生物技术药物制剂
药剂学:生物技术药物制剂
美国政府技术顾问委员会(OAT) 的定义是:应 用生物或来自生物体的物质制造或改进一种商品的 技术,其中还包括改良有重要经济价值的植物与动 物和利用微生物改良环境的技术。该定义强调了生 物技术的商品属性。
传统生物技术发展阶段
➢古代,人们就会利用微生物发酵法来制醋、做酱、醇酒等,但古代人并不知 道微生物的存在,更不懂得什么是发酵,他们对微生物利用完全靠着多年来 摸索出来的经验。
第19章
生物技术药物制剂
生物技术将是未来经济发展的新动力 第一次技术革命 工业革命 解放人的双手 第二次技术革命 信息技术 扩展人的大脑 第三次技术革命 生物技术 改造生命本身
生物技术的定义
1982年,国际合作与发展组织的定义为:生物 技术是应用自然科学及工程学的原理,依靠微生物、 动物、植物体作为反应器将生物材料进行加工以提 供产品为社会服务的技术。
英国医学专家日前将转基因大肠杆菌 与一种抗癌药相结合,成功杀死了实验鼠 体内的癌细胞。科学家将转基因大肠杆菌 注射到实验鼠的肿瘤内,再给实验鼠注射 一种名叫6-MPDR的抗癌药。这种药无 法单独发挥作用,但是一种由转基因大肠 杆菌分泌的酶能将此药物“激活”,形成 一种有效的毒素,将其周围的癌细胞杀死, 而不伤害其它组织器官。
畜牧业中的应用
➢ 动物疫苗、生长激素等
➢ 例:从转基因羊的羊奶 中提取出治疗心脏病的 药物tPA
生物技术药物制剂
生物技术药物制剂生物技术药物制剂是利用生物技术方法生产的药物,具有高效、高准确性、低毒副作用等特点。
这些药物种类繁多,主要包括蛋白质药物、生物工程制剂和核酸药物等。
随着生物技术的不断发展和进步,生物技术药物制剂已成为国际上最具发展潜力和前景的新型药物。
一、蛋白质药物蛋白质是一种大分子化合物,由氨基酸组成,且具有复杂的结构和功能。
蛋白质药物是利用生物技术生产的药物,广泛应用于抗肿瘤、治疗糖尿病、治疗类风湿性关节炎等领域。
1.1 重组蛋白重组蛋白是一种人工合成的蛋白质,可通过重组DNA技术将其生产出来,具有较高的活性和稳定性。
市场上最常见的重组蛋白药物包括利妥昔单抗、重组人胰岛素、重组干扰素等,具有疗效确切、作用迅速、不易反复等特点。
1.2 抗体药物抗体药物是一种利用生物技术创造出的抗体,可用于治疗多种疾病,包括癌症、肿瘤和自身免疫性疾病等。
目前市场上可供选择的抗体药物有多达数十种,但最为知名的恐怕是赫赛汀,它是人体细胞系生产的单克隆抗体,可用于治疗癌症等疾病。
1.3 生长激素生长激素是一种由垂体腺分泌的蛋白质激素,可用于治疗多种生长障碍和缺陷。
利用生物技术生产的人类生长激素(HGH)、瑞格利诺(RHGH)等,具有较高的生物活性和安全性,被广泛应用于医疗领域。
二、生物工程制剂生物工程制剂是指通过利用现代生物工程技术生产的一类药物,包括:蛋白质药物类、核酸药物类、免疫调节剂、疫苗等。
现已广泛应用于肿瘤治疗、细胞治疗、创伤修复等领域,具有优异的生物活性和安全性。
2.1 基因工程药物基因工程药物是利用基因重组技术生产的药物,主要包括生长激素、胰岛素、干扰素和重组细胞因子等,具有较高的活性和稳定性。
其中,最典型的基因工程药物为重组人胰岛素,这种药物由基因工程技术合成,不但可以提高胰岛素的生物效价,而且能够更好地控制血糖,减少并发症的发生。
2.2 细胞治疗药物细胞治疗药物是利用细胞工程技术研制的药物,主要包括干细胞疗法、细胞培养物及重组细胞等。
第19章生物技术药物制剂-PowerPointPres
第十九章 生物技术药物制剂
主讲教师:杜 艳 山西医科大学药剂教研室
第一节 概 述
一、基本概念
生物技术是应用生物体或其组成部 分,在最适条件下,生产有价值的 产物或进行有益过程的技术。
现代生物技术是应用基因工程、 细胞工程、发酵工程和酶工程, 以生物体为依托发展各种生物 产业的技术。
二硫键断裂及交换:加热可引起二硫键的断裂或 交换,而二硫键的破坏可严重影响蛋白质的生物 活性。
2、蛋白质中非共价键的破坏可导致蛋 白质变性。
在某些物理、化学的条件下,蛋白质 分子的高级结构受到破坏(但一级结构未 被破坏),结果引起蛋白质生物活性的损 失和理化性能的改变,这就是蛋白质的变 性。
蛋白质变性因素:温度、pH值、盐类、 有机溶剂、表面活性剂、机械应力、超声 波、光照等。
制剂中药物活性测定 酶联免疫测定法、体外药效学、体内药 效学
药物体外释放速率的测定和影响药物释 放行为的因素 制剂稳定性研究 体内药动学研究 刺激性及生物相容性研究
树立质量法制观念、提高全员质量意 识。20.12.1820.12.18Friday, December 18, 2020 人生得意须尽欢,莫使金樽空对月。00:15:4700:15:4700:1512/18/2020 12:15:47 AM 安全象只弓,不拉它就松,要想保安 全,常 把弓弦 绷。20.12.1800:15:4700:15Dec-2018-Dec-20 加强交通建设管理,确保工程建设质 量。00:15:4700:15:4700:15Fri day, December 18, 2020 安全在于心细,事故出在麻痹。20.12.1820.12.1800:15:4700:15:47December 18, 2020 踏实肯干,努力奋斗。2020年12月18 日上午1 2时15 分20.12. 1820.1 2.18 追求至善凭技术开拓市场,凭管理增 创效益 ,凭服 务树立 形象。2020年12月18日星期 五上午12时15分47秒00:15:4720.12.18 严格把控质量关,让生产更加有保障 。2020年12月 上午12时15分20.12.1800:15D ecember 18, 2020 作业标准记得牢,驾轻就熟除烦恼。2020年12月18日星期 五12时15分47秒00:15:4718 December 2020 好的事情马上就会到来,一切都是最 好的安 排。上 午12时15分47秒上午12时15分00:15:4720.12.18 一马当先,全员举绩,梅开二度,业 绩保底 。20.12.1820.12.1800:1500:15:4700:15:47Dec-20 牢记安全之责,善谋安全之策,力务 安全之 实。2020年12月18日 星期五12时15分47秒 Friday, December 18, 2020 相信相信得力量。20.12.182020年12月 18日星 期五12时15分 47秒20.12.18
生物技术药物制剂
一、蛋白质类药物的一般处方组成 目前临床上应用的蛋白质类药物注 射剂,一类为溶液型注射剂, 射剂,一类为溶液型注射剂,另一类是 冻干粉注射剂。 冻干粉注射剂。
二 、 液体剂型中蛋白质类药物 的稳定化
液体剂型中蛋白质类药物的稳定化 方法分为两类 ①改造其结构 ②加入适宜辅料
蛋白质类药物的稳定剂
1、缓冲液 因为蛋白质的物理化学稳定性与pH值 因为蛋白质的物理化学稳定性与pH值 pH 有关, 通常蛋白质的稳定pH 值范围很窄, pH值范围很窄 有关 , 通常蛋白质的稳定 pH 值范围很窄 , 应采用适当的缓冲系统, 应采用适当的缓冲系统 , 以提高蛋白质 在溶液中的稳定性。 在溶液中的稳定性。
§19-3 19-
蛋白质类药物新型给药系统
蛋白质、多肽药物一般注射给药, 蛋白质、多肽药物一般注射给药,基 本剂型是注射液和冻干粉针, 本剂型是注射液和冻干粉针,但常需频繁 注射。 注射。 因此可以自行给药的制剂( 因此可以自行给药的制剂(如非注射 给药)一直是研究热点, 给药)一直是研究热点,同时注射给药系 如缓释控释)也在不断创新, 统(如缓释控释)也在不断创新,以便给 药更为方便、有效、持久。 药更为方便、有效、持久。
(一)鼻腔给药系统
鼻腔给药的方式 有滴鼻给药法和喷雾 鼻腔 给药的方式有滴鼻给药法和喷雾 给药的方式 给药法, 给药法,采用后一种方法可获得较高的生 物利用度。 物利用度。 鼻腔给药存在的问题有刺激性、 鼻腔给药存在的问题有刺激性、对纤毛 有刺激性 的损害或妨碍、 的损害或妨碍、大分子药物吸收仍较少或 吸收不规律等, 吸收不规律等,尤其是长期用药还有待于 评价;鼻腔中的酶不能完全忽视。 评价;鼻腔中的酶不能完全忽视。
2、蛋白质的不稳定性
②凝聚与沉淀 ③表面吸附 蛋白质易吸附于相界面, 蛋白质易吸附于相界面,多因蛋白质 疏水性和静电引起。吸附常引起失活。 疏水性和静电引起。吸附常引起失活。
《生物技术药物制剂》课件
结论
1 生物技术药物制剂的重要性
2 展望未来
生物技术药物制剂在疾病治疗和健康维护 方面扮演重要角色。
生物技术药物制剂将继续发展,为人类健 康作出更大贡献。
《生物技术药物制剂》 PPT课件
生物技术药物制剂是指利用生物技术手段生产的药物。本课件介绍生物技术 药物制剂的定义、分类、研发流程、常见制剂、应用及未来发展趋势。
什么是生物技术药物制剂
生物技术药物制剂是利用生物技术手段生产的药物,具有高度纯度、高效、高特异性、低免疫原性等特 点。
生物技术药物的分类
生物技术药物制剂的应用
1 临床应用
生物技术药物在肿瘤治疗、免疫调节等方面有广泛应用。
2 经济效益
生物技术药物的销售额逐年增长,为经济发展做出重要贡献。
未来发展趋势
1 制剂质量的提高
提升产品纯度和稳定性,减少副作用。
2 生产成本的下降
发展更有效的生产工艺,降低制剂的生产成本。
3 新技术的应用
如基因编辑技术、细胞治疗技术等的应用。
2. 表达与提取
3. 结构与功能分析
4. 质量控制与认证
常见的生物技术药物制剂
重组人胰岛素
用基因工程生产的胰岛素,用于治疗糖尿病。
重组干扰素
用基因工程生产的干扰素,用于治疗肿瘤和 病毒感染等。
重组人造血生长因子
用基因工程生产的造血生长因子,用于治疗 血液系统疾病。
重组人白介素-2
用基因工程生产的白介素-2,用于增强免疫 功能。
按照生产方法分类
包括重组DNA技术、蛋白质工程技术、细胞 工程技术等。
按照作用机理分类
包括抗体药物、基因工程药物、核酸药物、 细胞治疗药物等。
生物技术药物制剂的研发
生物技术药物制剂3篇
生物技术药物制剂第一篇:生物技术药物制剂的定义及历史生物技术药物制剂是指通过生物技术手段生产的药物制剂。
生物技术药物制剂包括蛋白质药物、核酸药物、细胞疗法、基因疗法等。
与传统的化学合成药物相比,生物技术药物制剂具有精准靶向、高效、安全等特点,已成为当今药物研究和开发的重点和热点领域。
生物技术药物制剂的发展历史可以追溯到1970年代。
1975年,美国一家生物技术公司成功地利用基因重组技术生产了第一种蛋白质药物——人胰岛素。
此后,生物技术药物制剂研究日益深入,并相继出现了一批著名药物,如年销售额过千亿美元的阿尔茨海默病药物艾伦色胺(Aricept)、乐众抑制剂赛诺菲(Enbrel),用于治疗乳腺癌的赫赛汀(Herceptin)等。
如今,生物技术药物制剂已成为世界范围内医药行业的一大风口。
为了实现生物技术药物制剂从实验室到市场、从医院到家庭的全过程管理,不断提高医药行业的标准化、规范化水平,各国纷纷制定相关法规和标准,如美国FDA、欧盟EMA、中国FDA等均颁布了特殊管理办法、制药标准等相关规章制度,全面确保生物技术药物制剂的质量和安全性。
虽然生物技术药物制剂已经取得了巨大的进展,但与传统药物相比,其研发投入成本较高,生产技术较复杂,制造过程中存在较大风险和不确定性等问题。
因此,在今后的研究和开发中,需要不断推进技术创新和优化管理等方面的探索与实践,不断提高药物制剂的效能和质量水平,为临床医学的发展和人类健康的保障不断做出更大的贡献。
第二篇:生物技术药物制剂的种类及应用领域生物技术药物制剂主要包括蛋白质药物、核酸药物、细胞疗法和基因疗法等。
其中,蛋白质药物是最具代表性的一类产品。
蛋白质药物是指人体内自然产生的一类蛋白质或改造后的蛋白质,通常是通过基因重组技术从真核细胞中表达并纯化得到的。
蛋白质药物具有结构相对复杂、分子量相对较大、具有特定的生物活性、具有高精准的靶向性等优点。
目前,临床上已经应用的蛋白质药物有多达百余种,在各种疾病的治疗中均发挥了重要的作用。
生物技术药物制剂
第十九章生物技术药物制剂一、配伍选择题【B型题】A.调节pH值 B.抑制蛋白质聚集 C.保护剂 D.乳化剂 E.增加溶解度以下物质在蛋白质类制剂中的作用是:1.聚山梨酯802.葡萄糖3.枸橼酸钠一枸橼酸缓冲系统4.精氨酸5.HAS二、多项选择题【X型题】1.蛋白质的理化性质不同于氨基酸的是下列哪一项A.两性电离、等电点 B.呈色反应 C.成盐反应 D.胶体性 E.变性2.蛋白质氧化的主要部位是A.组氨酸(His)链 B.蛋氨酸(Met)链 C.胱氨酸(Cys)链D.色氨酸(卸)链 E.酩氨酸(Tyr)链3.变性蛋白质和天然蛋白质的区别在于A.溶解度降低 B.蛋白质的黏度增加 C.结晶性破坏D.生物学活性丧失 E.易被蛋白酶分解4.下列关于糖类蛋白质保护剂的叙述正确的是A.葡聚糖不能单独作为蛋白质的保护剂B.双糖的坍塌温度比单糖高C.随着浓度的增加,蔗糖在冷冻干燥过程中保护蛋白质的能力增强D.单糖和双糖可混合配制成保护剂E.糖类对蛋白质的稳定作用与其浓度无关5.生物技术药物主要包括A.重组基因技术、转基因技术研制的药物B.细胞或原生质体融合技术生产的药物C.固定化酶或固定化细胞技术制备的药物D.通过组织和细胞培养生产的疫苗E.利用现代发酵或反应工程生产生物来源的药物6.下列关于蛋白质变性的叙述正确的是A.变性蛋白质只有空间构象的破坏B.蛋白质的变性也可以认为是从肽链的折叠状态变为伸展状态C.变性是不可逆变化D.蛋白质变性本质是次级键的破坏E.蛋白质的变性与外界条件关系不大三、名词解释生物技术药物蛋白质的变性作用四、填空1.引起蛋白质变性的原因可分为物理因素和化学因素两类。
物理因素可以是加热、加压、脱水、搅拌、振荡、紫外线照射和超声波作用等;化学因素有、、尿素、重金属盐和十二烷基磺酸钠等。
2.蛋白质所形成的亲水胶体具有两种稳定因素,即和。
除掉这两个稳定因素,如采取和调节溶液pH至等电点等方法,蛋白质便容易凝集析出。
生物技术药物制剂知识点梳理.
第十五章生物技术药物制剂★一、蛋白质类药物稳定化:
1、溶液型蛋白质类药物稳定化:
稳定剂:阻止聚集、增加溶解度、减少吸附
(1)采用最适缓冲体系;
(2)使用非离子型表面活性剂;
(3)加入糖和多元醇;
(4)盐类;
(5)聚乙二醇类;
(6)加入大分子化合物;
(7)氨基酸类;
(8)金属离子。
2、固体状态蛋白质类药物稳定化:(冷冻干燥工艺)
(1)冻干过程中蛋白质的水合膜除去后,可能导致失去活性。
恰当的辅料作为水的替代物结合在蛋白质上使之保持稳定。
(2)处方中配伍的盐和缓冲体系由于温度的变化,pH值可以发生改变也可能使蛋白质失活。
(3)常加入冻干保护剂(填充剂)使干燥后形成疏松的块状物,填充剂与稳定剂同时考虑,如甘露醇、山梨醇、葡萄糖等。
(4)严格控制产品水分含量。
(5)很小剂量的蛋白质药物,注意滤过时的吸附损失。
可用人血清白蛋白作为保护剂。
★二、蛋白质类药物新型给药系统——微球给药系统:
对蛋白质进行化学修饰:常用PEG化。
PEG化技术是将活化的PEG分子连接到生物技术药物分子上,以改善药物的药动学/药效学性质,使其达到最大临床疗效。
《生物技术药物制剂》课件
质量控制包括对原材料、生 产过程和最终产品的检测和 监控,以确保产品质量的一
致性和稳定性。
质量控制的关键在于建立完善 的质量控制体系,并严格执行 相关标准和规范,以保证产品
的安全性和有效性。
03 生物技术药物制剂的应用
肿瘤治疗
1.A 肿瘤是生物技术药物制剂的重要应用领域之一 ,包括单克隆抗体、细胞因子、反义寡核苷酸 等多种制剂在肿瘤治疗中发挥重要作用。
免疫疗法
免疫疗法已成为肿瘤治疗的重要手 段,未来将会有更多免疫调节剂和 检查点抑制剂等新药问世。
制剂创新
01
02
03
纳米药物制剂
纳米药物制剂具有提高药 物疗效、降低副作用等优 点,是制剂创新的重要方 向。
靶向制剂
通过特定技术使药物在特 定部位富集,提高药物疗 效,降低全身毒性。
智能制剂
智能制剂可根据疾病状态 或生理变化释放药物,实 现药物的精准投递。
耐药性ቤተ መጻሕፍቲ ባይዱ题
长期使用生物技术药物制剂可能导致病原体产生耐药性,降低药物 的有效性。
剂量控制
生物技术药物制剂的剂量控制要求非常严格,过高的剂量可能导致 不良反应,而过低的剂量则可能影响疗效。
生产成本问题
高成本
生物技术药物制剂的生产成本通常较高,导致药品价格昂贵。
生产效率
生物技术药物制剂的生产效率相对较低,增加了生产成本。
02
生物技术药物制剂的制备过程涉 及基因工程技术、细胞工程技术 、酶工程技术等多个领域。
生物技术药物制剂的特点
01
高效性
生物技术药物制剂通常具有更高的疗效和更低的副作用 ,能够更有效地治疗疾病。
02
特异性
生物技术药物制剂通常具有更强的靶向性和特异性,能 够更准确地针对病变组织或细胞。
生物技术药物制剂
生物技术药物制剂
第1页
本章学习要求:
掌握生物技术概念和生物技术药品特点和理化性质。 掌握蛋白质类药品处方与工艺。 熟悉掌握蛋白质类药品新型给药系统和评价方法。
生物技术药物制剂
第2页
主要内容
第一节 概 述
蛋白质类药品结构特点与理化性质
蛋白质类药品评价方法
第二节 多肽、蛋白质类药品注射给药 第三节 多肽、蛋白质类药品非注射制剂
生物技术药物制剂
第35页
1.蛋白质药品因为共价键破坏引发不稳定性
(2)蛋白质氧化
蛋白质中含有芳香侧链氨基酸能够在一些氧化剂作 用下氧化。
常见氧化剂有分子氧、过氧化氢、过甲酸、 氧自由 基等。
生物技术药物制剂
第36页
1.蛋白质药品因为共价键破坏引发不稳定性
(3)外消旋作用(racemization)
第二代生物技术药品是应用蛋白质工程技术制造自 然界不存在新重组药品。
生物技术药物制剂
第8页
生物技术药品发展
到 1998 年为止 , 全球已经有 65 个生物技术药品问 市,
另有 2600 多个生物技术药品正处于临床前研究阶 段,
700多个生物技术药品正进行临床评价 ,
其中 200 各种已进入四期临床或最终审批阶段 ,
第四节 基因传递系统
生物技术药物制剂
第3页
第一节 概 述
生物技术或称生物工程(biotechnology),是应用生物 体(包含微生物, 动物细胞, 植物细胞)或其组成个 别(细胞器和酶), 在最适条件下, 生产有价值产物 或进行有益过程技术。
当代生物技术主要包含基因工程, 细胞工程与酶工程。 另外还有发酵工程(微生物工程)与生化工程。
15第十五讲生物技术药物制剂
1
第一节 概述 第二节蛋白质、多肽类药物制剂的处方与工艺 第三节蛋白质、多肽类药物新型给药系统 第四节蛋白质、多肽类药物制剂的评价
2
第一节 概述 一、生物技术的基本概念 二、生物技术药物的研究概况 三、生物技术药物制剂的特点
3
第一节 概述 一、生物技术的基本概念 生物技术或称生物工程(biotechnology) 是应用生物体(包括微生物、动、植物细胞)或
40
(五)经皮给药系统 皮肤的穿透性低是多肽和蛋白质类药物透皮吸收
的主要障碍,但皮肤的水解酶活性相当低,这是 有利条件。 离子导入技术的应用使大分子量、荷电和亲水性 的多肽和蛋白质类药物能透过皮肤角质层。如胰 岛素等的透皮吸收取得了一定的研究进展。 离子导入技术:指电荷或中性分子在电场作用下 迁移进入皮肤的过程。
蛋白质用碱水解时往往会使某些氨基酸产生消 旋作用。
影响氨基酸消旋作用的因素有温度、pH值、离 子强度和金属离子螯合作用。
14
④二硫键断裂及其交换 二硫键(-S-S)把同一肽链(肽链内)或不同肽
链(肽链间)的不同部分连接起来,对稳定蛋白 质的构象起重要作用。(改变三级结构) 在某些蛋白质中,二硫键一旦破坏,蛋白质的生 物活性即丧失,蛋白分子中二硫键数目愈多,则 结构稳定性和抗拒外界因素的能力也愈强。
与不便,研制口服胰岛素给药制剂,十分必
要。
37
胰岛素口服制剂
微乳制剂 纳米囊(纳米粒) 肠溶胶囊 微球制剂 脂质体
38
(三)直肠给药系统 直肠内水解酶活性比胃肠道低,且pH接近中
性,所以药物破坏较少,且药物吸收后基本上 可避免肝脏的首过作用,直接进入全身血液循 环。
生物技术药物制剂现状与发展前景
生物技术药物制剂现状与发展前景摘要:随着现代生物技术的迅速发展,生物技术在医药领域有了广泛应用及生物技术药物制剂的现状,进展及展望。
生物制药专业是新兴的专业。
生物制药是以基因工程为基础的现代学科,利用现代生物技术对DNA进行切割、连接、改造,生产出传统制药技术难以获得的生物1药品。
文中详细论述了生物制药专业介绍,生物制药行业的现状、发展方向、发展前景,指出生物制药行业是目前生物技术发展最活跃,进展最快的产业之一,21世纪是生物制药行业飞速发展时代。
关键词:生物技术制药现状展望治疗疾病一、生物技术药物制剂基本概念和特点(一)生物技术药物制剂的概念生物技术又称生物工程,是利用生物有机体(动物、植物、微生物)或其组成部分(包括器官、组织、细胞或细胞器)发展各种生物新产品或新工艺的一种技术体系。
生物技术包括基因工程、细胞工程、发酵工程与酶工程。
以基因工程为核心以及具备基因工程和细胞工程内涵的发酵工程和酶工程才被称为现代生物技术。
生物技术药物是指采用现代生物技术,借助某些微生物、植物或动物来生产所需医学|教育网搜集整理的药品医.学教育网搜集整理。
运用DNA重组技术和克隆技术生产的蛋白质、多肽、酶、激素、疫苗、单克隆抗体和细胞生长因子等药物。
(二)生物药物的特性1、药理学特性:(1)、治疗的针对性强细胞色素c用于治疗组织缺氧所引起的一系列疾病。
(2)、药理活性高注射用的纯ATP可以直接供给机体能量。
(3)、毒副作用小、营养价值高蛋白质、核酸、糖类、脂类等生物药物本身就直接取自体内。
(4)、生理副作用时有发生生物体之间的种属差异或同种生物体之间的个体差异都很大,所以用药时会发生免疫反应和过敏反应。
2、生产、制备中的特殊性:(1)、原料中的有效物质含量低激素、酶在体内含量极低。
(2)、稳定性差生物药物的分子结构中具有特定的活性部位,该部位有严格的空间结构,一旦结构破坏,生物活性也就随着消失。
酶,很多理化因素使其失活。
第十七章 生物技术药物制剂
第十七章生物技术药物制剂第一节绪论一、生物技术药物生物药物成为重要治疗手段原因:1、与小分子药物相比,生物药物的药效及特异性更强,且副作用小2、小分子药物研发进入了瓶颈期,候选药物越来越少3、对于某些疾病,现有的小分子无法达到最佳治疗效果,生物药物提供了一线生机生物药物特点:分子量大,结构复杂二、生物药物的开发近况及挑战1、常用注射方式给药,有的甚至一日多次注射,限制患者顺应性,提高成本2、大多数生物药物的物理和化学性质不稳定3、在研发时需要不同分析手段来表征药物特性4、生物药物的递送技术与小分子药物不同第二节蛋白多肽类药物制剂一、蛋白多肽类药物生产1、利用哺乳动物细胞及细菌或酵母细胞进行制备2、过程为:首先将目标蛋白基因人工插入细胞,然后细胞在发酵罐中生长,并在特定时期酶解,之后将目标蛋白用离心或过滤的方法分离,最后进行纯化3、宿主细胞是从经济和技术角度考虑,蛋白质产率是重要指标4、大部分采用固相合成技术制备,一部分采用通过基因重组方式二、蛋白多肽类药物的结构与理化性质1、蛋白质盐析的原因:1)盐类较蛋白质更易被水化2)盐类对水表面张力的影响2、蛋白质构象:1)一级结构:氨基酸残基按特定顺序通过肽键形成的长链2)二级结构:氨基酸长链通过规律性重复出现的局部结构折叠形成3)三级结构:氢键或二硫键进一步相互交联形成的链折叠结构,控制蛋白质基本功能的结构4)四级结构:有时候蛋白质形成的功能复合物三、蛋白多肽类药物的稳定性1、蛋白多肽类药物的稳定性与结构完整性密切相关2、其稳定性还取决于其空间构象的稳定性3、有时蛋白质发生部分化学降解还会有活性,是因为发生部位不是该蛋白的活性部位(一)化学不稳定性:主要为一级结构的变化1、脱酰胺反应:谷氨酰胺与天冬酰胺侧链上的酰胺基被水解2、氧化反应:甲硫氨酸、半胖氨酸等易被氧化3、二硫键断裂或交换4、其他:水解、外消旋、异构化(二)物理不稳定性:一级结构不变,二级及以上结构发生改变1、变性/去折叠2、聚集3、表面/界面吸附4、沉淀(三)影响蛋白多肽类药物分子稳定性的因素影响因素对于稳定性导致现象表面/界面作用物理稳定性聚集、去折叠、吸附盐类物理稳定性聚集、去折叠、吸附螯合剂物理稳定性聚集、去折叠温度物理、化学稳定性聚集、水解金属离子物理、化学稳定性聚集、氧化pH 物理、化学稳定性聚集、水解、脱酰胺基、消旋等摇晃/剪切力物理稳定性聚集、去折叠、吸附非水溶剂物理稳定性聚集、去折叠、吸附蛋白质浓度物理稳定性聚集蛋白质纯度物理、化学稳定性(四)蛋白多肽类药物稳定性分析放方法四、蛋白多肽类药物制剂及其稳定化方法(一)蛋白多肽类药物制剂的稳定方法1、氨基酸替换2、添加稳定剂3、蛋白质干燥1)填充剂的作用:为干燥后的产品提供机械支撑、改善制剂外观、提高制剂溶出度、防止产品在冷冻干燥过程中发生塌陷及爆裂(二)蛋白质和多肽类药物制剂开发过程简介1、开发过程属于处方前研究2、过程:首选,建立一系列方法表征蛋白质和多肽药物分子的物理化学性质,而后在不同外界因素下对蛋白质及多肽药物分子进行强制降解试验,确定其主要降解产物,最后研究辅料与蛋白质和多肽药物分子的相容性五、蛋白质和多肽类药物的递送(一)蛋白多肽类药物的注射型新型制剂01、化学修饰:PEG化、糖基化、乙酰化、蛋白融合2、贮库给药系统:微米和纳米颗粒给药系统、原位贮库给药系统、植入剂给药系统3、蛋白质多肽结晶或沉淀(二)、蛋白多肽类药物的非注射型新型制剂1、口服给药2、肺部给药3、经鼻给药4、经皮给药第三节寡核苷酸及基因类药物制剂一、寡核苷酸和基因类药物的结构和性质二、寡核苷酸及基因类药物的递送载体设计(一)非病毒载体的构建和表征(二)非病毒载体的体内递送过程(三)细胞转染和基因药物释放第四节疫苗制剂一、疫苗的分类:减毒性活性病原体疫苗、失活疫苗、亚单位疫苗二、疫苗的递送:肌内或皮下注射第五节细胞治疗和组织工程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新疆医科大学教案首页第十八章生物技术药物制剂第一节概述一、生物技术的基本概念1、生物技术或称生物工程(biotechnology),是应用生物体(包括微生物、动物细胞,植物细胞)或其组成部分(细胞器和酶),在最适条件下,生产有价值的产物或进行有益过程的技术。
2、现代生物技术主要包括基因工程、细胞工程与酶工程、发酵工程(微生物工程)与生化工程。
二、生物技术药物的结构特点与理化性质(一)蛋白质的结构特点蛋白质的组成和一般结构(一、二、三、四级结构)(二)蛋白质的理化性质1.蛋白质的一般理化性质:旋光性、紫外吸收、蛋白质两性本质与电学性质(1)旋光性:蛋白质分子总体旋光性由构成氨基酸各个旋光度的总和决定,通常是右旋,它由螺旋结构引起。
蛋白质变性,螺旋结构松开,则其左旋性增大。
(2)紫外吸收:大部分蛋白质均含有带苯核的苯丙氨酸、酪氨酸与色氨酸,苯核在紫外280nm有最大吸收。
氨基酸在紫外230nm显示强吸收。
(3)蛋白质两性本质与电学性质:蛋白质除了肽链N-末端有自由的氨基和C-末端有自由的羧基外,在氨基酸的侧链上还有很多解离基团,如赖氨酸的 -氨基,谷氨酸的γ羧基等。
这些基团在一定 pH条件下都能发生解离而带电。
因此蛋白质是两性电解质,在不同 pH条件下蛋白质会成为阳离子、阴离子或二性离子。
2.蛋白质的不稳定性(1)由于共价键引起的不稳定性:水解、氧化和消旋化,此外还有蛋白质的特有反应,即二硫键的断裂与交换(2)由非共价键引起的不稳定性:聚集(aggregation)、宏观沉淀、表面吸附与蛋白质变性(三)蛋白质类药物的评价方法:多种分析方法:液相色谱法、光谱法、电泳、生物活性测定与免疫测定第二节蛋白质类药物制剂的处方与工艺(注射剂型)一、蛋白质类药物的一般处方组成:一类为溶液型注射剂,另一类是冻干粉注射剂二、液体剂型中蛋白质类药物的稳定化:①改造其结构;②加入适宜辅料蛋白类药物的稳定剂:缓冲液、表面活性剂、糖和多元醇、盐类、聚乙二醇类、大分子化合物、组氨酸、甘氨酸、谷氨酸和赖氨酸的盐酸盐等、金属离子1.缓冲液因为蛋白质的物理化学稳定性与pH值有关,通常蛋白质的稳定pH值范围很窄,应采用适当的缓冲系统,以提高蛋白质在溶液中的稳定性。
例如红细胞生成素采用枸橼酸钠-枸橼酸缓冲剂,而α-N3干扰素则用磷酸盐缓冲系统,人生长激素在5mmol/L的磷酸盐缓冲液可减少聚集。
缓冲盐类除了影响蛋白质的稳定性外,其浓度对蛋白质的溶解度与聚集均有很大影响。
组织溶纤酶原激活素在最稳定的pH条件下,药物的溶解度不足以产生治疗效果,因此加入带正电荷的精氨酸以增加蛋白质在所需pH值下的溶解度。
2.表面活性剂由于离子型表面活性剂会引起蛋白质的变性,所以在蛋白质药物,如α-2b干扰素、G-CSF、组织溶纤酶原激活素等制剂中均加入少量非离子表面活性剂,如吐温80来抑制蛋白质的聚集,其机理可能是因为表面活性剂倾向于排列在气—液界面上,从而使蛋白质离开界面来抑制蛋白质的变性。
3.糖和多元醇糖和多元醇属于非特异性蛋白质稳定剂。
蔗糖、海藻糖、甘油、甘露醇、山梨醇(浓度1%~10%)最常用。
糖和多元醇的稳定作用与其浓度密切相关,不同糖和多元醇的稳定程度取决于蛋白质的种类。
还原糖与氨基酸有相互作用,因此避免使用。
4.盐类盐可以起到稳定蛋白质的作用,有时也可以破坏蛋白质的稳定性,这主要取决于盐的种类、浓度、离子相互作用的性质及蛋白质的电荷。
低浓度的盐通过非特异性静电作用提高蛋白质的稳定性。
如SO42-、HPO42-、CHCOO-、(CH3)N+、NH4+、K+、Na+等能增加溶液的离子强度,提高疏水作用,降低疏水基团的溶解度,使蛋白质发生盐析。
此外它们使水分子聚集在蛋白质周围被优先水化,所有这些都使蛋白质更加紧密稳定。
经常使用的盐NaCl在稳定蛋白质中起关键作用,实验表明它能提高牛血清白蛋白(BSA)的变性温度和热焓。
5.聚乙二醇类高浓度的聚乙二醇类常作为蛋白质的低温保护剂和沉淀结晶剂。
研究表明不同分子量的PEG作用不同,如PEG300浓度0.5%或2%可抑制重组人角化细胞生长因子(rhKGF)的聚集;PEG200、400、600和1000可稳定BSA和溶菌酶。
6.大分子化合物研究表明很多大分子化合物具有稳定蛋白质的作用。
其机制可能是通过大分子的表面活性、蛋白质-蛋白质相互作用的空间隐蔽以及提高粘度来限制蛋白质运动或通过优先吸附于大分子以起到稳定作用,人血清白蛋白(HAS)已在许多蛋白质类生物技术来源的药物制剂中作稳定剂。
近年来也有采用环糊精制成包合物来增加蛋白质药物的溶解度,例如用2-羟丙基- -环糊精是较有前途的稳定剂,其本身又是增溶剂可静脉注射,可用来抑制hGH的界面变性,抑制rhKGF的聚集,稳定白介素-2和牛胰岛素等。
7.组氨酸、甘氨酸、谷氨酸和赖氨酸的盐酸盐等可不同程度地抑制45℃ 10 mM磷酸盐缓冲液中rhKGF的聚集。
8.金属离子一些金属离子,如钙、镁、锌与蛋白质结合,使整个蛋白质结构更加紧密、结实、稳定。
不同金属离子的稳定作用视离子的种类、浓度不同而不同,应通过稳定性实验选择金属离子的种类和浓度。
三、固体状态蛋白质药物的稳定性与工艺(一)冷冻干燥蛋白质药物制剂:在蛋白质类药物冻干过程中常加入某些冻干保护剂来改善产品的外观和稳定性,如甘露醇、山梨醇、蔗糖、葡萄糖、右旋糖酐等。
(二)喷雾干燥蛋白质药物制剂:操作过程中损失大(特别是小规模生产),水分含量高。
第三节蛋白质类药物新型给药系统一、新型注射(植入)给药系统(一)控释微球制剂:复乳液中干燥法、低温喷雾提取法、喷雾干燥法、超临界萃取法1.复乳液中干燥法将药物与保护剂(多为水溶性高分子聚合物)溶于水作为水相,将聚酯(如PLA、PLGA等)类高分子材料溶于二氯甲烷作为油相,两者在一定温度下(低于40℃)高速搅拌得W/O型初乳,冰浴冷却至10℃以下,倒至一定浓度的PVA水溶液中,经高速搅拌得W/O/W型复乳,一定温度下搅拌蒸去有机溶剂固化微球(或减压去有机溶剂),离心水洗,真空干燥即得。
该方法是制备多肽、蛋白质等生物大分子药物微球的常用方法,其特点为药物包封率较高,药物活性损失小,设备和工艺简单,但首日突释明显,较难放大生产,目前用此法研究制备的药物有γ干扰素、白细胞介素、亮丙瑞林、人生长激素、环孢素以及促红细胞生长素(EPO)等。
2.低温喷雾提取法将生物大分子药物与保护剂的均匀粉末加至生物可降解性聚合物的有机溶剂(如二氯甲烷)中混合形成混悬液,将此混悬液经喷头雾化后喷入冰冻的乙醇溶液(该溶液可与上述溶液混溶,但聚合物不溶于此溶液),在低温(-70℃)状态下,聚合物载体中的有机溶剂在乙醇中不断扩散完全,分离微球,低温干燥除去乙醇得粉末状微球,该方法的特点:包封率高,微球粒径集中,工艺稳定,可实现产业化,但其活性损失较复乳液中干燥法大。
3.喷雾干燥法将生物大分子药物及其稳定剂的混合粉末(或水溶液)与溶有高分子聚合物的有机溶液混合形成混悬液(或乳浊液),将此混悬液(或乳浊液)经喷嘴雾化干燥制得微球。
为了减少生物活性损失,文献报道采用双喷嘴喷雾干燥装置进行生物大分子药物微球的制备,可明显增加微球的收率,同时可减少多肽、蛋白质类药物的活性损失。
该装置具有两个平行喷嘴,其中一个喷嘴喷出药物和聚合物的混悬液(或乳浊液),另一喷嘴同时喷出5%的甘露醇溶液,将微球包层,这样可避免普通喷雾干燥装置制备微球过程中易粘附器壁的缺陷。
4.超临界萃取法超临界萃取技术是从20世纪80年代逐渐发展起来的一门新技术。
近年来,超临界萃取技术已在化工、冶金、食品、医药、生物等领域得到广泛应用。
超临界流体既具有对溶质有较大溶解度的特点,又具有气体易于扩散和运动的特性。
更重要的是在临界点附近,压力和温度微小的变化都可以引起流体密度很大的变化,并相应地表现为溶解度的变化。
因此,人们可以利用压力、温度的变化来实现萃取和分离的过程而成为实现药物多组分分离的一种有效方法。
人们将此技术应用于微粒给药系统,制备药物的控释聚合物微球、药物结晶的粉末、控释脂质体药物等。
在制备微粒中根据聚合物及药物的溶解特性又分为超临界溶液快速膨胀(rapid expansion of supercritical solution,RESS)技术和气体反溶剂(gas antisolution,GAS)技术。
RESS技术的操作过程是:将固体物质在一定的温度和压力下溶解在超临界流体中形成溶液,然后将此高压溶液从一个细小的喷嘴(一般喷嘴的内径为几十微米,长约几个毫米)喷射到常压的空间中,由于超临界流体在减压的过程中变成了气体,溶解在其中的溶质就沉淀析出,产生直径从几百纳米到几个微米左右的颗粒。
一个典型的成功例子是包埋在聚乳酸小球中的Lovastatin晶体。
颗粒的构型可以通过适当改变压力、温度、溶液浓度以及喷嘴几何形装来调节。
因此用RESS技术得到的固体颗粒都在微米级而且粒径分布比较均匀。
(二)脉冲式给药系统:二、非注射给药系统(一)鼻腔给药系统(二)口服给药系统:纳米囊、胰岛素肠溶软胶囊、胰岛素微球制剂、胰岛素脂质体存在四个问题:①在胃内酸催化降解;②在胃肠道内的酶水解;③对胃肠道粘膜的透过性差;④在肝的首过效应。
(三)直肠给药系统(四)口腔粘膜给药系统(五)经皮给药系统(六)肺部给药系统第四节蛋白质类药物制剂的评价方法一、制剂中药物的含量测定制剂中蛋白质类药物的含量测定可根据处方组成确定,如紫外分光光度法和反相高效液相色谱法常用于测定溶液中蛋白质的浓度,但必须进行方法的适用性试验,在处方中其他物质不干扰药物测定的前提下,将蛋白质类药物制剂溶于1.0N氢氧化钠溶液中后采用292nm波长条件下的紫外分光光度法测定。
也可采用反相高效液相色谱法(RP-HPLC)、离子交换色谱(IEC)与分子排阻色谱(Size exclusion chromatography,SEC)法测定。
二、制剂中药物的活性测定蛋白质类药物制剂中药物的活性测定是评价制剂工艺可行性的重要方面,活性测定方法有药效学方法(如细胞病变抑制法)和放射免疫测定法。
前一种方法是利用体外细胞与活性蛋白质多肽的特异生物学反应,通过剂量(或浓度)效应曲线进行定量(绝对量或比活性单位),该方法具有结果可靠,方法重现性好的特点,是制订药物制剂质量标准最基本的方法。
后一种方法是建立在蛋白质类药物的活性部位与抗原决定簇处在相同部位时实施的一种方法,否则活性测定会产生误差。
此外也可采用十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE)法测定蛋白质类药物活性。
三、制剂中药物的体外释药速率测定测定控缓释制剂中蛋白质类药物的体外释药速率时考虑到药物在溶出介质中不稳定,多采用测定制剂中未释放药物量的方法。