算获得答案.解解:由题意得, x+3≠0,答:即 x≠﹣ 3,故答案为: x≠﹣ 3.点本题考察的是分式存心义的条件,从以下三评:个方面透辟理解分式的观点:(1)分式无心义? 分母为零;(2)分式存心义 ? 分母不为零;(3)分式值为零 ? 分子为零且分母不为零.10.(4 分)(2015?上海)假如对于 x 的一元二次方程 x2+4x﹣m=0 没有实数根,那么 m 的取值范围是 m<﹣ 4 .考根的鉴别式.点:分依据对于x 的一元二次方程x2+4x﹣m=0 没析:有实数根,得出△ =16﹣4(﹣ m)< 0,从而求出 m 的取值范围.解解:∵一元二次方程x2+4x﹣m=0 没有实数答:根,∴△ =16﹣4(﹣ m)< 0,∴m<﹣ 4,故答案为 m<﹣ 4.点本题考察了一元二次方程ax2+bx+c=0评:(a≠0)的根的鉴别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△< 0,方程没有实数根.11.(4 分)(2015?上海)同一温度的华氏度数y (℉)与摄氏度数x(℃)之间的函数关系是y= x+32,假如某一温度的摄氏度数是25℃,那么它的华氏度数是77℉.考函数值.点:分把 x 的值代入函数关系式计算求出y 值即析:可.解解:当 x=25°时,答: y= ×25+32=77,故答案为: 77.点本题考察的是求函数值,理解函数值的观评论:并正确代入正确计算是解题的重点.12.( 4 分)(2015?上海)假如将抛物线y=x 2+2x ﹣1 向上平移,使它经过点 A(0,3),那么所得新抛物线的表达式是 y=x 2+2x+3 .考二次函数图象与几何变换.点:分设平移后的抛物线分析式为 y=x2+2x﹣析:1+b,把点 A 的坐标代入进行求值即可获得b的值.解解:设平移后的抛物线分析式为y=x2+2x﹣答:1+b,把 A(0, 3)代入,得3=﹣1+b,解得 b=4,则该函数分析式为y=x2 +2x+3.故答案是: y=x2+2x+3.点主要考察了函数图象的平移,要求娴熟掌握评:平移的规律:左加右减,上加下减.并用规律求函数分析式.会利用方程求抛物线与坐标轴的交点.13.(4 分)(2015?上海)某校学生会倡导双休日到养老院参加服务活动,初次活动需要 7 位同学参加,现有包含小杰在内的 50 位同学报名,所以学生会将从这 50 位同学中随机抽取 7 位,小杰被抽到参加初次活动的概率是.考概率公式.点:分由某校学生会倡导双休日到养老院参加服析:务活动,初次活动需要7 位同学参加,现有包含小杰在内的 50 位同学报名,直接利用概率公式求解即可求得答案.解解:∵学生会将从这50 位同学中随机抽取答:7 位,∴小杰被抽到参加初次活动的概率是:.故答案为:.点本题考察了概率公式的应用.用到的知识评论:为:概率 =所讨状况数与总状况数之比.14.(4 分)(2015?上海)已知某校学生“科技创新社团”成员的年纪与人数状况以下表所示:年纪 11 12 13 14 15(岁)人数5516 1512那么“科技创新社团”成员年纪的中位数是14岁.考中位数.点:分一共有 53 个数据,依据中位数的定义,把析:它们按从小到大的次序摆列,第 27 名成员的年纪就是这个小构成员年纪的中位数.解解:从小到大摆列此数据,第27 名成员的答:年纪是 14 岁,所以这个小构成员年纪的中位数是14.故答案为 14.点本题属于基础题,考察了确立一组数据的中评:位数的能力.注意找中位数的时候必定要先排好次序,而后再依据奇数和偶数个来确立中位数,假如数占有奇数个,则正中间的数字即为所求,假如是偶数个则找中间两位数的均匀数.15.(4 分)(2015?上海)如图,已知在△ ABC 中, D、E 分别是边 AB 、边 AC 的中点, = ,= ,那么向量用向量,表示为﹣.考 * 平面向量.点:分由 = , = ,利用三角形法例求解即可求析:得,又由在△ ABC 中,D、E 分别是边 AB、边 AC 的中点,可得 DE 是△ ABC 的中位线,而后利用三角形中位线的性质求解即可求得答案.解解:∵ =, =,答:∴=﹣=﹣,∵在△ ABC 中,D、E 分别是边 AB、边 AC的中点,∴= =(﹣)= ﹣.故答案为:﹣.点本题考察了平面向量的知识以及三角形中评:位线的性质.注意掌握三角形法例的应用.16.(4 分)(2015?上海)已知 E 是正方形ABCD 的对角线AC 上一点,AE=AD ,过点E作AC 的垂线,交边CD 于点F,那么∠FAD= 22.5 度.考正方形的性质;全等三角形的判断与性质.点:分依据正方形的性质可得∠DAC=45 °,再由析:AD=AE 易证△ADF ≌△AEF,求出∠FAD.解解:如图,答:在 Rt △AEF 和 Rt△ADF 中,∴R t △AEF ≌Rt △ADF ,∴∠ DAF= ∠EAF ,∵四边形 ABCD 为正方形,∴∠ CAD=45 °,∴∠ FAD=22.5°.故答案为: 22.5.点本题考察了正方形的性质,全等三角形的判评:定与性质,求证 Rt △AEF ≌Rt △ADF 是解本题的重点.17.(4 分)(2015?上海)在矩形ABCD 中,AB=5,BC=12,点 A 在⊙ B 上,假如⊙ D 与⊙ B 订交,且点B 在⊙ D 内,那么⊙ D 的半径长能够等于14(答案不独一).(只要写出一个切合要求的数)考圆与圆的地点关系;点与圆的地点关系.点:专开放型.题:分第一求得矩形的对角线的长,而后依据点A析:在⊙B 上获得⊙ B 的半径为 5,再依据⊙ D 与⊙ B 订交,获得⊙ D 的半径 R 知足 8<R<18,在此范围内找到一个值即可.解解:∵矩形 ABCD 中, AB=5 ,BC=12,答:∴AC=BD=13 ,∵点 A 在⊙B 上,∴⊙ B 的半径为 5,∵假如⊙ D 与⊙ B 订交,∴⊙ D 的半径 R 知足 8<R<18,∵点 B 在⊙D 内,∴R>13,∴13<R<18,∴14 切合要求,故答案为: 14(答案不独一).点本题考察了圆与圆的地点关系、点与圆的位评:置关系,解题的重点是第一确立⊙ B 的半径,而后确立⊙ D 的半径的取值范围,难度不大.18.(4 分)(2015?上海)已知在△ ABC 中,AB=AC=8 ,∠ BAC=30 °,将△ ABC 绕点 A 旋转,使点 B 落在原△ ABC 的点 C 处,此时点 C落在点 D 处,延伸线段 AD ,交原△ ABC 的边BC 的延伸线于点 E,那么线段 DE 的长等于4﹣4.考解直角三角形;等腰三角形的性质.点:专计算题.题:分作 CH ⊥AE 于 H ,依据等腰三角形的性质析:和三角形内角和定理可计算出∠ ACB=(180°﹣∠ BAC )=75°,再依据旋转的性质得 AD=AB=8 ,∠CAD= ∠BAC=30 °,则利用三角形外角性质可计算出∠E=45°,接着在 Rt△ACH 中利用含 30 度的直角三角形三边的关系得 CH= AC=4 ,AH= CH=4,所以DH=AD﹣AH=8﹣4,而后在Rt △CEH 中利用∠E=45°获得 EH=CH=4 ,于是可得 DE=EH ﹣DH=4﹣4.解解:作 CH ⊥AE 于 H,如图,答:∵AB=AC=8 ,∴∠ B=∠ACB= (180°﹣∠ BAC )=(180°﹣ 30°) =75°,∵△ ABC 绕点 A 旋转,使点 B 落在原△ABC 的点 C 处,此时点 C 落在点 D 处,∴A D=AB=8 ,∠CAD= ∠BAC=30 °,∵∠ ACB= ∠CAD+ ∠E,∴∠ E=75°﹣ 30° =45°,在 Rt △ACH 中,∵∠ CAH=30 °,∴CH= AC=4 ,AH= CH=4 ,∴DH=AD ﹣AH=8 ﹣4 ,在 Rt △CEH 中,∵∠ E=45°,∴EH=CH=4 ,∴DE=EH ﹣DH=4 ﹣( 8﹣4 )=4 ﹣4.故答案为 4 ﹣4.点本题考察认识直角三角形:在直角三角形评:中,由已知元素求未知元素的过程就是解直角三角形.也考察了等腰三角形的性质和旋转的性质.三、解答题19.(10 分)(2015?上海)先化简,再求值:÷﹣,此中x=﹣1.考分式的化简求值.点:分先依据分式混淆运算的法例把原式进行化析:简,再把 x 的值代入进行计算即可.解解:原式=? ﹣答:=﹣=,当 x= ﹣1 时,原式 == ﹣1.点本题考察的是分式的化简求值,熟知分式混评:合运算的法例是解答本题的重点.20.(10 分)(2015?上海)解不等式组:,并把解集在数轴上表示出来.考解一元一次不等式组;在数轴上表示不等式点:的解集.分先求出每个不等式的解集,再依据找不等式析:组解集的规律找出不等式组的解集即可.解解:答:∵解不等式①得: x>﹣ 3,解不等式②得: x≤2,∴不等式组的解集为﹣ 3<x≤2,在数轴上表示不等式组的解集为:.点本题考察认识一元一次不等式组,在数轴上评:表示不等式组的解集的应用,解本题的重点是能依据不等式的解集求出不等式组的解集,难度适中.21.(10 分)(2015?上海)已知:如图,在平面直角坐标系 xOy 中,正比率函数 y= x 的图象经过点 A ,点 A 的纵坐标为 4,反比率函数 y= 的图象也经过点 A,第一象限内的点 B 在这个反比率函数的图象上,过点 B 作 BC∥x 轴,交 y 轴于点C,且 AC=AB .求:(1)这个反比率函数的分析式;(2)直线 AB 的表达式.考反比率函数与一次函数的交点问题.点:分(1)依据正比率函数 y= x 的图象经过点析:A,点 A 的纵坐标为 4,求出点 A 的坐标,依据反比率函数y= 的图象经过点 A ,求出m的值;(2)依据点A 的坐标和等腰三角形的性质求出点 B 的坐标,运用待定系数法求出直线AB 的表达式.解解:∵正比率函数 y= x 的图象经过点 A,答:点 A 的纵坐标为 4,∴点 A 的坐标为( 3,4),∵反比率函数 y= 的图象经过点 A ,∴m=12,∴反比率函数的分析式为:y=;(2)如图,连结 AC 、AB ,作 AD ⊥BC 于D,∵A C=AB ,AD ⊥BC,∴B C=2CD=6 ,∴点 B 的坐标为:(6,2),设直线 AB 的表达式为: y=kx+b ,由题意得,,解得,,∴直线 AB 的表达式为: y=﹣ x+6.点本题主要考察了待定系数法求反比率函数评:与一次函数的分析式和一次函数与反比率函数的解得的求法,注意数形联合的思想在解题中的应用.22.(10 分)(2015?上海)如图, MN 表示一段笔挺的高架道路,线段 AB 表示高架道路旁的一排居民楼,已知点 A 到 MN 的距离为 15 米,BA 的延伸线与 MN 订交于点 D,且∠ BDN=30 °,假定汽车在高速道路上行驶时,四周 39 米之内会遇到噪音( XRS )的影响.(1)过点 A 作 MN 的垂线,垂足为点 H,假如汽车沿着从 M 到 N 的方向在 MN 上行驶,当汽车抵达点 P 处时,噪音开始影响这一排的居民楼,那么此时汽车与点 H 的距离为多少米?(2)降低噪音的一种方法是在高架道路旁安装隔音板,当汽车行驶到点 Q 时,它与这一排居民楼的距离 QC 为 39 米,那么对于这一排居民楼,高架道路旁安装的隔音板起码需要多少米长?(精准到 1 米)(参照数据:≈1.7)考解直角三角形的应用;勾股定理的应用.点:分(1)连结 PA.在直角△ PAH 中利用勾股析:定理来求 PH 的长度;(2)由题意知,隔音板的长度是PQ 的长度.经过解 Rt △ADH 、Rt △CDQ 分别求得DH 、DQ 的长度,而后联合图形获得:PQ=PH+DQ ﹣ DH,把有关线段的长度代入求值即可.解解:(1)如图,连结 PA.由题意知,AP=39m.答:在直角△ APH 中, PH== =36 (米);(2)由题意知,隔音板的长度是 PQ 的长度.在 Rt △ADH 中, DH=AH ?cot30°=15(米).在 Rt △CDQ 中, DQ===78(米).则 PQ=PH+HQ=PH+DQ ﹣DH=36+78 ﹣15≈114﹣15×1.7=88.5≈89(米).答:高架道路旁安装的隔音板起码需要 89米.25点本题考察认识直角三角形的应用、勾股定理评:的应用.依据题目已知特色采用适合锐角三角函数或边角关系去解直角三角形,获得数学识题的答案,再转变获得实质问题的答案.23.(12 分)(2015?上海)已知,如图,平行四边形 ABCD 的对角线订交于点 O,点 E 在边BC 的延伸线上,且 OE=OB ,连结 DE.(1)求证: DE ⊥BE;(2)假如 OE⊥CD,求证: BD?CE=CD ?DE .考相像三角形的判断与性质;等腰三角形的性点:质;平行四边形的性质.专证明题.题:分(1)由平行四边形的性质获得 BO= BD,析:由等量代换推出 OE= BD,依据平行四边形的判断即可获得结论;26(2)依据等角的余角相等,获得∠CEO= ∠CDE,推出△ BDE ∽△ CDE,即可获得结论.解证明:(1)∵四边形 ABCD 是平行四边形,答:∴BO= BD,∵OE=OB ,∴OE= BD,∴∠ BED=90 °,∴DE⊥BE;(2)∵ OE⊥CD∴∠ CEO+ ∠DCE= ∠CDE+ ∠DCE=90 °,∴∠ CEO= ∠CDE ,∵OB=OE ,∴∠ DBE= ∠CDE ,∵∠ BED= ∠BED ,∴△ BDE ∽△ CDE ,∴,∴BD?CE=CD ?DE.点本题考察了相像三角形的判断和性质,直角评:三角形的判断和性质,平行四边形的性质,熟记定理是解题的重点.24.(12 分)(2015?上海)已知在平面直角坐标系 xOy 中(如图),抛物线 y=ax2﹣4 与 x 轴的负半轴( XRS)订交于点 A,与 y 轴订交于点 B,AB=2 ,点 P 在抛物线上,线段 AP 与 y 轴的正半轴交于点 C,线段 BP 与 x 轴订交于点 D,设点 P 的横坐标为 m.(1)求这条抛物线的分析式;(2)用含 m 的代数式表示线段 CO 的长;(3)当 tan∠ODC= 时,求∠ PAD 的正弦值.考二次函数综合题.点:分(1)依据已知条件先求出 OB 的长,再根析:据勾股定理得出 OA=2 ,求出点 A 的坐标,再把点 A 的坐标代入 y=ax2﹣4,求出 a 的值,从而求出分析式;(2)依据点P 的横坐标得出点P 的坐标,过点P 作PE⊥x 轴于点E,得出OE=m ,PE=m 2﹣4,从而求出 AE=2+m ,再依据=,求出 OC;(3)依据 tan ∠ODC= ,得出 = ,求出OD 和 OC ,再依据△ ODB ∽△ EDP,得出=,求出 OC,求出∠ PAD=45°,从而求出∠ PAD 的正弦值.解解:(1)∵抛物线 y=ax2﹣4 与 y 轴订交于答:点 B,∴点 B 的坐标是( 0,﹣ 4),∴O B=4 ,∵A B=2 ,∴OA==2,∴点 A 的坐标为(﹣ 2,0),把(﹣ 2,0)代入 y=ax2﹣4 得: 0=4a﹣4,解得: a=1,则抛物线的分析式是:y=x2﹣4;(2)∵点 P 的横坐标为 m,∴点P 的坐标为( m,m2﹣4),过点 P 作 PE⊥x 轴于点 E,∴OE=m ,PE=m 2﹣4,∴A E=2+m ,∵ = ,∴= ,∴CO=2m ﹣4;(3)∵ tan ∠ODC= ,∴ = ,∴OD= OC= ×( 2m﹣4)=,∵△ ODB ∽△ EDP ,∴= ,∴=,∴m1=﹣1(舍去),m2=3,∴O C=2×3﹣4=2,∵OA=2 ,∴O A=OC ,∴∠ PAD=45°,∴sin∠PAD=sin45°=.点本题考察了二次函数的综合,用到的知识评论:是相像三角形的判断与性质、勾股定理、特殊角的三角函数值,重点是依据题意作出协助线,结构相像三角形.25.(14 分)(2015?上海)已知,如图, AB 是半圆 O 的直径,弦 CD ∥AB ,动点 P,Q 分别在线段OC ,CD 上,且DQ=OP ,AP 的延伸线与射线 OQ 订交于点 E,与弦 CD 订交于点 F(点 F 与点 C,D 不重合),AB=20 ,cos∠AOC= ,设 OP=x ,△ CPF 的面积为y.(1)求证: AP=OQ ;(2)求 y 对于 x 的函数关系式,并写出它的定义域;(3)当△ OPE 是直角三角形时,求线段 OP 的长.考圆的综合题.点:分(1)连结 OD,证得△ AOP ≌△ ODQ 后即析:可证得 AP=OQ ;(2)作 PH⊥OA ,依据 cos∠AOC= 获得OH= PO= x,从而获得 S△AOP = AO ?PH=3x ,利用△ PFC ∽△ PAO 适合对应边的比相等即可获得函数分析式;(3)分当∠ POE=90°时、当∠ OPE=90°时、当∠ OEP=90°时三种状况议论即可获得正确的结论.解解:(1)连结 OD ,答:在△ AOP 和△ ODQ 中,,∴△ AOP ≌△ ODQ ,∴AP=OQ ;(2)作 PH⊥OA ,∵cos∠AOC= ,∴OH= PO= x,∴S△AOP = AO ?PH=3x ,又∵△ PFC ∽△ PAO,∴==()2,整理得: y=(<x<10);(3)当∠ POE=90°时, CQ== ,PO=DQ=CD ﹣CQ= (舍);当∠OPE=90°时,PO=AO ?cos∠COA=8 ;当∠ OEP=90°时,∠AOQ= ∠DQO= ∠APO ,∴∠ AOC= ∠AEO ,即∠ OEP= ∠COA ,此种状况不存在,∴线段 OP 的长为 8.点本题考察了圆的综合知识、相像三角形的判评:定及性质等知识,综合性较强,难度较大,特别是第三题的分类议论更是本题的难点.。

2015年上海市各区中考一模数学试题(全含答案)

2015年上海市各区中考一模数学试题(全含答案)

2015年##市六区联考初三一模数学试卷〔满分150分,时间100分钟〕 2015.1一. 选择题〔本大题满分4×6=24分〕1. 如果把Rt ABC ∆的三边长度都扩大2倍,那么锐角A 的四个三角比的值〔 〕 A. 都扩大到原来的2倍; B. 都缩小到原来的12; C. 都没有变化; D. 都不能确定;2. 将抛物线2(1)y x =-向左平移2个单位,所得抛物线的表达式为〔 〕 A. 2(1)y x =+; B. 2(3)y x =-; C. 2(1)2y x =-+; D. 2(1)2y x =--;3. 一个小球被抛出后,如果距离地面的高度h 〔米〕和运行时间t 〔秒〕的函数解析式为25101h t t =-++,那么小球到达最高点时距离地面的高度是〔 〕A. 1米;B. 3米;C. 5米;D. 6米;4. 如图,已知AB ∥CD ∥EF ,:3:5AD AF =,12BE =,那么CE 的长等于〔 〕 A. 2; B. 4; C.245; D. 365; 5. 已知在△ABC 中,AB AC m ==,B α∠=,那么边BC 的长等于〔 〕A. 2sin m α⋅;B. 2cos m α⋅;C. 2tan m α⋅;D. 2cot m α⋅; 6. 如图,已知在梯形ABCD 中,AD ∥BC ,2BC AD =,如果对角线AC 与BD 相交于点O ,△AOB 、△BOC 、△COD 、△DOA 的面积分别记作1S 、2S 、3S 、4S ,那么下列结论中,不正确的是〔 〕A. 13S S =;B. 242S S =;C. 212S S =;D. 1324S S S S ⋅=⋅; 二. 填空题〔本大题满分4×12=48分〕 7. 已知34x y =,那么22x yx y-=+; 8. 计算:33()22a ab -+-=; 9. 已知线段4a cm =,9b cm =,那么线段a 、b 的比例中项等于cm 10. 二次函数2253y x x =--+的图像与y 轴的交点坐标为; 11. 在Rt ABC ∆中,90C ∠=︒,如果6AB =,2cos 3A =,那么AC =; 12. 如图,已知,D E 分别是△ABC 的边BC 和AC 上的点,2AE =,3CE =,要使DE ∥AB ,那么:BC CD 应等于;13. 如果抛物线2(3)5y a x =+-不经过第一象限,那么a 的取值X 围是; 14. 已知点G 是面积为227cm 的△ABC 的重心,那么△AGC 的面积等于;15. 如图,当小杰沿着坡度1:5i =的坡面由B 到A 直行走了26米时,小杰实际上升的高度AC =米〔结论可保留根号〕16. 已知二次函数的图像经过点(1,3),对称轴为直线1x =-,由此可知这个二次函数的图像一定经过除点(1,3)外的另一点,这点的坐标是;17. 已知不等臂跷跷板AB 长为3米,当AB 的一端点A 碰到地面时〔如图1〕,AB 与地面的夹角为30°;当AB 的另一端点B 碰到地面时〔如图2〕,AB 与地面的夹角的正弦值为13,那么跷跷板AB 的支撑点O 到地面的距离OH =米18. 把一个三角形绕其中一个顶点逆时针旋转并放大或缩小〔这个顶点不变〕,我们把这样的三角形运动称为三角形的T-变换,这个顶点称为T-变换中心,旋转角称为T-变换角,三角形与原三角形的对应边之比称为T-变换比;已知△ABC 在直角坐标平面内,点(0,1)A -,(3,2)B -,(0,2)C ,将△ABC 进行T-变换,T-变换中心为点A ,T-变换角为60°,T-变换比为23,那么经过T-变换后点C 所对应的点的坐标为;三. 解答题〔本大题满分10+10+10+10+12+12+14=78分〕19. 已知在直角坐标平面内,抛物线26y x bx =++经过x 轴上两点,A B ,点B 的坐标为(3,0),与y 轴相交于点C ;〔1〕求抛物线的表达式; 〔2〕求△ABC 的面积;20. 如图,已知在△ABC 中,AD 是边BC 上的中线,设BA a =,BC b =; 〔1〕求AD 〔用向量,a b 的式子表示〕〔2〕如果点E 在中线AD 上,求作BE 在,BA BC 方向上的分向量;〔不要求写作法,但要保留作图痕迹,并指出所作图中表示结论的分向量〕21. 如图,某幢大楼的外墙边上竖直安装着一根旗杆CD ,小明在离旗杆下方大楼底部E 点24米的点A 处放置一台测角仪,测角仪的高度AB 为1.5米,并在点B 处测得旗杆下端C 的仰角为40°,上端D的仰角为45°,求旗杆CD 的长度;〔结果精确到0.1米,参考数据:sin 400.64︒≈,cos400.77︒≈,tan 400.84︒≈〕22. 用含30°、45°、60°这三个特殊角的四个三角比与其组合可以表示某些实数,如:12可表示为1sin 30cos60tan 45sin 302=︒=︒=︒⋅︒=…;仿照上述材料,完成下列问题:〔1〕用含30°、45°、60°这三个特殊角的三角比或其组合表示32,即 填空:32====…; 〔2〕用含30°、45°、60°这三个特殊角的三角比,结合加、减、乘、除四种运算,设计一个等式,要求:等式中须含有这三个特殊角的三角比,上述四种运算都至少出现一次,且这个等式的结果等于1,即填空:1=23. 已知如图,D 是△ABC 的边AB 上一点,DE ∥BC ,交边AC 于点E ,延长DE 至点F ,使EF DE =,联结BF ,交边AC 于点G ,联结CF〔1〕求证:AE EGAC CG=; 〔2〕如果2CF FG FB =⋅,求证:CG CE BC DE ⋅=⋅24. 已知在平面直角坐标系xOy 中,二次函数2y ax bx =+的图像经过点(1,3)-和点(1,5)-; 〔1〕求这个二次函数的解析式;〔2〕将这个二次函数的图像向上平移,交y 轴于点C ,其纵坐标为m ,请用m 的代数式表示平移后函数图象顶点M 的坐标;〔3〕在第〔2〕小题的条件下,如果点P 的坐标为(2,3),CM 平分PCO ∠,求m 的值;25. 已知在矩形ABCD 中,P 是边AD 上的一动点,联结BP 、CP ,过点B 作射线交线段CP 的延长线于点E ,交边AD 于点M ,且使得ABE CBP ∠=∠,如果2AB =,5BC =,AP x =,PM y =; 〔1〕求y 关于x 的函数解析式,并写出它的定义域; 〔2〕当4AP =时,求EBP ∠的正切值;〔3〕如果△EBC 是以EBC ∠为底角的等腰三角形,求AP 的长;2015年##市六区联考初三一模数学试卷参考答案一. 选择题1. C2. A3. D4. C5. B6. B 二.填空题7.15 8. 1322a b -- 9. 6 10. (0,3) 11. 4 12. 5313. 3a <- 14. 9 15.26 16. (3,3)- 17.3518. (3,0)- 三. 解答题19.〔1〕256y x x =-+; 〔2〕(2,0)A ,(3,0)B ,(0,6)C ,3ABC S ∆=;20.〔1〕12b a -; 〔2〕略; 21. 3.84CD m ≈22.〔1〕sin 60︒,cos30︒,tan 45sin60︒⋅︒; 〔2〕(sin 30cos60)tan 45cot 45︒+︒⋅︒÷︒; 23. 略;24.〔1〕24y x x =-; 〔2〕(2,4)M m -; 〔3〕92m =;25.〔1〕4y x x =-〔25x <≤〕; 〔2〕3tan 4EBP ∠=; 〔3〕53+;崇明县2014学年第一学期教学质量调研测试卷九年级数学〔测试时间: 100分钟,满分:150分〕一、选择题〔本大题共6题,每题4分,满分24分〕1、已知52a b =,那么下列等式中,不一定正确的是………………………………〔 〕 <A>25a b = <B>52a b = <C>7a b += <D>72a b b += 2、在Rt ABC ∆中,90C ∠=︒,A ∠、B ∠、C ∠所对的边分别为a 、b 、c ,下列等式中不一定成立的是 ……………………………………………………………………〔 〕<A>tan b a B = <B>cos a c B = <C>sin ac A =<D>cos a b A =3、如果二次函数2y ax bx c =++的图像如图所示,那么下列判断中,不正确的是………〔 〕<A>0a ><B>0b ><C>0c <<D>240b ac ->4、将二次函数2x y =的图像向下平移1个单位,再向右平移1个单位后所得图像的函数表达式为…………………………………………………………………………〔 〕 <A>2(1)1y x =++<B>2(1)1y x =+-<C>2(1)1y x =-+<D>2(1)1y x =--5、下列说法正确的是……………………………………………………〔 〕<A> 相切两圆的连心线经过切点 <B> 长度相等的两条弧是等弧<C> 平分弦的直径垂直于弦<D> 相等的圆心角所对的弦相等6、如图,点D 、E 、F 、G 为ABC ∆两边上的点,且DE FG BC ∥∥,若DE 、FG 将ABC ∆的面积三等分,那么下列结论正确的是 ………………………………………〔 〕<A>14DE FG = <B>1DF EGFB GC== <C>ADFB<D>AD DB〔第3题图〕〔第6题图〕二、填空题〔本大题共12题,每题4分,满分48分〕7、已知点P 是线段AB 的黄金分割点()AP PB >,如果2AB =cm,那么线段AP =cm .8、如果两个相似三角形的面积比为1:4,那么它们的周长比为. 9、如果二次函数22(1)51y m x x m =-++-的图像经过原点,那么m =. 10、抛物线221y x =-在y 轴右侧的部分是〔填"上升〞或"下降〞〕.11、如果将抛物线23y x =平移,使平移后的抛物线顶点坐标为(2,2),那么平移后的抛物线的表达式为.12、已知抛物线2y x bx c =++经过点(0,5)A 、(4,5)B ,那么此抛物线的对称轴是.13、某飞机的飞行高度为1500m,从飞机上测得地面控制点的俯角为60°,此时飞机与这地面控制点的距离为m .14、已知正六边形的半径为2cm,那么这个正六边形的边心距为cm .15、如图,已知在ABC ∆中,90ACB ∠=︒,6AC =,点G 为重心,GH BC ⊥,垂足为点H ,那么GH =. 16、半径分别为8cm 与6cm 的1O 与2O 相交于A 、B 两点,圆心距O 1O 2的长为10cm,那么公共弦AB 的长为cm .17、如图,水库大坝的横截面是梯形,坝顶AD 宽5米,坝高10米,斜坡CD 的坡角为45︒,斜坡AB 的坡度1:1.5i =,那么坝底BC 的长度为米.18、如图,将边长为6cm 的正方形ABCD 折叠,使点D 落在AB 边的中点E 处,折痕为FH ,点C 落在Q处,EQ 与BC 交于点G ,那么EBG ∆的周长是cm .〔第15187题,19、〔本题满分10分〕计算:2014cos301(cot 45)sin 60︒-+-︒+︒20、〔本题满分10分,其中第<1>小题5分,第<2>小题5分〕已知:如图,□ABCD 中,E 是AD 中点,BE 交AC 于点F ,设BA a =、BC b =. 〔1〕用,a b 的线性组合表示FA ;〔2〕先化简,再直接在图中求作该向量:1151()()()2424a b a b a b -+-+++.21、〔本题满分10分,其中第<1>小题6分,第<2>小题4分〕ABC DEF G CFEDABC ABCDFGH QE如图,在Rt ABC ∆中,90C ∠=︒,点D 是BC 边上的一点,6CD =,3cos 5ADC ∠=,2tan 3B =.〔1〕求AC 和AB 的长;〔2〕求sin BAD ∠的值.22、〔本题满分10分,其中第<1>小题5分,第<2>小题5分〕 如图,轮船从港口A 出发,沿着南偏西15︒的方向航行了100海里到达B 处,再从B 处沿着北偏东75︒的方向航行200海里到达了C 处. 〔1〕求证:AC AB ⊥;〔2〕轮船沿着BC 方向继续航行去往港口D 处,已知港口D 位于港口A 的正东方向,求轮 船还需航行多少海里.23、〔本题满分12分,其中第<1>小题6分,第<2>小题6分〕如图,在梯形ABCD 中,AD BC ∥,AD AB =,2ABC C ∠=∠,E 与F 分别为边AD 与DC 上的两点,且有EBF C ∠=∠.(1)求证:::BE BF BD BC =;(2)当F 为DC 中点时,求:AE ED 的比值.24、〔本题满分12分,其中每小题各4分〕如图,已知抛物线258y x bx c =++经过直线112y x =-+与坐标轴的两个交点A 、B ,点C 为抛物线上的一点,且90ABC ∠=︒. 〔1〕求抛物线的解析式;〔2〕求点C 坐标; 〔3〕直线112y x =-+上是否存在点P ,使得BCP ∆与OAB ∆相似,若存在,请直接写出P 点的坐标;若不存在,请说明理由. 25、〔本题满分14分,其中第<1>小题5分,第<2>小题5分,已知在ABC ∆中,5AB AC ==,6BC =,O 为边AB 上一动点为半径的圆交BC 于点D ,设OB x =,DC y =. 〔1〕如图1,求y 关于x 的函数关系式与定义域;〔2〕当⊙O 与线段AC 有且只有一个交点时,求x 的取值X 〔3〕如图2,若⊙O 与边AC 交于点E 当DEC ∆与ABC ∆相似时,求x 的值.2014学年 DDABCEF北AB C东一. 选择题1. 将抛物线22y x =-向右平移一个单位,再向上平移2个单位后,抛物线的表达式为〔 〕 A. 22(1)2y x =--+;B. 22(1)2y x =---; C. 22(1)2y x =-++;D. 22(1)2y x =-+-;2. 如图,平行四边形ABCD 中,E 是边BC 上的点,AE 交BD 于点F ,如果:BE BC =2:3,那么下列各式错误的是〔 〕A.2BE EC =;B. 13EC AD =; C.23EF AE =;D. 23BF DF =; 3. 已知Rt △ABC 中,90C ∠=︒,CAB α∠=,7AC =,那么BC 为〔 〕 A. 7sin α;B. 7cos α;C. 7tan α;D. 7cot α;4. 如图,在四边形ABCD 中,AD ∥BC ,如果添加下列条件,不能使得△ABC ∽△DCA 成立的是〔 〕A. BAC ADC ∠=∠;B. B ACD ∠=∠;C. 2AC AD BC =⋅;D.DC ABAC BC=; 5. 已知二次函数222y ax x =-+〔0a >〕,那么它的图像一定不经过〔 〕 A. 第一象限;B. 第二象限;C. 第三象限;D. 第四象限;6. 如图,在△ABC 中,D 、E 分别是AB 、AC 上的点,且DE ∥BC ,如果:1:4AE EC =, 那么:ADE BEC S S ∆∆=〔 〕A. 1:24;B. 1:20;C. 1:18;D. 1:16; 二. 填空题 7. 如果53a b =,那么a ba b -+的值等于; 8. 抛物线2(1)2y x =-+的顶点坐标是;9. 二次函数245y x x =--的图像的对称轴是直线; 10. 计算:cot30sin60︒-︒=;11. 在某一时刻,测得一根高为1.8m 的竹竿的影长为3m ,同时测得一根旗杆的影长为25m ,那么这根旗杆的高度为m ;12. 若点1(3,)A y -、2(0,)B y 是二次函数22(1)1y x =--图像上的两点,那么1y 与2y 的 大小关系是〔填12y y >,12y y =或12y y <〕;13. 如图,若1l ∥2l ∥3l ,如果6DE =,2EF =, 1.5BC =,那么AC =;14. 如图是拦水坝的横断面,斜坡AB 的高度为6米,斜面的坡比为1:2,则斜坡AB 的长为米〔保留根号〕;15. 如图,正方形ABCD 被分割成9个全等的小正方形,P 、Q 是其中两个小正方形的顶 点,设AB a =,AD b =,则向量PQ =〔用向量a 、b 来表示〕;16. 如图,△ABC 中,90BAC ∠=︒,G 点是△ABC 的重心,如果4AG =,那么BC 的长为;17. 如图,已知4tan 3O =,点P 在边OA 上,5OP =,点M 、N 在边OB 上,PM PN =, 如果2MN =,那么PM =;18. 如图,在△ABC 中,90ABC ∠=︒,6AB =,8BC =,点M 、N 分别在边AB 、BC上,沿直线MN 将△ABC 折叠,点B 落在点P 处,如果AP ∥BC 且4AP =,那么BN =;三. 解答题19. 已知二次函数2y ax bx c =++〔a 、b 、c 为常数,且0a ≠〕经过A 、B 、C 、D 四个点,其中横坐标x 与纵坐标y 的对应值如下表:A B CDx1- 0 13 y1-353〔1〕求二次函数解析式; 〔2〕求△ABD 的面积;20. 如图,在等腰梯形ABCD 中,AD ∥BC ,AB DC =,AC 与BD 交于点O ,:1:2AD BC =; 〔1〕设BA a =,BC b =,试用a ,b 表示BO ; 〔2〕先化简,再求作:3(2)2()2a b a b +-+〔直接作在原图中〕 21. 如图,在电线杆上的C 处引拉线CE 、CF 固定电线杆,拉线CE 和地面成60°角,在离电线杆6米处安置测角仪AB ,在A 处测得电线杆上C 处的仰角为23°,已知测角仪AB 的高为1.5米,求拉线CE 的长;[已知5sin 2313︒≈,12cos 2313︒≈,5tan 2312︒≈,结果保留根号] 22. 如图,MN 经过△ABC 的顶点A ,MN ∥BC ,AM AN =,MC 交AB 于D ,NB 交AC 于E ; 〔1〕求证:DE ∥BC ;〔2〕联结DE ,如果1DE =,3BC =,求MN 的长;23. 已知菱形ABCD 中,8AB =,点G 是对角线BD 上一点,CG 交BA 的延长线于点F ;〔1〕求证:2AG GE GF =⋅; 〔2〕如果12DG GB =,且AG BF ⊥,求cos F ; 24. 已知如图,抛物线21:4C y ax ax c =++的图像开口向上,与x 轴交于点A 、B 〔A 在B 的左边〕,与y 轴交于点C ,顶点为P ,2AB =,且OA OC =; 〔1〕求抛物线1C 的对称轴和函数解析式;〔2〕把抛物线1C 的图像先向右平移3个单位,再向下平移m 个单位得到抛物线2C ,记顶点为M ,并与y 轴交于点(0,1)F -,求抛物线2C 的函数解析式;〔3〕在〔2〕的基础上,点G 是y 轴上一点,当△APF 与△FMG 相似时,求点G 的坐标; 25. 如图,梯形ABCD 中,AD ∥BC ,对角线AC BC ⊥,9AD =,12AC =,16BC =,点E 是边BC 上的一个动点,EAF BAC ∠=∠,AF 交CD 于点F ,交BC 延长线于点G ,设BE x =; 〔1〕试用x 的代数式表示FC ; 〔2〕设FGy EF=,求y 关于x 的函数关系式,并写出定义域; 〔3〕当△AEG 是等腰三角形时,直接写出BE 的长; 参考答案1、A2、C3、C4、D5、C6、B7、148、〔1,2〕 9、x =2 10、32 11、15 12、12y y > 13、6 14、6515、16、12 171718、19、 20、 21、 22、 23、 24、 25、所以,BE =72014学年##市宝山区初三一模数学试卷一. 选择题〔24分〕1. 如图,在直角△ABC 中,90C ∠=︒,1BC =,2AC =下列判断正确的是〔 〕A. 30A ∠=︒;B. 45A ∠=︒;C. cot 2A =; D. tan 2A =; 2. 如图,△ABC 中,D 、E 分别为边AB 、AC 上的点,且DE ∥BC ,下列判断错误 的是〔 〕A. AD AE DB EC =;B.AD DE DB BC =;C. AD AE AB AC =;D.AD DE AB BC=; 3. 如果在两个圆中有两条相等的弦,那么〔 〕A. 这两条弦所对的圆心角相等;B. 这两条线弦所对的弧相等;C. 这两条弦都被与它垂直的半径平分;D. 这两条弦所对的弦心距相等;4. 已知非零向量a 、b 、c ,下列命题中是假命题的是〔 〕A. 如果2a b =,那么a ∥b ;B. 如果2a b =-,那么a ∥b ;C. 如果||||a b =,那么a ∥b ;D. 如果2a b =,2b c =,那么a ∥c ;5. 已知O 半径为3,M 为直线AB 上一点,若3MO =,则直线AB 与O 的位置关系为〔 〕A. 相切;B. 相交;C. 相切或相离;D. 相切或相交;6. 如图边长为3的等边△ABC 中,D 为AB 的三等分点〔12AD BD =〕,三角形边上的 动点E 从点A 出发,沿A C B →→的方向运动,到达点B 时停止,设点E 运动的路程为x ,2DE y =,则y 关于x 的函数图像大致为〔 〕A. B. C. D. 二. 填空题〔48分〕7. 线段b 是线段a 和c 的比例中项,若1a =,2b =,则c =;8. 两个相似三角形的相似比为2:3,则它们的面积比为;9. 已知两圆半径分别为3和7,圆心距为d ,若两圆相离,则d 的取值X 围是;10. 已知△ABC 的三边之比为2:3:4,若△DEF 与△ABC 相似,且△DEF 的最大边长为20,则△DEF 的周长为;11. 在△ABC 中,cot A =cos B =那么C ∠=; 12. B 在A 北偏东30°方向〔距A 〕2千米处,C 在B 的正东方向〔距B 〕2千米处,则C 和A 之间的距离为千米;13. 抛物线2(3)4y x =--+的对称轴是;14. 不经过第二象限的抛物线2y ax bx c =++的开口方向向;15. 已知点11(,)A x y 、22(,)B x y 为函数22(1)3y x =--+的图像上的两点,若121x x >>,则1y 2y ; 16. 如图,D 为等边△ABC 边BC 上一点,60ADE ∠=︒,交AC 于E ,若2BD =,3CD =,则CE =;17. 如图,O 的直径AB 垂直弦CD 于M ,且M 是半径OB 的中点,CD =则直径AB 的长为;18. 如图直角梯形ABCD 中,AD ∥BC ,2CD =,AB BC =,1AD =,动点M 、N 分别在AB 边和BC 的延长线运动,而且AM CN =,联结AC 交MN 于E ,MH ⊥AC 于H ,则EH =;三. 解答题〔78分〕19. 计算:2sin 602cot 30cos 602cos 45tan 60︒+︒-︒︒+︒; 20. 如图,已知M 、N 分别是平行四边形ABCD 边DC 、BC 的中点,射线AM 和射线BC 相交于E ,设AB a =,AD b =,试用a 、b 表示AN ,AE ;〔直接写出结果〕21. 已知一个二次函数的图像经过点(1,0)A 和点(0,6)B ,(4,6)C ,求这个抛物线的表达式 以与该抛物线的顶点坐标;22. 如图,D 为等边△ABC 边BC 上一点,DE ⊥AB 于E ,若:2:1BD CD =,DE =求AE ;23. 如图,P 为O 的直径MN 上一点,过P 作弦AC 、BD 使APM BPM ∠=∠,求证: PA PB =;24. 如图,正方形ABCD 中,〔1〕E 为边BC 的中点,AE 的垂直平分线分别交AB 、AE 、CD 于G 、F 、H ,求GF FH ; 〔2〕E 的位置改动为边BC 上一点,且BE k EC =,其他条件不变,求GF FH的值; 25. 〔1〕数学小组的单思稿同学认为形如的抛物线2y ax bx c =++,系数a 、b 、c 一旦确定,抛物线的形状、大小、位置就不会变化,所以称数a 、b 、c 为抛物线2y ax bx c =++ 的特征数,记作{,,}a b c ;请求出与y 轴交于点(0,3)C -的抛物线22y x x k =-+在单同学 眼中的特征数;〔2〕同数学小组的尤恪星同学喜欢将抛物线设成2()y a x m k =++的顶点式,因此坚持称 a 、m 、k 为抛物线的特征数,记作{,,}a m k ;请求出上述抛物线在尤同学眼中的特征数; 〔3〕同一个问题在上述两位同学眼中的特征数各不相同,为了让两人的研究保持一致,同组的董和谐将上述抛物线表述成:特征数为{,,}u v w 的抛物线沿平行于某轴方向平移某单位 后的图像,即此时的特征数{,,}u v w 无论按单思稿同学还是按尤恪星同学的理解做出的结果 是一样的,请你根据数学推理将董和谐的表述完整地写出来;〔4〕在直角坐标系XOY 中,上述〔1〕中的抛物线与x 轴交于A 、B 两点〔A 在B 的左 边〕,请直接写出△ABC 的重心坐标;26. 如图在△ABC 中,10AB BC ==,AC =D 为边AB 上一动点〔D 和A 、B不重合〕,过D 作DE ∥BC 交AC 于E ,并以DE 为边向BC 一侧作正方形DEFG ,设AD =x ,〔1〕请用x 的代数式表示正方形DEFG 的面积,并求出当边FG 落在BC 边上时的x 的值; 〔2〕设正方形DEFG 与△ABC 重合部分的面积为y ,求y 关于x 的函数与其定义域;〔3〕点D 在运动过程中,是否存在D 、G 、B 三点中的两点落在以第三点为圆心的圆上 的情况?若存在,请直接写出此时AD 的值,若不存在,则请说明理由;2014学年第一学期长宁区学习能力诊断卷初三数学 试卷〔时间100分钟 满分150分〕一. 选择题〔本大题共6题,每题4分,满分24分〕1.如果两个相似三角形的面积比是1:6,那么它们的相似比是〔 〕A .1:36 B.1:6 C . 1:3 D . 1: 6 2. 在Rt △ABC 中,已知∠C =90°,AC =3,BC =4,那么∠A 的余弦值等于〔 〕A .35B . 45C . 34D . 433. 如图,点A 、B 、C 、D 、E 、F 、G 、H 、K 都是7×8方格纸中的格点,为使△DE M ∽△ABC 〔点D 和点A 对应,点B 和E 对应〕,则点M 对应是F 、G 、H 、K 四点中的〔 〕A . FB . GC . KD . H第3题图4. 已知两圆半径分别是3和4,若两圆内切,则两圆的圆心距为〔 〕A . 1或7B . 1C . 7D . 25. 抛物线22212,2,2y x y x y x ==-=共有的性质是〔 〕 A . 开口向下; B . 对称轴是y 轴C . 都有最低点D . y 的值随x 的增大而减小6. 如图,动点P 从点A 出发,沿线段AB 运动至点B 后,立即按原路返回,点P 在运动的过程中速度不变,则以点B 为圆心,线段B P 长为半径的圆的面积S 与点P 的运动时间t 之间的函数图象大致为图中的< >A .B .C .D .二. 填空题〔本大题共12题,每题4分,满分48分〕7. 已知线段a =2c m,c =8c m,则线段a 、c 的比例中项是_________c m.8. 计算:3()3a b a --=_________.9. 已知⊙P 在直角坐标平面内,它的半径是5,圆心P 〔-3,4〕,则坐标原点O 与⊙P 的位置位置关系是_________.10. 如果圆心O 到直线l 的距离等于⊙O 的半径,那么直线l 和⊙O 的公共点有________个.11. 抛物线23(1)2y x =--+的顶点坐标是________.12.抛物线223y x =-向左移动3个单位后所得抛物线解析式是________.13. 已知二次函数227y x x =+-的一个函数值是8,那么对应自变量x 的值是_________.14. 已知二次函数2(1)2y ax a x =-+-,当x >1时,y 的值随x 的增大而增大,当x <1时,y 的值随x 的增大而减小,则实数a 的值为_________.15. 某企业今年第一月新产品的研发资金为100万元,以后每月新产品的研发资金与上月相比增长率都是x ,则该厂今年第三月新品研发资金y 〔元〕关于x 的函数关系式为y =_________.16. 如图所示,铁路的路基横断面都是等腰梯形,斜坡AB 的坡度为3,斜坡AB 的水平宽度BE =33m ,则斜坡AB =_________m.17. 如图,已知AD 是△ABC 的中线,G 是△ABC 的重心,联结BG 并延长交AC 于点E ,联结DE ,则S △ABC :S △GED 的值为_________.18. 如图,正方形ABCD 绕点A 逆时针旋转,得到正方形'''AB C D .当两个正方形重叠部分的面积是原正方形面积的14时,1sin '2B AD ∠ _________. 第16题图 第17题图 第18题图三. <本大题共7题,满分78分>19.〔本题满分10分〕计算:201(sin 30)(2015tan 45).sin 60cos60o o o o --+-- 20. 〔本题满分10分〕 如图,已知O 为△ABC 内的一点,点D 、E 分别在边AB 、AC 上,且11,.34AD AE DB AC ==设,,OB m OC n ==试用m 、n 表示DE .21. 〔本题满分10分〕如图,AB 是⊙O 的弦,点C 、D 在弦AB 上,且AD =BC ,联结OC 、OD .求证:△OCD 是等腰三角形.22. 〔本题满分10分〕如图,在△ABC 中,AD 是BC 上的高,点G 在AD 上,过点G 作BC 的平行线分别与AB 、AC 交于P 、Q 两点,过点P 作PE ⊥BC 于点E ,过点Q 作QF ⊥BC 于点F . 设AD =80,BC =120,当四边形PEFQ 为正方形时,试求正方形的边长.23. 〔本题满分12分〕如图,A 、B 两地之间有一座山,汽车原来从A 地到B 地须经C地沿折线A -C -B 行驶,现开通隧道后,汽车直接沿直线AB 行驶.已知AC =120千米,∠A =30°,∠B =135°,则隧道开通后,汽车从A地到B 地比原来少走多少千米?〔结果保留根号〕24. 〔本题满分12分〕如图,已知平面直角坐标平面上的△ABC ,AC =CB ,∠ACB =90°,且A 〔-1,0〕,B 〔m,n 〕C 〔3,0〕,若抛物线23y ax bx =+-经过A 、C 两点.(1) 求a 、b 的值(2) 将抛物线向上平移若干个单位得到的新抛物线恰好经过点B ,求新抛物线的解析式.(3) 设〔2〕中的新抛物线的顶点为P 点,Q 为新抛物线上P 点至B 点之间一点,以点Q 为圆心画圆,当⊙Q 与x 轴和直线BC 都相切时,联结PQ 、BQ ,求四边形ABQP 的面积.25. 〔本题满分14分〕如图,已知△ABC 是等边三角形,AB =4,D 是AC 边上一动点〔不与A 、C 重合〕,EF 垂直平分BD ,分别交AB 、BC 于点E 、F ,设CD =x ,AE =y .(1) 求证:△AED ∽△CDF ;(2) 求y 关于x 的函数关系式,并写出定义域;(3) 过点D 作DH ⊥AB ,垂足为点H ,当EH =1时,求线段CD 的长.F E D2014学年嘉定区九年级第一次质量调研数学试卷〔满分150分,考试时间100分钟〕考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:〔本大题共6题,每小题4分,满分24分〕[下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.]1.对于抛物线2)2(-=x y ,下列说法正确的是〔▲〕〔A 〕顶点坐标是)0,2(;〔B 〕顶点坐标是)2,0(;〔C 〕顶点坐标是)0,2(-;〔D 〕顶点坐标是)2,0(-.2.已知二次函数bx ax y +=2的图像如图1所示,那么a 、b 的符号为〔▲〕〔A 〕0>a ,0>b ;〔B 〕0<a ,0>b ;〔C 〕0>a ,0<b ;〔D 〕0<a ,0<b .3.在Rt △ABC 中,︒=∠90C ,a 、b 、c 分别是A ∠、B ∠、C ∠的对边,下列等式中正确的是〔▲〕〔A 〕c a A =cos ;〔B 〕b c B =sin ;〔C 〕b a B =tan ;〔D 〕a b A =cot . 4.如图2,已知AB ∥CD ,AD 与BC 相交于点O , 2:1:=DO AO ,那么下列式子正确的是〔▲〕 〔A 〕2:1:=BC BO ;〔B 〕1:2:=AB CD ;〔C 〕2:1:=BC CO ;〔D 〕1:3:=DO AD . 5.已知非零向量a 、b 和c ,下列条件中,不能判定a ∥b 的是〔▲〕〔A 〕a =b 2-;〔B 〕c a =,c b 3=;〔C 〕c b a =+2,c b a -=-;〔D=.6.在△ABC 中,︒=∠90C ,cm AC 3=,cm BC 4=.以点A 为圆心,图1 AB C DO图2半径为cm 3的圆记作圆A ,以点B 为圆心,半径为cm 4的圆记作圆B ,则圆A 与圆B 的位置关系是〔▲〕〔A 〕外离;〔B 〕外切;〔C 〕相交;〔D 〕内切.二、填空题:〔本大题共12题,每小题4分,满分48分〕7.如果函数2)1(x a y -=是二次函数,那么a 的取值X 围是 ▲ .8.在平面直角坐标系中,如果把抛物线22+=x y 向上平移2个单位,那么所得抛物线的表达式为 ▲ .9.已知抛物线122-+=x x y 的对称轴为l ,如果点)0,3(-M 与点N 关于这条对称轴l 对称,那么点N 的坐标是 ▲ .10.请写出一个经过点)1,0(,且在对称轴右侧部分是下降的抛物线的表达式,这条抛物线的表达式可以是 ▲ .11.已知线段b 是线段a 、c 的比例中项,且1=a ,4=c ,那么=b ▲ .12.如果两个相似三角形的周长比为2:1,那么它们的对应中线的比为 ▲ .13.如图3,已知在平行四边形ABCD 中,点E 在边BC 上,射线AE 交DC 的延长线于点F ,2=AB ,EC BE 3=,那么DF 的长为 ▲ . 14.在△ABC 中,︒=∠90C ,1312sin =A ,12=BC ,那么=AC ▲ . 15.小杰在楼上点A 处看到楼下点B 处的小丽的俯角是︒36,那么点B 处的小丽看点A 处的小杰的仰角是 ▲ 度.16.正九边形的中心角等于 ▲ 度.17.如图4,AB 、AC 都是圆O 的弦,AB OM ⊥,AC ON ⊥,垂足分别为点M 、N ,如果6=BC ,那么=MN ▲ .18.在△ABC 中,9=AB ,5=AC ,AD 是BAC ∠的平分线交BC 于点D 〔如图5〕,△ABD 沿直线AD翻折后,点B 落到点1B 处,如果BAC DC B ∠=∠211,那么=BD ▲ . 三、解答题:〔本大题共7题,满分78分〕19.〔本题满分10分〕 计算:︒-+︒⋅︒+︒-45cos 21260tan 30cot 2130sin 1. N M O C B A 图4D F A B C D 图520.〔本题满分10分〕已知二次函数)0(22≠+-=m n x mx y 的图像经过点)1,2(-和)2,1(-,求这个二次函数的解析式,并求出它的图像的顶点坐标和对称轴.21.〔本题满分10分,每小题各5分〕如图6,已知AB 是圆O 的直径,10=AB ,弦CD 与AB 相交于点N ,︒=∠30ANC ,3:2:=AN ON ,CD OM ⊥,垂足为点M . 〔1〕求OM 的长;〔2〕求弦CD 的长. 22.〔本题满分10分,每小题各5分〕 如图7,某地下车库的入口处有斜坡AB ,它的坡度为2:1=i ,斜坡AB度为AH 〔BC AH ⊥〕,为了让行车更安全,现将斜坡的坡角改造为︒14〔图中的︒=∠14ACB 〕. 〔1〕求车库的高度AH ;〔2〕求点B 与点C 之间的距离〔结果精确到1米〕. 〔参考数据:24.014sin =︒,97.014cos =︒,25.014tan =︒,01.414cot =︒〕 23.〔本题满分12分,每小题各6分〕已知:如图8,在△ABC 中,点D 在边BC 上,且DAG BAC ∠=∠,BAD CDG ∠=∠.〔1〕求证:AC AG AB AD =; 〔2〕当BC GC ⊥时,求证:︒=∠90BAC .24.〔本题满分12分,每小题各4分〕如图9,在平面直角坐标系xoy 中,点A 坐标为)0,8(,点B 在y 轴的正半轴上,且34cot =∠OAB ,抛物线c bx x y ++-=241经过A 、B 两点. 〔1〕求b 、c 的值;〔2〕过点B 作OB CB ⊥,交这个抛物线于点C ,以点C为圆心,CB 为半径长的圆记作圆C ,以点A 为圆心,r为半径长的圆记作圆A .若圆C 与圆A 外切,求r 的值;〔3〕若点D 在这个抛物线上,△AOB 的面积是△OBD 面积的8倍,求点D 的坐标. 25.〔本题满分14分,其中第〔1〕小题4分,第〔2〕小题5分,第〔3〕小题5分〕已知在△ABC 中,8==AC AB ,4=BC ,点P 是边AC 上的一个动点,ABC APD ∠=∠,AD ∥BC ,联结DC .图8 B 图6 A BC H图7〔1〕如图10,如果DC ∥AB ,求AP 的长;〔2〕如图11,如果直线DC 与边BA 的延长线交于点E ,设x AP =,y AE =,求y 关于x 的函数解析式,并写出它的定义域;〔3〕如图12,如果直线DC 与边BA 的反向延长线交于点F ,联结BP ,当△CPD 与△CBF 相似时,试判断线段BP 与线段CF 的数量关系,并说明你的理由.2014学年奉贤区调研测试 九年级数学2015.01 〔满分150分,考试时间100分钟〕 一、选择题:〔本大题共6题,每题4分,满分24分〕[每小题只有一个正确选项,在答题纸的相应题号的选项上用2 B 铅笔填涂] 1.已知y x 23=,那么下列等式一定成立的是〔▲〕 A .3,2==y x ;B .23=y x ;C .32=y x ;D .023=+y x . 2.在Rt △ABC 中,∠ACB =90°,BC =1,AC =2,则下列结论正确的是〔▲〕A .sin A =32;B .tan A =12; C .cos B =32; D .tan B =3. 3.抛物线221x y -=的图象向右平移2个单位长度后所得新的抛物线的顶点坐标为〔▲〕 A .<0,-2> ;B . <0,2>;C .<-2,0>;D .<2,0>.4.在直角坐标平面中,M 〔2,0〕,圆M 的半径为4 ,那么点P 〔-2,3〕与圆M 的位置关系是〔▲〕A .点P 在圆内;B .点P 在圆上;C .点P 在圆外;D .不能确定.5.一斜坡长为10米,高度为1米,那么坡比为〔▲〕A .1:3;B .1:31;C .1:10;D .1:1010. 6.在同圆或等圆中,下列说法错误的是〔▲〕A .相等弦所对的弧相等;B .相等弦所对的圆心角相等;C .相等圆心角所对的弧相等;D .相等圆心角所对的弦相等.二、填空题:〔本大题共12题,每题4分,满分48分〕[请将结果直接填入答题纸的相应位置]7.若→a 与→e 方向相反且长度为3,那么→a =▲→e ;8.若α为锐角,已知cos α=21,那么tan α=▲; 9.△ABC 中,∠C =90°,G 为其重心,若CG =2,那么AB =▲; 10.一个矩形的周长为16,设其一边的长为x ,面积为S ,则S 关于x 的函数解析式是▲;A B C DP 图12 F AB C D P 图10 B A C D P图11 E <第15题图>11.如果抛物线12-+=mx x y 的顶点横坐标为1,那么m 的值为▲; 12.正n 边形的边长与半径的夹角为75°,那么n=▲; 13.相邻两边长的比值是黄金分割数的矩形,叫做黄金矩形,从外形上看,它最具美感,现在想要制作一X"黄金矩形〞的贺年卡,如果较长的一条边长等于20厘米,那么相邻一条边长等于▲厘米;14.已知抛物线经过点<5,-3>,其对称轴为直线x =4,则抛物线一定经过另一点的坐标是▲;15.如图,P 为平行四边形ABCD 边AD 上一点,E 、F 分别为PB 、PC 的中点,若△PEF 的面积为3,那么△PDC 与△PAB 的面积和等于▲;16.已知圆A 与圆B 内切,AB =10,圆A 半径为4,那么圆B 的半径为▲;17.已知抛物线2)1(2++=x a y 过〔0,y 1〕、〔3,y 2〕,若y 1> y 2,那么a 的取值X 围是▲;18.已知在△ABC 中,∠C=90o ,AC=3,BC=4.在平面内将△ABC 绕B 点旋转,点A 落到A ’,点C 落到C ’,若旋转后点C 的对应点C ’和点A 、点B 正好在同一直线上,那么∠A ’AC ’的正切值等于▲;三、解答题:〔本大题共7题,满分78分〕19.〔本题满分10分〕计算:︒-︒-︒︒60cot 2345tan 60sin 230sin 2 20.〔本题满分10分,第〔1〕小题满分7分,第〔2〕小题满分3分〕一个弓形桥洞截面示意图如图所示,圆心为O ,弦AB 是水底线,OC ⊥AB ,AB =24m ,sin ∠COB =1312,DE 是水位线,DE ∥AB . 〔1〕当水位线DE =304m 时,求此时的水深;〔2〕若水位线以一定的速度下降,当水深8m 时,求此时∠ACD 的余切值.21.〔本题满分10分,每小题满分各5分〕如图,在△ABC 中,AB=AC =12,DC =4,过点C 作CE ∥AB 交BD 的延长线于点E ,→→→→==b BC a AB ,,〔1〕求→BE 〔用向量a 、b 的式子表示〕;<2〕求作向量→→+AC BD 21〔不要求写作法,但要指出所 作图中表示结论的向量〕. 22.〔本题满分10分〕在某反潜演习中,我军舰A 测得潜艇C 的俯角为300,位于军舰A 正上方2000米的反潜直升机B 测得潜艇C 的俯角为680,试根据以上数据求出潜艇C 离开海平面的下潜深度.〔结果保留整数.参考数据:sin680≈0.9,cos680≈0.4,tan680≈2.5,3≈1.7>23.〔本题满分12分,每小题满分各6分〕 如图,在四边形ABCD 中,∠B =∠ACD ,过D 作AC ∥DE 交BC 的延长线于点E ,且2CD AC DE =⋅第20题图 B 第22题图B 第21题图 A D EC B A。

2015-2018年上海初三数学一模第25题汇编-答案版

2015-2018年上海初三数学一模第25题汇编-答案版

2015年初三一模25题汇编题型一:等腰三角形分类讨论 (黄浦2015年初三一模)25. (本题满分14分,其中第(1)小题4分,第(2)小题5分,第(3)小题5分)如图12,在矩形ABCD 中,86AB BC ==,对角线AC BD 、交于点O ,点E 在AB 延长线上,联结CE ,AF CE ⊥,AF 分别交线段CE 、边BC 、对角线BD 于点F G H 、、(点F 不与点C E 、重合)。

(1)当点F 是线段CE 的中点时,求GF 的长;(2)设BE x OH y ==,,求y 关于x 的函数解析式,并写出它的定义域; (3)当BHG ∆是等腰三角形时,求BE 的长。

【答案】25.(本题满分14分,其中第(1)小题4分,第(2)小题5分,第(3)小题5分) (1)矩形ABCD 中,90ABC ∠=︒, 8,6,10AB BC AC ==∴=AF CE ⊥,且点F 是线段CE 的中点,10,2AE AC BE ∴==∴=1,tan 310,GF CF tan BE Rt CBE ECB BC CE CF Rt CBE ECB ∆∠====∴=∆=∠=中(2)90,,4,.3ABC CBE AGB CGF BAG BCE BG AB BG x BE BC ∠=∠=︒∠=∠∴∆∆∴=∴=矩形ABCD 中,//,AD BC 453,6545109(0).292xBG BH y AD DH y x y x x -∴=∴=+-∴=<<+ (3)1︒当BH BG =时,DH AD =,56y ∴+=,即4510129yx -=+,解得3x =2︒当GH BG =时,AD AH =过点A 作AM DH ⊥,垂足为H 。

Rt CBE ∆中,3cos 5ADB ∠=.532.65y+∴= (1)将451029xy x -=+代入(1) 解得74x =3︒当GH BH =时,DH AH =,∴点H 在AD 垂直平分线上,此时F 点与点C 重合,∴92x =(舍) 综上所述BE 的长是3或74.(普陀2015初三一模)25、如图12、等边AB C ∆,4A B =,点P 是射线AC 上的一个动点。

2015年上海市中考数学试卷答案与解析

2015年上海市中考数学试卷答案与解析
故答案为 14. 点 本题属于基础题,考查了确定一组数据的中位数的能力.注意找中位数的时候一定 评: 要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正
中间的数字即为所求,如果是偶数个则找中间两位数的平均数.
15.(4 分)(2015•上海)如图,已知在△ABC 中,D、E 分别是边 AB、边 AC 的中点, = , = ,那么向量 用向量 , 表示为 ﹣ .
∵点 A 在⊙B 上, ∴⊙B 的半径为 5, ∵如果⊙D 与⊙B 相交, ∴⊙D 的半径 R 满足 8<R<18, ∵点 B 在⊙D 内, ∴R>13, ∴13<R<18, ∴14 符合要求,
故答案为:14(答案不唯一). 点 本题考查了圆与圆的位置关系、点与圆的位置关系,解题的关键是首先确定⊙B 的 评: 半径,然后确定⊙D 的半径的取值范围,难度不大.
考 圆与圆的位置关系;点与圆的位置关系. 点: 专 开放型. 题:
7
分 首先求得矩形的对角线的长,然后根据点 A 在⊙B 上得到⊙B 的半径为 5,再根据 析: ⊙D 与⊙B 相交,得到⊙D 的半径 R 满足 8<R<18,在此范围内找到一个值即可. 解 解:∵矩形 ABCD 中,AB=5,BC=12, 答: ∴AC=BD=13,
D、a = (a>0),故此选项错误. 故选:A. 点 此题主要考查了零指数幂的性质以及负指数幂的性质和分数指数幂的性质等知识, 评: 正确把握相关性质是解题关键.
3.(4 分)(2015•上海)下列 y 关于 x 的函数中,是正比例函数的为( )
A y=x2 .
B.y=
C.y=
D y= .
1
考 正比例函数的定义. 点: 分 根据正比例函数的定义来判断即可得出答案. 析: 解 解:A、y 是 x 的二次函数,故 A 选项错误; 答: B、y 是 x 的反比例函数,故 B 选项错误;

上海市黄浦区中考一模数学试卷

上海市黄浦区中考一模数学试卷

2015学年度第一学期九年级期终调研测试数 学 试 卷 2016年1月(满分150分,考试时间100分钟)考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效; 3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】1.如果两个相似三角形的周长比为1∶4,那么这两个三角形的相似比为( )(A )1∶2; (B )1∶4; (C )1∶8; (D )1∶16.2.已知线段a 、b 、c ,其中c 是b a 、的比例中项,若cm a 9=,cm b 4=,则线段c 长( )(A )18cm ; (B )5cm ; (C )6cm ; (D )6cm ±.3.如果向量a r 与向量b r 方向相反,且3a b =r r ,那么向量a r用向量b r 表示为( )(A )3a b =r r ; (B )3a b =-r r; (C )13a b =r r ; (D )13a b =-r r .4.在直角坐标平面内有一点P (3,4),OP 与x 轴正半轴的夹角为α,下列结论正确的是( )(A )4tan 3α=; (B )4cot 5α=;(C )3sin 5α=; (D )5cos 4α=.5.下列函数中不是二次函数的有( )(A )()1y x x =- ;(B)21y =- ;(C )2y x =- ;(D )()224y x x =+-.6.如图1,在△ABC 中,点D 、E 分别在边AB 、AC 上,如果DE ∥BC ,且DCE B ∠=∠,那么下列说法中,错误的是( ) (A )△ADE ∽△ABC ;(B )△ADE ∽△ACD ; (C )△ADE ∽△DCB ;(D )△DEC ∽△CDB .二、填空题:(本大题共12题,每题4分,满分48分)7.如果sin α=α= °. 8.已知线段a 、b 、c 、d ,如果23a c b d ==,那么a c b d +=+ . 9.计算:()312422a b a b --+=rr r r . 10.在Rt △ABC 中,90C ︒∠=,AC =2,1cot 3A =,则BC = .11.如图2,已知AD 、BC 相交于点O ,AB ∥CD ∥EF ,如果CE =2,EB =4,FD =1.5,那么AD = .12.如图3,在△ABC 中,点D 是BC 边上的点,且CD =2BD ,如果AB a =u u u r r ,AD b =u u u r r ,那么BC =u u u r(用含a r 、b r的式子表示).ABCE图1AB CD图3A BC D E F图2图4ABCDO13.在△ABC 中,点O 是重心,DE 经过点O 且平行于BC 交边AB 、AC 于点D 、E ,则:ADE ABC S S ∆∆= .14.如图4,在△ABC 中,D 、E 分别是边AC 、AB 上的点,且AD =2,DC =4,AE =3,EB =1,则DE :BC = . 15.某水库水坝的坝高为10米,迎水坡的坡度为1:2.4,则该水库迎水坡的长度为米.16.如图5,AD 、BE 分别是△ABC 中BC 、AC 边上的高,AD =4,AC =6,则sin EBC ∠= . 17.已知抛物线12()y a x m k =-+与22()y a x m k =++()0m ≠关于y 轴对称,我们称1y 与2y 互为“和谐抛物线”.请写出抛物线2467y x x =-++的“和谐抛物线” .18.如图6,在梯形ABCD 中,AD ∥BC ,∠B =45°,点E 是AB 的中点,DE =DC ,∠EDC =90°,若AB =2,则AD 的长是 . 三、解答题:(本大题共7题,满分78分) 19.(本题满分10分) 计算:22tan30cos 45cot 302sin60︒︒-+︒︒.20.(本题满分10分)如图7,已知△ABC 中,点D 、E 分别在边AB 和ACDE //BC ,点F 是DE 延长线上的点,AD DE BD EF=,联结FC ,若23AE AC =,求AD FC 21.(本题满分10分)已知抛物线2y ax b x c =++如图8所示,请结合图像中所给信息完成以下问题:(1)求抛物线的表达式;(2)若该抛物线经过一次平移后过原点O ,请写出一种平移方法,并写出平移后得到的新抛物线的表达式. 22.(本题满分10分)如图9,已知四边形ABCD 的对角线AC 、BD 交于点F ,点E 是BD 上一点,且BCA ADE ∠=∠,∠CBD =∠BAE .(1)求证:ABC ∆∽AED ∆;(2)求证:AB CD AC BE ⋅=⋅.23.(本题满分12分)如图10,一条细绳系着一个小球在平面内摆动.已知细绳从悬挂点O 到球心的长度为50厘米,小球在A 、B 两个位置时达到最高点,且最高点高度相同(不计空气阻力),在C 点位置时达到最低点.达到左侧最高点时与最低点时细绳相应所成的角度为37°,细绳在右侧达到最高点时与一个水平放置的挡板DE 所成的角度为30°.(6.037sin ≈︒,8.037cos ≈︒,75.037tan ≈︒)(1)求小球达到最高点位置与最低点位置时的高度差.(2)求OD 这段细绳的长度.24.(本题满分12分,其中第(1)小题3分,第(2)小题3分,第(3)小题6分) 在平面直角坐标系xOy 中,抛物线c ax ax y +-=32与x 轴交于)0,1(-A 、B 两点(A 点在B 点左侧),与y 轴交于点)2,0(C .(1)求抛物线的对称轴及B 点的坐标;(2)求证:∠CAO =∠BCO ;(3)点D 是射线BC 上一点(不与B 、C 重合),图OxyABCD E图5ABCDE图6BDOE图10ABCDE F图9图8联结OD ,过点B 作BE ⊥OD ,垂足为BOD ∆外一点E ,若BDE ∆与ABC ∆相似,求点D 的坐标. 25.(本题满分14分,其中第(1)小题4分,第(2)小题6分,第(3)小题4分)已知直线1l 、2l ,1l ∥2l ,点A 是1l 上的点,B 、C 是2l 上的点,AC ⊥BC ,∠ABC =60°,AB =4,O 是AB 的中点,D 是CB 延长线上的点,将DOC ∆沿直线CO 翻折,点D 与'D 重合(1)如图12,当点'D 落在直线1l 上时,求DB 的长;(2)延长DO 交1l 于点E ,直线'OD 分别交1l 、2l 于点M 、N .① 如图13,当点E 在线段AM 上时,设x AE =,y DN =,求y 关于x 的函数解析式及其定义域;② 若DON ∆的面积为323时,求AE 的长. 2016年上海市黄浦区中考数学一模试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分) 1.(4分)(2016?黄浦区一模)如果两个相似三角形的周长比为1:4,那么这两个三角形的相似比为( ) A .1: 2 B .1:4 C .1:8 D .1:16 【考点】相似三角形的性质.【分析】根据相似三角形周长的比等于相似比解答即可. 【解答】解:∵两个相似三角形的周长比为1:4, ∴这两个三角形的相似比为1:4, 故选:B .【点评】本题考查的是相似三角形的性质,掌握相似三角形周长的比等于相似比是解题的关键. 2.(4分)(2016?黄浦区一模)已知线段a 、b 、c ,其中c 是a 、b 的比例中项,若a=9cm ,b=4cm ,则线段c 长( ) A .18cm B .5cm C .6cm D .±6cm 【考点】比例线段.【分析】由c 是a 、b 的比例中项,根据比例中项的定义,列出比例式即可得出线段c 的长,注意线段不能为负. 【解答】解:根据比例中项的概念结合比例的基本性质,得:比例中项的平方等于两条线段的乘积. 所以c 2=4×9,解得c=±6(线段是正数,负值舍去), 故选C .【点评】此题考查了比例线段;理解比例中项的概念,这里注意线段不能是负数. 3.(4分)(2016?黄浦区一模)如果向量与向量方向相反,且,那么向量用向量表示为( )A .B .C .D .【考点】*平面向量. 【分析】由向量与向量方向相反,且,可得3=﹣,继而求得答案.【解答】解:∵向量与向量方向相反,且,∴3=﹣, ∴=﹣.故选D .【点评】此题考查了平面向量的知识.注意根据题意得到3=﹣是解此题的关键.BCD'D O1l 2l A图A BCD 'D O1l 2l MNE图4.(4分)(2016?黄浦区一模)在直角坐标平面内有一点P(3,4),OP与x轴正半轴的夹角为α,下列结论正确的是()A.tanα=B.cotα=C.sinα=D.cosα=【考点】锐角三角函数的定义;坐标与图形性质.【分析】根据在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边,可得答案.【解答】解:斜边为=5,A、tanα=,故A正确;B、cotα=,故B错误;C、sinα=,故C错误;D、cosα=,故D错误;故选:A.【点评】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.5.(4分)(2016?黄浦区一模)下列函数中不是二次函数的有()A.y=x(x﹣1)B.y=﹣1 C.y=﹣x2D.y=(x+4)2﹣x2【考点】二次函数的定义.【分析】依据二次函数的定义回答即可.【解答】解:A、整理得y=x2﹣x,是二次函数,与要求不符;B、y=﹣1是二次函数,与要求不符;C、y=﹣x2是二次函数,与要求不符;D、整理得:y=8x+16是一次函数,与要求相符.故选:D.【点评】本题主要考查的是二次函数的定义,掌握二次函数的定义是解题的关键.6.(4分)(2016?黄浦区一模)如图,在△ABC中,点D、E分别在边AB、AC上,如果DE∥BC,且∠DCE=∠B,那么下列说法中,错误的是()A.△ADE∽△ABC B.△ADE∽△ACD C.△ADE∽△DCB D.△DEC∽△CDB【考点】相似三角形的判定.【分析】由相似三角形的判定方法得出A、B、D正确,C不正确;即可得出结论.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∠BCD=∠CDE,∠ADE=∠B,∠AED=∠ACB,∵∠DCE=∠B,∴∠ADE=∠DCE,又∵∠A=∠A,∴△ADE∽△ACD;∵∠BCD=∠CDE,∠DCE=∠B,∴△DEC∽△CDB;∵∠B=∠ADE,但是∠BCD<∠AED,且∠BCD≠∠A,∴△ADE与△DCB不相似;正确的判断是A、B、D,错误的判断是C;故选:C.【点评】本题考查了相似三角形的判定方法;熟练掌握相似三角形的判定方法,由两角相等得出三角形相似是解决问题的关键.二、填空题:(本大题共12题,每题4分,满分48分)7.(4分)(2016?黄浦区一模)如果sinα=,那么锐角α=60°.【考点】特殊角的三角函数值.【分析】根据特殊角三角函数值,可得答案.【解答】解:由sinα=,得锐角α=60°,故答案为:60.【点评】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.8.(4分)(2016?黄浦区一模)已知线段a、b、c、d,如果,那么=.【考点】比例的性质.【分析】根据等比性质:?=,可得答案.【解答】解:由等比性质,得=,故答案为:.【点评】本题考查了比例的性质,利用等比性质是解题关键.9.(4分)(2016?黄浦区一模)计算:=+.【考点】*平面向量.【分析】直接利用平面向量的加减运算法则求解即可求得答案.【解答】解:=﹣3﹣+4=+.故答案为:.【点评】此题考查了平面向量的运算法则.注意去括号时符号的变化.10.(4分)(2016?黄浦区一模)在Rt△ABC中,∠C=90°,AC=2,cotA=,则BC=6.【考点】锐角三角函数的定义.【分析】根据余切等于邻边比对边,可得答案.【解答】解:Rt△ABC中,∠C=90°,AC=2,cotA==,得BC=3AC=3×2=6,故答案为:6.【点评】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边,余切等于邻边比对边.11.(4分)(2016?黄浦区一模)如图,已知AD、BC相交于点O,AB∥CD∥EF,如果CE=2,EB=4,FD=1.5,那么AD= 4.5.【考点】平行线分线段成比例.【分析】根据平行线分线段成比例、比例的基本性质求得AF=3,则AD=AF+FD=4.5即可.【解答】解:∵AB∥EF,∴,则,又EF∥CD,∴,则,∴,即,解得:AF=3,∴AD=AF+FD=3+1.5=4.5,即AD的长是4.5;故答案为:4.5.【点评】本题考查了平行线分线段成比例、比例的性质;由平行线分线段成比例定理得出比例式求出AF是解决问题的关键.12.(4分)(2016?黄浦区一模)如图,在△ABC中,点D是BC边上的点,且CD=2BD,如果,,那么=3﹣3(用含、的式子表示).【考点】*平面向量.【分析】由,,直接利用三角形法则即可求得,再由CD=2BD,即可求得答案.【解答】解:∵,,∴=﹣=﹣,∵在△ABC中,点D是BC边上的点,且CD=2BD,∴=3=3﹣3.故答案为:.【点评】此题考查了平面向量的知识.注意掌握三角形法则的应用是解此题的关键.13.(4分)(2016?黄浦区一模)在△ABC中,点O是重心,DE经过点O且平行于BC交边AB、AC于点D、E,则S△ADE:S△ABC=4:9.【考点】三角形的重心.【分析】根据三角形的重心的性质得到=,根据相似三角形的面积比等于相似比的平方交点即可.【解答】解:∵点O是重心,∴=,∵DE∥BC,∴==,△ADE∽△ABC,∴S△ADE:S△ABC=4:9,故答案为:4:9.【点评】本题考查的是三角形的重心的概念和性质、相似三角形的性质,三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.14.(4分)(2016?黄浦区一模)如图,在△ABC中,D、E分别是边AC、AB上的点,且AD=2,DC=4,AE=3,EB=1,则DE:BC=.【考点】相似三角形的判定与性质.【分析】根据已知条件得到,由于∠A=∠A,推出△ADE∽△ABC,根据相似三角形的性质即可得到结论.【解答】解:∵AD=2,DC=4,AE=3,EB=1,∴AC=6,AB=4,∴,,∴,∵∠A=∠A,∴△ADE∽△ABC,∴DE:BC=AD:AB=1:2,故答案为:.【点评】本题主要考查相似三角形的判定和性质,掌握相似三角形的判定方法是解题的关键.15.(4分)(2016?黄浦区一模)某水库水坝的坝高为10米,迎水坡的坡度为1:2.4,则该水库迎水坡的长度为26米.【考点】解直角三角形的应用-坡度坡角问题.【分析】因为tanα(坡度)=垂直距离÷水平距离,可得水平距离为24米,根据勾股定理可得背水面的坡长为26米.【解答】解:∵大坝高10米,背水坝的坡度为1:2.4,∴水平距离=10×2.4=24(米).根据勾股定理,可得背水面的坡长为:=26(米).故答案为:26.【点评】此题主要考查了坡度问题应用,此题的关键是熟悉且会灵活应用公式:tanα(坡度)=垂直距离÷水平距离.16.(4分)(2016?黄浦区一模)如图,AD、BE分别是△ABC中BC、AC边上的高,AD=4,AC=6,则sin∠EBC=.【考点】解直角三角形.【专题】推理填空题.【分析】根据AD、BE分别是△ABC中BC、AC边上的高,可以求得∠EBC和∠DAC的关系,AD=4,AC=6,可以求得CD的长,从而可以求出∠DAC的三角函数值,进而可以得到∠EBC的三角函数值,本题得以解决.【解答】解:∵AD、BE分别是△ABC中BC、AC边上的高,∴∠BDA=∠ADC=90°,∴∠CBE=∠DAC,∵∠ADC=90°,AD=4,AC=6,∴CD=,∴sin,∴sin∠EBC=,故答案为:.【点评】本题考查解直角三角形,解题的关键找出各个角之间的关系,利用等角的三角函数值相等,可以求得所求的角的三角函数值.17.(4分)(2016?黄浦区一模)已知抛物线y1=a(x﹣m)2+k与y2=a(x+m)2+k(m≠0)关于y轴对称,我们称y1与y2互为“和谐抛物线”.请写出抛物线y=﹣4x2+6x+7的“和谐抛物线”y=﹣4x2﹣6x+7.【考点】二次函数图象与几何变换.【专题】新定义.【分析】根据关于y轴对称的点的坐标规律:纵坐标相同,横坐标互为相反数,可得答案【解答】解:抛物线y=﹣4x2+6x+7的“和谐抛物线”是y=﹣4(﹣x)2+6(﹣x)+7,化简,得y=﹣4x2﹣6x+7,故答案为:y=﹣4x2﹣6x+7.【点评】本题考查了二次函数图象与几何变换,利用了关于y轴对称的点的坐标规律.18.(4分)(2016?黄浦区一模)如图,在梯形ABCD中,AD∥BC,∠B=45°,点E是AB的中点,DE=DC,∠EDC=90°,若AB=2,则AD的长是.【考点】相似三角形的判定与性质;全等三角形的判定与性质.【专题】计算题;图形的相似.【分析】延长DE交CB的延长线于点F,将AD替换成BF,再由三角形相似,借助比的特性,即能得出结论.【解答】解:延长DE交CB的延长线于点F,如图,∵AD∥BC,∴∠ADE=∠F,∵点E是AB的中点,∴AE=BE=1,在△ADE和△BFE中,,∴△ADE≌△BFE(AAS),∴AD=BF,DE=EF,∵∠B=∠F+∠BEF=45°,DE=DC,∠EDC=90°,∴∠CED=∠F+∠ECF=45°,CE=DE,∴∠BEF=∠ECF,∵∠F=∠F,∴△BEF∽△ECF,∴=,即=,∴=,∴AD=.故答案为:.【点评】本题考查全等三角形的判定和性质以及相似三角形的判定和性质,解题的关键是巧妙的利用比的特性,化未知为已知,从而得出结论.三、解答题:(本大题共7题,满分78分)19.(10分)(2016?黄浦区一模)计算:cos245°﹣+cot230°.【考点】特殊角的三角函数值.【分析】根据特殊角三角函数值,可得实数的运算,根据实数的运算,可得答案.【解答】解:原式=()2﹣+()2=﹣+3=.【点评】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.20.(10分)(2016?黄浦区一模)如图,已知△ABC中,点D、E分别在边AB和AC上,DE∥BC,点F是DE延长线上的点,,联结FC,若,求的值.【考点】平行线分线段成比例.【分析】由平行线分线段成比例定理和已知条件得出,证出AB∥CF,再由平行线分线段成比例定理和比例的性质即可得出结果.【解答】解:∵DE∥BC,∴,又∵,∴,∴AB∥CF,∴=,∵,∴=2,∴=2.【点评】本题考查了平行线分线段成比例定理以及逆定理;熟练掌握平行线分线段成比例定理,证明AB∥CF是解决问题的关键.21.(10分)(2016?黄浦区一模)已知抛物线y=ax2+bx+c如图所示,请结合图象中所给信息完成以下问题:(1)求抛物线的表达式;(2)若该抛物线经过一次平移后过原点O,请写出一种平移方法,并写出平移后得到的新抛物线的表达式.【考点】二次函数图象与几何变换;待定系数法求二次函数解析式.【分析】(1)根据题意和图形列出三元一次方程组,解方程组得到答案.(2)由于平移前后的二次项系数不变,而平移后的抛物线过原点,则平移后的抛物线解析式中常数项为0,然后根据这两个条件写出一个解析式即可.【解答】解:(1)由题意得,解得.∴函数的解析式为:y=﹣x2﹣2x+3;(2)平移抛物线y=﹣x2﹣2x+3,使它经过原点,则平移后的抛物线解析式可为y=﹣x2﹣2x.故向下平移3个单位,即可得到过原点O的抛物线.【点评】本题考查的是待定系数法求二次函数的解析式和二次函数图象与交换变换,掌握待定系数法和平移的规律是解题的关键.22.(10分)(2016?黄浦区一模)如图,已知四边形ABCD的对角线AC、BD交于点F,点E是BD上一点,且∠BCA=∠ADE,∠CAD=∠BAE.(1)求证:△ABC∽△AED;(2)求证:BE?AC=CD?AB.【考点】相似三角形的判定与性质.【专题】证明题.【分析】(1)根据已知条件和角的和差得到∠BAC=∠DAE,由于∠ACB=∠ADE,即可得到结论;(2)根据相似三角形的性质得到,由∠BAE=∠CAD,推出△ABE∽△ACD,由相似三角形的性质即可得到结论.【解答】证明:(1)∵∠BAE=∠DAC,∠BAC=∠BAE﹣∠CAE,∠DAE=∠DAC﹣∠CAE,∴∠BAC=∠DAE,∵∠ACB=∠ADE,∴△ABC∽△AED;(2)∵△ABC∽△AED,∴,∵∠BAE=∠CAD,∴△ABE∽△ACD,∴,即:BE?AC=CD?AB.【点评】此题考查了相似三角形的判定与性质,熟练掌握相似三角形的判定和性质是解题的关键.23.(12分)(2016?黄浦区一模)如图,一条细绳系着一个小球在平面内摆动.已知细绳从悬挂点O到球心的长度为50厘米,小球在A、B两个位置时达到最高点,且最高点高度相同(不计空气阻力),在C点位置时达到最低点.达到左侧最高点时与最低点时细绳相应所成的角度为37°,细绳在右侧达到最高点时与一个水平放置的挡板DE所成的角度为30°.(sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)(1)求小球达到最高点位置与最低点位置时的高度差.(2)求OD这段细绳的长度.【考点】解直角三角形的应用.【分析】(1)根据题意得出CF=OC﹣OF=OC﹣OAcos37°,进而得出答案;(2)根据题意得出CF=CD﹣DF=BD﹣BD?cos60°=10,进而得出DC的长,进而得出答案.【解答】解:(1)连接AB交OC于点F,可知,AB⊥OC,由题意可得:∠AOC=37°,则CF=OC﹣OF=OC﹣OAcos37°=50﹣50×0.8=10(cm),故A,C之间的高度差为10cm;(2)由(1)知,B,C的高度差也是10cm,故CF=CD﹣DF=BD﹣BD?cos60°=10(cm),解得:CD=20,则OD=OC﹣BD=50﹣20=30(cm),答:OD这段细绳的长度为30cm.【点评】此题主要考查了解直角三角形的应用,根据题意得出OF与OA的关系是解题关键.24.(12分)(2016?黄浦区一模)在平面直角坐标系xOy中,抛物线y=ax2﹣3ax+c与x轴交于A(﹣1,0)、B两点(A点在B点左侧),与y轴交于点C(0,2).(1)求抛物线的对称轴及B点的坐标;(2)求证:∠CAO=∠BCO;(3)点D是射线BC上一点(不与B、C重合),联结OD,过点B作BE⊥OD,垂足为△BOD外一点E,若△BDE与△ABC相似,求点D的坐标.【考点】二次函数综合题.【分析】(1)根据待定系数法,可得函数解析式,根据配方法,可得对称轴,根据函数值相等的两点关于对称轴对称,可得B点坐标;(2)根据正切函数值相等的两锐角相等,可得答案;(3)根据两角对应相等的两个三角形相似,可得①∠EBD=∠CBA,根据余角的性质,可得∠EDB=∠CAB=∠OCD=∠ODC,根据等腰三角形的判定,可得OD的长,根据勾股定理,可得a的值,根据a的值OH的长,可得D点坐标;②根据等腰三角形的判定,可得OD的长,根据勾股定理,可得m的值,根据自变量与函数值的对应关系,可得答案.【解答】解:(1)将A、C点坐标代入函数解析式,得,解得,抛物线的解析式为y=﹣x2+x+2=﹣(x﹣)2+,对称轴为x=,A到对称轴的距离是﹣(﹣1)=,B点的横坐标为,+=4,B点坐标为(4,0);(2)证明:如图1,∵AO=1,OC=2,BO=4,∴tan∠CAO==2,tan∠BCO=2,∴tan∠CAO=tan∠BCO,∴∠CAO=∠BCO;(3)垂足为△BOD外一点E,得△BOD为钝角三角形,∠BED=∠ACB=90°,①∠EBD=∠CBA时,如图2,过D作DH⊥OB于H,∠EDB=∠CAB=∠OCD=∠ODC,OD=OC=2.tan∠CBO===,设DH=a,HB=2a,OH=4﹣2a,OD2=OH2+DH2,即4=(4﹣2a)2+a2,解得a=,a=2(舍),当a=时,OH=4﹣2a=,D点坐标为(,);②∠EDB=∠CBA时,如图3,此时OD=OB=4,BC:y=﹣x+2,设D(m,﹣m+2),m2+(﹣m+2)2=16,解得m=﹣,m=4(舍),当m=﹣时,﹣m+2=,D(﹣,),综上所述:D点坐标为(,),(﹣,).【点评】本题考查了二次函数综合题,利用待定系数法求函数解析式;利用正切函数值相等的两锐角相等是解题关键;利用两角对应相等的两个三角形相似得出①∠EBD=∠CBA,②∠EDB=∠CBA是解题关键,又利用了勾股定理.25.(14分)(2016?黄浦区一模)已知直线l1、l2,l1∥l2,点A是l1上的点,B、C是l2上的点,AC⊥BC,∠ABC=60°,AB=4,O是AB的中点,D是CB延长线上的点,将△DOC沿直线CO翻折,点D与D′重合.(1)如图1,当点D′落在直线l1上时,求DB的长;(2)延长DO交l1于点E,直线OD′分别交l1、l2于点M、N.①如图2,当点E在线段AM上时,设AE=x,DN=y,求y关于x的函数解析式及其定义域;②若△DON的面积为时,求AE的长.【考点】相似形综合题.【专题】综合题;图形的相似.【分析】(1)过D′作D′H⊥l2,如图1所示,可得DH=AC,由折叠的性质及平角定义得到∠D′CH=60°,D′C=DC,求出D′C的长,即为DC的长,再由三角形BOC为等边三角形,且OC等于斜边AB的一半,求出BC的长,由DC﹣BC 求出BD的长即可;(2)①利用两对角相等的三角形相似得到△BOD∽△CND′,由相似得比例列出关系式,即可确定出y与x的函数解析式,并求出定义域即可;②过O作OP⊥BC,如图3所示,由OP的长及已知三角形DON的面积,求出DN的长,分两种情况考虑:当点E 在线段AM上时,如图3所示,根据DN的长,求出AE的长即可;当点E在线段AM的延长线上时,如图4所示,同理可得△BOD∽△CND′,由相似得比例求出此时AE的长即可.【解答】解:(1)过D′作D′H⊥l2,如图1所示,可得DH=AC=2,∵∠DCO=∠D′CO=60°,∴∠D′CH=60°,∴CD=CD′=4,∵∠DCO=∠ABC=∠D′CO=60°,∴△OBC为等边三角形,即BO=CO=BC,∵O为Rt△ABC斜边AB上的中点,∴OC=AB=2,即BC=2,∴BD=CD﹣BC=2;(2)①∵∠DCO=∠D′CO=∠BOC=60°,∴∠OBD=∠NC D′=120°,∵∠ODC=∠ODC′,∴△BOD∽△CND′,∴=,即=,则y=﹣x(0<x≤2);②过O作OP⊥BC,如图3所示,∴S△DON=DN?OP=,OP=,∴DN=3,当点E在线段AM上时,如图3所示,可得DN=y=3,∴﹣x=3,解得:x=1(负值舍去),即AE=1;当点E在线段AM的延长线上时,如图4所示,同理可得△BOD∽△CND′,∴=,即=,解得:AE=4,综上,AE的长为1或4.。

2015年黄浦区一模考试文理科数学试卷(含答案)

2015年黄浦区一模考试文理科数学试卷(含答案)

【1】黄浦区2014学年度第一学期高三年级期终调研测试数学试卷(文理合卷)(2015年1月8日)一、填空题(本大题满分56分) 本大题共有14题,考生应在答题卷的相应编号的空格内直接填写结果,每题填对得4分,否则一律得零分.1.已知全集U=R ,集合{}1|||1|2A x x B x x ⎧⎫=<=>-⎨⎬⎩⎭,,则U (C )B A = .2.函数()f x =的定义域是 .3.已知直线12:30,:(1(110l x y l x y +-=++=,则直线1l 与2l 的夹角的 大小是 .4.若三阶行列式1302124121n m mn -+---中第1行第2列的元素3的代数余子式的值是15-,则|i |n m +(其中i 是虚数单位,R m n ∈、)的值是 .5.已知抛物线C 的顶点在坐标原点,焦点与双曲线:22172x y -=的右焦点重合,则抛物线C 的方程是 . 6.若函数213()2x ax af x ++-=是定义域为R 的偶函数,则函数()f x 的单调递减区间是 .7.已知角α的顶点在坐标原点,始边与x 轴的正半轴重合,角α的终边与圆心在原点的单位圆(半径为1的圆)交于第二象限内的点4(,)5A A x ,则sin 2α= .(用数值表示)8.已知二项式*(12)(2,N )nx n n +≥∈的展开式中第3项的系数是A ,数列{}n a *(N )n ∈是公差为2的等差数列,且前n 项和为n S ,则limn nAS →∞= . 9.已知某圆锥体的底面半径3r =,沿圆锥体的母线把侧面展开后得到一个圆心角为23π的扇形,则该圆锥体的表面积是 .10.若从总体中随机抽取的样本为1,3,1,1,1,3,2,2,0,0--,则该总体的标准差的点估计值是 .【2】11.已知 R,,m n m n αβαβ∈<<、、、,若αβ、是函数()2()()7f x x m x n =---的零点,则m n αβ、、、四个数按从小到大的顺序是 (用符号<“”连接起来). 12.一副扑克牌(有四色,同一色有13张不同牌)共52张.现随机抽取3张牌,则抽出的3张牌有且仅有2张花色相同的概率为 (用数值作答).13.已知R x ∈,定义:()A x 表示不小于x的最小整数.如2,(0.4)0,A A =-= ( 1.1)1A -=- . (理科)若(2())5A x A x ⋅=,则正实数x 的取值范围是 . (文科) 若(21)3A x +=,则实数x 的取值范围是 . 14.(理科)已知点O 是ABC ∆的重心,内角A B C 、、所对的边长分别为a b c 、、,且 2320a OA b OB c OC ⋅+⋅+⋅=,则角C 的大小是 . (文科) 已知点P Q 、是ABC ∆所在平面上的两个定点,且满足0,PA PC += 2QA QB QC BC ++=,若||=||PQ BC λ,则正实数λ= .二、选择题(本大题满分20分) 本大题共有4题,每题有且只有一个正确答案,考生应在答题卷的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.给定空间中的直线l 及平面α,条件“直线l 与平面α内的无数条直线都垂直”是“直线l 与平面α垂直的 [答] ( ).A .充分非必要条件B .必要非充分条件C .充要条件D .非充分非必要条件16.已知向量(3,4)a =-,则下列能使12(R)a e e λμλμ=+∈、成立的一组向量12,e e 是 [答] ( ). A .12(0,0)(1,2)e e ==-, B .12(1,3)(2,6)e e =-=-, C .12(1,2)(3,1)e e =-=-, D .121(,1)(1,2)2e e =-=-,17.一个算法的程序框图如右图所示,则该程序运行后输出的值是[答] ( ). A .4 B . 5 C . 6 D . 7【3】P18.已知i z a b =+(R i )a b ∈、,是虚数单位,12,C z z ∈,定义:()||z ||||||D z a b ==+,1212(,z )||z ||D z z =-.给出下列命题:(1)对任意C z ∈,都有(z)0D >;(2)若z 是复数z 的共轭复数,则()(z)D z D =恒成立;(3)若12(z )(z )D D =12(z z C)∈、,则12z z =; (4)(理科)对任意123C z z ∈、z 、,结论131223(z ,z )(z ,z )(z ,z )D D D ≤+恒成立,则其中真命题是[答]( ). (文科)对任意12C z ∈、z ,结论1221(z ,z )=(z ,z )D D 恒成立,则其中真命题是[答]( ). A .(1)(2)(3)(4) B .(2)(3)(4) C .(2)(4) D .(2)(3) 三、解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题 卷的相应编号规定区域内写出必要的步骤.19.(本题满分12分)本题共有2个小题,第1小题满分6分,第2小题满分6分. 在长方体1111ABCD A B C D -中,14,3AB AA BC ===,E F 、分别是所在棱AB BC 、的中点,点P 是棱11A B 上的动点,联结1,EF AC .如图所示.(1)求异面直线1EF AC 、所成角的大小(用反三角函数值表示)(2)(理科)求以E F A P 、、、为顶点的三棱锥的体积. (文科)求以E B F P 、、、为顶点的三棱锥的体积.20.(本题满分12分)本题共有2个小题,第1小题满分6分,第2小题满分6分.已知函数()cos cos 2,R f x x x x x =-∈.(1)求函数()f x 的单调递增区间;(2)在ABC ∆中,内角A B C 、、所对边的长分别是a b c 、、,若()2,C ,24f A c π===,求ABC ∆的面积ABC S ∆的值.21.(本题满分14分)本题共有2个小题,第1小题满分7分,第2小题满分7分.【4】已知函数101(),R 101xx g x x -=∈+,函数()y f x =是函数()y g x =的反函数.(1)求函数()y f x =的解析式,并写出定义域D ; (2)(理科)设1()()h x f x x=-,若函数()y h x =在区间(0,1)内的图像是不间断的光滑曲线,求证:函数()y h x =在区间(1,0)-内必有唯一的零点(假设为t ),且112t -<<-.(文科) (2) 设函数1()()h x f x x=-,试判断函数()y h x =在区间(1,0)-上的单调性,并说明你的理由.22.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分7分,第3小题满分7分. 定义:若各项为正实数的数列{}n a满足*1N )n a n +∈,则称数列{}n a 为“算术平方根递推数列”.已知数列{}n x 满足*0N ,n x n >∈,且19,2x =点1(,)n n x x +在二次函数2()22f x x x =+的图像上.(1)试判断数列{}21n x +*(N )n ∈是否为算术平方根递推数列?若是,请说明你的理由; (2)记lg(21)n n y x =+*(N )n ∈,求证:数列{}n y 是等比数列,并求出通项公式n y ;(3)从数列{}n y 中依据某种顺序自左至右取出其中的项123,,,n n n y y y ,把这些项重新组成一个新数列{}n z :123123,z ,z ,n n n z y y y ===.(理科)若数列{}n z 是首项为111()2m z -=、公比为*1(,N )2k q m k =∈的无穷等比数列,且数列{}n z 各项的和为1663,求正整数k m 、的值.(文科) 若数列{}n z 是首项为111()2m z -=,公比为*1(,N )2k q m k =∈的无穷等比数列,且数列{}n z 各项的和为13,求正整数k m 、的值.23.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分. 在平面直角坐标系中,已知动点(,)M x y ,点(0,1),(0,1),(1,0),A B D -点N 与点M 关于直线y x =对称,且212AN BN x ⋅=.直线l 是过点D 的任意一条直线.(1)求动点M 所在曲线C 的轨迹方程; (2)设直线l 与曲线C 交于G H 、两点,且||GH =l 的方程; (3)(理科)若直线l 与曲线C 交于G H 、两点,与线段AB 交于点P (点P 不同于点O A B 、、),直线GB 与直线HA 交于点Q ,求证:OP OQ ⋅是定值.【5】(文科) 设直线l 与曲线C 交于G H 、两点,求以||GH 的长为直径且经过坐标原点O 的圆的方程.黄浦区2014学年度第一学期高三年级期终调研测试数学试卷(文理合卷)参考答案和评分标准(2015年1月8日)说明:1.本解答仅列出试题的一种解法,如果考生的解法与所列解答不同,可参考解答中的评分精神进行评分.2.评阅试卷,应坚持每题评阅到底,不要因为考生的解答中出现错误而中断对该题的评阅,当考生的解答在某一步出现错误,影响了后继部分,但该步以后的解答未改变这一题的内容和难度时,可视影响程度决定后面部分的给分,这时原则上不应超过后面部分应给分数之半,如果有较严重的概念性错误,就不给分. 一、填空题1.1(1,]2; 8.2;2.(1,); 9.36 ;3.3; 10;4.2; 11.m n ;5.212y x ; 12.234425; 6.(,0]; 13. (理)514x <≤;(文) 112x <≤; 7.2425 ; 14.(理)3;(文) 12. 二、选择题: 15.B 16.C 17.A 18.C 三、解答题19.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分6分. 解(1)联结AC ,在长方体1111ABCD A B C D -中,有AC EF .又1CAC ∠是直角三角形1ACC 的一个锐角,∴1CAC ∠就是异面直线1AC EF 与所成的角.【6】由14,3AB AA BC ===,可算得5AC ==.∴114tan 5CC CAC AC ∠==,即异面直线1AC EF 与所成角的大小为4arctan 5. (理) (2)由题意可知,点P 到底面ABCD 的距离与棱1AA 的长相等.∴113P AEF AEF V S AA -∆=⋅. ∵113322222AEF S AE BF ∆=⋅=⋅⋅=,∴1113=4=2332P AEF AEF V S AA -∆=⋅⋅⋅.(文) (2)由题意可知,点P 到底面ABCD 的距离与棱1AA 的长相等.∴113P EBF EBF V S AA -∆=⋅. ∵113322222EBF S EB BF ∆=⋅=⋅⋅=,∴1113=4=2332P EBF EBF V S AA -∆=⋅⋅⋅.20.(本题满分12分) 本题共有2个小题,第1小题满分6分,第2小题满分6分. 解(1)∵()cos cos 2R f x x x x x =-∈,, ∴()2sin(2)6f x x π=-.由222,262k x k k Z πππππ-≤-≤+∈,解得,63k x k k Z ππππ-≤≤+∈.∴函数()f x 的单调递增区间是[,],63k k k Z ππππ-+∈.(2)∵在ABC ∆中,()2,,24f A C c π===,∴2sin(2)2,6A π-=解得,3A k k Z ππ=+∈.又0A π<<, ∴3A π=.依据正弦定理,有,sinsin34a c a ππ==解得.∴512B AC ππ=--=.∴11sin222ABCS ac B∆==⋅=. 21.(本题满分14分)本题共有2个小题,第1小题满分7分,第2小题满分7分.解(1)1012()1,R101101xx xg x x-==-∈++,()1g x∴<.又1011x+>,2211110101x∴->-=-++.1()1g x∴-<<.由101101xxy-=+,可解得1110,lg11xy yxy y++==--.1()lg1xf xx+∴=-,(1,1)D=-. (理)证明 (2)由(1)可知,11111()()lg lg11x xh x f xx x x x x+-=-=-=+-+.可求得函数()h x的定义域为1(1,0)(0,1)D=-.对任意1x D∈,有1111()()lg lg011x xh x h xx x x x-++-=+++=+--,所以,函数()y h x=是奇函数.当(0,1)x∈时,1x在(0,1)上单调递减,12=111xx x--+++在(0,1)上单调递减,于是,1lg1xx-+在(0,1)上单调递减.因此,函数()y h x=在(0,1)上单调递减.依据奇函数的性质,可知,函数()y h x=在(1,0)-上单调递减,且在(1,0)-上的图像也是不间断的光滑曲线.又199100100()2lg30,()lg1992021009999h h-=-+<-=-+>->, 所以,函数()y h x=在区间(1,0)-上有且仅有唯一零点t,且112t-<<-.(文) (2) 答:函数()y h x=在区间(1,0)-上单调递减.理由:由(1)可知,11111()()lg lg11x xh x f xx x x x x+-=-=-=+-+.【7】【8】可求得函数()h x 的定义域为1(1,0)(0,1)D =-.对任意1x D ∈,有1111()()lg lg 011x x h x h x x x x x-++-=+++=+--, 所以,函数()y h x =是奇函数. 当(0,1)x ∈时,1x 在(0,1)上单调递减,12=111x x x--+++在(0,1)上单调递减, 于是,1lg1xx-+在(0,1)上单调递减. 因此,函数()y h x =在(0,1)上单调递减. 依据奇函数的性质,可知, 函数()y h x =在(1,0)-上单调递减.22.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分7分,第3小题满分7分. 解(1)答:数列{}21n x +是算术平方根递推数列.理由:1(,)n n x x +点在函数2()22f x x x =+的图像上,21122,n n n x x x ++∴=+ 21121441n n n x x x +++=++即,2121(21)n n x x ++=+.又*0,N n x n >∈,∴*121n x n N ++=∈.∴数列{}21n x +是算术平方根递推数列. 证明(2) *1lg(21),21N n n n y x x n +=++=∈,112n n yy +∴=. 又1119lg(21)1()2y x x =+==,∴数列{}n y 是首项为11y =,公比12q =的等比数列.1*11(),N 2n n y y n -∴=⋅∈.(理)(3)由题意可知,无穷等比数列{}z n 的首项1112m z -=,公比*1(N )2k k m k m ∈、且、为常数,【9】1116216312m k -∴=- . 化简,得116631622k m -+=.若13m -≥,则1166316631663++16222828k m k -+≤≤<.这是矛盾!12m ∴-≤.又101m -=或时,116631622k m -+>,∴ 12,3m m -==即.166316,264,624kkk ∴=-==解得.3,6.m k =⎧∴⎨=⎩ (文) (3)由题意可知,无穷等比数列{}z n 的首项1112m z -=,公比*1(N )2k k m k m ∈、且、为常数, 11121312m k -∴=- .化简,得113122k m -+=.若13m -≥,则1131313++1222828k m k -+≤≤<.这是矛盾! 12m ∴-≤.又101m -=或时,113122k m -+>, ∴ 12,3m m -==即.131,24,224kk k ∴=-==解得. 3,2.m k =⎧∴⎨=⎩23.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分. 解(1)依据题意,可得点(,)N y x .(,1),(,1)AN y x BN y x ∴=-=+.又212AN BN x ⋅=, 222112y x x ∴+-=.∴所求动点M 的轨迹方程为22:12x C y +=.(2) 若直线ly轴,则可求得|GH ,这与已知矛盾,因此满足题意的直线l 不平行于y 轴.【10】设直线l 的斜率为k ,则:(1)l y k x =-.由221,2(1).x y y k x ⎧+=⎪⎨⎪=-⎩得2222(12)4220k x k x k +-+-=. 设点1122(,)(,)H x y G x y 、,有212221224,212221k x x k k x x k ⎧+=⎪⎪+⎨-⎪=⎪+⎩且0∆>恒成立(因点D 在椭圆内部).又||2GH =,2==,解得2k =±:(1)2l y x =±-. (理)证明(3)直线l 与线段AB 交于点P ,且与点O A B 、、不重合,∴直线l 的斜率k 满足:11,0k k -<<≠,由(2)可得点(0,)P k -,可算得21212222,2121k k y y y y k k -+==-++. 又直线121211:1,:1y y HA y x GB y x x x -+-=+=. 设点(,y )Q Q Q x ,则由11221111.y y x x y y x x -⎧-=⎪⎪⎨+⎪+=⎪⎩,得12211111Q Q y y x y y x --=⋅++(此等式右边为正数).∴101Q Q y y ->+,且222121212222112121(1)1()()1(1)1Q Q y y x y y y y y y x y y y y ---++=⋅=+++++=21+1k k ⎛⎫⎪-⎝⎭. ∴1111Q Q y k y k-+=+-,解得1Q y k =-. 1(0,)(,)1Q OP OQ k x k ∴⋅=-⋅-=为定值. (文) (3)当直线ly轴时,||GH =O 到圆心的距离为1.即点O 在圆外,不满足题意.精品文档【11】 ∴满足题意的直线l 的斜率存在,设为k ,则:(1)l y k x =-.设点1122(,)(,)H x y G x y 、,由(2)知,212221224,2122.21k x x k k x x k ⎧+=⎪⎪+⎨-⎪=⎪+⎩进一步可求得12221222,21.21k y y k k y y k ⎧+=-⎪⎪+⎨⎪=-⎪+⎩ 依据题意,有OG OH ⊥,12120x x y y ∴+=,即22222202121k k k k --+=++,解得k =所求圆的半径1||2r GH ===,圆心为12124(,)(,2255x x y y ++=±. ∴所求圆的方程为:22418()(5525x y -+±=.。

2015年上海市浦东新区中考数学一模试卷

2015年上海市浦东新区中考数学一模试卷

2015年上海市浦东新区中考数学一模试卷一.选择题(每小题4分,共24分)1.如果把Rt△ABC的三边长度都扩大2倍,那么锐角A的四个三角比的值()A.都扩大到原来的2倍B.都缩小到原来的C.都没有变化D.都不能确定【考点】锐角的三角比的概念(M361).【难度】简单题【分析】如果把Rt△ABC的三边长度都扩大2倍,锐角A不变,锐角三角函数值不变,故选:C.【解答】C【点评】本题主要考查了考生对锐角三角比这一概念的理解,值得注意的是:三角形三边长短的变化不会改变锐角三角函数值.2.将抛物线y=(x﹣1)2向左平移2个单位,所得抛物线的表达式为()A.y=(x+1)2B.y=(x﹣3)2C.y=(x﹣1)2+2 D.y=(x﹣1)2﹣2【考点】二次函数的图象(M442)【难度】简单题【分析】①根据二次函数的性质得到抛物线y=(x﹣1)2的顶点坐标为(1,0)②再利用点平移的规律得到点(1,0)平移后对应点的坐标为(﹣1,0)③根据顶点式写出平移后抛物线的表达式.故答案为A【解答】A【点评】本题考查了二次函数图象的平移变换:首先抛物线平移后形状不变,故a不变,因此求平移后的抛物线解析式大致有两种方法:一、求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二、只考虑平移后的顶点坐标,即可求出解析式.3.一个小球被抛出后,如果距离地面的高度h(米)和运行时间t(秒)的函数解析式为h=﹣5t2+10t+1,那么小球到达最高点时距离地面的高度是()A.1米B.3米C.5 D.6米【考点】二次函数的应用(M444).【难度】简单题【分析】h=﹣5t2+10t+1=﹣5(t2﹣2t)+1=﹣5(t﹣1)2+6,故小球到达最高点时距离地面的高度是:6m.故选:D.【解答】D【点评】此题主要考查考生应用二次函数顶点的性质求解实际问题的能力,求解本题的关键是正确利用配方法求出函数顶点.4.如图,已知AB∥CD∥EF,AD:AF=3:5,BE=12,那么CE的长等于()A.2 B.4 C.D.【考点】平行线分线段成比例定理.(M33I )【难度】简单题【分析】∵AB ∥CD ∥EF ,∴=,即=,∴BC=,∴CE=BE ﹣BC=12﹣=.故选C .【解答】C【点评】本题侧重考查了考生对平行线分线段成比例这一性质的理解。

2015年上海市浦东新区中考数学一模试卷

2015年上海市浦东新区中考数学一模试卷

2015年上海市浦东新区中考数学一模试卷一.选择题(本大题满分4&#215;6=24分)1.(4分)如果把Rt△ABC的三边长度都扩大2倍,那么锐角A的四个三角比的值()A.都扩大到原来的2倍B.都缩小到原来的C.都没有变化D.都不能确定2.(4分)将抛物线y=(x﹣1)2向左平移2个单位,所得抛物线的表达式为()A.y=(x+1)2B.y=(x﹣3)2 C.y=(x﹣1)2+2 D.y=(x﹣1)2﹣23.(4分)一个小球被抛出后,如果距离地面的高度h(米)和运行时间t(秒)的函数解析式为h=﹣5t2+10t+1,那么小球到达最高点时距离地面的高度是()A.1米 B.3米 C.5米 D.6米4.(4分)如图,已知AB∥CD∥EF,AD:AF=3:5,BE=12,那么CE的长等于()A.2 B.4 C.D.5.(4分)已知在△ABC中,AB=AC=m,∠B=α,那么边BC的长等于()A.2m•sinα B.2m•cosαC.2m•tanαD.2m•cotα6.(4分)如图,已知在梯形ABCD中,AD∥BC,BC=2AD,如果对角线AC与BD 相交于点O,△AOB、△BOC、△COD、△DOA的面积分别记作S1、S2、S3、S4,那么下列结论中,不正确的是()A.S1=S3B.S2=2S4C.S2=2S1D.S1•S3=S2•S4二.填空题(本大题满分4&#215;12=48分)7.(4分)已知=,那么=.8.(4分)计算:=.9.(4分)已知线段a=4 cm,b=9 cm,则线段a,b的比例中项为cm.10.(4分)二次函数y=﹣2x2﹣5x+3的图象与y轴的交点坐标为.11.(4分)在Rt△ABC中,∠C=90°,如果AB=6,cosA=,那么AC=.12.(4分)如图,已知D,E分别是△ABC的边BC和AC上的点,AE=2,CE=3,要使DE∥AB,那么BC:CD应等于.13.(4分)如果抛物线y=(a+3)x2﹣5不经过第一象限,那么a的取值范围是.14.(4分)已知点G是面积为27cm2的△ABC的重心,那么△AGC的面积等于.15.(4分)如图,当小杰沿坡度i=1:5的坡面由B到A行走了26米时,小杰实际上升高度AC=米.(可以用根号表示)16.(4分)已知二次函数的图象经过点(1,3),对称轴为直线x=﹣1,由此可知这个二次函数的图象一定经过除点(1,3)外的另一点,这点的坐标是.17.(4分)已知不等臂跷跷板AB长为3米,当AB的一端点A碰到地面时(如图1),AB与地面的夹角为30°;当AB的另一端点B碰到地面时(如图2),AB 与地面的夹角的正弦值为,那么跷跷板AB的支撑点O到地面的距离OH=米.18.(4分)把一个三角形绕其中一个顶点逆时针旋转并放大或缩小(这个顶点不变),我们把这样的三角形运动称为三角形的T﹣变换,这个顶点称为T﹣变换中心,旋转角称为T﹣变换角,三角形与原三角形的对应边之比称为T﹣变换比;已知△ABC在直角坐标平面内,点A(0,﹣1),B(﹣,2),C(0,2),将△ABC进行T﹣变换,T﹣变换中心为点A,T﹣变换角为60°,T﹣变换比为,那么经过T﹣变换后点C所对应的点的坐标为.三.解答题(本大题满分10+10+10+10+12+12+14=78分)19.(10分)已知在直角坐标平面内,抛物线y=x2+bx+6经过x轴上两点A,B,点B的坐标为(3,0),与y轴相交于点C;(1)求抛物线的表达式;(2)求△ABC的面积.20.(10分)如图,已知在△ABC中,AD是边BC上的中线,设=,=;(1)求(用向量,的式子表示);(2)如果点E在中线AD上,求作在,方向上的分向量;(不要求写作法,但要保留作图痕迹,并指出所作图中表示结论的分向量).21.(10分)如图,某幢大楼的外墙边上竖直安装着一根旗杆CD,小明在离旗杆下方大楼底部E点24米的点A处放置一台测角仪,测角仪的高度AB为1.5米,并在点B处测得旗杆下端C的仰角为40°,上端D的仰角为45°,求旗杆CD的长度;(结果精确到0.1米,参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)22.(10分)用含30°、45°、60°这三个特殊角的四个三角比及其组合可以表示某些实数,如:可表示为=sin30°=cos60°=tan45°•sin30°=…;仿照上述材料,完成下列问题:(1)用含30°、45°、60°这三个特殊角的三角比或其组合表示,即填空:===…;(2)用含30°、45°、60°这三个特殊角的三角比,结合加、减、乘、除四种运算,设计一个等式,要求:等式中须含有这三个特殊角的三角比,上述四种运算都至少出现一次,且这个等式的结果等于1,即填空:1=.23.(12分)已知如图,D是△ABC的边AB上一点,DE∥BC,交边AC于点E,延长DE至点F,使EF=DE,联结BF,交边AC于点G,联结CF(1)求证:=;(2)如果CF2=FG•FB,求证:CG•CE=BC•DE.24.(12分)已知在平面直角坐标系xOy中,二次函数y=ax2+bx的图象经过点(1,﹣3)和点(﹣1,5);(1)求这个二次函数的解析式;(2)将这个二次函数的图象向上平移,交y轴于点C,其纵坐标为m,请用m 的代数式表示平移后函数图象顶点M的坐标;(3)在第(2)小题的条件下,如果点P的坐标为(2,3),CM平分∠PCO,求m的值.25.(14分)已知在矩形ABCD中,P是边AD上的一动点,联结BP、CP,过点B作射线交线段CP的延长线于点E,交边AD于点M,且使得∠ABE=∠CBP,如果AB=2,BC=5,AP=x,PM=y;(1)求y关于x的函数解析式,并写出它的定义域;(2)当AP=4时,求∠EBP的正切值;(3)如果△EBC是以∠EBC为底角的等腰三角形,求AP的长.2015年上海市浦东新区中考数学一模试卷参考答案一.选择题(本大题满分4&#215;6=24分)1.C;2.A;3.D;4.C;5.B;6.B;二.填空题(本大题满分4&#215;12=48分)7.;8.;9.6;10.(0,3);11.4;12.;13.a<﹣3;14.9cm2;15.;16.(﹣3,3);17.;18.(﹣,0);三.解答题(本大题满分10+10+10+10+12+12+14=78分)19.;20.;21.;22.=sin60°;cos30°;tan45°•sin60°;(sin30°+cos60°)•tan45°÷cot45°;23.;24.;25.;。

2015年上海市杨浦区中考数学一模试卷及答案解析(pdf版)

2015年上海市杨浦区中考数学一模试卷及答案解析(pdf版)

A. S1=S3
B. S2=2S4
C. S2 =2S1
D.S1•S3=S2•S4
二.填空题(本大题满分 4&#215;12=48 分)
7.(4 分)(2015•静安区一模)已知 = ,那么
=

8.(4 分)(2015•静安区一模)计算:
=

9.(4 分)(2002•福州)已知线段 a=4 cm,b=9 cm,则线段 a,b 的比例中项为

15.(4 分)(2015•静安区一模)如图,当小杰沿坡度 i=1:5 的坡面由 B 到 A 行走了 26 米
时,小杰实际上升高度 AC=
米.(可以用根号表示)
16.(4 分)(2015•青浦区一模)已知二次函数的图象经过点(1,3),对称轴为直线 x=﹣1,
由此可知这个二次函数的图象一定经过除点(1,3)外的另一点,这点的坐标是
20.(10 分)(2015•静安区一模)如图,已知在△ ABC 中,AD 是边 BC 上的中线,设 = ,
=;
(1)求 (用向量 , 的式子表示);
(2)如果点 E 在中线 AD 上,求作 在 , 方向上的分向量;(不要求写作法,但要保 留作图痕迹,并指出所作图中表示结论的分向量).
21.(10 分)(2015•大庆模拟)如图,某幢大楼的外墙边上竖直安装着一根旗杆 CD,小明 在离旗杆下方大楼底部 E 点 24 米的点 A 处放置一台测角仪,测角仪的高度 AB 为 1.5 米, 并在点 B 处测得旗杆下端 C 的仰角为 40°,上端 D 的仰角为 45°,求旗杆 CD 的长度;(结 果精确到 0.1 米,参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)

上海中考数学一模2015年25题汇编(含答案)

上海中考数学一模2015年25题汇编(含答案)

K 満分H分*茎中第(1)小・4拳・0时・55分)(1)矩形AJ3CD 中.ZABCF90Sm = io.\ AF±(T.且点F恳线敕CE的申点kAAE = AC-10.Rl^CBE 中・taiWECB -豆亡=寺./K 口TJJ? - 2710.R T ACBE中,GF«CF• lanZBCB* 寸岂(2)■/ ZABC = ZC*BE = 90a, ^LAGH二Z仇沪.fJG HE AH HC中形ABCD 中*AD HC,(1分》(1分)(1分〉(1分〉(1廿)<1知(I炉2015年上海一模25题集锦1、(2015年一模黄浦25题)25.在矩形ABCD中,= BC = 6.对谢线AC.交于点O,点疋在AB延长线上,联结CE, AF丄CE t分别交线段CE、边BC、对角线*D于点F、G. H(点F不与点C\ E重合};(D当点F是线段CE的中点时.求GF的长;(2〉设BE = x, OH = y.求y关于兀的函数解析式,并写出它的定义域;(3) f flH=BG时山丹=人0昇・5+了 = 6*即;二丫 "斛縛工二3.2' gGH=HG 时MD=AH・过点A作从f丄DH・垂足为H.5 * yRtACBE中^cosZADK = 2•二—j— =3 6 5将"粧晋代入⑴解密忑=£3* ^GH = BHBt.DH-AH- A点H ftAD ®fi平分线上. 此时点F与点C 3tf二書(舍)嫌上所迷BE的K<3或#.2、(2015年一模徐汇25题).如图,梯形ABCD中,AD // BC ,对角线AC _ BC , AD =9 ,AC =12, BC =16,点E是边BC上的一个动点,-EAF - BAC , AF交CD于点F ,交BC 延长线于点G,设BE = x ;(1)试用x的代数式表示FC ;(2)设FGEF-y,求y关于x的函数关系式,并写出定义域;BE的长;[来源学科网]25 (1分) (2分)(1分)BGE3^\DFco\GAl :7当A是等農三角形若,&\DF 也为等腰三角形动点(D 和A 、B所以,BE = 7二不重合),过 D 作DE // BC 交AC 于E ,并以DE 为边向BC 一侧作正方形 DEFG ,设AD = x3( 2015年一模宝山26题).如图在△ ABC 中,AB=BC=10,AC =牛、5,D 为边AB 上一(3) = = t ZG = Zl AD当AF = DF 时,点F 为CD 中点3 Cl = DI0 <16林理得、V100作AH £ DF 于",易得DH m"丸 EEAiUM':.^CAr = ^tiAE* AB UL … 20 A-■ ■—r J » 1■AC - r e 12 ~ rcf C- -A5由弘I HEs 川Ci'得,搜1 £卜'5山报:,^Ai'E二90AF AC 123LI ~ H< ~16~ 斗3 15 25 CF -A =—、 -V -——5 22 当 Al )二w 时, CF =3/. Cl = —A = 6 ? A 5=10(1) 请用X的代数式表示正方形DEFG的面积,并求出当边FG落在BC边上时的x的值;(2) 设正方形DEFG与厶ABC重合部分的面积为y,求y关于x的函数及其定义域;(3) 点D在运动过程中,是否存在D、G、B三点中的两点落在以第三点为圆心的圆上的情况?若存在,请直接写出此时AD的值,若不存在,则请说明理由;4、( 2015年一模崇明25题)(本题满分14分,其中第(1)小题5分,第(2)小题5分,第(3)小题4 分)已知在ABC中,AB =AC =5,BC =6,O为边AB上一动点(不与A、B重合),以0为圆心0B为半径的圆交BC于点D,设OB =x,DC =y .(1)如图1,求y关于x的函数关系式及定义域;(2)当O 0与线段AC有且只有一个交点时,求x的取值范围;(3)如图2,若O O与边AC交于点E (有两个交点时取靠近当DEC与ABC相似时,求x的值.25, Hfd)如图1联站「AB 亚片GGB H QD代= XODB:.or>//A.c* BO_Bp.王-些'' 5 ' 6「* BD- gjr-"I■工+ 6((KX5)(2)如團氛肖与线段A匚有且只育一亍交点时①®0与播2梱切时作OH_LAC.HK丄AGAM丄BC垂圧井劃为H^K y M,JS^OH#BK.AM=4— -BC・AM-A「FK' - —1g-_'r.BK■習3也-0H…丽-賦C的交点),联结DE ,C(备用图ir C1分1分B(备用图•(图£}(2> A ftGO 内,〔不SQO 内时内:.OB>OA”"”*>■5 一 x•">4•rc 不在£50内 /-OB<AB1分,\y<X<5炀匕当工二器或号VY5时◎。

2015年上海市浦东新区中考数学一模试卷及答案解析(pdf版)

2015年上海市浦东新区中考数学一模试卷及答案解析(pdf版)


17.(4 分)(2015•尤溪县校级质检)已知不等臂跷跷板 AB 长为 3 米,当 AB 的一端点 A 碰到地面时(如图 1),AB 与地面的夹角为 30°;当 AB 的另一端点 B 碰到地面时(如图 2),
AB 与地面的夹角的正弦值为 ,那么跷跷板 AB 的支撑点 O 到地面的距离 OH= 米.
=
=
=…;
(2)用含 30°、45°、60°这三个特殊角的三角比,结合加、减、乘、除四种运算,设计一个
等式,要求:等式中须含有这三个特殊角的三角比,上述四种运算 都至少出现一次,且这个
等式的结果等于 1,即填空:1=

23.(12 分)(2015•青浦区一模)已知如图,D 是△ ABC 的边 AB 上一点,DE∥BC,交边 AC 于点 E,延长 DE 至点 F,使 EF=DE,联结 BF,交边 AC 于点 G,联结 CF (1)求证: = ;
20.(10 分)(2015•静安区一模)如图,已知在△ ABC 中,AD 是边 BC 上的中线,设 = ,
=;
(1)求 (用向量 , 的式子表示);
(2)如果点 E 在中线 AD 上,求作 在 , 方向上的分向量;(不要求写作法,但要保 留作图痕迹,并指出所作图中表示结论的分向量).
21.(10 分)(2015•大庆模拟)如图,某幢大楼的外墙边上竖直安装着一根旗杆 CD,小明 在离旗杆下方大楼底部 E 点 24 米的点 A 处放置一台测角仪,测角仪的高度 AB 为 1.5 米, 并在点 B 处测得旗杆下端 C 的仰角为 40°,上端 D 的仰角为 45°,求旗杆 CD 的长度;(结 果精确到 0.1 米,参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)

上海中考数学一模2015年25题汇编(含答案)

上海中考数学一模2015年25题汇编(含答案)

K 満分H分*茎中第(1)小・4拳・0时・55分)(1)矩形AJ3CD 中.ZABCF90Sm = io.\ AF±(T.且点F恳线敕CE的申点kAAE = AC-10.Rl^CBE 中・taiWECB -豆亡=寺./K 口TJJ? - 2710.R T ACBE中,GF«CF• lanZBCB* 寸岂(2)■/ ZABC = ZC*BE = 90a, ^LAGH二Z仇沪.fJG HE AH HC中形ABCD 中*AD HC,(1分》(1分)(1分〉(1分〉(1廿)<1知(I炉2015年上海一模25题集锦1、(2015年一模黄浦25题)25.在矩形ABCD中,= BC = 6.对谢线AC.交于点O,点疋在AB延长线上,联结CE, AF丄CE t分别交线段CE、边BC、对角线*D于点F、G. H(点F不与点C\ E重合};(D当点F是线段CE的中点时.求GF的长;(2〉设BE = x, OH = y.求y关于兀的函数解析式,并写出它的定义域;(3) f flH=BG时山丹=人0昇・5+了 = 6*即;二丫 "斛縛工二3.2' gGH=HG 时MD=AH・过点A作从f丄DH・垂足为H.5 * yRtACBE中^cosZADK = 2•二—j— =3 6 5将"粧晋代入⑴解密忑=£3* ^GH = BHBt.DH-AH- A点H ftAD ®fi平分线上. 此时点F与点C 3tf二書(舍)嫌上所迷BE的K<3或#.2、(2015年一模徐汇25题).如图,梯形ABCD中,AD // BC ,对角线AC _ BC , AD =9 ,AC =12, BC =16,点E是边BC上的一个动点,-EAF - BAC , AF交CD于点F ,交BC 延长线于点G,设BE = x ;(1)试用x的代数式表示FC ;(2)设FGEF-y,求y关于x的函数关系式,并写出定义域;BE的长;[来源学科网]25 (1分) (2分)(1分)BGE3^\DFco\GAl :7当A是等農三角形若,&\DF 也为等腰三角形动点(D 和A 、B所以,BE = 7二不重合),过 D 作DE // BC 交AC 于E ,并以DE 为边向BC 一侧作正方形 DEFG ,设AD = x3( 2015年一模宝山26题).如图在△ ABC 中,AB=BC=10,AC =牛、5,D 为边AB 上一(3) = = t ZG = Zl AD当AF = DF 时,点F 为CD 中点3 Cl = DI0 <16林理得、V100作AH £ DF 于",易得DH m"丸 EEAiUM':.^CAr = ^tiAE* AB UL … 20 A-■ ■—r J » 1■AC - r e 12 ~ rcf C- -A5由弘I HEs 川Ci'得,搜1 £卜'5山报:,^Ai'E二90AF AC 123LI ~ H< ~16~ 斗3 15 25 CF -A =—、 -V -——5 22 当 Al )二w 时, CF =3/. Cl = —A = 6 ? A 5=10(1) 请用X的代数式表示正方形DEFG的面积,并求出当边FG落在BC边上时的x的值;(2) 设正方形DEFG与厶ABC重合部分的面积为y,求y关于x的函数及其定义域;(3) 点D在运动过程中,是否存在D、G、B三点中的两点落在以第三点为圆心的圆上的情况?若存在,请直接写出此时AD的值,若不存在,则请说明理由;4、( 2015年一模崇明25题)(本题满分14分,其中第(1)小题5分,第(2)小题5分,第(3)小题4 分)已知在ABC中,AB =AC =5,BC =6,O为边AB上一动点(不与A、B重合),以0为圆心0B为半径的圆交BC于点D,设OB =x,DC =y .(1)如图1,求y关于x的函数关系式及定义域;(2)当O 0与线段AC有且只有一个交点时,求x的取值范围;(3)如图2,若O O与边AC交于点E (有两个交点时取靠近当DEC与ABC相似时,求x的值.25, Hfd)如图1联站「AB 亚片GGB H QD代= XODB:.or>//A.c* BO_Bp.王-些'' 5 ' 6「* BD- gjr-"I■工+ 6((KX5)(2)如團氛肖与线段A匚有且只育一亍交点时①®0与播2梱切时作OH_LAC.HK丄AGAM丄BC垂圧井劃为H^K y M,JS^OH#BK.AM=4— -BC・AM-A「FK' - —1g-_'r.BK■習3也-0H…丽-賦C的交点),联结DE ,C(备用图ir C1分1分B(备用图•(图£}(2> A ftGO 内,〔不SQO 内时内:.OB>OA”"”*>■5 一 x•">4•rc 不在£50内 /-OB<AB1分,\y<X<5炀匕当工二器或号VY5时◎。

黄浦区2015年初三数学教学质量检测试卷参考答案

黄浦区2015年初三数学教学质量检测试卷参考答案

黄浦区2015年九年级学业考试模拟考数学参考答案与评分标准一、选择题:(本大题共6题,每题4分,满分24分)1. C ;2. C ;3.B ;4. D ;5. B ;6. D .二、填空题:(本大题共12题,每题4分,满分48分)7. 4a ; 8. 22(2)x -; 9. 21(1)(1)x x x ++-; 10. 3x =; 11. 2a <; 12. 40%; 13.14 ; 14. 3; 15.16. 1123a b -; 17. 15︒;18. . 三、解答题:(本大题共7题,满分78分)19. (本题满分10分)原式=))1211+-+ ………………………………………………………(8分)=1. ………………………………………………………………………………(2分)20. (本题满分10分)解:由②得 1x y =+.③ ……………………………………………………(2分)将③代入①得22(1)22y y +-=-.………………………………………………………(1分)整理,得 2230y y --=.……………………………………………………………(2分)解得 11y =-,23y =. …………………………………………………………(2分)代入③得 10x =,24x =.………………………………………………………………(2分)所以,原方程的解是110,1;x y =⎧⎨=-⎩214,3.x y =⎧⎨=⎩…………………………………………………(1分)21. (本题满分10分,第(1)满分7分,(2)小题满分3分)解:(1)设函数解析式为y kx b =+(0k ≠). ……………………………………………(2分)由0x =时,32y =, 得 320k b =⋅+.…………………………………………(1分)解得 32b = . ………………………………………………(1分)由100x =时,212y =,得 2121003k =+. ……………………………………(1分)解得 95k =. ……………………………………………………(1分) ∴y 关于x 的函数解析式是9325y x =+. ………………………………………………(1分)(2)将5x =-,代入9325y x =+,得9(5)325y =⋅-+. …………………………………(1分)解得 23y =. …………………………………………………………………(1分)∴这天的最低气温是23F . ……………………………………………………………(1分)22. (本题满分10分,第(1)、(2)小题满分各5分)解:(1)设AB x =.∴ 4cot 3BC AB ACB x =⋅∠=. …………………………………………………………(1分)由题意得431(2)92x x +⋅=. …………………………………………………………(2分) 解得1293, 2x x ==-(舍). …………………………………………………………(1分)所以AB 的长为3. ………………………………………………………………………(1分)(2)过点D 作DE ⊥AC ,垂足为E .…………………………………………………………(1分)在Rt △ABC 中,AB =3,BC =4,∴5AC =. ……………………………………………………………(1分) ∴ 3sin 5ABACB AC ∠==,4cos 5BCACB AC ∠==. ……………………………………(1分)∵AD //BC ,∴DAC ACB ∠=∠.在Rt △AED 中,AD =2,s i n 56D E A D D A C =⋅∠=,cos 58AE AD DAC =⋅∠=.………………………………(1分)在Rt△CED中,665tan81755DEACDCE∠===-.………………………………………(1分)23. (本题满分12分,第(1)、(2)小题满分各6分)证明:(1)∵四边形ABCD是正方形,∴AD=CD. ……………………………………………………………………………(1分)∴DAE DCG∠=∠.……………………………………………………………………(1分)∵DE=DG,∴DEG DGE∠=∠.………………………………………………………(1分)∴AED CGD∠=∠.……………………………………………………………………(1分)在△AED与△CGD中,DAE DCG∠=∠,AED CGD∠=∠,AD=CD,∴△AED≌△CGD.……………………………………………………………………(1分)∴AE=CG. ……………………………………………………………………………(1分)(2) ∵四边形ABCD是正方形,∴AD//BC. ………………………………………………………………………………(1分)∴CG CFAG AD=. …………………………………………………………………………(1分)∵AE=CG.∴AC AE AC CG-=-,即CE=AG. ……………………………………………………………………………(1分)∵四边形ABCD是正方形,∴AD=BC. ……………………………………………………………………………(1分)∴CG CFCE BC=. …………………………………………………………………………(1分)∴BE//DF. ……………………………………………………………………………(1分)24. (本题满分12分,第(1)小题满分3分,第(2)小题满分4分,第(3)小题满分5分)解:(1)∵反比例函数12yx=的图像经过横坐标为6的点P,∴点P的坐标为(6,2).………………………………………………………(1分)设直线AO的表达式为y kx=(0k≠).…………………………………………(1分)将点P(6,2)代入y kx=,解得13k=.∴所求反比例函数的解析式为13y x =.………………………………………………(1分)(2)∵AB //x 轴,∴点B 纵坐标为3,将3y =代入12y x=,解得 4x =. ∴点B 坐标为(4,3).…………………………………………………………………(1分)∵AB =BO ,∴4a -解得9a =. ……………………………………………………………(2分) ∴点A 坐标为(9,3).………………………………………………(1分)(3)不变.延长AB 交y 轴于点D ,延长AC 交x 轴于点E , ∴32ADO AEO S S a ∆∆==.………………………………………………(1分) ∵点C 坐标为(a ,12a).∴6CEO S ∆=,同理6BDO S ∆=,…………………(1分) ∴ADO BDO AEO CEO S S S S ∆∆∆∆-=-,即ABO ACO S S ∆∆=.………………………(1分) ∵△ABP 与△ABO 同高,∴ABP ABO S AP S AO ∆∆=.……………………………(1分) 同理ACP ACO S AP S AO ∆∆=.∴1ABP ACPS S ∆∆=. 即当a 变化时,ABP ACP S S ∆∆的值不变,且恒为1.………………………(1分) 25. (本题满分14分,第(1)小题满分3分,第(2)满分6分,(3)小题满分5分) 解:(1)∵Rt △ABC 中,90C ︒∠= ,∵CD 是斜边AB 上的高, 即90ADC ︒∠=,又∵90C ︒∠= ,∴BCD ACD A ACD ∠+∠=∠+∠.∴30BCD A ∠=∠=.………………………………………………(1分)在Rt △BDC 中,cos 2cos303CD BC BCD =⋅∠=⋅=1分) 在Rt △ADC 中,cot 3AD CD A =⋅∠=. …………………………(1分)(2)∵CF ⊥DE ,CD ⊥AB ,∴CDG EDF CFD EDF ∠+∠=∠+∠.即=CDG CFD ∠∠. ……………(1分) 同理 ACD B ∠=∠. △CDE ∽△BFC .…………………………………………………(1分) ∴CE CD BC BF =,即CE CD BC DF BD=+. 又∵在Rt △BDC 中,sin 1BD BC BCD =⋅∠=, ∴2x =.………………………………………………………(1分)∴y =x ≤<.……………………………………(2分) (3)∵EGF CGD ∠=∠,1°当FEG CDG ∠=∠时,EF //CD . ∴FD AD CE AC =,即x x .……………………………(1分)解得x =负值已舍).…………………………………………………………(1分) 2°当FEG DCG ∠=∠时,∵90CDF ∠=,CF ⊥DE ,∴DCG EDF ∠=∠.又∵FEG DCG ∠=∠,∴EDF FEG ∠=∠.∴EF =FD .又∵CF ⊥DE ,∴GE =GD ,即CF 是DE 的垂直平分线.…………………………………(1分)∴CE =CD.………………………………………………………………………………(1分)综上所述CE1分)。

上海黄浦区中考一模即期末数学试题及答案

上海黄浦区中考一模即期末数学试题及答案

上海黄浦区中考一模即期末数学试题及答案 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-2015年上海市黄浦区初三一模数学试卷 一. 选择题(24分) 1. 在Rt △ABC 中,90C ∠=︒,如果A α∠=,AB c =,那么BC 等于( )A. sin c α⋅;B. cos c α⋅;C. tan c α⋅;D. cot c α⋅;2. 如果二次函数2y ax bx c =++的图像如图所示,那么下列判断正确的是( )A. 0a >,0c >;B. 0a <,0c >;C. 0a >,0c <;D. 0a <, 0c <;3. 如果||3a =,||2b =,且a 与b 反向,那么下列关系式中成立的是( )A. 23a b =;B. 23a b =-;C. 32a b =;D. 32a b =-; 4. 在△ABC 中,点D 、E 分别在边AB 、AC 上,如果2AD =,3BD =,那么由下列条件能够判定DE ∥BC 的是( )A. 23DE BC =;B. 25DE BC =;C. 23AE AC =;D. 25AE AC =; 5. 抛物线21y x x =-+-与坐标轴(含x 轴、y 轴)的公共点的个数是( )A. 0;B. 1;C. 2;D. 3;6. 如图,在△ABC 中,点D 、E 分别在边AB 、AC 上,且DE ∥BC ,若:ADE BDE S S ∆∆=1:2,则:ADE BEC S S ∆∆=( )A. 1:4;B. 1:6;C. 1:8;D. 1:9;二. 填空题(48分)7. 如果34x y =,那么x y y+的值是 ; 8. 计算:tan60cos30︒-︒= ;9. 如果某个二次函数的图像经过平移后能与23y x =的图像重合,那么这个二次函数的解析式可以是 (只要写出一个);10. 如果抛物线21(1)22y x m x m =+--+的对称轴是y 轴,那么m 的值是 ;11. 如图,AD ∥BE ∥FC ,它们依次交直线1l 、2l 于点A 、B 、C 和点D 、E 、F ,如果2AB =,3BC =,那么DE EF的值是 ; 12. 如图,在梯形ABCD 中,AD ∥BC ,AB ⊥AD ,BD ⊥CD ,如果1AD =,3BC =,那么BD 长是 ;13. 如图,如果某个斜坡AB 的长度为10米,且该斜坡最高点A 到地面BC 的铅垂高度为8米,那么该斜坡的坡比是 ;14. 在Rt △ABC 中,90C ∠=︒,CD 是斜边AB 上的高,如果3CD =,2BD =,那么cos A ∠的值是 ;15. 正六边形的中心角等于 度;16. 在直角坐标系平面内,圆心O 的坐标是(3,5)-,如果圆O 经过点(0,1)-,那么圆O 与x 轴的位置关系是 ;17. 在Rt △ABC 中,90C ∠=︒,30A ∠=︒,1BC =,分别以A 、B 为圆心的两圆外切,如果点C 在圆A 内,那么圆B 的半径长r 的取值范围是 ;18. 如图,在梯形ABCD 中,AD ∥BC ,BE ⊥CD ,垂足为E ,联结AE ,AEB C ∠=∠,且2cos 5C ∠=, 若1AD =,则AE 的长是 ;三. 解答题(78分)19. 如图,已知两个不平行的向量a 、b ,(1)化简:2(3)()a b a b --+; (2)求作c ,使得12c b a =-(不要求写作法,但要指出所作图中表示结论的向量);20. 在直角坐标平面内,抛物线2y ax bx c =++经过原点O 、(2,2)A --与(1,5)B -三点,(1)求抛物线的表达式;(2)写出该抛物线的顶点坐标;21. 已知:如图,O 的半径为5,P 为O 外一点,PB 、PD 与O 分别交于点A 、B和点C 、D ,且PO 平分BPD ∠;(1)求作:CB AD =;(2)当1PA =,45BPO ∠=︒时,求弦AB 的长;22. 如图,小明想测量河对岸的一幢高楼AB 的高度,小明在河边C 处测得楼顶A 的仰角是60°,距C 处60米的E 处有幢楼房,小明从该楼房中距地面20米的D 处测得楼顶A的仰角是30°(点B 、C 、E 在同一直线上,且AB 、DE 均与地面BE 垂直),求楼AB的高度;23. 已知,如图,在△ABC 中,点D 、E 分别在边AB 、AC 上,且ABE ACD ∠=∠,BE 、CD 交于点G ,(1)求作:△AED ∽△ABC ;(2)如果BE 平分ABC ∠,求证:DE CE =;24. 在平面直角坐标系xOy 中,将抛物线21(3)4y x =-向下平移使之经过点(8,0)A ,平移后的抛物线交y 轴于点B ,(1)求OBA ∠的正切值;(2)点C 在平移后的抛物线上且位于第二象限,其纵坐标为6,联结CA 、CB ,求△ABC的面积;(3)点D 在平移后抛物线的对称轴上且位于第一象限,联结DA 、DB ,当BDA OBA ∠=∠时,求点D 坐标;25. 在矩形ABCD 中,8AB =,6BC =,对角线AC 、BD 交于点O ,点E 在AB 延长线上,联结CE,AF⊥CE,分别交线段CE、边BC、对角线BD于点F、G、H (点F不与点C、E重合);(1)当点F是线段CE的中点时,求GF的长;(2)设BE x=,求y关于x的函数解析式,并写出它的定义域;=,OH y(3)当△BHG是等腰三角形时,求BE的长;。

上海市黄浦区2015年中考数学一模试卷(答案解析版)

上海市黄浦区2015年中考数学一模试卷(答案解析版)

2015年上海市黄浦区中考数学一模试卷一、选择题(共6小题,每小题4分,满分24分)1.在Rt△ABC中,∠C=90°,如果∠A=α,AB=c,那么BC等于()A. c•sinα B. c•cosα C. c•tanα D. c•cotα2.如果二次函数y=ax2+bx+c的图象如图所示,那么下列判断正确的是()A. a>0,c>0 B. a<0,c>0 C. a>0,c<0 D. a<0,c<03.如果||=3.||=2,且与反向,那么下列关系中成立的是()A.= B.=﹣ C.= D.=﹣4.在△ABC中,点D、E分别在AB、AC上,如果AD=2,BD=3,那么由下列条件能够判定DE ∥BC的是()A.= B.= C.= D.=5.抛物线y=﹣x2+x﹣1与坐标轴(含x轴、y轴)的公共点的个数是()A. 0 B. 1 C. 2 D. 36.如图,在△ABC中,点D、E分别在边AB、AC上,且DE∥BC,若S△ADE:S△BDE=1:2,则S :S△BEC=()△ADEA. 1:4 B. 1:6 C. 1:8 D. 1:9二、填空题(共12小题,每小题4分,满分48分)7.如果=,那么的值是.8.计算:tan60°﹣cos30°= .9.如果某个二次函数的图象经过平移后能与y=3x2的图象重合,那么这个二次函数的解析式可以是.(只要写出一个).10.如果抛物线y=x2+(m﹣1)x﹣m+2的对称轴是y轴,那么m的值是.11.如图,AD∥BE∥FC,它们依次交直线l1、l2于点A、B、C和点D、E、F.如果AB=2,BC=3,那么的值是.12.如图,在梯形ABCD中,AD∥BC,AB⊥AD,BD⊥CD,如果AD=1,BC=3,那么BD长是.13.如图,如果某个斜坡AB的长度为10米,且该斜坡最高点A到地面BC的铅垂高度为8米,那么该斜坡的坡比是.14.在Rt△ABC中,∠C=90°,CD是斜边AB上的高,如果CD=3,BD=2.那么cos∠A的值是.15.正六边形的中心角等于度.16.在直角坐标平面内,圆心O的坐标是(3,﹣5),如果圆O经过点(0,﹣1),那么圆O 与x轴的位置关系是.17.在Rt△ABC中,∠C=90°,∠A=30°,BC=1,分别以A、B为圆心的两圆外切,如果点C在圆A内,那么圆B的半径长r的取值范围是.18.如图,在梯形ABCD中,AD∥BC,BE⊥CD,垂足为点E,连结AE,∠AEB=∠C,且cos∠C=,若AD=1,则AE的长是.三、解答题(共7小题,满分78分)19.如图,已知两个不平行的向量、.(1)化简:2(3﹣)﹣(+);(2)求作,使得=﹣.(不要求写作法,但要指出所作图中表示结论的向量).20.在直角坐标平面内,抛物线y=ax2+bx+c经过原点O、A(﹣2,﹣2)与B(1,﹣5)三点.(1)求抛物线的表达式;(2)写出该抛物线的顶点坐标.21.已知:如图,⊙O的半径为5,P为⊙O外一点,PB、PD与⊙O分别交于点A、B和点C、D,且PO平分∠BPD.(1)求证:=;(2)当PA=1,∠BPO=45°时,求弦AB的长.22.如图,小明想测量河对岸的一幢高楼AB蛾高度,小明在河边C处测得楼顶A的仰角是60°距C处60米的E处有幢楼房,小明从该楼房中距地面20米的D处测得楼顶A的仰角是30°(点B、C、E在同一直线上,且AB、DE均与地面BE处置),求楼AB的高度.23.已知:如图,在△ABC中,点D、E分别在边AB、AC上,且∠ABE=∠ACD,BE、CD交于点G.(1)求证:△AED∽△ABC;(2)如果BE平分∠ABC,求证:DE=CE.24.在平面直角坐标系xOy中,将抛物线y=(x﹣3)2向下平移使之经过点A(8,0),平移后的抛物线交y轴于点B.(1)求∠OBA的正切值;(2)点C在平移后的抛物线上且位于第二象限,其纵坐标为6,连接CA、CB.求△ABC的面积;(3)点D的平移后抛物线的对称轴上且位于第一象限,连接DA、DB,当∠BDA=∠OBA时,求点D坐标.25.如图,在矩形ABCD中,AB=8,BC=6,对角线AC、BD交于点O,点E在AB延长线上,联结CE,AF⊥CE,AF分别交线段CE、边BC、对角线BD于点F、G、H(点F不与点C、E重合).(1)当点F是线段CE的中点,求GF的长;(2)设BE=x,OH=y,求y关于x的函数解析式,并写出它的定义域;(3)当△BHG是等腰三角形时,求BE的长.2015年上海市黄浦区中考数学一模试卷参考答案与试题解析一、选择题(共6小题,每小题4分,满分24分)1.在Rt△ABC中,∠C=90°,如果∠A=α,AB=c,那么BC等于()A. c•sinα B. c•cosα C. c•tanα D. c•cotα考点:锐角三角函数的定义.分析:根据题意画出图形,进而利用sinA=,求出即可.解答:解:如图所示:∵在Rt△ABC中,∠C=90°,∠A=α,AB=c,∴sinA=,∴BC=AB•sinA=c•sinα,故选:A.点评:此题主要考查了锐角三角函数关系,正确记忆锐角三角函数关系是解题关键.2.如果二次函数y=ax2+bx+c的图象如图所示,那么下列判断正确的是()A. a>0,c>0 B. a<0,c>0 C. a>0,c<0 D. a<0,c<0考点:二次函数图象与系数的关系.分析:首先根据开口方向确定a的符号,再依据与y轴的交点的纵坐标即可判断c的正负,由此解决问题.解答:解:∵图象开口方向向上,∴a>0;∵图象与Y轴交点在y轴的负半轴上,∴c<0;∴a>0,c<0.故选:C.点评:本题主要考查二次函数的图象与系数的关系,能根据图象正确确定各个系数的符号是解决此题的关键,运用了数形结合思想.3.如果||=3.||=2,且与反向,那么下列关系中成立的是()A.= B.=﹣ C.= D.=﹣考点: *平面向量.分析:由||=3.||=2,且与反向,根据平面向量的定义,即可求得答案.解答:解:∵||=3,||=2,∴||=||,∵与反向,∴=﹣.故选D.点评:此题考查了平面向量的知识.此题难度不大,注意理解平面向量的定义是解此题的关键.4.在△ABC中,点D、E分别在AB、AC上,如果AD=2,BD=3,那么由下列条件能够判定DE ∥BC的是()A.= B.= C.= D.=考点:平行线分线段成比例.分析:根据平行线分线段成比例定理的逆定理,当=或=时,DE∥BD,然后可对各选项进行判断.解答:解:当=或=时,DE∥BD,即=或=.故选D.点评:本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.也考查了平行线分线段成比例定理的逆定理.5.抛物线y=﹣x2+x﹣1与坐标轴(含x轴、y轴)的公共点的个数是()A. 0 B. 1 C. 2 D. 3考点:二次函数图象上点的坐标特征.分析:先根据判别式的值得到△=﹣3<0,根据△=b2﹣4ac决定抛物线与x轴的交点个数得到抛物线与x轴没有交点,由于抛物线与y轴总有一个交点,所以抛物线y=﹣x2+x﹣1与坐标轴的交点个数为1.解答:解:∵△=12﹣4×(﹣1)×(﹣1)=﹣3<0,∴抛物线与x轴没有交点,而抛物线y=﹣x2+x﹣1与y轴的交点为(0,﹣1),∴抛物线y=﹣x2+x﹣1与坐标轴的交点个数为1.故选B.点评:本题考查了抛物线与x轴的交点:求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标,令y=0,即ax2+bx+c=0,解关于x的一元二次方程即可求得交点横坐标.二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的交点与一元二次方程ax2+bx+c=0根之间的关系,△=b2﹣4ac决定抛物线与x轴的交点个数:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.6.如图,在△ABC中,点D、E分别在边AB、AC上,且DE∥BC,若S△ADE:S△BDE=1:2,则S :S△BEC=()△ADEA. 1:4 B. 1:6 C. 1:8 D. 1:9考点:相似三角形的判定与性质.分析:首先证明△ADE∽△ABC,进而证明S△ABC=9S△ADE;运用S△BDE=2S△ADE,得到S△BEC=6S△ADE,即可解决问题.解答:解:∵,且S△ADE:S△BDE=1:2,∴,;∵DE∥BC,∴△ADE∽△ABC,∴,∴S△ABC=9S△ADE,而S△BDE=2S△ADE,∴S△BEC=6S△ADE,∴S△ADE:S△BEC=1:6.故选B.点评:该题主要考查了相似三角形的判定及其性质的应用问题;解题的关键是牢固掌握相似三角形的判定及其性质,这是灵活运用、解题的基础和关键.二、填空题(共12小题,每小题4分,满分48分)7.如果=,那么的值是.考点:比例的性质.分析:根据合比性质,可得答案.解答:解:由=,那么==,故答案为:.点评:本题考查了比例的性质,利用合比性质:=⇒=.8.计算:tan60°﹣cos30°= .考点:特殊角的三角函数值.分析:直接利用特殊角的三角函数值代入求出即可.解答:解:原式=﹣=.故答案为:.点评:此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.9.如果某个二次函数的图象经过平移后能与y=3x2的图象重合,那么这个二次函数的解析式可以是y=3(x+2)2+3 .(只要写出一个).考点:二次函数图象与几何变换.专题:开放型.分析:先设原抛物线的解析式为y=a(x﹣h)2+k,再根据经过平移后能与抛物线y=3x2重合可知a=3,然后根据平移的性质写出解析式,答案不唯一.解答:解:先设原抛物线的解析式为y=a(x+h)2+k,∵经过平移后能与抛物线y=3x2重合,∴a=3,∴这个二次函数的解析式可以是y=3(x+2)2+3.故答案为:y=3(x+2)2+3.点评:本题考查的是二次函数的图象与几何变换,熟知图形平移不变性的性质是解答此题的关键.10.如果抛物线y=x2+(m﹣1)x﹣m+2的对称轴是y轴,那么m的值是 1 .考点:二次函数的性质.分析:由对称轴是y轴可知一次项系数为0,可求得m的值.解答:解:∵y=x2+(m﹣1)x﹣m+2的对称轴是y轴,∴m﹣1=0,解得m=1,故答案为:1.点评:本题主要考查抛物线的对称轴,掌握抛物线的对称轴为y轴其一次项系数为0是解题的关键.11.如图,AD∥BE∥FC,它们依次交直线l1、l2于点A、B、C和点D、E、F.如果AB=2,BC=3,那么的值是.考点:平行线分线段成比例.分析:根据平行线分线段成比例可得=,代入可求得答案.解答:解:∵AD∥BE∥FC,∴==,故答案为:.点评:本题主要考查平行线分线段成比例,掌握平行线分线段所得线段对应成比例是解题的关键.12.如图,在梯形ABCD中,AD∥BC,AB⊥AD,BD⊥CD,如果AD=1,BC=3,那么BD长是.考点:相似三角形的判定与性质.分析:如图,证明∠A=∠BDC,∠ADB=∠DBC,得到△ABD∽△DCB,列出比例式即可解决问题.解答:解:如图,∵AD∥BC,AB⊥AD,BD⊥CD,∴∠A=∠BDC,∠ADB=∠DBC,∴△ABD∽△DCB,∴AD:BD=BD:BC,而AD=1,BC=3,∴BD=.故答案为.点评:该题主要考查了相似三角形的判定及其性质的应用问题;牢固掌握相似三角形的判定及其性质是解题的基础和关键.13.如图,如果某个斜坡AB的长度为10米,且该斜坡最高点A到地面BC的铅垂高度为8米,那么该斜坡的坡比是.考点:解直角三角形的应用-坡度坡角问题.分析:直接利用坡度的定义,坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,进而得出答案.解答:解:∵某个斜坡AB的长度为10米,且该斜坡最高点A到地面BC的铅垂高度为8米,∴水平距离BC==6(m),则该斜坡的坡比是:=.故答案为:.点评:此题主要考查了坡度的定义,正确把握定义是解题关键.14.在Rt△ABC中,∠C=90°,CD是斜边AB上的高,如果CD=3,BD=2.那么cos∠A的值是.考点:锐角三角函数的定义.分析:根据题意画出图形,进而利用锐角三角函数关系得出cosA=cos∠BCD进而求出即可.解答:解:如图所示:∵∠ACB=90°,∴∠B+∠A=90°,∵CD⊥AB,∴∠CDA=90°,∴∠B+∠BCD=90°,∴∠BCD=∠A,∵CD=3,BD=2,∴BC=,∴cosA=cos∠BCD===.故答案为:.点评:此题主要考查了锐角三角函数关系,正确记忆锐角三角函数关系是解题关键.15.正六边形的中心角等于60 度.考点:正多边形和圆.分析:根据正六边形的六条边都相等即可得出结论.解答:解:∵正六边形的六条边都相等,∴正六边形的中心角==60°.故答案为:60.点评:本题考查的是正多边形和圆,熟知正多边形的性质是解答此题的关键.16.在直角坐标平面内,圆心O的坐标是(3,﹣5),如果圆O经过点(0,﹣1),那么圆O 与x轴的位置关系是相切.考点:直线与圆的位置关系;坐标与图形性质.分析:确定圆O的半径,然后根据点O到x轴的距离与圆的半径的大小进行判断即可.解答:解:∵圆心O的坐标是(3,﹣5),如果圆O经过点(0,﹣1),∴圆的半径为=5,∵O到x轴的距离为5,∴圆O与x轴的位置关系是相切,故答案为:相切.点评:本题考查了直线与圆的位置关系、坐标与图形的性质的知识,解题的关键是求得圆的半径,难度不大.17.在Rt△ABC中,∠C=90°,∠A=30°,BC=1,分别以A、B为圆心的两圆外切,如果点C在圆A内,那么圆B的半径长r的取值范围是0<r<2﹣.考点:点与圆的位置关系.分析:首先根据题意求得斜边AB和直角边AC的长,要使得点C在圆A内圆A的半径就满足比AC长、比AB短,从而得解.解答:解:∵Rt△ABC中,∠C=90°,∠A=30°,BC=1,∴AB=2BC=2,AC==,∵以A、B为圆心的两圆外切,∴两圆的半径的和为2,∵点C在圆A内,∴圆A的半径长r的取值范围是0<r<2﹣,故答案为:0<r<2﹣.点评:考查了点与圆的位置关系,判断点与圆的位置关系,也就是比较点与圆心的距离和半径的大小关系.18.如图,在梯形ABCD中,AD∥BC,BE⊥CD,垂足为点E,连结AE,∠AEB=∠C,且cos∠C=,若AD=1,则AE的长是.考点:梯形;相似三角形的判定与性质;解直角三角形.分析:作AF∥DC,交BE于G,BC于F,作FH∥BE,交DC于H,先求得四边形ABCD是平行四边形,四边形EGFH是矩形,从而求得FC=AD=1,GE=FH,由cos∠C=求得CH,然后根据勾股定理求得FH,最后根据cos∠AEB=即可求得AE的长.解答:解:作AF∥DC,交BE于G,BC于F,作FH∥BE,交DC于H,∵AD∥BC,BE⊥CD,∴四边形ABCD是平行四边形,FH⊥DC,AF⊥BE,∴FC=AD=1,∠FHC=90°,∠AG,E=90°,∵cos∠C==,∴HC=,∴FH==,∵FH⊥DC,AF⊥BE,BE⊥CD,∴四边形EGFH是矩形,∴GE=FH=,∴cos∠AEB=,∵∠AEB=∠C,且cos∠C=,∴cos∠AEB==,∴AE===.故答案为.点评:本题考查了梯形的性质,平行四边形的判定和性质,矩形的判定和性质,勾股定理的应用,解直角三角形等,作出辅助线关键直角三角形、平行四边形、矩形是本题的关键.三、解答题(共7小题,满分78分)19.如图,已知两个不平行的向量、.(1)化简:2(3﹣)﹣(+);(2)求作,使得=﹣.(不要求写作法,但要指出所作图中表示结论的向量).考点: *平面向量.分析:(1)直接利用平面向量的加减运算法则求解即可求得,注意去括号时的符号变化;(2)利用三角形法则求解即可求得答案.解答:解:(1)2(3﹣)﹣(+)=6﹣2﹣﹣=5﹣3;(2)如图,=,=,则==﹣.∴即为所求.点评:此题考查了平面向量的运算与作法.此题难度不大,注意掌握三角形法则的应用,注意掌握数形结合思想的应用.20.在直角坐标平面内,抛物线y=ax2+bx+c经过原点O、A(﹣2,﹣2)与B(1,﹣5)三点.(1)求抛物线的表达式;(2)写出该抛物线的顶点坐标.考点:待定系数法求二次函数解析式;二次函数的性质.分析:(1)把原点O、A(﹣2,﹣2)与B(1,﹣5)三点分别代入函数解析式,求得a、b、c的数值得出函数解析式即可;(2)把函数解析式化为顶点式,得出顶点坐标即可.解答:解:(1)∵抛物线y=ax2+bx+c经过原点O、A(﹣2,﹣2)与B(1,﹣5)三点,∴,解得:,∴抛物线的表达式为y=﹣2x2﹣3x.(2)y=﹣2x2﹣3x=y=﹣2(x+)2+,抛物线的顶点坐标为(﹣,).点评:此题考查待定系数法求函数解析式,以及利用配方法求得顶点坐标.21.已知:如图,⊙O的半径为5,P为⊙O外一点,PB、PD与⊙O分别交于点A、B和点C、D,且PO平分∠BPD.(1)求证:=;(2)当PA=1,∠BPO=45°时,求弦AB的长.考点:垂径定理;角平分线的性质;勾股定理.专题:计算题.分析:(1)作OE⊥AB于E,OF⊥CD于F,连结OB、OD,如图,根据角平分线的性质得OE=OF,根据垂径定理得AE=BE,CF=DF,则可利用“HL”证明Rt△OBE≌Rt△ODF,得到BE=DF,则AB=CD,根据圆心角、弧、弦的关系得到=,所以=;(2)在Rt△POE中,由于∠BPO=45°,则可判断△POE为等腰直角三角形,所以OE=PE=1+AE,则OE=1+BE,然后在Rt△BOE中根据勾股定理得(1+BE)2+BE2=52,解方程求出BE即可得到AB.解答:(1)证明:作OE⊥AB于E,OF⊥CD于F,连结OB、OD,如图,∵PO平分∠BPD,OE⊥AB,OF⊥CD,∴OE=OF,AE=BE,CF=DF,在Rt△OBE和Rt△ODF中,,∴Rt△OBE≌Rt△ODF,∴BE=DF,∴AB=CD,∴=,∴+=+,即=;(2)解:在Rt△POE中,∵∠BPO=45°,∴△POE为等腰直角三角形,∴OE=PE=PA+AE=1+AE,而AE=BE,∴OE=1+BE,在Rt△BOE中,∵OE2+BE2=OB2,∴(1+BE)2+BE2=52,解得BE=﹣4(舍去)或BE=3,∴AB=2BE=6.点评:本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了角平分线的性质和勾股定理.22.如图,小明想测量河对岸的一幢高楼AB蛾高度,小明在河边C处测得楼顶A的仰角是60°距C处60米的E处有幢楼房,小明从该楼房中距地面20米的D处测得楼顶A的仰角是30°(点B、C、E在同一直线上,且AB、DE均与地面BE处置),求楼AB的高度.考点:解直角三角形的应用-仰角俯角问题.分析:过点D作DF⊥AB于点F,设AB的长度为x米,则AF=x﹣20米,在Rt△ABC和Rt △ADF中分别求出BC和DF的长度,然后根据CE=BE﹣CB,代入数值求出x的值.解答:解:过点D作DF⊥AB于点F,则四边形BFDE为矩形,设AB的长度为x米,则AF=x﹣20米,在Rt△ABC中,∵∠ACB=60°,∴BC=,在Rt△ADF中,∵∠ADF=30°,∴DF=(x﹣20),∵AB=DF,CE=60米,∴(x﹣20)﹣=60,解得:x=30+30.即楼AB的高度为(30+30)米.点评:本题考查了解直角三角形的应用,解答本题的关键是根据仰角构造直角三角形,利用三角函数的知识求解,难度一般.23.已知:如图,在△ABC中,点D、E分别在边AB、AC上,且∠ABE=∠ACD,BE、CD交于点G.(1)求证:△AED∽△ABC;(2)如果BE平分∠ABC,求证:DE=CE.考点:相似三角形的判定与性质.专题:证明题.分析:(1)证明B、C、E、D四点共圆,得到∠ADE=∠ACB,即可解决问题.(2)如图,作辅助线,证明EM=EF;由sinα=,sinα=,得到,根据ME=EF,即可解决问题.解答:(1)证明:∵∠ABE=∠ACD,∴B、C、E、D四点共圆,∴∠ADE=∠ACB,而∠A=∠A,∴△AED∽△ABC.(2)解:过点E作EM⊥AB,EF⊥BC;∵BE平分∠ABC,∴EM=EF;设∠ADE=∠ACB=α,则sinα=,sinα=,∴,而ME=EF,∴DE=CE.点评:该题主要考查了相似三角形的判定及其性质的应用问题;应牢固掌握相似三角形的判定及其性质、四点共圆的判定等几何知识点.24.在平面直角坐标系xOy中,将抛物线y=(x﹣3)2向下平移使之经过点A(8,0),平移后的抛物线交y轴于点B.(1)求∠OBA的正切值;(2)点C在平移后的抛物线上且位于第二象限,其纵坐标为6,连接CA、CB.求△ABC的面积;(3)点D的平移后抛物线的对称轴上且位于第一象限,连接DA、DB,当∠BDA=∠OBA时,求点D坐标.考点:二次函数综合题.分析:(1)设平移后的抛物线表达式为y=(x﹣3)2+k,把A(8,0)代入表达式可得k的值,可得出平移后的抛物线表达式,把把x=0代入得y的值,可得出B坐标,即可得出tan∠OBA的值.(2)利用平移后的抛物线可得出点C的坐标,从而得出直线AC的解析式,由AC与y轴交于点E,可得出点E的坐标,利用S△ABC=S△BCE+S△ABE求解即可,(3)设对称轴交线段与AB与N,交x轴于点F,利用角的关系可得△NAD∽△DAB,由相似比可得AD2=AN•AB,由FN∥BO,可得AN=AB,再结合AF2+m2=AD2,即可求出点D的坐标.解答:解:(1)设平移后的抛物线表达式为y=(x﹣3)2+k,把A(8,0)代入表达式解得k=﹣,∴平移后的抛物线表达式为y=(x﹣3)2﹣,如图,把x=0代入得y=(x﹣3)2﹣,得y=﹣4,∴B(0,﹣4),在RT△AOB中,tan∠OBA==2,(2)把y=6代入y=(x﹣3)2﹣,解得x1=﹣4或x2=10(舍去),∴C(﹣4,6),如图,∴直线AC解析式为y=﹣x+4,设AC与y轴交于点E,则点E的坐标为(0,4),∴S△ABC=S△BCE+S△ABE=BE•|C横坐标|+BE•OA=16+32=48,(3)如图,设对称轴交线段与AB与N,交x轴于点F,∵FN∥BO,∴∠OBA=∠DNA,∵∠BDA=∠OBA∴∠BDA=∠DNA,∴△NAD∽△DAB,∴=,即AD2=AN•AB,∵FN∥BO,∴==,∴AN=AB,设点D的坐标为(3,m),由题意得AF2+m2=AD2,即52+m2=(4)2,解得m=5(负值舍去),∴点D(3,5).点评:本题主要考查了二次函数综合题涉及勾股定理,相似三角形,三角形面积等知识,解题的关键是确定平移后的抛物线表达式.25.如图,在矩形ABCD中,AB=8,BC=6,对角线AC、BD交于点O,点E在AB延长线上,联结CE,AF⊥CE,AF分别交线段CE、边BC、对角线BD于点F、G、H(点F不与点C、E重合).(1)当点F是线段CE的中点,求GF的长;(2)设BE=x,OH=y,求y关于x的函数解析式,并写出它的定义域;(3)当△BHG是等腰三角形时,求BE的长.考点:四边形综合题.分析:(1)首先利用勾股定理得出AC的长,证得△ACF≌△AEF,得出BE=2,进一步得出△CBE∽△ABG,△CGF∽△CBE,利用三角形相似的性质得出CF、CG的长,利用勾股定理求得而答案即可;(2)作BM⊥AF,ON⊥AF,垂足分别为M、N,利用△ONH∽△BMH,△ANO∽△AFC,△BMG∽△CFG,建立BE、OH之间的联系,进一步整理得出y关于x的函数解析式,根据y=0,得出x的定义域即可;(3)分三种情况探讨:①当BH=BG时,②当GH=GB,③当HG=HB,分别探讨得出答案即可.解答:解:(1)∵AB=8,BC=6,∴AC=10,∵AF⊥CE,∴∠AFC=∠AFE=90°,∵点F是线段CE的中点,∴CF=EF,在△ACF和△AEF中,∴△ACF≌△AEF,∴AE=AC=10,∴BE=2,∵∠CGF=∠AGB,∠GFC=∠ABG,∴∠FCG=∠GAB,∠CBE=∠ABG,∴△CBE∽△ABG,∴=,即=,BG=,∴CG=,∵∠GCF=∠BCE,∠CFG=∠CBE,∴△CGF∽△CBE,∴=,又CE=2CF,∴2CF2=BC•CG,∴CF=,∴GF==;(2)如图,作BM⊥AF,ON⊥AF,垂足分别为M、N,∵AF⊥CE,∴ON∥BM∥CE,∴△ONH∽△BMH,△ANO∽△AFC,△BMG∽△CFG,∴==,=,==,∴=,又∵△CBE∽△ABG,∴=,BE=x,∴BG=x,∴=,则y=(0<x<).(3)当△BHG是等腰三角形,①当BH=BG时,△AHD∽△BHG,=,则5+y=6,y=1,由y=,解得x=3;②当GH=GB,得出∠AHD=ABH,不存在;③当HG=HB,得出∠HGB=∠HBG=∠OCB不存在.所以BE=3.点评:此题综合考查了矩形的性质,勾股定理,相似三角形的判定与性质,等腰三角形的性质,以及全等三角形的判定与性质,知识设计的面广,需要多方位思考解决问题,渗透分类讨论的思想.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年上海市黄浦区中考数学一模试卷一、选择题(共6小题,每小题4分,满分24分)1.在Rt△ABC中,∠C=90°,如果∠A=α,AB=c,那么BC等于()A. c?sinα B. c?cosα C. c?tanα D. c?cotα2)y=ax+bx+c的图象如图所示,那么下列判断正确的是( 2.如果二次函数A. a>0,c>0 B. a<0,c>0 C. a>0,c<0 D. a<0,c<0与反向,那么下列关系中成立的是(.)||=2 3.如果,且||=3﹣= . == D﹣ C.. A. = B4.在△ABC中,点D、E分别在AB、AC上,如果AD=2,BD=3,那么由下列条件能够判定DE∥BC的是()= = D B= A... = C.2)轴)的公共点的个数是(轴、y 与坐标轴(含x5.抛物线y=﹣+x﹣1x 3 . 2 D. 0 B A.. 1 CS中,点6.如图,在△ABCD、ES,则:2=1:,若∥上,且分别在边AB、ACDEBCS BDE△△ADE S:=)(BEC△ADE△A. 1:4 B. 1:6 C. 1:8 D. 1:9第1页(共24页)二、填空题(共12小题,每小题4分,满分48分),那么的值是 = .7 .如果8.计算:tan60°﹣cos30°= .2的图象重合,那么这个二次函数的解析y=3x9.如果某个二次函数的图象经过平移后能与..(只要写出一个)式可以是2.的值是﹣m+2的对称轴是y轴,那么m )10.如果抛物线y=x+(m﹣1x,AB=2,BC=3、E、F.如果C、BE∥FC,它们依次交直线ll于点A、B、和点D∥11.如图,AD21.的值是那么12.如图,在梯形ABCD中,AD∥BC,AB⊥AD,BD⊥CD,如果AD=1,BC=3,那么BD长是.13.如图,如果某个斜坡AB的长度为10米,且该斜坡最高点A到地面BC的铅垂高度为8米,那么该斜坡的坡比是.第2页(共24页)14.在Rt△ABC中,∠C=90°,CD是斜边AB上的高,如果CD=3,BD=2.那么cos∠A的值是.15.正六边形的中心角等于度.16.在直角坐标平面内,圆心O的坐标是(3,﹣5),如果圆O经过点(0,﹣1),那么圆O与x 轴的位置关系是.17.在Rt△ABC中,∠C=90°,∠A=30°,BC=1,分别以A、B为圆心的两圆外切,如果点C在圆A内,那么圆B的半径长r的取值范围是.18.如图,在梯形ABCD中,AD∥BC,BE⊥CD,垂足为点E,连结AE,∠AEB=∠C,且cos∠C=,若AD=1,则AE的长是.三、解答题(共7小题,满分78分)、.19 .如图,已知两个不平行的向量+))﹣(2(3;﹣(1)化简:﹣.(不要求写作法,但要指出所作图中表示结论的向量),使得=.(2 )求作2)三,﹣5B(12经过原点O、A(﹣2,﹣)与+bx+c20.在直角坐标平面内,抛物线y=ax 点.)求抛物线的表达式;(1 )写出该抛物线的顶点坐标.(2、CB和点APD外一点,PB、与⊙O分别交于点、OP5O21.已知:如图,⊙的半径为,为⊙.PO,且平分∠BPDD243第页(共页)=;)求证:(1(2)当PA=1,∠BPO=45°时,求弦AB的长.22.如图,小明想测量河对岸的一幢高楼AB蛾高度,小明在河边C处测得楼顶A的仰角是60°距C处60米的E处有幢楼房,小明从该楼房中距地面20米的D处测得楼顶A的仰角是30°(点B、C、E在同一直线上,且AB、DE均与地面BE处置),求楼AB的高度.23.已知:如图,在△ABC中,点D、E分别在边AB、AC上,且∠ABE=∠ACD,BE、CD交于点G.(1)求证:△AED∽△ABC;(2)如果BE平分∠ABC,求证:DE=CE.2,平0)A(8,中,将抛物线(y=x﹣3)向下平移使之经过点xOy24.在平面直角坐标系.B 移后的抛物线交y轴于点的正切值;1)求∠OBA(的.求△ABCCA6,连接、CBC(2)点在平移后的抛物线上且位于第二象限,其纵坐标为面积;时,∠OBA,当∠的平移后抛物线的对称轴上且位于第一象限,连接DDA、DBBDA=)点(3 坐标.求点D第4页(共24页)延长线上,ABE在交于点AC、BDO,点中,25.如图,在矩形ABCDAB=8,BC=6,对角线重、EF 不与点CG、对角线BD于点F、、H(点CECECE联结,AF⊥,AF分别交线段、边BC .合)的长;的中点,求GFF(1)当点是线段CE 的函数解析式,并写出它的定义域;x,求y关于OH=y2()设BE=x, BE是等腰三角形时,求的长.3()当△BHG245第页(共页)2015年上海市黄浦区中考数学一模试卷参考答案与试题解析一、选择题(共6小题,每小题4分,满分24分)1.在Rt△ABC中,∠C=90°,如果∠A=α,AB=c,那么BC等于()A. c?sinα B. c?cosα C. c?tanα D. c?cotα考点:锐角三角函数的定义.sinA=,求出即可.根据题意画出图形,进而利用分析:解答:解:如图所示:∵在Rt△ABC中,∠C=90°,∠A=α,AB=c,sinA=,∴∴BC=AB?sinA=c?sinα,故选:A.点评:此题主要考查了锐角三角函数关系,正确记忆锐角三角函数关系是解题关键.2)+bx+c的图象如图所示,那么下列判断正确的是( 2.如果二次函数y=axA. a>0,c>0 B. a<0,c>0 C. a>0,c<0 D. a<0,c<0考点:二次函数图象与系数的关系.分析:首先根据开口方向确定a的符号,再依据与y轴的交点的纵坐标即可判断c的正负,由此解决问题.解答:解:∵图象开口方向向上,∴a>0;∵图象与Y轴交点在y轴的负半轴上,∴c<0;∴a>0,c<0.故选:C.点评:本题主要考查二次函数的图象与系数的关系,能根据图象正确确定各个系数的符号是解决此题的关键,运用了数形结合思想.第6页(共24页)与反向,那么下列关系中成立的是(,且 ||=3.)||=23.如果﹣ =.= B == D﹣ C. A ..考点: *平面向量.与反向,根据平面向量的定义,即可求得答案.,且|=3. ||=2分析:由|||=2,解:∵||=3,解答:||∴,| |=与反向,∵﹣.∴=故选D.点评:此题考查了平面向量的知识.此题难度不大,注意理解平面向量的定义是解此题的关键.4.在△ABC中,点D、E分别在AB、AC上,如果AD=2,BD=3,那么由下列条件能够判定DE∥BC的是()= == B. D = C.. A.考点:平行线分线段成比例.=时,DE∥分析: BD根据平行线分线段成比例定理的逆定理,当,然后可对=或各选项进行判断. BD,DE= 解答:或解:当=时,∥=或. =即故选D.点评:本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.也考查了平行线分线段成比例定理的逆定理.第7页(共24页)2)轴)的公共点的个数是(﹣1与坐标轴(含x轴、y5.抛物线y=﹣x+x 3 . 1 C. 2 D A. 0 B.二次函数图象上点的坐标特征.考点:2轴的交点个数得决定抛物线与x=b0,根据△﹣4ac分析:先根据判别式的值得到△=﹣3<2与坐﹣1轴总有一个交点,所以抛物线y=﹣x+x到抛物线与x轴没有交点,由于抛物线与y 1.标轴的交点个数为2,﹣3<01解:∵△=1﹣4×(﹣1)×(﹣)=解答:轴没有交点,∴抛物线与x2,﹣1),﹣x+x﹣1与y轴的交点为(0而抛物线y=2.与坐标轴的交点个数为1﹣∴抛物线y=x+x﹣1 .故选B2)≠0a,b,c是常数,ax点评:本题考查了抛物线与轴的交点:求二次函数y=ax+bx+c(2二的一元二次方程即可求得交点横坐标.,即ax+bx+c=0,解关于x与x轴的交点坐标,令y=022根之间的+bx+c=0是常数,a≠0)的交点与一元二次方程ax次函数y=ax+bx+c(a,b,c22个>0时,抛物线与x轴有2关系,△=b﹣4ac决定抛物线与x 轴的交点个数:△=b﹣4ac22轴没有x<0时,抛物线与﹣交点;△=b﹣4ac=0时,抛物线与x轴有1个交点;△=b4ac 交点.S2,则=1上,且DE∥BC,若S:S:、6.如图,在△ABC中,点DE分别在边AB、AC BDE△ADE△):S=(BEC△ADE△A. 1:4 B. 1:6 C. 1:8 D. 1:9考点:相似三角形的判定与性质.分析:首先证明△ADE∽△ABC,进而证明S=9S;运用S=2S,得到S=6S,ADE△△BDE△△ADEABC△BEC△ADE即可解决问题.解:∵,且S:S=1:2,解答:BDEADE△△,;∴∵DE∥BC,∴△ADE∽△ABC,∴,第8页(共24页),,而S=2S=9S∴S ADE△△△ADEBDE△ABC,∴S=6S ADE△△BEC.=1:6∴S:S BECADE△△.故选B该题主要考查了相似三角形的判定及其性质的应用问题;解题的关键是牢固掌握相点评:似三角形的判定及其性质,这是灵活运用、解题的基础和关键.分)分,满分48二、填空题(共12小题,每小题4.,那么7的值是.如果 =比例的性质.考点:根据合比性质,可得答案.分析:= ,解:由== ,那么解答:故答案为:.?点评: =本题考查了比例的性质,利用合比性质:=.8=°..计算:tan60°﹣cos30考点:特殊角的三角函数值.分析:直接利用特殊角的三角函数值代入求出即可.=.=﹣解答:解:原式故答案为:.点评:此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.2的图象重合,那么这个二次函数的解析y=3x9.如果某个二次函数的图象经过平移后能与2.+3 .(只要写出一个))式可以是y=3(x+2二次函数图象与几何变换.:考点开放型.专题:249第页(共页)22重)+k,再根据经过平移后能与抛物线y=3x 先设原抛物线的解析式为y=a(x﹣h分析:合可知a=3,然后根据平移的性质写出解析式,答案不唯一.2+k,解答:解:先设原抛物线的解析式为y=a(x+h)2y=3x重合,∵经过平移后能与抛物线 a=3,∴2.∴这个二次函数的解析式可以是y=3(x+2)+32y=3(x+2)+3.故答案为:本题考查的是二次函数的图象与几何变换,熟知图形平移不变性的性质是解答此题点评:的关键.2 1 .轴,那么m﹣1)x﹣m+2的对称轴是ym10.如果抛物线的值是y=x+(:二次函数的性质.考点 m的值.由对称轴是分析: y轴可知一次项系数为0,可求得21)x﹣m+2的对称轴是y轴,解答:解:∵my=x+(﹣∴m﹣1=0,解得m=1, 1.故答案为:是解轴其一次项系数为0点评:本题主要考查抛物线的对称轴,掌握抛物线的对称轴为y 题的关键.,,D和点、E、F.如果AB=2BC=3B于点l∥如图,11.AD∥BEFC,它们依次交直线、lA、、C21那么的值是.考点:平行线分线段成比例.=,代入可求得答案.根据平行线分线段成比例可得分析:∥FC,AD解答:解:∵∥BE =∴=,故答案为:.第10页(共24页)点评:本题主要考查平行线分线段成比例,掌握平行线分线段所得线段对应成比例是解题的关键.. BC=3,那么BD长是如果,AB⊥AD,BD⊥CD,AD=1,如图,12.在梯形ABCD中,AD∥BC考点:相似三角形的判定与性质.分析:如图,证明∠A=∠BDC,∠ADB=∠DBC,得到△ABD∽△DCB,列出比例式即可解决问题.解答:解:如图,∵AD∥BC,AB⊥AD,BD⊥CD,∴∠A=∠BDC,∠ADB=∠DBC,∴△ABD∽△DCB,∴AD:BD=BD:BC,而AD=1,BC=3,BD=.∴故答案为.点评:该题主要考查了相似三角形的判定及其性质的应用问题;牢固掌握相似三角形的判定及其性质是解题的基础和关键.13.如图,如果某个斜坡AB的长度为10米,且该斜坡最高点A到地面BC的铅垂高度为8米,那么该斜坡的坡比是.考点:解直角三角形的应用-坡度坡角问题.分析:直接利用坡度的定义,坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,进而得出答案.解答:解:∵某个斜坡AB的长度为10米,且该斜坡最高点A到地面BC的铅垂高度为8米,第11页(共24页)),=6(∴水平距离mBC= =则该斜坡的坡比是:..故答案为:此题主要考查了坡度的定义,正确把握定义是解题关键.点评:的值A.那么cos∠AB上的高,如果CD=3,BD=2中,∠14.在Rt△ABCC=90°,CD是斜边.是考点:锐角三角函数的定义.分析:根据题意画出图形,进而利用锐角三角函数关系得出cosA=cos∠BCD进而求出即可.解答:解:如图所示:∵∠ACB=90°,∴∠B+∠A=90°,∵CD⊥AB,∴∠CDA=90°,∴∠B+∠BCD=90°,∴∠BCD=∠A,∵CD=3,BD=2,BC=,∴=.=∴cosA=cos∠ BCD=.故答案为:点评:此题主要考查了锐角三角函数关系,正确记忆锐角三角函数关系是解题关键.15.正六边形的中心角等于 60 度.考点:正多边形和圆.分析:根据正六边形的六条边都相等即可得出结论.解答:解:∵正六边形的六条边都相等,==60∴正六边形的中心角°.故答案为:60.点评:本题考查的是正多边形和圆,熟知正多边形的性质是解答此题的关键.16.在直角坐标平面内,圆心O的坐标是(3,﹣5),如果圆O经过点(0,﹣1),那么圆O与x 轴的位置关系是相切.第12页(共24页)直线与圆的位置关系;坐标与图形性质.考点: x轴的距离与圆的半径的大小进行判断即可.O 的半径,然后根据点O到分析:确定圆),0,﹣13的坐标是(,﹣5),如果圆O经过点(解答:解:∵圆心O =5,∴圆的半径为 5,到x轴的距离为∵O x 轴的位置关系是相切,∴圆O与故答案为:相切.本题考查了直线与圆的位置关系、坐标与图形的性质的知识,解题的关键是求得圆点评:的半径,难度不大.为圆心的两圆外切,如果点B,分别以A、中,∠C=90°,∠A=30°,BC=117.在Rt△ABC﹣.<r<2 的取值范围是C在圆A内,那么圆B的半径长r 0考点:点与圆的位置关系.分析:首先根据题意求得斜边AB和直角边AC的长,要使得点C在圆A内圆A的半径就满足比AC长、比AB短,从而得解.解答:解:∵Rt△ABC中,∠C=90°,∠A=30°,BC=1,=,, AC=∴AB=2BC=2∵以A、B为圆心的两圆外切,∴两圆的半径的和为2,∵点C在圆A内,﹣,2 的取值范围是0<r<A∴圆的半径长r﹣. r0<<2故答案为:点评:考查了点与圆的位置关系,判断点与圆的位置关系,也就是比较点与圆心的距离和半径的大小关系.18.如图,在梯形ABCD中,AD∥BC,BE⊥CD,垂足为点E,连结AE,∠AEB=∠C,且cos∠的长是.,则C=,若AD=1AE考点:梯形;相似三角形的判定与性质;解直角三角形.第13页(共24页)分析:作AF∥DC,交BE于G,BC于F,作FH∥BE,交DC于H,先求得四边形ABCD是平行C=求得CHcos∠,然后根据四边形,四边形EGFH是矩形,从而求得FC=AD=1,GE=FH,由AEB=即可求得AE的长. cos勾股定理求得FH,最后根据∠解答:解:作AF∥DC,交BE于G,BC于F,作FH∥BE,交DC于H,∵AD∥BC,BE⊥CD,∴四边形ABCD是平行四边形,FH⊥DC,AF⊥BE,∴FC=AD=1,∠FHC=90°,∠AG,E=90°,=,cos∠ C=∵ HC=∴, =FH=∴,∵FH⊥DC,AF⊥BE,BE⊥CD,∴四边形EGFH是矩形,GE=FH=,∴,AEB= ∴cos∠C=,∠ AEB=∠C,且cos∵∠=,∠∴cos AEB==.AE==∴故答案为.点评:本题考查了梯形的性质,平行四边形的判定和性质,矩形的判定和性质,勾股定理的应用,解直角三角形等,作出辅助线关键直角三角形、平行四边形、矩形是本题的关键.三、解答题(共7小题,满分78分)、.19 .如图,已知两个不平行的向量+))﹣(;()化简:(123﹣第14页(共24页)﹣.(不要求写作法,但要指出所作图中表示结论的向量))求作.,使得 =(2考点: *平面向量.分析:(1)直接利用平面向量的加减运算法则求解即可求得,注意去括号时的符号变化;(2)利用三角形法则求解即可求得答案.3;﹣)﹣(﹣+)﹣=6﹣ 1解答:解:()2(23=5﹣=,= (2,)如图,.==﹣则即为所求.∴点评:此题考查了平面向量的运算与作法.此题难度不大,注意掌握三角形法则的应用,注意掌握数形结合思想的应用.2)三5(1,﹣(﹣2,﹣2)与BO20.在直角坐标平面内,抛物线y=ax+bx+c经过原点、A 点.)求抛物线的表达式;(1 )写出该抛物线的顶点坐标.(2待定系数法求二次函数解析式;二次函数的性质.:考点、a)三点分别代入函数解析式,求得1,﹣5,﹣A(﹣22)与B(、(分析: 1)把原点O 的数值得出函数解析式即可;b、c )把函数解析式化为顶点式,得出顶点坐标即可.(22)三点,,﹣)与2B(15,﹣(﹣、经过原点y=ax1解:解答:()∵抛物线+bx+cOA2∴,第15页(共24页),解得:23x.y=﹣2x﹣∴抛物线的表达式为23x 2x﹣2)y=﹣(2x+)+=y=﹣2(,.,抛物线的顶点坐标为(﹣)此题考查待定系数法求函数解析式,以及利用配方法求得顶点坐标.点评:、和点BC、PD与⊙O分别交于点A、的半径为21.已知:如图,⊙O5,P为⊙O外一点,PB BPD.D,且PO平分∠(1=)求证:; AB的长.,∠BPO=45°时,求弦(2)当PA=1垂径定理;角平分线的性质;勾股定理.考点:计算题.专题:,OE=OF如图,根据角平分线的性质得、,连结OBOD,OE⊥AB于E,OF⊥CD于F)分析:(1作,则BE=DFODF,得到△OBE≌Rt△根据垂径定理得AE=BE,CF=DF,则可利用“HL”证明Rt ==;AB=CD,所以,根据圆心角、弧、弦的关系得到,所以OE=PE=1+AE则可判断△POE为等腰直角三角形,°,在Rt△POE中,由于∠BPO=45)(2222即可得到BE+BE)=5,解方程求出,然后在Rt△BOE中根据勾股定理得(1+BEOE=1+BE则.AB ,如图,、ODCD于F,连结OB于(1)证明:作OE⊥ABE,OF⊥解答: CD,AB,OF⊥平分∠∵POBPD,OE⊥,,,AE=BECF=DF∴OE=OF 中,△ODF和在Rt△OBERt,,ODF≌Rt△OBE∴Rt△,∴BE=DF AB=CD∴,=∴,页)24页(共16第+=,∴+ =即; BPO=45°,△POE中,∵∠(2)解:在Rt POE为等腰直角三角形,∴△ OE=PE=PA+AE=1+AE,∴,AE=BE而,∴OE=1+BE222,△BOE中,∵OE+BE=OB在Rt222,BE=﹣4(舍去)或BE=3∴(1+BE)+BE=5,解得∴AB=2BE=6.本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也点评:考查了角平分线的性质和勾股定理.的仰角是AC处测得楼顶22.如图,小明想测量河对岸的一幢高楼AB蛾高度,小明在河边的仰角是处测得楼顶A小明从该楼房中距地面20米的D处有幢楼房,60°距C处60米的E AB的高度.BE处置),求楼ABC、E在同一直线上,且、DE均与地面30°(点B、仰角俯角问题.解直角三角形的应用: -考点Rt和△ABCAF=x﹣20米,在Rt的长度为作过点DDF⊥AB于点F,设ABx米,则分析:x的值.CE=BE﹣CB,代入数值求出和△ADF中分别求出BCDF的长度,然后根据,AB于点F⊥解答:解:过点D作DF 为矩形,则四边形BFDE 20米,﹣AB的长度为x米,则AF=x设 ABC中,在Rt△°,∵∠ACB=60 BC=,∴中,Rt在△ADF2417第页(共页)∵∠ADF=30°,DF=(x﹣20),∴∵AB=DF,CE=60米,)﹣=60,﹣20 ∴(x x=30+30.解得:30+30的高度为()米. AB即楼点评:本题考查了解直角三角形的应用,解答本题的关键是根据仰角构造直角三角形,利用三角函数的知识求解,难度一般.23.已知:如图,在△ABC中,点D、E分别在边AB、AC上,且∠ABE=∠ACD,BE、CD交于点G.(1)求证:△AED∽△ABC;(2)如果BE平分∠ABC,求证:DE=CE.考点:相似三角形的判定与性质.专题:证明题.分析:(1)证明B、C、E、D四点共圆,得到∠ADE=∠ACB,即可解决问题.,ME=EF,根据,得到α==αsin,(2)如图,作辅助线,证明EM=EF;由sin 即可解决问题.)证明:∵∠解答:(1ABE=∠ACD,∴B四点共圆,E、D、C、 A,∠ACB,而∠A=∠∴∠ADE= ∽△∴△AEDABC.;,作(2)解:过点EEM⊥ABEF⊥BC ∵BE,平分∠ABC α,∠∴EM=EF;设∠ADE=ACB=α则sin=,,sinα=18第24页(共页)ME=EF,∴,而 DE=CE.∴该题主要考查了相似三角形的判定及其性质的应用问题;应牢固掌握相似三角形的点评:判定及其性质、四点共圆的判定等几何知识点.2,平08,)﹣3)向下平移使之经过点A24.在平面直角坐标系xOy中,将抛物线(y=(x 轴于点B.移后的抛物线交y )求∠OBA的正切值;(1的CB.求△ABC在平移后的抛物线上且位于第二象限,其纵坐标为6,连接CA、2()点C 面积;时,∠OBADA、DB,当∠BDA=)点(3D的平移后抛物线的对称轴上且位于第一象限,连接 D坐标.求点二次函数综合题.:考点2k)代入表达式可得(8,0xy=(﹣3)+k,把分析:(1)设平移后的抛物线表达式为A坐标,即可得出Bx=0代入得y的值,可得出的值,可得出平移后的抛物线表达式,把把的值.tan∠OBA轴交AC的解析式,由与y(2)利用平移后的抛物线可得出点C的坐标,从而得出直线AC =S+S求解即可,于点E,可得出点E的坐标,利用S ABE△ABCBCE△△,由相似DAB∽△轴于点F,利用角的关系可得△NAD与(3)设对称轴交线段与ABN,交x2222的坐标.,即可求出点+m=ADD,可得,由AD比可得=AN?ABFN∥BO,再结合AN=ABAF2)代入表达式解,(A80,把)﹣(1解:解答:()设平移后的抛物线表达式为y=x3+k k=得﹣,2419第页(共页)2,)﹣ y=(x﹣3∴平移后的抛物线表达式为如图,2,得y=﹣)﹣4,把x=0代入得 y=(x﹣3 4∴B(0,﹣), OBA==2,△AOB中,tan∠在RT 2y=(x﹣3)﹣,解得x=﹣4或x(2)把y=6代入=10(舍去),21∴),4,6C(﹣如图,﹣x+4,∴直线AC解析式为y=设AC与y轴交于点E,则点E的坐标为(0,4),|+BE?OA=16+32=48,=BE?|C +S=S∴S横坐标△ABE△BCEABC△(3)如图,设对称轴交线段与AB与N,交x轴于点F,∵FN∥BO,∴∠OBA=∠DNA,第20页(共24页)∵∠BDA=∠OBA∴∠BDA=∠DNA,∴△NAD∽△DAB,2,?AB=,即AD∴=AN∵FN∥BO,=,=∴AN=AB,∴设点D的坐标为(3,m),222222 4)+m=(,由题意得AF+m=AD,即5解得m=5(负值舍去),∴点D(3,5).点评:本题主要考查了二次函数综合题涉及勾股定理,相似三角形,三角形面积等知识,解题的关键是确定平移后的抛物线表达式.25.如图,在矩形ABCD中,AB=8,BC=6,对角线AC、BD交于点O,点E在AB延长线上,联结CE,AF⊥CE,AF分别交线段CE、边BC、对角线BD于点F、G、H(点F不与点C、E重合).(1)当点F是线段CE的中点,求GF的长;(2)设BE=x,OH=y,求y关于x的函数解析式,并写出它的定义域;(3)当△BHG是等腰三角形时,求BE的长.考点:四边形综合题.分析:(1)首先利用勾股定理得出AC的长,证得△ACF≌△AEF,得出BE=2,进一步得出△CBE ∽△ABG,△CGF∽△CBE,利用三角形相似的性质得出CF、CG的长,利用勾股定理求得而答案即可;(2)作BM⊥AF,ON⊥AF,垂足分别为M、N,利用△ONH∽△BMH,△ANO∽△AFC,△BMG∽△CFG,建立BE、OH之间的联系,进一步整理得出y关于x的函数解析式,根据y=0,得出x的定义域即可;(3)分三种情况探讨:①当BH=BG时,②当GH=GB,③当HG=HB,分别探讨得出答案即可.解答:解:(1)∵AB=8,BC=6,∴AC=10,∵AF⊥CE,∴∠AFC=∠AFE=90°,第21页(共24页)∵点F是线段CE的中点,∴CF=EF,在△ACF和△AEF中,∴△ACF≌△AEF,∴AE=AC=10,∴BE=2,∵∠CGF=∠AGB,∠GFC=∠ABG,∴∠FCG=∠GAB,∠CBE=∠ABG,∴△CBE∽△ABG,=,∴,=即BG=,CG=,∴∵∠GCF=∠BCE,∠CFG=∠CBE,∴△CGF∽△CBE,=,∴又CE=2CF,2,=BC?CG∴2CF∴,CF=;∴=GF= (2)如图,作BM⊥AF,ON⊥AF,垂足分别为M、N,∵AF⊥CE,∴ON∥BM∥CE,∴△ONH∽△BMH,△ANO∽△AFC,△BMG∽△CFG,=,,= ∴==,=第22页(共24页)=∴, ABG,又∵△CBE∽△,=,∴BE=x,BG=x∴∴,=.<(0<x则)y= BHG是等腰三角形,(3)当△;y=,解得,则=5+y=6,y=1,由时,△①当BH=BGAHD∽△BHG,x=3 ,不存在;,得出∠AHD=ABH②当GH=GB 不存在.OCB∠HBG=∠HGB=③当HG=HB,得出∠.所以BE=3此题综合考查了矩形的性质,勾股定理,相似三角形的判定与性质,等腰三角形的点评:需要多方位思考解决问题,渗透分性质,以及全等三角形的判定与性质,知识设计的面广,类讨论的思想.2423第页(共页)第24页(共24页)。

相关文档
最新文档