MATLABsimulink系统仿真分析仿真报告

合集下载

MATLAB Simulink系统建模与仿真 实验报告

MATLAB Simulink系统建模与仿真 实验报告

MATLAB/Simulink 电力系统建模与仿真实验报告姓名:******专业:电气工程及其自动化班级:*******************学号:*******************实验一无穷大功率电源供电系统三相短路仿真1.1 无穷大功率电源供电系统仿真模型构建运行MATLAB软件,点击Simulink模型构建,根据电路原理图,添加下列模块:(1)无穷大功率电源模块(Three-phase source)(2)三相并联RLC负荷模块(Three-Phase Parallel RLC Load)(3)三相串联RLC支路模块(Three-Phase Series RLC Branch)(4)三相双绕组变压器模块(Three-Phase Transformer (Two Windings))(5)三相电压电流测量模块(Three-Phase V-I Measurement)(6)三相故障设置模块(Three-Phase Fault)(7)示波器模块(Scope)(8)电力系统图形用户界面(Powergui)按电路原理图连接线路得到仿真图如下:1.2 无穷大功率电源供电系统仿真参数设置1.2.1 电源模块设置三相电压110kV,相角0°,频率50Hz,接线方式为中性点接地的Y形接法,电源电阻0.00529Ω,电源电感0.000140H,参数设置如下图:1.2.2 变压器模块变压器模块参数采用标幺值设置,功率20MVA,频率50Hz,一次测采用Y型连接,一次测电压110kV,二次侧采用Y型连接,二次侧电压11kV,经过标幺值折算后的绕组电阻为0.0033,绕组漏感为0.052,励磁电阻为909.09,励磁电感为106.3,参数设置如下图:1.2.3 输电线路模块根据给定参数计算输电线路参数为:电阻8.5Ω,电感0.064L,参数设置如下图:1.2.4 三相电压电流测量模块此模块将在变压器低压侧测量得到的电压、电流信号转变成Simulink信号,相当于电压、电流互感器的作用,勾选“使用标签(Use a label)”以便于示波器观察波形,设置电压标签“Vabc”,电流标签“Iabc”,参数设置如下图:1.2.5 故障设置模块勾选故障相A、B、C,设置短路电阻0.00001Ω,设置0.02s—0.2s发生短路故障,参数设置如下图:1.2.6 示波器模块为了得到仿真结果准确数值,可将示波器模块的“Data History”栏设置为下图所示:1.3 无穷大功率电源供电系统仿真结果及分析得到以上的电力系统参数后,可以首先计算出在变压器低压母线发生三相短路故障时短路电流周期分量幅值和冲击电流的大小,短路电流周期分量的幅值为Im=10.63kA,时间常数Ta=0.0211s,则短路冲击电流为Iim=17.3kA。

MATLABSimulink与控制系统仿真实验报告

MATLABSimulink与控制系统仿真实验报告

MATLABSimulink与控制系统仿真实验报告MATLAB/Simulink与控制系统仿真实验报告姓名:喻彬彬学号:K031541725实验1、MATLAB/Simulink仿真基础及控制系统模型的建立一、实验目的1、掌握MATLAB/Simulink仿真的基本知识;2、熟练应用MATLAB软件建立控制系统模型。

二、实验设备电脑一台;MATLAB仿真软件一个三、实验内容1、熟悉MATLAB/Smulink仿真软件。

2、一个单位负反馈二阶系统,其开环传递函数为G(s)10。

用Simulink建立该s23s控制系统模型,用示波器观察模型的阶跃响应曲线,并将阶跃响应曲线导入到MATLAB 的工作空间中,在命令窗口绘制该模型的阶跃响应曲线。

3、某控制系统的传递函数为Y(s)G(s)s50。

用Simulink建其中G(s)2X(s)1G(s)2s3s立该控制系统模型,用示波器观察模型的阶跃响应曲线,并将阶跃响应曲线导入到MATLAB的工作空间中,在命令窗口绘制该模型的阶跃响应曲线。

4、一闭环系统结构如图所示,其中系统前向通道的传递函数为20,而且前向通道有一个[-,]的限幅环节,图中用N 表G(s)s12s20s示,反馈通道的增益为,系统为负反馈,阶跃输入经倍的增益作用到系统。

用Simulink建立该控制系统模型,用示波器观察模型的阶跃响应曲线,并将阶跃响应曲线导入到MATLAB的工作空间中,在命令窗口绘制该模型的阶跃响应曲线。

四、实验报告要求实验报告撰写应包括实验名称、实验内容、实验要求、实验步骤、实验结果及分析和实验体会。

五、实验思考题总结仿真模型构建及调试过程中的心得体会。

1题1、利用Simulink的Library窗口中的【File】→【New】,打开一个新的模型窗口。

分别从信号源库、输出方式库、数学运算库、连续系统库中,用鼠标把阶跃信号发生器、示波器、传递函数和相加器4个标准功能模块选中,并将其拖至模型窗口。

matlab中Simulink 的仿真实验报告

matlab中Simulink 的仿真实验报告

Simulink 的仿真实验报告1.实验目的:熟悉使用Simulink的各种使用方法及仿真系统2.数学建模:假设系统的微分方程为:r''(t)+3r'(t)+2r(t)=e(t) , 其中e(t)=u(t)求该系统的零状态响应令等式右边为零,则可求得方程的两个特征根为:r1=-1, r2=-2所以设该系统的零状态响应为:r(t)=Ae^-t+Be^-2t+C其中C为方程的一个特解,由微分方程可知,等式右边没有冲激函数及冲激函数的微分,故系统在零负到零正的过程中没有发生跳变,则C为一个常数。

将C带入方程可解得C=1/2由于零状态响应时系统的初值都为零即r(0-)=0 , r'(0-)=0,且系统无跳变,则r(0+)='(0+)=0.带入r(t)得:A+B+1/2=0-A-2B+1/2=0解得:A=-3/2 B=1所以系统的零状态响应为:r(t)=-3/2e^-t+e^-2t+1/2Simulink仿真:根据系统的微分方程可编辑仿真模型如下图打开开始按键,可以得到波形图:验证仿真结果:由前面得到的系统零状态响应结果:r(t)=-3/2e^-t+e^-2t+1/2可编辑仿真模型:>> t=(0::10);>> plot(t,((-3)/2)*exp((-1)*t)+exp((-2)*t)+1/2)实验结论:Simulink仿真结果和函数仿真结果基本一致,所以simulink仿真是正确的。

实验心得:1.此实验是利用matlab对一个微分方程进行建模求解,既要求我们掌握对微分方程的求解,又要求掌握用matlab对微分方程进行建模,所以要求我们对软件得熟悉。

2.信号与系统的实验主要是用matlab分析或验证书上的东西,前提当然是学好书本上的知识,再学好matlab这个软件。

3.用simulink仿真的时候,对函数用积分器较好,不知为什么用微分器做不出来,报错显示不出图形。

仿真软件操作实验报告(3篇)

仿真软件操作实验报告(3篇)

第1篇实验名称:仿真软件操作实验实验目的:1. 熟悉仿真软件的基本操作和界面布局。

2. 掌握仿真软件的基本功能,如建模、仿真、分析等。

3. 学会使用仿真软件解决实际问题。

实验时间:2023年X月X日实验地点:计算机实验室实验器材:1. 仿真软件:XXX2. 计算机一台3. 实验指导书实验内容:一、仿真软件基本操作1. 打开软件,熟悉界面布局。

2. 学习软件菜单栏、工具栏、状态栏等各个部分的功能。

3. 掌握文件操作,如新建、打开、保存、关闭等。

4. 熟悉软件的基本参数设置。

二、建模操作1. 学习如何创建仿真模型,包括实体、连接器、传感器等。

2. 掌握模型的修改、删除、复制等操作。

3. 学会使用软件提供的建模工具,如拉伸、旋转、镜像等。

三、仿真操作1. 设置仿真参数,如时间、步长、迭代次数等。

2. 学习如何进行仿真,包括启动、暂停、继续、终止等操作。

3. 观察仿真结果,包括数据、曲线、图表等。

四、分析操作1. 学习如何对仿真结果进行分析,包括数据统计、曲线拟合、图表绘制等。

2. 掌握仿真软件提供的分析工具,如方差分析、回归分析等。

3. 将仿真结果与实际数据或理论进行对比,验证仿真模型的准确性。

实验步骤:1. 打开仿真软件,创建一个新项目。

2. 在建模界面,根据实验需求创建仿真模型。

3. 设置仿真参数,启动仿真。

4. 观察仿真结果,进行数据分析。

5. 将仿真结果与实际数据或理论进行对比,验证仿真模型的准确性。

6. 完成实验报告。

实验结果与分析:1. 通过本次实验,掌握了仿真软件的基本操作,包括建模、仿真、分析等。

2. 在建模过程中,学会了创建实体、连接器、传感器等,并能够进行模型的修改、删除、复制等操作。

3. 在仿真过程中,成功设置了仿真参数,启动了仿真,并观察到了仿真结果。

4. 在分析过程中,运用了仿真软件提供的分析工具,对仿真结果进行了数据分析,并与实际数据或理论进行了对比,验证了仿真模型的准确性。

matlab simulink仿真实验报告

matlab simulink仿真实验报告

matlab simulink仿真实验报告[Abstract]本篇报告介绍了一项利用Matlab和Simulink进行仿真实验的过程和结果。

实验主要涉及对加速度计数据的滤波和降噪处理,以及利用观测器估计一个非线性系统的状态变量。

本文介绍了实验设计的思路和步骤,详细讲解了实验中所使用到的算法和模型,并对实验结果进行了分析和总结。

[Keywords][Introduction]在自动化控制、机器人技术、航天航空、汽车电子等领域中,传感器和估计器是广泛应用的两类算法。

传感器可以测量物理量,如位置、速度、加速度等,并将其转化为电信号输出。

估计器则通过对物理模型的建模和输出信号的处理,来推测和估计系统的状态变量。

加速度计可以测量物体在三个轴向上的加速度,同时可以进行数据滤波和降噪。

估计器可以用于非线性系统的状态估计,具有广泛的应用前景。

[Simulation Process]1. 数据采集处理加速度计可以用于测量物体在三个轴向上的加速度。

由于传感器的噪声和误差,采集的数据往往不够准确和稳定,需要通过滤波和降噪等算法进行处理。

本实验中采用了常用的Butterworth低通滤波器和移动平均滤波器来对加速度计数据进行处理。

Butterworth低通滤波器是一种线性相位滤波器,可以将高频信号滤去,降低信号噪声。

在Matlab中,可以通过函数[b,a] = butter(n,Wn,'low')生成Butterworth低通滤波器。

其中,n为滤波器的阶数,Wn为截止频率。

移动平均滤波器是一种简单有效的滤波方法,可以对信号进行平均处理,消除信号的高频成分和噪声。

在Matlab中,可以通过函数smooth(x,n)生成移动平均滤波器。

其中,x为待处理的信号,n为滤波器窗口大小。

2. 状态估计模型状态估计模型是一种建立在数学模型基础上的估计方法,常常用于非线性系统的状态估计。

本实验中,给定了以下非线性系统的模型:$$\begin{cases}x_{1}' = x_{2} \cos(x_{1}) \\x_{2}'= u\end{cases}$$其中,x1和x2为系统状态变量,u为系统的控制输入。

MATLABSimulink和控制系统仿真实验报告

MATLABSimulink和控制系统仿真实验报告

MATLAB/Simulink与控制系统仿真实验报告姓名:喻彬彬学号:K031541725实验1、MATLAB/Simulink 仿真基础及控制系统模型的建立一、实验目的1、掌握MATLAB/Simulink 仿真的基本知识;2、熟练应用MATLAB 软件建立控制系统模型。

二、实验设备电脑一台;MATLAB 仿真软件一个三、实验内容1、熟悉MATLAB/Smulink 仿真软件。

2、一个单位负反馈二阶系统,其开环传递函数为210()3G s s s =+。

用Simulink 建立该控制系统模型,用示波器观察模型的阶跃响应曲线,并将阶跃响应曲线导入到MATLAB 的工作空间中,在命令窗口绘制该模型的阶跃响应曲线。

3、某控制系统的传递函数为()()()1()Y s G s X s G s =+,其中250()23s G s s s+=+。

用Simulink 建立该控制系统模型,用示波器观察模型的阶跃响应曲线,并将阶跃响应曲线导入到MATLAB 的工作空间中,在命令窗口绘制该模型的阶跃响应曲线。

4、一闭环系统结构如图所示,其中系统前向通道的传递函数为320.520()0.11220s G s s s s s+=+++,而且前向通道有一个[-0.2,0.5]的限幅环节,图中用N 表示,反馈通道的增益为1.5,系统为负反馈,阶跃输入经1.5倍的增益作用到系统。

用Simulink 建立该控制系统模型,用示波器观察模型的阶跃响应曲线,并将阶跃响应曲线导入到MATLAB 的工作空间中,在命令窗口绘制该模型的阶跃响应曲线。

四、实验报告要求实验报告撰写应包括实验名称、实验内容、实验要求、实验步骤、实验结果及分析和实验体会。

五、实验思考题总结仿真模型构建及调试过程中的心得体会。

题1、(1)利用Simulink的Library窗口中的【File】→【New】,打开一个新的模型窗口。

(2)分别从信号源库(Sourse)、输出方式库(Sink)、数学运算库(Math)、连续系统库(Continuous)中,用鼠标把阶跃信号发生器(Step)、示波器(Scope)、传递函数(Transfern Fcn)和相加器(Sum)4个标准功能模块选中,并将其拖至模型窗口。

实验报告5Simulink仿真[推荐五篇]

实验报告5Simulink仿真[推荐五篇]

实验报告5Simulink仿真[推荐五篇]第一篇:实验报告 5 Simulink仿真实验五 Simulink仿真(一)一、实验目的1、熟悉Simulink仿真环境2、了解Simulink基本操作3、了解Simulink系统建模基本方法3、熟悉Simulink仿真系统参数设置和子系统封装的基本方法二、实验内容1、在matlab命令窗口中输入simulink,观察其模块库的构成;2、了解模块库中常用模块的使用方法;3、已知单位负反馈系统的开环传递函数为G=100s+2s(s+1)(s+20)建立系统的模型,输入信号为单位阶跃信号,用示波器观察输出。

4、建立一个包含Gain、Transfer Fcn、Sum、Step、Sine Wave、Zero-Pole、Integrator、Derivative等模块构成的自定义模块库Library1;5、建立如图7-12所示的双闭环调速系统的Simulink的动态结构图,再把电流负反馈内环封装为子系统,建立动态结构图。

三、实验结果及分析:图5-1图5-2图5-3图5-4双闭环调速系统的Simulink的动态结构图图5-5把电流负反馈内环封装为子系统的动态结构图双击Subsystem模块,编辑反馈电流环Subsystem子系统,如图5-6所示:图5-6分析:Simulink是Mathworks开发的MATLAB中的工具之一,主要功能是实现动态系统建模、仿真与分析。

可以在实际系统制作出来之前,预先对系统进行仿真与分析,并可对系统做适当的适时修正或按照仿真的最佳效果来调试及整定控制系统的参数,达到提高系统性能。

减少涉及系统过程中的反复修改的时间、实现高效率地开发系统的目标。

Simulink提供了建模、分析和仿真各种动态系统的交互环境,包括连续系统、离散系统和混杂系统,还提供了采用鼠标拖放的方法建立系统框图模型的图形交互界面。

第二篇:仿真实验报告仿真软件实验实验名称:基于电渗流的微通道门进样的数值模拟实验日期:2013.9.4一、实验目的1、对建模及仿真技术初步了解2、学习并掌握Comsol Multiphysics的使用方法3、了解电渗进样原理并进行数值模拟4、运用Comsol Multiphysics建立多场耦合模型,加深对多耦合场的认识二、实验设备实验室计算机,Comsol Multiphysics 3.5a软件。

实验报告 5 Simulink仿真

实验报告 5  Simulink仿真

实验五 Simulink 仿真(一)一、实验目的1、熟悉Simulink 仿真环境2、了解Simulink 基本操作3、了解Simulink 系统建模基本方法3、熟悉Simulink 仿真系统参数设置和子系统封装的基本方法 二、实验内容1、在matlab 命令窗口中输入simulink,观察其模块库的构成;2、了解模块库中常用模块的使用方法;3、已知单位负反馈系统的开环传递函数为)20)(1(2100+++=s s s s G建立系统的模型,输入信号为单位阶跃信号,用示波器观察输出。

4、建立一个包含Gain 、Transfer Fcn 、Sum 、 Step 、Sine Wave 、Zero-Pole 、Integrator 、Derivative 等模块构成的自定义模块库Library1;5、建立如图7-12所示的双闭环调速系统的Simulink 的动态结构图,再把电流负反馈内环封装为子系统,建立动态结构图。

三、实验结果及分析:图5-1图5-2图5-3图5-4双闭环调速系统的Simulink的动态结构图图5-5把电流负反馈内环封装为子系统的动态结构图双击Subsystem模块,编辑反馈电流环Subsystem子系统,如图5-6所示:图5-6分析:Simulink是Mathworks开发的MATLAB中的工具之一,主要功能是实现动态系统建模、仿真与分析。

可以在实际系统制作出来之前,预先对系统进行仿真与分析,并可对系统做适当的适时修正或按照仿真的最佳效果来调试及整定控制系统的参数,达到提高系统性能。

减少涉及系统过程中的反复修改的时间、实现高效率地开发系统的目标。

Simulink提供了建模、分析和仿真各种动态系统的交互环境,包括连续系统、离散系统和混杂系统,还提供了采用鼠标拖放的方法建立系统框图模型的图形交互界面。

simulink仿真实验报告

simulink仿真实验报告

Simulink仿真实验报告1. 引言本报告旨在对Simulink仿真实验进行全面、详细、完整且深入地探讨。

Simulink 是一种基于模型的设计和仿真环境,广泛应用于工程领域。

本实验通过使用Simulink进行系统建模和仿真,以验证系统的性能和可行性。

2. 实验目的本实验的主要目的是熟悉Simulink的基本操作和功能,并通过实际案例来了解系统建模和仿真的过程。

具体目标如下: 1. 掌握Simulink的界面和基本操作; 2. 学习如何建立系统模型; 3. 了解如何进行仿真和分析。

3. 实验步骤3.1 Simulink介绍Simulink是一种图形化的建模和仿真环境,可以用于设计和分析各种系统。

它提供了丰富的工具箱和模块,使得系统建模变得更加简单和直观。

3.2 Simulink界面Simulink的界面由多个窗口组成,包括模型窗口、库浏览器、信号浏览器等。

模型窗口是主要的工作区域,用于建立和编辑系统模型。

3.3 系统建模在Simulink中,系统模型由各种模块和连接线组成。

模块可以是数学运算、信号源、控制器等。

通过拖拽和连接这些模块,可以建立系统的结构。

3.4 仿真设置在进行仿真前,需要设置仿真参数,如仿真时间、步长等。

这些参数会影响仿真的准确性和效率。

3.5 仿真分析仿真完成后,可以对系统的性能进行分析。

Simulink提供了丰富的工具和图表,可以用于绘制系统的输出响应、频谱分析等。

4. 实验案例本实验选取了一个简单的控制系统作为案例,用于说明Simulink的应用过程。

4.1 系统描述控制系统包括一个输入信号、一个控制器和一个输出信号。

输入信号经过控制器后,通过输出信号进行输出。

4.2 模型建立在Simulink的模型窗口中,通过拖拽和连接模块,可以建立控制系统的模型。

首先添加输入信号模块,然后添加控制器模块,最后添加输出信号模块。

4.3 仿真设置设置仿真参数,如仿真时间为10秒,步长为0.01秒。

simulink仿真实验报告

simulink仿真实验报告

simulink仿真实验报告Simulink 仿真实验报告引言:Simulink 是一种常用的建模和仿真工具,它可以帮助工程师们在设计和开发过程中进行系统级建模和仿真。

本文将通过一个实际的仿真实验来展示 Simulink 的应用。

一、实验背景在现代工程领域中,系统的建模和仿真是非常重要的一步。

通过仿真实验,我们可以在实际制造之前对系统进行测试和优化,节省了时间和成本。

本实验的目标是使用 Simulink 对一个电机驱动系统进行建模和仿真,以验证其性能和稳定性。

二、实验步骤1. 系统建模在 Simulink 中,我们首先需要将电机驱动系统进行建模。

我们可以使用Simulink 提供的各种组件来构建系统模型,例如传感器、控制器、电机等。

在本实验中,我们将使用 PID 控制器来控制电机的转速。

2. 参数设置在建模过程中,我们需要设置各个组件的参数。

例如,我们需要设置 PID 控制器的比例、积分和微分系数,以及电机的转动惯量和阻尼系数等。

这些参数的设置将直接影响系统的性能。

3. 仿真运行在模型建立和参数设置完成后,我们可以进行仿真运行。

通过设置仿真时间和输入信号,我们可以观察系统在不同条件下的响应情况。

例如,我们可以通过改变输入信号的频率和幅度来测试系统的稳定性和鲁棒性。

4. 结果分析仿真运行完成后,我们可以分析仿真结果。

通过观察输出信号的波形和频谱,我们可以评估系统的性能和稳定性。

例如,我们可以计算系统的响应时间、超调量和稳态误差等指标,以评估系统的控制效果。

三、实验结果在本实验中,我们成功建立了一个电机驱动系统的 Simulink 模型,并进行了仿真运行。

通过观察仿真结果,我们发现系统在不同输入信号条件下的响应情况。

在一些情况下,系统的响应时间较短,稳态误差较小,表现出良好的控制效果。

然而,在一些极端情况下,系统可能出现超调或不稳定的现象,需要进一步优化参数和控制策略。

四、实验总结通过本次仿真实验,我们深入了解了 Simulink 的应用和优势。

MATLABsimulink系统仿真分析仿真报告

MATLABsimulink系统仿真分析仿真报告

仿真报告课程名称:自动化技术导论报告题目:MATLAB/simulink系统仿真分析班级姓名学号xxxxxx自动化学院2016年4月软件版本:MATLAB R2010bMATLAB强处理能力MATLAB是一个包含大量计算算法的集合。

其拥有600多个工程中要用到的数学运算函数,可以方便的实现用户所需的各种计算功能。

函数中所使用的算法都是科研和工程计算中的最新研究成果,而且经过了各种优化和容错处理。

在通常情况下,可以用它来代替底层编程语言,如C和C++ 。

在计算要求相同的情况下,使用MATLAB的编程工作量会大大减少。

MATLAB 的这些函数集包括从最简单最基本的函数到诸如矩阵,特征向量、快速傅立叶变换的复杂函数。

函数所能解决的问题其大致包括矩阵运算和线性方程组的求解、微分方程及偏微分方程的组的求解、符号运算、傅立叶变换和数据的统计分析、工程中的优化问题、稀疏矩阵运算、复数的各种运算、三角函数和其他初等数学运算、多维数组操作以及建模动态仿真等。

MATLAB图形处理MATLAB自产生之日起就具有方便的数据可视化功能,以将向量和矩阵用图形表现出来,并且可以对图形进行标注和打印。

高层次的作图包括二维和三维的可视化、图象处理、动画和表达式作图。

可用于科学计算和工程绘图。

新版本的MATLAB对整个图形处理功能作了很大的改进和完善,使它不仅在一般数据可视化软件都具有的功能(例如二维曲线和三维曲面的绘制和处理等)方面更加完善,而且对于一些其他软件所没有的功能(例如图形的光照处理、色度处理以及四维数据的表现等),MATLAB同样表现了出色的处理能力。

同时对一些特殊的可视化要求,例如图形对话等,MATLAB也有相应的功能函数,保证了用户不同层次的要求。

另外新版本的MATLAB还着重在图形用户界面(GUI)的制作上作了很大的改善,对这方面有特殊要求的用户也可以得到满足。

MATLAB对许多专门的领域都开发了功能强大的模块集和工具箱。

基于MATLABSimulink的机电一体化系统的仿真分析实验

基于MATLABSimulink的机电一体化系统的仿真分析实验

实验五、基于MATLAB/Simulink的机电一体化系统的仿真分析实验一、实验目的机电一体化系统建模是进行机电一体化系统分析与设计的基础,通过对系统的简化分析建立描述系统的数学模型,进而研究系统的稳态特性和动态特性,为机电一体化系统的物理实现和后续的系统调试工作提供数据支持,而仿真研究是进行系统分析和设计的有利方法。

本实验目的在于通过实验使同学对机电一体化系统建模方法和仿真方法有初步的了解,初步掌握在MA TLAB/ SIMULINK环境下对机电一体化系统数学模型进行仿真的方法。

(1)掌握机电一体化系统数学建模的基本方法(2)掌握机电一体化系统数学仿真的基本方法和步骤。

(3)掌握在MA TLAB/ SIMULINK环境下对机电一体化系统数学模型进行仿真的方法。

二、实验器材(1)计算机(2)MA TLAB/ SIMULINK软件三、实验原理(一)建立数学模型以一定的理论为依据把系统的行为概括为数学的函数关系,包括以下内容:1)确定模型的结构,建立系统的约束条件,确定系统的实体、属性与活动。

2)测取有关的模型数据。

3)运用适当理论建立系统的数学描述,即数学模型。

4)检验所建立的数学模型的准确性。

机电一体化系统数学模型的建立是否得当,将直接影响以此为依据的仿真分析与设计的准确性、可靠性,因此必须予以充分重视,以采用合理的方式、方法。

(二)机电一体化系统的计算机数字仿真实现1)根据已建立的数学模型和精度、计算时间等要求,确定所采用的数值计算方法。

2)将原模型按照算法要求通过分解、综合、等效变换等方法转换为适于在数字计算机上运行的公式、方程等。

3)用适当的软件语言将其描述为数字计算机可接受的软件程序,即编程实现。

4)通过在数字计算机上运行,加以校核,使之正确反映系统各变量动态性能,得到可靠的仿真结果。

(三).凑试法确定PID调节参数凑试法是通过模拟或闭环运行(如果允许的话)观察系统的响应曲线(例如阶跃响应),然后根据各调节参数对系统响应的大致影响,反复凑试参数,以达到满意的响应,从而确定PID调节参数。

MATLAB实验报告(word文档良心出品)

MATLAB实验报告(word文档良心出品)

《MATLAB/Simulink与控制系统仿真》实验报告专业:班级:学号:姓名:指导教师:实验1、MATLAB/Simulink 仿真基础及控制系统模型的建立一、实验目的1、掌握MATLAB/Simulink 仿真的基本知识;2、熟练应用MATLAB 软件建立控制系统模型。

二、实验设备电脑一台;MATLAB 仿真软件一个 三、实验内容1、熟悉MATLAB/Smulink 仿真软件。

2、一个单位负反馈二阶系统,其开环传递函数为210()3G s s s=+。

用Simulink 建立该控制系统模型,用示波器观察模型的阶跃响应曲线,并将阶跃响应曲线导入到MATLAB 的工作空间中,在命令窗口绘制该模型的阶跃响应曲线。

图 1系统结构图图 2示波器输出结果图3、某控制系统的传递函数为()()()1()Y s G s X s G s =+,其中250()23s G s s s+=+。

用Simulink 建立该控制系统模型,用示波器观察模型的阶跃响应曲线,并将阶跃响应曲线导入到MA TLAB 的工作空间中,在命令窗口绘制该模型的阶跃响应曲线。

图 3系统结构图 图 4 示波器输出结果图图 5 工作空间中仿真结果图形化输出4、一闭环系统结构如图所示,其中系统前向通道的传递函数为320.520()0.11220s G s s s s s+=+++g ,而且前向通道有一个[-0.2,0.5]的限幅环节,图中用N 表示,反馈通道的增益为1.5,系统为负反馈,阶跃输入经1.5倍的增益作用到系统。

用Simulink 建立该控制系统模型,用示波器观察模型的阶跃响应曲线,并将阶跃响应曲线导入到MATLAB 的工作空间中,在命令窗口绘制该模型的阶跃响应曲线。

图 6 系统结构图图 7 示波器输出结果实验2 MATLAB/Simulink 在控制系统建模中的应用一、实验目的1、掌握MATLAB/Simulink 在控制系统建模中的应用; 二、实验设备电脑一台;MA TLAB 仿真软件一个 三、实验内容1、给定RLC 网络如图所示。

实验1 运用MATLABSimulink进行系统仿真实验(指导书)

实验1 运用MATLABSimulink进行系统仿真实验(指导书)

实验一、运用MATLAB/Simulink进行系统仿真实验一、实验目的机电一体化系统建模是进行机电一体化系统分析与设计的基础,通过对系统的简化分析建立描述系统的数学模型,进而研究系统的稳态特性和动态特性,为机电一体化系统的物理实现和后续的系统调试工作提供数据支持,而仿真研究是进行系统分析和设计的有利方法。

本实验目的在于通过实验使同学对机电一体化系统建模方法和仿真方法有初步的了解,初步掌握在MATLAB/ SIMULINK环境下对机电一体化系统数学模型进行仿真的方法。

(1)掌握机电一体化系统数学建模的基本方法;(2)掌握对机电一体化系统进行数学仿真的基本方法和步骤;(3)在初步掌握在MATLAB/ SIMULINK环境下对机电一体化系统数学模型进行仿真的方法。

二、实验设备(1)计算机(2)MATLAB/ SIMULINK软件三、实验原理(一)建立数学模型就是(以一定的理论为依据)把系统的行为概括为数学的函数关系,包括以下内容:1)确定模型的结构,建立系统的约束条件,确定系统的实体、属性与活动。

2)测取有关的模型数据。

3)运用适当理论建立系统的数学描述,即数学模型。

4)检验所建立的数学模型的准确性。

机电一体化系统数学模型的建立是否得当,将直接影响以此为依据的仿真分析与设计的准确性、可靠性,因此必须予以充分重视,以采用合理的方式、方法。

(二)机电一体化系统的计算机数字仿真实现:1)根据已建立的数学模型和精度、计算时间等要求,确定所采用的数值计算方法。

2)将原模型按照算法要求通过分解、综合、等效变换等方法转换为适于在数字计算机上运行的公式、方程等。

3)用适当的软件语言将其描述为数字计算机可接受的软件程序,即编程实现。

4)通过在数字计算机上运行,加以校核,使之正确反映系统各变量动态性能,得到可靠的仿真结果。

(三).凑试法确定PID调节参数凑试法是通过模拟或闭环运行(如果允许的话)观察系统的响应曲线(例如阶跃响应),然后根据各调节参数对系统响应的大致影响,反复凑试参数,以达到满意的响应,从而确定PID调节参数。

MATLAB Simulink系统建模与仿真 实验报告

MATLAB Simulink系统建模与仿真 实验报告

MATLAB/Simulink 电力系统建模与仿真实验报告姓名:******专业:电气工程及其自动化班级:*******************学号:*******************实验一无穷大功率电源供电系统三相短路仿真1.1 无穷大功率电源供电系统仿真模型构建运行MATLAB软件,点击Simulink模型构建,根据电路原理图,添加下列模块:(1)无穷大功率电源模块(Three-phase source)(2)三相并联RLC负荷模块(Three-Phase Parallel RLC Load)(3)三相串联RLC支路模块(Three-Phase Series RLC Branch)(4)三相双绕组变压器模块(Three-Phase Transformer (Two Windings))(5)三相电压电流测量模块(Three-Phase V-I Measurement)(6)三相故障设置模块(Three-Phase Fault)(7)示波器模块(Scope)(8)电力系统图形用户界面(Powergui)按电路原理图连接线路得到仿真图如下:1.2 无穷大功率电源供电系统仿真参数设置1.2.1 电源模块设置三相电压110kV,相角0°,频率50Hz,接线方式为中性点接地的Y形接法,电源电阻0.00529Ω,电源电感0.000140H,参数设置如下图:1.2.2 变压器模块变压器模块参数采用标幺值设置,功率20MVA,频率50Hz,一次测采用Y型连接,一次测电压110kV,二次侧采用Y型连接,二次侧电压11kV,经过标幺值折算后的绕组电阻为0.0033,绕组漏感为0.052,励磁电阻为909.09,励磁电感为106.3,参数设置如下图:1.2.3 输电线路模块根据给定参数计算输电线路参数为:电阻8.5Ω,电感0.064L,参数设置如下图:1.2.4 三相电压电流测量模块此模块将在变压器低压侧测量得到的电压、电流信号转变成Simulink信号,相当于电压、电流互感器的作用,勾选“使用标签(Use a label)”以便于示波器观察波形,设置电压标签“Vabc”,电流标签“Iabc”,参数设置如下图:1.2.5 故障设置模块勾选故障相A、B、C,设置短路电阻0.00001Ω,设置0.02s—0.2s发生短路故障,参数设置如下图:1.2.6 示波器模块为了得到仿真结果准确数值,可将示波器模块的“Data History”栏设置为下图所示:1.3 无穷大功率电源供电系统仿真结果及分析得到以上的电力系统参数后,可以首先计算出在变压器低压母线发生三相短路故障时短路电流周期分量幅值和冲击电流的大小,短路电流周期分量的幅值为Im=10.63kA,时间常数Ta=0.0211s,则短路冲击电流为Iim=17.3kA。

MATLABsimulink系统仿真分析仿真报告

MATLABsimulink系统仿真分析仿真报告

仿真报告课程名称:自动化技术导论报告题目:MATLAB/simulink系统仿真分析班级姓名学号xxxxxx自动化学院2016年4月软件版本:MATLAB R2010bMATLAB强处理能力MATLAB是一个包含大量计算算法的集合。

其拥有600多个工程中要用到的数学运算函数,可以方便的实现用户所需的各种计算功能。

函数中所使用的算法都是科研和工程计算中的最新研究成果,而且经过了各种优化和容错处理。

在通常情况下,可以用它来代替底层编程语言,如C和C++ 。

在计算要求相同的情况下,使用MATLAB的编程工作量会大大减少。

MATLAB的这些函数集包括从最简单最基本的函数到诸如矩阵,特征向量、快速傅立叶变换的复杂函数。

函数所能解决的问题其大致包括矩阵运算和线性方程组的求解、微分方程及偏微分方程的组的求解、符号运算、傅立叶变换和数据的统计分析、工程中的优化问题、稀疏矩阵运算、复数的各种运算、三角函数和其他初等数学运算、多维数组操作以及建模动态仿真等。

MATLAB图形处理MATLAB自产生之日起就具有方便的数据可视化功能,以将向量和矩阵用图形表现出来,并且可以对图形进行标注和打印。

高层次的作图包括二维和三维的可视化、图象处理、动画和表达式作图。

可用于科学计算和工程绘图。

新版本的MATLAB 对整个图形处理功能作了很大的改进和完善,使它不仅在一般数据可视化软件都具有的功能(例如二维曲线和三维曲面的绘制和处理等)方面更加完善,而且对于一些其他软件所没有的功能(例如图形的光照处理、色度处理以及四维数据的表现等),MATLAB同样表现了出色的处理能力。

同时对一些特殊的可视化要求,例如图形对话等,MATLAB也有相应的功能函数,保证了用户不同层次的要求。

另外新版本的MATLAB还着重在图形用户界面(GUI)的制作上作了很大的改善,对这方面有特殊要求的用户也可以得到满足。

MATLAB对许多专门的领域都开发了功能强大的模块集和工具箱。

M精编BSimulink与控制系统仿真实验报告

M精编BSimulink与控制系统仿真实验报告
ulink Library Browser窗口下找到符合要求的模块,搭建模型,如图5所示。
图5
(2)修改各模块参数,运行仿真,单击“start”,点击示波器,得到如下结果,图6
图6
实验2 MATLAB/Simulink在控制系统建模中的应用
一、实验目的
1、掌握MATLAB/Simulink在控制系统建模中的应用;
gtext(‘zuni=1’);gtext(‘zuni=2’);gtext(‘zuni=3’);gtext(‘zuni=5’);
运行程序,结果如图6所示
图6固定自然频率,阻尼比变化时系统的阶跃响应曲线
利用MATLAB在一幅图像的上绘制阻尼系数=,Wn从变化到1时系统的阶跃响应曲线,代码如下
clc;
clear;
grid on;
程序运行结果如下:
ans = +
-
系统的零极点分布图如图1所示
图1系统的零极点分布图
步骤3求取阶跃响应
计算系统的阶跃响应:可以采用MATLAB编程实现,还可以利用simulink对系统进行建模,直接观察响应曲线。MATLAB程序代码如下:
num=[20];den=[1 4 20];
[ on;
步骤1
从数学上求出系统传递函数。
根据电路基本定理,列出该电路的微分方程,如下:
同时还有
整理以上方程,并在零初始条件下,取拉普拉斯变换,可得:
代入具体数值可得
步骤2使用MATLAB程序代码如下。
clearall;
num=[0,1];den=[1 2 2];
sys_tf=tf(num,den)
[z,p,k]=tf2zp(num,den)
二、实验设备
电脑一台;MATLAB仿真软件一个
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

仿真报告课程名称:自动化技术导论报告题目:MATLAB/simulink系统仿真分析班级姓名学号xxxxxx自动化学院2016年4月软件版本:MATLAB R2010bMATLAB强处理能力MATLAB是一个包含大量计算算法的集合。

其拥有600多个工程中要用到的数学运算函数,可以方便的实现用户所需的各种计算功能。

函数中所使用的算法都是科研和工程计算中的最新研究成果,而且经过了各种优化和容错处理。

在通常情况下,可以用它来代替底层编程语言,如C和C++ 。

在计算要求相同的情况下,使用MATLAB的编程工作量会大大减少。

MATLAB的这些函数集包括从最简单最基本的函数到诸如矩阵,特征向量、快速傅立叶变换的复杂函数。

函数所能解决的问题其大致包括矩阵运算和线性方程组的求解、微分方程及偏微分方程的组的求解、符号运算、傅立叶变换和数据的统计分析、工程中的优化问题、稀疏矩阵运算、复数的各种运算、三角函数和其他初等数学运算、多维数组操作以及建模动态仿真等。

MATLAB图形处理MATLAB自产生之日起就具有方便的数据可视化功能,以将向量和矩阵用图形表现出来,并且可以对图形进行标注和打印。

高层次的作图包括二维和三维的可视化、图象处理、动画和表达式作图。

可用于科学计算和工程绘图。

新版本的MATLAB对整个图形处理功能作了很大的改进和完善,使它不仅在一般数据可视化软件都具有的功能(例如二维曲线和三维曲面的绘制和处理等)方面更加完善,而且对于一些其他软件所没有的功能(例如图形的光照处理、色度处理以及四维数据的表现等),MATLAB同样表现了出色的处理能力。

同时对一些特殊的可视化要求,例如图形对话等,MATLAB也有相应的功能函数,保证了用户不同层次的要求。

另外新版本的MATLAB还着重在图形用户界面(GUI)的制作上作了很大的改善,对这方面有特殊要求的用户也可以得到满足。

MATLAB对许多专门的领域都开发了功能强大的模块集和工具箱。

一般来说,它们都是由特定领域的专家开发的,用户可以直接使用工具箱学习、应用和评估不同的方法而不需要自己编写代码。

领域,诸如数据采集、数据库接口、概率统计、样条拟合、优化算法、偏微分方程求解、神经网络、小波分析、信号处理、图像处理、系统辨识、控制系统设计、LMI控制、鲁棒控制、模型预测、模糊逻辑、金融分析、地图工具、非线性控制设计、实时快速原型及半物理仿真、嵌入式系统开发、定点仿真、DSP与通讯、电力系统仿真等,都在工具箱(Toolbox)家族中有了自己的一席之地。

MATLAB程序接口新版本的MATLAB可以利用MATLAB编译器和C/C++数学库和图形库,将自己的MATLAB程序自动转换为独立于MATLAB运行的C和C++代码。

允许用户编写可以和MATLAB进行交互的C或C++语言程序。

另外,MATLAB网页服务程序还容许在Web应用中使用自己的MATLAB数学和图形程序。

MATLAB 的一个重要特色就是具有一套程序扩展系统和一组称之为工具箱的特殊应用子程序。

工具箱是MATLAB函数的子程序库,每一个工具箱都是为某一类学科专业和应用而定制的,主要包括信号处理、控制系统、神经网络、模糊逻辑、小波分析和系统仿真等方面的应用。

MATLAB应用软件开发在开发环境中,使用户更方便地控制多个文件和图形窗口;在编程方面支持了函数嵌套,有条件中断等;在图形化方面,有了更强大的图形标注和处理功能,包括对性对起连接注释等;在输入输出方面,可以直接向Excel和HDF5进行连接。

MATLAB应用方面MATLAB 产品族可以用来进行以下各种工作:●数值分析●数值和符号计算●工程与科学绘图●控制系统的设计与仿真●通讯系统设计与仿真●管理与调度优化计算(运筹学)MATLAB 的应用范围非常广,包括信号和图像处理、通讯、控制系统设计、测试和测量、财务建模和分析以及计算生物学等众多应用领域。

附加的工具箱(单独提供的专用MATLAB函数集)扩展了MATLAB 环境,以解决这些应用领域内特定类型的问题。

MATLAB运行环境简介进入MATLAB R2010b版的Desktop操作界面,它是一个高度集成的MATLAB工作界面。

该桌面的上层铺放着三个最常用的界面,以及其他内容:菜单栏、工具栏、指令窗、当前目录浏览器、MATLAB 工作内存空间浏览器、历史指令窗等。

其默认形式,如图一所示。

指令窗该窗是进行各种MATLAB操作的最主要窗口。

在该窗内,可键入各种送给MATLAB运作的指令、函数、表达式;显示除图形外的所有运算结果;运行错误时,给出相关的出错提示。

当前目录浏览器在该浏览器中,展示着子目录、M文件、MAT文件和MDL文件等。

对该界面上的M文件,可直接进行复制、编辑和运行;界面上的MAT数据文件,可直接送入MATLAB工作内存。

此外,对该界面上的子目录,可进行Windows平台的各种标准操作。

此外,在当前目录浏览器正下方,还有一个“文件概况窗”,该窗显示所选文件的概况信息。

工作空间浏览器该浏览器默认位于当前目录浏览器的后台,罗列出MATLAB工作空间中所有的变量名、大小、字节数。

在该窗中,对可变量进行观察、图示、编辑、提取和保存。

历史指令窗该窗记录已经运行过的指令、文字都允许复制、重运行及用于产生M文件。

捷径(start)键引出通往本MATLAB所包含的各种组件、模块库、图形用户界面、帮助分类目录、演示算例等的捷径,以及向用户提供自建快捷操作的环境。

下面对几个常用菜单、窗口功能的使用进行介绍。

1.菜单栏2.MATLAB操作界面菜单提供了“file”、“Edit”、“View”、“Web”、“Window”和“Help”菜单。

3.(1)“File”菜单主要负责新建M文件、图形窗口、仿真模型和GUI设计模型,以及数据导入、路径和属性设置及退出等功能。

4.(2)Edit菜单的个菜单项与Windows的Edit菜单相似。

5.(3)View菜单6.(4)Web菜单7.(5)Windows菜单8.Windows菜单提供了在已打开的窗口之间切换的功能。

9.(6)Help菜单10.Help菜单提供了进入各类帮助系统的方法。

11.(7)开始菜单12.①上半部分是交互界面窗口的列表;13.②下半部分是常用的子菜单项,包括Desktop Tools,Web,Preferences,Help和Demos14.工具栏(如图)15.通用操作界面窗口16.(1)命令窗口(Command Window)17.在命令窗口中可键入各种Matlab的命令、函数和表达式,并显示除图形外的所有运算结果。

18.⑵命令行的显示方式19.①命令窗口中的每个命令行前会出现提示符“>>”。

20.②命令窗口内显示的字符和数值采用不同的颜色,在默认情况下,输入的命令、表达式以及计算结果等采用黑色字体。

21.③字符串采用紫红色;“if”“for”等关键词采用蓝色。

22.(3)命令窗口中命令行的编辑23.MATLAB命令窗口不仅可以对输入的命令进行编辑和运行,而且可以对已输入的命令进行回调、编辑和重运行。

24.(4)命令窗口的标点符号25.(5)数值计算结果的显示格式及设置26.①显示默认格式为:当数值为整数,以整数显示;当数值为实数,以小数后四位的精度近似显示,即以“短”格式显示;如果数值的有效数字超出了这一范围,则以科学记数法显示结果。

27.②显示格式设置:选择菜单“File”“Preferences”,则会出现参数设置对话框。

28.历史命令窗口(Command History)29.当前目录浏览器窗口(Current Directory Browser)30.(1)当前目录的设置31.(2)文件详细列表的使用32.(3)M或MAT文件描述区33.工作空间浏览器窗口(Workspace Browser)34.(1)工作空间浏览器窗口用于显示所有MATLAB工作空间中的变量名、数据结构、类型、大小和字节数。

35.(2)可以对变量进行观察、编辑、提取和保存。

36.数组编辑窗口(Array Editor)37.(1)在“Numericformat”栏中改变变量的显式类型。

38.(2)在“Size”“By”栏中改变数组的大小。

39.(3)逐格修改数组中的元素值。

40.交互界面分类目录窗口(Launch Pad)41.M文件编辑/调试器窗口(Editor/Debugger)42.帮助导航/浏览器窗口(Help Navigator/Browser)43.单击工具栏的?图标;或选择菜单“View”“Help”;或选择菜单“Help”“MATLAB Help”都能出现帮助导航/浏览器窗口。

以上是MATLAB R2010b的软件界面和菜单描述典型使用示例:例:已知单位负反馈二阶系统的传递函数为G(s)=,试用Simulink求取其单位阶跃响应曲线。

解:对连续系统的传递函数仿真可以直接运用Continuous模块库中的Transfer Fcn模块,本例题需要用到的其他Simulink模块有Step模块、加法模块和示波器模块,建立该单位负反馈系统的仿真模型,如图1所示。

Transfer Fcn模块的参数设置如图2所示。

将仿真区间设置为【0-10】,执行Simulation start命令,得到仿真结果如图3所示。

相关文档
最新文档