数学模型_吕跃进_数学模型B试卷及参考答案

合集下载

2011年数学建模B题答案

2011年数学建模B题答案

load B1.txt %巡警站点号、横坐标、纵坐标(前三列)load B2.txt %起始点,末端位置号(两列)hzb=B1(:,2);%横坐标zzb=B1(:,3);%纵坐标start=B2(:,1);%起始位置fina=B2(:,2);%末端位置n=length(hzb);%坐标个数m=length(start);%起始点个数:含重复a=ones(n,n);%n阶矩阵b=10000.*a;%b为矩阵a的值乘上10000for i=1:m %每个始点出去x=start(i);y=fina(i);if y<=92s=((hzb(x)-hzb(y))^2+(zzb(x)-zzb(y))^2)^0.5;b(x,y)=s;b(y,x)=s;%双向图距离endendpath=zeros(n,20);%终点前一个路劲节点distance=b(:,1:20);%二十个站到其他点的最短距离u=0;mindis=10000;%最短距离初始为10000flag=1;s=zeros(n,1);for i=1:20s=0.*s;%每次清零flag=1;%bool型标量for j=1:nif distance(j,i)<10000path(j,i)=i;%若满足,就往下走endends(i)=1;for j=1:n% if flag==1mindis=10000;for k=1:nif s(k)==0 & distance(k,i)<mindisu=k;mindis=distance(k,i);%选择最小的赋给mindisendend% if mindis>30% flag=0;% ends(u)=1;for k=1:nif s(k)==0 & b(u,k)<10000 & distance(u,i)+b(u,k)<distance(k,i)distance(k,i)=distance(u,i)+b(u,k);path(k,i)=u; %选择最短路径endend% endendendfor i=1:20for j=1:nifdistance(j,i)<10000&fprintf(' %d %d %f,%d\n',i,j,distance(j,i),path(j,i));% fprintf('%d %d %f %d\n',i,j,distance(j,i),path(j,i));%fprintf('%f\n',distance(j,i)); %输出路径,始点,终点,及终点前一个结点endendend数学建模文章格式模版题目:明确题目意思一、摘要:500个字左右,包括模型的主要特点、建模方法和主要结果二、关键字:3-5个三.问题重述。

2010年下期《数学模型》考试试卷(A卷)参考答案

2010年下期《数学模型》考试试卷(A卷)参考答案

1、我们建立的“商人怎样安全过河”模型是( A )。

A.允许决策模型B.状态转移模型C.马氏链模型D.多步决策模型4、“公平合理的席位分配”模型中,以下说法错误的( D )。

A.参照惯例的席位分配结果是较合理的B.提出的相对不公平程度对席位分配有改进效果C. 席位分配一类问题的Q 值法是较公平的D.存在满足四个公平分配公理的分配方法 10、“层次分析模型”中成比对矩阵)(ij a A =如果满足如下( D )式,则称为一致阵。

A 、0>ij aB 、jiij a a 1=C 、11=∑=ni ijaD 、ik jk ij a a a =⋅二、填空题(2分/空×10空=20分)1、“商人怎样安全过河”模型中状态随决策变化的规律是k k k k d s s )1(1-+=+。

2、“公平的席位分配”模型中的Q 值法计算公式是)1(2+=i i i i n n p Q 。

7、“传染病模型”中SIS 模型是指被传染者康复以后,还有可能再次感染该传染病。

三、问答题(40分)1、请用简练的语言全面的描述数学建模的过程和数学模型的特点。

(10’)答:(1)建模过程:模型准备→模型假设→模型构成→模型求解→模型检验→模型应用。

(2)数学模型的特点:逼真性和可行性;渐进性;强健性;可转移性;非预制性;条理性;技艺性;局限性;2、某家具厂生产桌子和椅子两种家具,桌子售价50元/个,椅子销售价格30元/个,生产桌子和椅子要求需要木工和油漆工两种工种。

生产一个桌子需要木工4小时,油漆工2小时。

生产一个椅子需要木工3小时,油漆工1小时。

该厂每个月可用木工工时为120小时,油漆工工时为50小时。

问该厂如何组织生产才能使每月的销售收入最大?(建立模型不计算)(10’) 解:(1)确定决策变量:x1=生产桌子的数量x2=生产椅子的数量 4分 (2)确定目标函数:家具厂的目标是销售收入最大max z=50x1+30x2(3)确定约束条件:4x1+3x2<120(木工工时限制) 2x1+x2>50(油漆工工时限制)(4)建立的数学模型为:max S=50x1+30x2 s.t. 4x1+3x2<120 2x1+ x2>50 x1, x2 >03、有四个工人,要分别指派他们完成四项不同的工作,每人做各项工作所消耗的时间如下表所示,问应如何指派工作,才能使总的消耗时间为最少?(建立模型不计算)(10’) 解:令0,1,ij i j x i ⎧=⎨⎩指派第人完成第项工作不指折派第项工作目标函数:111231421222431323334414244min 1518212419231826171619192117Z x x x x x x x x x x x x x x =++++++++++++约束条件:1121314112223242132333431424344411..11x x x x x x x x st x x x x x x x x +++=⎧⎪+++=⎪⎨+++=⎪⎪+++=⎩4、结合自身的实际情况,谈谈数学建模的方法和自身能力的培训。

(完整版)数学建模模拟试题及答案

(完整版)数学建模模拟试题及答案

数学建模模拟试题及答案一、填空题(每题 5 分,共 20 分)1.一个连通图能够一笔画出的充分必要条件是.2. 设银行的年利率为 0.2,则五年后的一百万元相当于现在的万元.3. 在夏季博览会上,商人预测每天冰淇淋销量N 将和下列因素有关:(1) 参加展览会的人数n; (2)气温T 超过10o C;(3)冰淇淋的售价p .由此建立的冰淇淋销量的比例模型应为 .4. 如图一是一个邮路,邮递员从邮局 A 出发走遍所有 A长方形街路后再返回邮局 .若每个小长方形街路的边长横向均为 1km,纵向均为 2km,则他至少要走 km .二、分析判断题(每题 10 分,共 20 分)1. 有一大堆油腻的盘子和一盆热的洗涤剂水。

为尽量图一多洗干净盘子,有哪些因素应予以考虑?试至少列出四种。

2. 某种疾病每年新发生 1000 例,患者中有一半当年可治愈 .若 2000 年底时有1200 个病人,到 2005 年将会出现什么结果?有人说,无论多少年过去,患者人数只是趋向 2000 人,但不会达到 2000 人,试判断这个说法的正确性 .三、计算题(每题 20 分,共 40 分)1. 某工厂计划用两种原材料A, B 生产甲、乙两种产品,两种原材料的最高供应量依次为 22 和 20 个单位;每单位产品甲需用两种原材料依次为 1 、1 个单位,产值为 3 (百元);乙的需要量依次为 3、1 个单位,产值为 9 (百元);又根据市场预测,产品乙的市场需求量最多为 6 个单位,而甲、乙两种产品的需求比不超过 5: 2,试建立线性规划模型以求一个生产方案,使得总产值达到最大,并由此回答:(1) 最优生产方案是否具有可选择余地?若有请至少给出两个,否则说明理由 .(2) 原材料的利用情况 .2. 两个水厂A1 , A2将自来水供应三个小区B1 , B2 , B3 , 每天各水厂的供应量与各小区的需求量以及各水厂调运到各小区的供水单价见下表 .试安排供水方案,使总供水费最小?四、 综合应用题(本题 20 分)某水库建有 10 个泄洪闸,现在水库的水位已经超过安全线,上游河水还在不断地流入 水库.为了防洪,须调节泄洪速度 .经测算,若打开一个泄洪闸, 30 个小时水位降至安全线, 若打开两个泄洪闸, 10 个小时水位降落至安全线 .现在,抗洪指挥部要求在 3 个小时内将水 位降至安全线以下,问至少要同时打开几个闸门?试组建数学模型给予解决 .注:本题要求按照五步建模法给出全过程 .小区 单价/元水厂A1A供应量 / t170B34B11 07 1B26数学建模 06 春试题模拟试题参考解答一、填空题(每题 5 分,共 20 分)1. 奇数顶点个数是 0 或 2;2. 约 40.1876 ;3. N = Kn(T10) / p, (T > 10 0 C), K 是比例常数; 4. 42.二、分析判断题(每题 10 分,共 20 分)1. 解: 问题与盘子、水和温度等因素直接相关,故有相关因素:盘子的油腻程度,盘子的温度,盘子的尺寸大小;洗涤剂水的温度、浓度; 刷洗地点 的温度等.注:列出的因素不足四个,每缺一个扣 2.5 分。

数学模型课后答案新编完整版

数学模型课后答案新编完整版

数学模型课后答案新编 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】《数学模型》作业答案第二章(1)(2012年12月21日)1.学校共1000名学生,235人住在A 宿舍,333人住在B 宿舍,432人住在C宿舍.学生们要组织一个10人的委员会,试用下列办法分配各宿舍的委员数: (1). 按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大者; (2). §1中的Q 值方法;(3).d ’Hondt 方法:将A 、B 、C 各宿舍的人数用正整数n=1,2,3,……相除,其商数如下表: 将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中A 、B 、C 行有横线的数分别为2,3,5,这就是3个宿舍分配的席位.你能解释这种方法的道理吗?如果委员会从10个人增至15人,用以上3种方法再分配名额,将3种方法两次分配的结果列表比较. 解:先考虑N=10的分配方案, 方法一(按比例分配)分配结果为: 4 ,3 ,3321===n n n 方法二(Q 值方法)9个席位的分配结果(可用按比例分配)为: 第10个席位:计算Q 值为3Q 最大,第10个席位应给C.分配结果为 5 ,3 ,2321===n n n方法三(d ’Hondt 方法)此方法的分配结果为:5 ,3 ,2321===n n n此方法的道理是:记i p 和i n 为各宿舍的人数和席位(i=1,2,3代表A 、B 、C 宿舍).i i n p 是每席位代表的人数,取,,2,1 =i n 从而得到的i i n p中选较大者,可使对所有的,i iin p 尽量接近. 再考虑15=N 的分配方案,类似地可得名额分配结果.现将3种方法两次分配的结果列表如下:2.试用微积分方法,建立录像带记数器读数n 与转过时间的数学模型.解: 设录像带记数器读数为n 时,录像带转过时间为t.其模型的假设见课本.考虑t 到t t ∆+时间内录像带缠绕在右轮盘上的长度,可得,2)(kdn wkn r vdt π+=两边积分,得 ⎰⎰+=ntdn wkn r k vdt 0)(2π《数学模型》作业解答第三章1(2008年10月14日)1. 在节存贮模型的总费用中增加购买货物本身的费用,重新确定最优订货周期和订货批量.证明在不允许缺货模型中结果与原来的一样,而在允许缺货模型中最优订货周期和订货批量都比原来结果减少.解:设购买单位重量货物的费用为k ,其它假设及符号约定同课本.01 对于不允许缺货模型,每天平均费用为:令0=dTdC, 解得 r c c T 21*2= 由rT Q = , 得212c rc rT Q ==** 与不考虑购货费的结果比较,T、Q的最优结果没有变.02 对于允许缺货模型,每天平均费用为:令⎪⎪⎩⎪⎪⎨⎧=∂∂=∂∂00QC TC, 得到驻点:与不考虑购货费的结果比较,T、Q的最优结果减少.2.建立不允许缺货的生产销售存贮模型.设生产速率为常数k ,销售速率为常数r ,r k >.在每个生产周期T内,开始的一段时间()00T t <<一边生产一边销售,后来的一段时间)(0T t T <<只销售不生产,画出贮存量)(t g 的图形.设每次生产准备费为1c ,单位时间每件产品贮存费为2c ,以总费用最小为目标确定最优生产周期,讨论r k >>和r k ≈的情况. 解:由题意可得贮存量)(t g 的图形如下:又 ∴ T =0于是不允许缺货的情况下,生产销售的总费用(单位时间内)为k r k r c Tc dT dC 2)(221-+-=. 0=dT dC令, 得)(221r k r c k c T -=* 易得函数处在*T T C )(取得最小值,即最优周期为: )(221r k r c kc T -=*rc c ,T r k 212≈>>*时当 . 相当于不考虑生产的情况. ∞→≈*,Tr k 时当 . 此时产量与销量相抵消,无法形成贮存量.第三章2(2008年10月16日)3.在节森林救火模型中,如果考虑消防队员的灭火速度λ与开始救火时的火势b 有关,试假设一个合理的函数关系,重新求解模型.解:考虑灭火速度λ与火势b 有关,可知火势b 越大,灭火速度λ将减小,我们作如下假设: 1)(+=b kb λ, 分母∞→→+λ时是防止中的011b b 而加的.总费用函数()x c b kx b x t c b kx b t c t c x C 3122121211)1()(2)1(2+--++--++=βββββββ最优解为 []k b k c b b b c kbc x ββ)1(2)1()1(223221+++++=5.在考虑最优价格问题时设销售期为T ,由于商品的损耗,成本q 随时间增长,设t q t q β+=0)(,为增长率β.又设单位时间的销售量为)(为价格p bp a x -=.今将销售期分为T t T T t <<<<220和两段,每段的价格固定,记作21,p p .求21,p p 的最优值,使销售期内的总利润最大.如果要求销售期T 内的总售量为0Q ,再求21,p p 的最优值.解:按分段价格,单位时间内的销售量为 又 t q t q β+=0)(.于是总利润为=22)(022)(20222011T T t t q t p bp a T t t q t p bp a ⎥⎦⎤⎢⎣⎡---+⎥⎦⎤⎢⎣⎡---ββ=)8322)(()822)((20222011T t q T p bp a T T q T p bp a ββ---+--- 0,021=∂∂=∂∂p p 令, 得到最优价格为: 在销售期T 内的总销量为 于是得到如下极值问题: 利用拉格朗日乘数法,解得: 即为21,p p 的最优值.第三章3(2008年10月21日)6. 某厂每天需要角钢100吨,不允许缺货.目前每30天定购一次,每次定购的费用为2500元.每天每吨角钢的贮存费为元.假设当贮存量降到零时订货立即到达.问是否应改变订货策略?改变后能节约多少费用?解:已知:每天角钢的需要量r=100(吨);每次订货费1c =2500(元); 每天每吨角钢的贮存费2c =(元).又现在的订货周期T 0=30(天) 根据不允许缺货的贮存模型:kr rT c T c T C ++=2121)( 得:k T TT C 10092500)(++= 令0=dTdC, 解得:35092500*==T 由实际意义知:当350*=T (即订货周期为350)时,总费用将最小. 又k T C 10035095025003)(*+⨯+⨯==300+100kk T C 100309302500)(0+⨯+==353.33+100k)(0T C -)(*T C =(+100k )-(300+100k )32=53.33.故应改变订货策略.改变后的订货策略(周期)为T *=350,能节约费用约53.33元.《数学模型》作业解答第四章(2008年10月28日)1. 某厂生产甲、乙两种产品,一件甲产品用A 原料1千克, B 原料5千克;一件乙产品用A 原料2千克, B 原料4千克.现有A 原料20千克, B 原料70千克.甲、乙产品每件售价分别为20元和30元.问如何安排生产使收入最大? 解:设安排生产甲产品x 件,乙产品y 件,相应的利润为S 则此问题的数学模型为:max S=20x+30y. ⎪⎩⎪⎨⎧∈≥≤+≤+Z y x y x y x y x ,,0,7045202这是一个整线性规划问题,现用图解法进行求解可行域为:由直线1l :x+2y=20, 2l :5x+4y =70S 取最大值.由⎩⎨⎧=+=+7045202y x y x 解得⎩⎨⎧==510y x此时 m ax S =2053010⨯+⨯=350(元)13百斤.试问这两种货物各托运多少箱,使得所获利润最大,并求出最大利润.解:设甲货物、乙货物的托运箱数分别为1x ,2x ,所获利润为z .则问题的数学模型可表示为这是一个整线性规划问题. 用图解法求解. 可行域为:由直线1352:212=+x x l 及0,021==x x 组成直线 c x x l =+211020:在此凸四边形区域内平行移动.易知:当l 过l 1与l 2的交点时,z 取最大值由⎩⎨⎧=+=+135224452121x x x x 解得 ⎩⎨⎧==1421x x90110420max =⨯+⨯=z .3.某微波炉生产企业计划在下季度生产甲、乙两种型号的微波炉.已知每台甲型、乙型微波炉的销售利润分别为3和2个单位.而生产一台甲型、乙型微波炉所耗原料分别为2和3个单位,所需工时分别为4和2个单位.若允许使用原料为100个单位,工时为120个单位,且甲型、乙型微波炉产量分别不低于6台和12台.试建立一个数学模型,确定生产甲型、乙型微波炉的台数,使获利润最大.并求出最大利润.解:设安排生产甲型微波炉x 件,乙型微波炉y 件,相应的利润为S. 则此问题的数学模型为:max S=3x +2y. ⎪⎩⎪⎨⎧∈≥≥≤+≤+Z y x y x y x y x ,,12,61202410032这是一个整线性规划问题 用图解法进行求解可行域为:由直线1l :2x+3y=100, 2l :4x+2y =120 及x=6,y=12组成的凸四边形区域.直线l :3x+2y=c 在此凸四边形区域内平行移动. 易知:当l 过1l 与2l 的交点时, S 取最大值.由⎩⎨⎧=+=+1202410032y x y x 解得⎩⎨⎧==2020y x .m ax S =320220⨯+⨯=100.《数学模型》作业解答第五章1(2008年11月12日)1.对于节传染病的SIR 模型,证明: (1)若处最大先增加,在则σσ1)(,10=s t i s ,然后减少并趋于零;)(t s 单调减少至.∞s (2).)()(,10∞s t s t i s 单调减少至单调减少并趋于零,则若σ解:传染病的SIR 模型(14)可写成(1).s s(t) .s(t) .100≤∴单调减少由若σs (2)().00.1-s ,1,1dtdit s s σσσ从而则若 4.在节正规战争模型(3)中,设乙方与甲方战斗有效系数之比为.4=ba初始兵力00y x 与相同.(1) 问乙方取胜时的剩余兵力是多少,乙方取胜的时间如何确定.(2) 若甲方在战斗开始后有后备部队以不变的速率r 增援,重新建立模型,讨论如何判断双方的胜负.解:用()()t y t x ,表示甲、乙交战双方时刻t 的士兵人数,则正规战争模型可近似表示为:现求(1)的解: (1)的系数矩阵为⎥⎦⎤⎢⎣⎡--=00b a A ()()()tab tab eC e C t y t x -⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛∴1212121的通解为.再由初始条件,得又由().1aybx dx dy =可得其解为 ()3 ,202022 bx ay k k bx ay -==-而 (1) ()().231000202011y a b y a bx ay akt y t x =-=-===时,当 即乙方取胜时的剩余兵力数为.230y 又令().0222,01100001=-⎪⎭⎫⎝⎛++⎪⎭⎫⎝⎛-=t ab t ab e y x ey x t x )得由(注意到000020022,1x y y x e y x t ab -+==得. .43ln ,3121bt e t ab =∴=∴ (2) 若甲方在战斗开始后有后备部队以不变的速率r 增援.则().,4rdy aydy bxdx bxr ay dy dx -=-+-=即得由 相轨线为,222k bx ry ay =--.222220.020k a r bx a r y a bx ry ay k =--⎪⎭⎫ ⎝⎛---=或 此相轨线比书图11中的轨线上移了.a r 乙方取胜的条件为.,0222020a r x a b a r y k +⎪⎭⎫ ⎝⎛- 亦即 第五章2(2008年11月14日)6. 模仿节建立的二室模型来建立一室模型(只有中心室),在快速静脉注射、恒速静脉滴注(持续时间为τ)和口服或肌肉注射3种给药方式下求解血药浓度,并画出血药浓度曲线的图形.解: 设给药速率为(),,0t f (1)快速静脉注射: ).0t k e V D-= (2)恒速静脉滴注(持续时间为τ): 设滴注速率为(),00,000==C k t f k ,则解得 (3) 口服或肌肉注射: ()(),解得)式节(见134.5010010t k e D k t f -= 3种情况下的血药浓度曲线如下:第五章3(2008年11月18日)8. 在节香烟过滤嘴模型中,(1) 设3.0,/50,08.0,02.0,20,80,80021=======a s mm b mm l mm l mg M νβ求./21Q Q Q 和(2) 若有一支不带过滤嘴的香烟,参数同上,比较全部吸完和只吸到1l 处的情况下,进入人体毒物量的区别.解)(857563.229102.07.050103.01508002.07.0502008.0/01/2毫克≈⎪⎪⎭⎫ ⎝⎛-⨯⨯⨯=⎪⎪⎭⎫ ⎝⎛-=⨯⨯-⨯---e e e e ba vaw Q v bl a vl β ()10/10==l M w 其中,(2) 对于一支不带过滤嘴的香烟,全部吸完的毒物量为⎪⎪⎭⎫⎝⎛-=-vbla eb a v aw Q '103‘ 只吸到1l 处就扔掉的情况下的毒物量为⎪⎪⎭⎫ ⎝⎛-=--vbl a v blee b a v aw Q 1'21'04 4.在节正规战争模型(3)中,设乙方与甲方战斗有效系数之比为.4=ba初始兵力00y x 与相同.(1) 问乙方取胜时的剩余兵力是多少,乙方取胜的时间如何确定.(2) 若甲方在战斗开始后有后备部队以不变的速率r 增援,重新建立模型,讨论如何判断双方的胜负.解:用()()t y t x ,表示甲、乙交战双方时刻t 的士兵人数,则正规战争模型可近似表示为:现求(1)的解: (1)的系数矩阵为⎥⎦⎤⎢⎣⎡--=00b a A()()()tab tab eC e C t y t x -⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛∴1212121的通解为.再由初始条件,得又由().1aybx dx dy =可得其解为 ()3 ,202022 bx ay k k bx ay -==-而 (1) ()().231000202011y a b y a bx ay akt y t x =-=-===时,当 即乙方取胜时的剩余兵力数为.230y 又令().0222,01100001=-⎪⎭⎫⎝⎛++⎪⎭⎫⎝⎛-=t ab t ab e y x ey x t x )得由(注意到000020022,1x y y x e y x t ab -+==得. .43ln ,3121bt e t ab =∴=∴ (2) 若甲方在战斗开始后有后备部队以不变的速率r 增援.则().,4rdy aydy bxdx bxr ay dy dx -=-+-=即得由 相轨线为,222k bx ry ay =-- .222220.02k a r bx a r y a bx ry ay k =--⎪⎭⎫ ⎝⎛---=或 此相轨线比书图11中的轨线上移了.a r 乙方取胜的条件为.,0222020a r x a b a r y k +⎪⎭⎫ ⎝⎛- 亦即 《数学模型》作业解答第六章(2008年11月20日)1.在节捕鱼模型中,如果渔场鱼量的自然增长仍服从Logistic 规律,而单位时间捕捞量为常数h .(1)分别就4/rN h >,4/rN h <,4/rN h =这3种情况讨论渔场鱼量方程的平衡点及其稳定状况.(2)如何获得最大持续产量,其结果与节的产量模型有何不同.解:设时刻t 的渔场中鱼的数量为()t x ,则由题设条件知:()t x 变化规律的数学模型为记h Nxrx x F --=)1()( (1).讨论渔场鱼量的平衡点及其稳定性: 由()0=x F ,得0)1(=--h Nxrx . 即()102=+-h rx x Nr )4(42Nhr r N rh r -=-=∆ , (1)的解为:2412,1N rNhN x -±=①当4/rN h >,0<∆,(1)无实根,此时无平衡点; ②当4/rN h =,0=∆,(1)有两个相等的实根,平衡点为20N x =. Nrxr N rx N x r x F 2)1()('-=--=,0)(0'=x F 不能断定其稳定性. 但0x x ∀ 及0x x 均有04)1()( rNN x rx x F --= ,即0 dtdx .∴0x 不稳定;③当4/rN h <,0>∆时,得到两个平衡点:2411N rNhN x --=, 2412N rNh N x -+=易知:21N x <, 22Nx > ,0)(1'>x F ,0)(2'<x F ∴平衡点1x 不稳定,平衡点2x 稳定.(2)最大持续产量的数学模型为即 )1(max Nxrx h -=,易得 2*0N x = 此时 4rNh =, 但2*0Nx =这个平衡点不稳定.这是与节的产量模型不同之处. 要获得最大持续产量,应使渔场鱼量2Nx >,且尽量接近2N ,但不能等于2N .2.与Logistic 模型不同的另一种描述种群增长规律的是Gompertz 模型:()xNrx t x ln'=.其中r 和N 的意义与Logistic 模型相同. 设渔场鱼量的自然增长服从这个模型,且单位时间捕捞量为Ex h =.讨论渔场鱼量的平衡点及其稳定性,求最大持续产量m h 及获得最大产量的捕捞强度m E 和渔场鱼量水平*0x .解:()t x 变化规律的数学模型为 记 Ex xNrx x F -=ln)( ① 令()0=x F ,得0ln =-Ex xNrx ∴r ENe x -=0,01=x .∴平衡点为1,0x x . 又 ()E r xNr x F --=ln',()()∞=<-=1'0',0x F r x F . ∴ 平衡点o x 是稳定的,而平衡点1x 不稳定.由前面的结果可得 h =得最大产量的捕捞强度r E m =.从而得到最大持续产量e rN h m /=,此时渔场鱼量水平eNx =*0. 3.设某渔场鱼量)(t x (时刻t 渔场中鱼的数量)的自然增长规律为:)1()(Nxrx dt t dx -= 其中r 为固有增长率,`N 为环境容许的最大鱼量. 而单位时间捕捞量为常数h . 10.求渔场鱼量的平衡点,并讨论其稳定性;20.试确定捕捞强度m E ,使渔场单位时间内具有最大持续产量m Q ,求此时渔场鱼量水平*0x .解:10.)(t x 变化规律的数学模型为h Nxrx dt t dx --=)1()( 记h N x rx x f --=)1()(,令 0)1(=--h N x rx ,即 02=+-h rx x Nr----(1))4(42Nhr r N rh r -=-=∆ , (1)的解为:2412,1N rNhN x -±=① 当0 ∆时,(1)无实根,此时无平衡点;② 当0=∆时,(1)有两个相等的实根,平衡点为20Nx =.Nrxr N rx N x r x f 2)1()('-=--= ,0)(0'=x f 不能断定其稳定性. 但0x x ∀ 及0x x 均有04)1()( rN N x rx x f --= ,即0 dt dx∴0x 不稳定;③ 当0 ∆时,得到两个平衡点:2411rNhN N x --=, 2412rNh N N x -+=易知 21N x, 22Nx ∴0)('1 x f , 0)('2 x f ∴平衡点1x 不稳定 ,平衡点2x 稳定.20.最大持续产量的数学模型为: ⎩⎨⎧=0)(..max x f t s h即 )1(max N x rx h -=, 易得 2*0N x = 此时 4rN h =,但2*0N x =这个平衡点不稳定.要获得最大持续产量,应使渔场鱼量2N x,且尽量接近2N ,但不能等于2N. 《数学模型》第七章作业(2008年12月4日)1.对于节蛛网模型讨论下列问题:(1)因为一个时段上市的商品不能立即售完,其数量也会影响到下一时段的价格,所以第1+k 时段的价格1+k y 由第1+k 和第k 时段的数量1+k x 和k x 决定,如果仍设1+k x 仍只取决于k y ,给出稳定平衡的条件,并与节的结果进行比较.2.已知某商品在k 时段的数量和价格分别为k x 和k y ,其中1个时段相当于商品的一个生产周期.设该商品的需求函数和供应函数分别为)(k k x f y =和)2(11-++=k k k y y g x .试建立关于商品数量的差分方程模型,并讨论稳定平衡条件. 3. 已知某商品在k 时段的数量和价格分别为k x 和k y ,其中1个时段相当于商品的一个生产周期.设该商品的需求函数和供应函数分别为)2(11kk k x x f y +=++和)(1k k y g x =+.试建立关于商品数量的差分方程模型,并讨论稳定平衡条件.《数学模型》作业解答第七章(2008年12月4日)2.对于节蛛网模型讨论下列问题:(1)因为一个时段上市的商品不能立即售完,其数量也会影响到下一时段的价格,所以第1+k 时段的价格1+k y 由第1+k 和第k 时段的数量1+k x 和k x 决定,如果仍设1+k x 仍只取决于k y ,给出稳定平衡的条件,并与节的结果进行比较.(2)若除了1+k y 由1+k x 和k x 决定之外,1+k x 也由前两个时段的价格k y 和1-k y 确定.试分析稳定平衡的条件是否还会放宽.解:(1)由题设条件可得需求函数、供应函数分别为: 在),(000y x P 点附近用直线来近似曲线h f ,,得到由(2)得 )3( )(0102 y y x x k k -=-++β (1)代入(3)得 )2(0102x x x x x kk k -+-=-++αβ 对应齐次方程的特征方程为 02 2=++αβαβλλ 特征根为48)(22,1αβαβαβλ-±-=当8≥αβ时,则有特征根在单位圆外,设8<αβ,则 即平衡稳定的条件为2 <αβ与207P 的结果一致.(2)此时需求函数、供应函数在),(000y x P 处附近的直线近似表达式分别为: 由(5)得,)( ) y y y β(y )x (x k k k 62010203 -+-=-+++ 将(4)代入(6),得对应齐次方程的特征方程为(7) 024 23 =+++αβαβλαβλλ 代数方程(7)无正实根,且42 ,αβαβ---, αβ不是(7)的根.设(7)的三个非零根分别为321,,λλλ,则 对(7)作变换:,12αβμλ-= 则其中 )6128(41 ),122(412233322αββαβαβααβ+-=-=q p 用卡丹公式:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+--+++-=+--+++-=+--+++-=33233223332233223323321)3()2(2)3()2(2)3()2(2)3()2(2)3()2(2)3()2(2p q q w p q q w p q q w p q q w p q q p q qμμμ 其中,231i w +-=求出321,,μμμ,从而得到321,,λλλ,于是得到所有特征根1<λ的条件. 2.已知某商品在k 时段的数量和价格分别为k x 和k y ,其中1个时段相当于商品的一个生产周期.设该商品的需求函数和供应函数分别为)(k k x f y =和)2(11-++=k k k y y g x .试建立关于商品数量的差分方程模型,并讨论稳定平衡条件. 解:已知商品的需求函数和供应函数分别为)(k k x f y =和)2(11-++=k k k y y g x . 设曲线f 和g 相交于点),(000y x P ,在点0P 附近可以用直线来近似表示曲线f 和g :0,)(00 ααx x y y k k --=- ----------------------(1)0,)2(0101 ββy y y x x k k k -+=--+ --------------------(2) 从上述两式中消去k y 可得,2,1,)1(22012=+=++++k x x x x k k k αβαβαβ, -----------(3) 上述(3)式是我们所建立的差分方程模型,且为二阶常系数线性非齐次差分方程. 为了寻求0P 点稳定平衡条件,我们考虑(3)对应的齐次差分方程的特征方程: 容易算出其特征根为48)(22,1αβαβαβλ-±-=---------------(4) 当αβ 8时,显然有448)(22αβαβαβαβλ----= -----------(5) 从而2λ 2,2λ在单位圆外.下面设8 αβ,由(5)式可以算出 22,1αβλ=要使特征根均在单位圆内,即 2,1λ1 ,必须 2 αβ.故0P 点稳定平衡条件为 2 αβ.3. 已知某商品在k 时段的数量和价格分别为k x 和k y ,其中1个时段相当于商品的一个生产周期.设该商品的需求函数和供应函数分别为)2(11kk k x x f y +=++和)(1k k y g x =+.试建立关于商品数量的差分方程模型,并讨论稳定平衡条件.解:已知商品的需求函数和供应函数分别为)2(11kk k x x f y +=++和)(1k k y g x =+. 设曲线f 和g 相交于点),(000y x P ,在点0P 附近可以用直线来近似表示曲线f 和g :0,)2(0101 ααx x x y y kk k -+-=-++ --------------------(1) 0,)(001 ββy y x x k k -=-+ --- ----------------(2)由(2)得 )(0102y y x x k k -=-++β --------------------(3) (1)代入(3),可得)2(0102x x x x x kk k -+-=-++αβ ∴ ,2,1,2220012=+=++++k x x x x x k k k αβαβαβ, --------------(4) 上述(4)式是我们所建立的差分方程模型,且为二阶常系数线性非齐次差分方程. 为了寻求0P 点稳定平衡条件,我们考虑(4)对应的齐次差分方程的特征方程: 容易算出其特征根为48)(22,1αβαβαβλ-±-=---------------(4) 当αβ≥8时,显然有448)(22αβαβαβαβλ-≤---= -----------(5) 从而2λ 2,2λ在单位圆外.下面设8 αβ,由(5)式可以算出 22,1αβλ=要使特征根均在单位圆内,即 2,1λ1 ,必须 2 αβ.故0P 点稳定平衡条件为 2 αβ.《数学模型》作业解答第八章(2008年12月9日)1.证明节层次分析模型中定义的n 阶一致阵A 有下列性质: (1) A 的秩为1,唯一非零特征根为n ; (2) A 的任一列向量都是对应于n 的特征向量. 证明: (1)由一致阵的定义知:A 满足ik jk ij a a a =⋅,n k j i ,,2,1,, =于是对于任意两列j i ,,有ij jkika a a =,()n k ,,2,1 =.即i 列与j 列对应分量成比例. 从而对A 作初等行变换可得:∆⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−−−→−00000011211 n b b b A 初等行变换 B 这里0≠B .()1=∴B 秩,从而秩()1=A再根据初等行变换与初等矩阵的关系知:存在一个可逆阵P ,使B PA =,于是∆⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡==--0000001121111 n c c c BP PAP C 易知C 的特征根为0,,0,11 c (只有一个非零特征根).又A ~C ,A ∴与C 有相同的特征根,从而A 的非零特征根为11c ,又 对于任意矩阵有()n a a a A Tr nn n =+++=+++==+++111221121 λλλ.故A 的唯一非零特征根为n .(2)对于A 的任一列向量()Tnk k k a a a ,,,21 ,()n k ,,2,1 =有 ()()T nk k k nk k k n j nkn j k n j k n j jk nj n j jk j n j jk j Tnk k k a a a n na na na a a a a a a a a a a a a A ,,,,,,2121112111121121 =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=∑∑∑∑∑∑======A ∴的任一列向量()Tnk k k a a a ,,,21 都是对应于n 的特征向量.7. 右下图是5位网球选手循环赛的结果,作为竞赛图,它是双向连通的吗?找出几条完全路径,用适当方法排出5位选手的名次. 解:这个5阶竞赛图是一个5阶有向Hamilton 图.其一个有向Hamilton 圈为332541→→→→→.所以此竞赛图是双向连通的. 等都是完全路径.此竞赛图的邻接矩阵为令()Te 1,1,1,1,1=,各级得分向量为()()T Ae S 3,2,1,2,21==, ()()()TAS S 5,4,2,3,412==, ()()()T AS S 9,7,4,6,723== , ()()()TAS S 17,13,7,11,1334== 由此得名次为5,1(4),2,3 (选手1和4名次相同).注:给5位网球选手排名次也可由计算A 的最大特征根λ和对应特征向量S 得到:8393.1=λ,()T S 2769.0,2137.0,1162.0,1794.0,2137.0=数学模型作业(12月16日)解答1.基于省时、收入、岸间商业、当地商业、建筑就业等五项因素,拟用层次分析法在建桥梁、修隧道、设渡轮这三个方案中选一个,画出目标为“越海方案的最优经济效益”的层次结构图.解:目标层准则层方案层2.问题要分成哪3答:层次分析法的基本步骤为:(1).建立层次结构模型;(2).构造成对比较阵;(3).计算权向量并做一致性检验;(4).计算组合权向量并做组合一致性检验. 对于一个即将毕业的大学生选择工作岗位的决策问题,用层次分析法一般可分解为目标层、准则层和方案层这3个层次. 目标层是选择工作岗位,方案层是工作岗位1、工作岗位2、工作岗位3等,准则层一般为贡献、收入、发展、声誉、关系、位置等.3.用层次分析法时,一般可将决策问题分解成哪3个层次?试给出一致性指标的定义以及n 阶正负反阵A 为一致阵的充要条件.答:用层次分析法时,一般可将决策问题分解为目标层、准则层和方案层这3个层次; 一致性指标的定义为:1--=n nCI λ.n 阶正互反阵A 是一致阵的充要条件为:A 的最大特征根λ=n .第九章(2008年12月18日)1.在1.9节传送带效率模型中,设工人数n 固定不变.若想提高传送带效率D,一种简单的方法是增加一个周期内通过工作台的钩子数m ,比如增加一倍,其它条件不变.另一种方法是在原来放置一只钩子的地方放置两只钩子,其它条件不变,于是每个工人在任何时刻可以同时触到两只钩子,只要其中一只是空的,他就可以挂上产品,这种办法用的钩子数量与第一种办法一样.试推导这种情况下传送带效率的公式,从数量关系上说明这种办法比第一种办法好.解:两种情况的钩子数均为m 2.第一种办法是m 2个位置,单钩放置m 2个钩子;第二种办法是m 个位置,成对放置m 2个钩子.① 由1.9节的传送带效率公式,第一种办法的效率公式为当mn 2较小,1 n 时,有 E D -=1 , m n E 4≈ ② 下面推导第二种办法的传送带效率公式:对于m 个位置,每个位置放置的两只钩子称为一个钩对,考虑一个周期内通过的m 个钩对.任一只钩对被一名工人接触到的概率是m1; 任一只钩对不被一名工人接触到的概率是m11-; 记m q m p 11,1-==.由工人生产的独立性及事件的互不相容性.得,任一钩对为空的概率为n q ,其空钩的数为m 2;任一钩对上只挂上1件产品的概率为1-n npq ,其空钩数为m .所以一个周期内通过的m 2个钩子中,空钩的平均数为于是带走产品的平均数是 ()122-+-n n npq q m m ,未带走产品的平均数是 ()()122-+--n n npq q m m n )∴此时传送带效率公式为③ 近似效率公式:由于 ()()()321621121111m n n n m n n m n m n----+-≈⎪⎭⎫ ⎝⎛- 当1 n 时,并令'1'D E -=,则 226'm n E ≈ ④ 两种办法的比较:由上知:mn E 4≈,226'm n E ≈∴ m n E E 32/'=,当n m 时,132 mn , ∴ E E '. 所以第二种办法比第一种办法好.《数学模型》作业解答第九章(2008年12月23日)一报童每天从邮局订购一种报纸,沿街叫卖.已知每100份报纸报童全部卖出可获利7元.如果当天卖不掉,第二天削价可以全部卖出,但报童每100份报纸要赔4元.报童每天售出的报纸数r 是一随机变量,其概率分布如下表:试问报童每天订购多少份报纸最佳(订购量必须是100的倍数)?解:设每天订购n 百份纸,则收益函数为收益的期望值为G(n) = ∑=-n r r P n r 0)()411(+∑∞+=1)(7n r r P n现分别求出 n =5,4,3,2,1,0时的收益期望值.G(0)=0;G(1)=4-×+7×+7×(+++)=;G(2)= (05.08⨯-25.0141.03⨯+⨯+))1.015.035.0(14++⨯+8.11=;G(3)=(05.012⨯-35.02125.0101.01⨯+⨯+⨯-))1.015.0(21+⨯+4.14=G(4)=(05.016⨯-15.02835.01725.061.05⨯+⨯+⨯+⨯-)1.028⨯+15.13=G(5)=05.020⨯-1.03515.02435.01325.021.09⨯+⨯+⨯+⨯+⨯- 25.10=当报童每天订300份时,收益的期望值最大.数模复习资料第一章1. 原型与模型原型就是实际对象.模型就是原型的替代物.所谓模型, 按北京师范大学刘来福教授的观点:模型就是人们为一定的目的对原型进行的一个抽象.如航空模型、城市交通模型等.模型⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧数学模型如地图、电路图符号模型如某一操作思维模型抽象模型如某一试验装置物理模型如玩具、照片等直观模型形象模型 2. 数学模型 对某一实际问题应用数学语言和方法,通过抽象、简化、假设等对这一实际问题近似刻划所得的数学结构,称为此实际问题的一个数学模型. 例如力学中着名的牛顿第二定律使用公式22dt x d m F =来描述受力物体的运动规律就是一个成功的数学模型.或又如描述人口()t N 随时间t 自由增长过程的微分方程()()t rN dtt dN =. 3. 数学建模所谓数学建模是指根据需要针对实际问题组建数学模型的过程.更具体地说,数学建模是指对于现实世界的某一特定系统或特定问题,为了一个特定的目的,运用数学的语言和方法,通过抽象和简化,建立一个近似描述这个系统或问题的数学结构(数学模型),运用适当的数学工具以及计算机技术来解模型,最后将其结果接受实际的检验,并反复修改和完善.数学建模过程流程图为:4.数学建模的步骤依次为:模型准备、模型假设、模型构成、模型求解、模型分析、模型检验、模型应用5.数学模型的分类数学模型可以按照不同的方式分类,常见的有:a. 按模型的应用领域分类 数学模型 ⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧再生资源利用模型水资源模型城镇规划模型生态模型环境模型(污染模型)交通模型人口模型b. 按建模的数学方法分类数学模型 ⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧规划论模型概率模型组合数学模型图论模型微分方程模型几何模型初等数学模型c. 按建模目的来分类 数学模型 ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧控制模型决策模型优化模型预报模型分析模型描述模型 d.层次分析法的基本步骤:1.建立层次结构模型2.构造成对比较阵3.计算权向量并作一致性检验4.计算组合权向量并作组合一致性检验阶正互反正A 是一致阵的充要条件为A 的最大特征值为nf.正互反阵最大特征根和特征向量的实用算法:幂法、和法、根法4.在“椅子摆放问题”的假设条件中,将四脚的连线呈正方形改为呈长方形,其余条件不变.试构造模型并求解.解:设椅子四脚连线呈长方形ABCD. AB 与CD 的对称轴为x 轴,用中心点的转角θ表示椅子的位置.将相邻两脚A 、B 与地面距离之和记为)(θf ;C 、D 与地面距离之和记为)(θg .并旋转0180.于是,设,0)0(,0)0(=g f 就得到()()0,0=ππf g .数学模型:设()()θθg f 、是[]π2,0上θ的非负连续函数.若[]πθ2,0∈∀,有()()0=θθg f ,且()()()()0,0,00,00==ππf g f g ,则[]πθ2,00∈∃,使()()000==θθg f .模型求解:令)()()(θθθg f h -= .就有,0)0( h 0)(0)()()( ππππg g f h -=-=.再由()()θθg f ,的连续性,得到()θh 是一个连续函数. 从而()θh 是[]π,0上的连续函数.由连续函数的介值定理:()πθ,00∈∃,使()00=θh .即()πθ,00∈∃,使()()000=-θθg f .又因为[]πθ2,0∈∀,有()()0=θθg f .故()()000==θθg f .9. (1)某甲早8:00从山下旅店出发,沿一条路径上山,下午5:00到达山顶并留宿.次日早8:00沿同一路径下山,下午5:00回到旅店.某乙说,甲必在两天中的同一时刻经过路径中的同一地点.为什么?(2)37支球队进行冠军争夺赛,每轮比赛中出场的每两支球队中的胜者及轮空者进入下一轮,直至比赛结束.问共需进行多少场比赛,共需进行多少轮比赛.如果是n 支球队比赛呢?解:(1)方法一:以时间t 为横坐标,以沿上山路径从山下旅店到山顶的行程x 为纵坐标,第一天的行程)(t x 可用曲线(I )表示 ,第二天的行程)(t x 可用曲线(I I )表示,(I )(I I )是连续曲线必有交点),(000d t p ,两天都在0t 时刻经过0d 地点方法二:设想有两个人,I ) 一人上山,一人下山,同一天同 时出发,沿同一路径,必定相遇I )t。

《数学模型》参考答案

《数学模型》参考答案

《 数学模型 》试卷参考答案一、填空题(4分/题×10题=40分)1~5:A C D D C 6~10:B D C A D二、填空题(2分/空×10空=20分)1、“商人怎样安全过河”模型中状态随决策变化的规律是k k k k d s s )1(1-+=+。

2、“公平的席位分配”模型中的Q 值法计算公式是)1(2+=i i i i n n p Q 。

3、“存贮模型”的平均每天的存贮费用计算公式为=)(T C 221rT c T c +,当=T rc c 212时,)(T C 最小。

4、LINGO 中,表示决策变量x 是0-1变量的语句是 @gin(x) 。

5、一阶自治微分方程()x f x =的平衡点是指满足 ()0f x = 的点,若 '()0f x < 成立,则其平衡点是稳定的。

6、市场经济中的蛛网模型中,只有当f K < g K 时,平衡点 0P 才是稳定的。

7、“传染病模型”中SIS 模型是指被传染者康复以后,还有可能再次感染该传染病。

8、传送系统的效率模型中,独立地考虑每个钩子被触到的概率为p ,则共有n 个钩子的系统中,一周期内被触到k 个钩子的概率为 (1)kk n k n C p p -- 。

三、问答题(40分)1、请用简练的语言全面的描述数学建模的过程和数学模型的特点。

(10’)答:(1)建模过程:模型准备→模型假设→模型构成→模型求解→模型检验→模型应用。

(2)数学模型的特点:逼真性和可行性;渐进性;强健性;可转移性;非预制性;条理性;技艺性;局限性;2、某家具厂生产桌子和椅子两种家具,桌子售价50元/个,椅子销售价格30元/个,生产桌子和椅子要求需要木工和油漆工两种工种。

生产一个桌子需要木工4小时,油漆工2小时。

生产一个椅子需要木工3小时,油漆工1小时。

该厂每个月可用木工工时为120小时,油漆工工时为50小时。

问该厂如何组织生产才能使每月的销售收入最大?(建立模型不计算)(10’) 解:(1)确定决策变量:x1=生产桌子的数量x2=生产椅子的数量 4分 (2)确定目标函数:家具厂的目标是销售收入最大max z=50x1+30x2(3)确定约束条件:4x1+3x2<120(木工工时限制) 2x1+x2>50(油漆工工时限制)(4)建立的数学模型为:max S=50x1+30x2 s.t. 4x1+3x2<120 2x1+ x2>50 x1, x2 >03、有四个工人,要分别指派他们完成四项不同的工作,每人做各项工作所消耗的时间如下表所示,问应如何指派工作,才能使总的消耗时间为最少?(建立模型不计算)(10’) 解:令0,1,ij i j x i ⎧=⎨⎩指派第人完成第项工作不指折派第项工作目标函数:111231421222431323334414244min 1518212419231826171619192117Z x x x x x x x x x x x x x x =++++++++++++约束条件:1121314112223242132333431424344411..11x x x x x x x x st x x x x x x x x +++=⎧⎪+++=⎪⎨+++=⎪⎪+++=⎩4、结合自身的实际情况,谈谈数学建模的方法和自身能力的培训。

《数学模型(第三版)》习题参考解答

《数学模型(第三版)》习题参考解答

《数学模型(第三版)》习题参考解答一、选择题(一)、单项选择1、数学教学就是数学活动的教学,就是师生之间、学生之间(3)的过程。

①交往互动②共同发展③交往互动与共同发展2、教师必须积极主动利用各种教学资源,创造性地采用教材,学会(2)。

①教教材②用教材教3、算法多样化属学生群体,(2)每名学生把各种算法都学会。

①要求②不要求4、新课程的核心理念就是(3)①联系生活学数学②培养学习数学的爱好③一切为了每一位学生的发展5、根据《数学课程标准》的理念,解决问题的教学必须横跨于数学课程的全部内容中,不再单独发生(3)的教学。

①概念②计算③应用题6、“三维目标”就是指科学知识与技能、(2)、情感态度与价值观。

①数学思考②过程与方法③解决问题7、《数学课程标准》中采用了“经历(体会)、体验(体会)、积极探索”等刻画数学活动水平的(1)的动词。

①过程性目标②知识技能目标8、创建蜕变记录就是学生积极开展(3)的一个关键方式,它能充分反映出来学生发展与进步的历程。

①自我评价②相互评价③多样评价9、学生的数学自学活动应就是一个生动活泼的、主动的和(2)的过程。

①单一②富有个性③被动10、“用数学”的含义就是(2)①用数学学习②用所学数学知识解决问题③了解生活数学11、以下现象中,(d)就是确认的。

a、后天下雪b、明天有人走路c、天天都有人出生d、地球天天都在转动1 2、《标准》精心安排了(b)个自学领域。

a)三个 b)四个 c)五个 d)不确定13、教师由“教书匠”转型为“教育家”的主要条件就是(d)a、坚持学习课程理论和教学理论b、认真备课,认真上课c、经常编写教育教学论文d、以研究者的眼光校对和分析教学理论与教学实践中的各种问题,对自身的行为进行反思14、崭新课程标准通盘考虑了九年的课程内容,将义务教育阶段的数学课程分成(b)个阶段。

a)两个 b)三个 c)四个 d)五个15、以下观点不恰当的就是(d)a)《标准》并不规定内容的呈现顺序和形式b)《标准》倡导以“问题情境——创建模型——表述、应用领域与开拓”的基本模式呈现出科学知识内容c)《标准》努力体现义务教育的普及性、基础性和发展性d)年全国教育工作会议后,制定了中小学各学科的“教学大纲”,以逐步替代原来的“课程标(二)、多项选择1、义务教育阶段的数学课程应当注重彰显(acd),并使数学教育面向全体学生。

2018-2019-数学模型答案word版本 (15页)

2018-2019-数学模型答案word版本 (15页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==数学模型答案篇一:《数学模型》试题及参考答案201X-201X学年第2学期《数学建模》试卷专业班级姓名分组号与学号开课系室数学与计算科学学院考试日期 201X 年7月数学建模试卷(1007A)一(10)(1)简述数学模型的概念,分析数学模型与数学建模的关系。

(2)建立数学模型的一般方法是什么?在建模中如何应用这些方法,结合实例加以说明。

二(10分)、(1).简述数学建模的一般步骤,分析每个步骤的主要内容和注意事项。

(2)简述数学模型的表现形态,并举例说明。

第一页三(10分)、(1)简述合理分配席位的Q-值方法,包括方法的具体实施过程,简述分配席位的理想化原则。

(2)建立录像机记数器读数与录像带转过时间之间的关系模型,包括模型假设与模型建立全过程。

四(15分)(1)建立不允许缺货情况下的存储模型,确定订货周期和订货量(包括问题叙述,模型假设和求解过程).(2)建立不允许缺货的生产销售存贮模型.设生产速率为常数k,销售速率为常数r,k?r.在每个生产周期 T内,开始的一段时间(0?t?T0)一边生产一边销售,后来的一段时间(T0?t?T)只销售不生产.设每次生产开工费为c1,单位时间每件产品贮存费为c2,(a)求出存储量q(t)的表示式并画出示意图。

(2)以总费用最小为准则确定最优周期T,讨论k??r的情况.第二页五(15分)、(1)建立传染病传播的SIS模型并求解(简述假设条件和求解过程),(2)建立SIR模型,并用相平面方法求解,在相平面上画出相轨线并进行分析。

六(15分)(1)建立一般的战争模型,分析各项所表示的含义。

(2)在假设x0?y0,b?9a条件下对正规战争模型(忽略增援和非战斗减员)进行建模求解,确定战争结局和结束时间。

第三页??rxln七(15分)设渔场鱼量的自然增长服从模型xh?ExN,又单位时间捕捞量为x.讨论渔场鱼量的平衡点及其稳定性,求最大持续产量hm及获得最大产量的捕捞强度Em和渔场鱼量水平x0.八(10分)假设商品价格yk和供应量xk满足差分方程x?x??yk?1?y0???(k?1k?x0),??0?2???0?xk?1?x0??(yk?y0)求差分方程的平衡点,推导稳定条件第四页篇二:数学模型(第四版)课后详细答案数学模型作业六道题作业一1.P56.8一垂钓俱乐部鼓励垂钓者将钓上的鱼放生,打算按照放生的鱼的重量给予奖励,俱乐部只准备了一把软尺用于测量,请你设计按照测量的长度估计鱼的重量的方法。

最新数学模型(数学建模)期末考试试题及答案 详解(1)

最新数学模型(数学建模)期末考试试题及答案 详解(1)

)t的变化情2、在§6.1捕鱼业的持续收获的效益模型中,若单位捕捞强度的费用为捕捞强度E 的减函数, 即)0,0(,>>-=b a bE a c ,请问如何达到最大经济效益?三、简答题(本题满分16分,每小题8分)1、在§9.3 随机存储策略中,请用图解法说明为什么s 是方程)()(0S I c x I +=的最小正根。

2、请结合自身特点谈一下如何培养数学建模的能力?四、(本题满分20分)某中学有三个年级共1000名学生,一年级有219人,二年级有316人,三年级有465人。

现要选20名校级优秀学生,请用下列办(1)按比例加惯例的方法;(2)Q 值法。

另外如果校级优秀学21个,重新进行分配,并按照席位分配的理想化准则分析分配结果。

五、(本题满分16分)大学生毕业生小李为选择就业岗位建立了层次分析模型,影响就业的因素考虑了收入情况、发展空间、社会声誉三个方面,有三个业岗位可供选择。

层次结构图如图,已知准则层对目标层的成对比较矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=12/15/1213/1531,方案层对准则层的成对比较矩阵分别为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1272/1147/14/111B,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=13/17/1313/17312,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=12/16/1214/16413B。

选择就业岗位收入发展声誉岗位1 岗位2 岗位3六、(本题满分16分)某保险公司欲开发一种人寿保险,投保人需要每年缴纳一定数的额保险费,如果投保人某年未按时缴纳保费则视为保险合同终止(退保)。

保险公司需要对投保人的健康、疾病、死亡和退保的情况作出评估,从而制定合适的投保金额和理赔金额。

各种状态间相互转移的情况和概率如图。

试建立马氏链模型分析在投保人投保时分别为健康或疾病状态下,平均需要经过多少年投保人就会出现退保或死亡的情况,以及出现每种情况的概率各是多少?0.608/09学年 II 学期《数学模型》期末考试A 试卷解答16分,每小题8分) 1)得vt m m mr =++2)1(22πωπ, 。

数学模型(第三版)课后答案

数学模型(第三版)课后答案

T*
2c1 k
c2r ( k - r )
(3 分)
① 当 k r 时,得 k r k, 则T *
2c1k
2c1
c2 rk
c2 r
( 1 分)
② 当 k r 时,得 k r 0,则T *
2c1k c2r (k r )
(1 分)
八 、某公司有三个工厂生产某种商品并运往四个调拨站。工厂 1,2,3 每月分别生 产 12、 17、11 批商品,而每一个调拨站每月均需接受 10 批商品。各厂至各调拨站 的运输距离 (公里) 如下表所示。 已知每批商品的运费为 100 元加上每公里 0.50 元。 问应如何调运使总运费最少?
由( * )式可得 f l 2v2 4 l 2 v2
0, 为未定函数 1, 2 , 3 , 其中 4
(* ) 1 , 2, 3 , 为未定函数 。3 分)
六、 建立不允许缺货的存储模型:设生产能力无限,一次性的订货费为
c1 元,每天
每吨货物的储存费为 c2 元,每天货物的需要量为 r ,确定最佳订货周期 T* 和每次订
7
3+3+2+2+2
12
A7
4 13 16 10 19 7
2+2+2+2+2
10
(4 分)
从以上的表格可以看出各参赛队的每两场比赛之间的休息场次是比较均匀的。 (2 分)
三、 假设人口的增长服从这样的规律 : t 时刻的人口为 x(t) , t 时刻的单位时间的增量
与 xm x(t ) 成正比 ( 其中的 xm 为最大人口容量 ), 试建立模型求解并作出解的图形 .
3
xij 10, j 1,2,3,4

数学模型试题及答案解析

数学模型试题及答案解析

数学模型试题及答案解析一、单项选择题(每题3分,共30分)1. 以下哪个不是数学模型的特征?A. 抽象性B. 精确性C. 可验证性D. 复杂性答案:D2. 数学模型的建立通常不包括以下哪个步骤?A. 定义问题B. 收集数据C. 建立假设D. 验证结果答案:D3. 在数学建模中,以下哪个不是模型分析的方法?A. 定性分析B. 数值分析C. 图形分析D. 统计分析答案:D4. 数学模型的验证不包括以下哪项?A. 内部一致性检验B. 与已知结果比较C. 与实验数据比较D. 模型的优化答案:D5. 在数学建模中,以下哪个不是模型的类型?A. 确定性模型B. 随机模型C. 动态模型D. 静态模型答案:D6. 以下哪个是数学模型的典型应用领域?A. 经济学B. 物理学C. 生物学D. 所有以上答案:D7. 数学模型的建立过程中,以下哪个步骤是不必要的?A. 问题定义B. 假设建立C. 模型求解D. 模型展示答案:D8. 数学模型的分析中,以下哪个不是常用的工具?A. 微分方程B. 线性代数C. 概率论D. 量子力学答案:D9. 在数学建模中,以下哪个不是模型的评估标准?A. 准确性B. 可解释性C. 简洁性D. 复杂性答案:D10. 数学模型的建立过程中,以下哪个步骤是至关重要的?A. 问题定义B. 数据收集C. 模型求解D. 模型验证答案:A二、多项选择题(每题5分,共20分)11. 数学模型的建立过程中,以下哪些步骤是必要的?A. 问题定义B. 数据收集C. 模型求解D. 模型验证答案:ABCD12. 数学模型的类型包括以下哪些?A. 确定性模型B. 随机模型C. 动态模型D. 静态模型答案:ABCD13. 数学模型的分析方法包括以下哪些?A. 定性分析B. 数值分析C. 图形分析D. 统计分析答案:ABCD14. 数学模型的验证包括以下哪些?A. 内部一致性检验B. 与已知结果比较C. 与实验数据比较D. 模型的优化答案:ABC三、填空题(每题4分,共20分)15. 数学模型的建立通常包括定义问题、______、建立假设和模型求解四个步骤。

数学建模习题及答案课后习题(2020年7月整理).pdf

数学建模习题及答案课后习题(2020年7月整理).pdf

+
1
图1
图2
列数(按图 2 第 1 行计数)n 满足:若[b]为奇数,则各行圆盘数相同为([b]-1)/2;若
[b]为偶数,则奇数行圆盘数为[b]/2,偶数行圆盘数为[b]/2-1。
圆盘总数为 N 2
=
m([b] −1) / 2 (1) m([b] −1) / 2 + 1/ 2 (2)
其中(1)为:m 为偶数。(2)为:m 为奇数,[b]为偶数。
S l 2 ,所以饲养食物量 w l 2 。
7. 假设举重比赛成绩 y 与运动员肌肉的截面积 s 成正比,而截面积 s l 2 ( l 是某特征
尺寸),体重 w l 3 ,于是 y w2 / 3 。
用举重总成绩检验这个模型,结果如下图 3;如果用举重总成绩拟合 y w ,可得
4
=0.57,结果如下图 4。
(1)max f = 3x1+5x2 + 7x3
x1 + 2x2 − 6x3 8
s.t
35xx11
+ +
x2 + 8x3 4x2 = 12
20
x1, x2 0
6
n
(2) max f = c j x j
j =1
n
s.t
j
=1
aij
x
j
=
bi
(i = 1,2,, m)
x j 0 ( j = 1,2,, n)
(i) f (x*) 1 b 3
当 b 3 时, 平衡点 x* = 1− 1 不稳定; b
(ii) f (x*) 1 1 b 3 当1 b 3时, 平衡点 x* = 1− 1 不稳定. b
第三部分 课后习题

数学建模考试试题及答案.doc

数学建模考试试题及答案.doc

数学建模及应用试题汇总1.假如你站在崖顶且身上带着一只具有跑表功能的计算器,你也会出于好奇心想用扔下一块石头听回声的方法来估计山崖的高度,假定你能准确地测定时间,你又怎样来推算山崖的高度呢,请你分析一下这一问题。

2.建立理想单摆运动满足的微分方程,并得出理想单摆运动的周期公式。

3. 一根长度为 l 的金属杆被水平地夹在两端垂直的支架上,一端的温度恒为T1,另一端温度恒为 T2,( T1、 T2 为常数, T1> T2)。

金属杆横截面积为A,截面的边界长度为B,它完全暴露在空气中,空气温度为T3,(T3< T2,T3 为常数),导热系数为α,试求金属杆上的温度分布T(x),(设金属杆的导热率为λ)4. 甲乙两队进行一场抢答竞赛,竞赛规则规定:开始时每队各记 2 分,抢答题开始后,如甲取胜则甲加 1 分而乙减 1 分,反之则乙加 1 分甲减 1 分 ,(每题必需决出胜负)。

规则还规定,当其中一方的得分达到 4 分时,竞赛结束。

现希望知道:(1)甲队获胜的概率有多大?(2)竞赛从开始到结束,平均转移的次数为多少?(3)甲获得 1、 2、 3 分的平均次数是多少?5.由于指派问题的特殊性,又存在着由匈牙利数学家提出的更为简便的解法——匈牙利算法。

当系数矩阵为下式,求解指派问题。

16 15 19 22C 17 21 19 18 24 22 18 17 17 19 22 166. 在遥远的地方有一位酋长,他想把三个女儿嫁出去。

假定三个女儿为A、B、C,三位求婚者为 X、 Y、 Z。

每位求婚者对A、 B、 C 愿出的财礼数视其对她们的喜欢程度而定:A B Cx 3 5 26y 27 10 28z 1 4 77.问酋长应如何嫁女,才能获得最多的财礼(从总体上讲,他的女婿最喜欢他的女儿。

某工程按正常速度施工时,若无坏天气影响可确保在30 天内按期完工。

但根据天气预报,15 天后天气肯定变坏。

有40%的可能会出现阴雨天气而不影响工期,在50%的可能会遇到小风暴而使工期推迟15 天,另有10%的可能会遇到大风暴而使工期推迟20 天。

《数学模型》试题与参考题答案

《数学模型》试题与参考题答案

word格式A卷2009-2010学年第2学期《数学建模》试卷专业班级姓名分组号与学号开课系室数学与计算科学学院考试日期 2010 年7月题号一二三四五六七八总分得分阅卷人数学建模试卷(1007A)一(10)(1)简述数学模型的概念,分析数学模型与数学建模的关系。

(2)建立数学模型的一般方法是什么?在建模中如何应用这些方法,结合实例加以说明。

二(10分)、(1).简述数学建模的一般步骤,分析每个步骤的主要内容和注意事项。

(2)简述数学模型的表现形态,并举例说明。

第一页三(10分)、(1)简述合理分配席位的Q-值方法,包括方法的具体实施过程,简述分配席位的理想化原则。

(2)建立录像机记数器读数与录像带转过时间之间的关系模型,包括模型假设与模型建立全过程。

四(15分)(1)建立不允许缺货情况下的存储模型,确定订货周期和订货量(包括问题叙述,模型假设和求解过程).(2)建立不允许缺货的生产销售存贮模型.设生产速率为常数k,销售速率为常数r,k r.在每个生产周期T内,开始的一段时间(0 t T0)一边生产一边销售,后来的一段时间(T0t T)只销售不生产.设每次生产开工费为c1,单位时间每件产品贮存费为c2,(a)求出存储量q(t) 的表示式并画出示意图。

(2)以总费用最小为准则确定最优周期T,讨论kr的情况.第二页五(15分)、(1)建立传染病传播的SIS模型并求解(简述假设条件和求解过程),(2)建立SIR模型,并用相平面方法求解,在相平面上画出相轨线并进行分析。

六(15分)(1)建立一般的战争模型,分析各项所表示的含义。

(2)在假设x0y0,b 9a条件下对正规战争模型(忽略增援和非战斗减员)进行建模求解,确定战争结局和结束时间。

第三页七(15分)设渔场鱼量的自然增长服从模型x rxln N,又单位时间捕捞量为xh Ex.讨论渔场鱼量的平衡点及其稳定性,求最大持续产量hm及获得最大产量的捕捞强度E m 和渔场鱼量水平x0.八(10分)假设商品价格y k和供应量x k满足差分方程y k1 y0(xk1x k x0), 02xk1 x0(y k y0) 0求差分方程的平衡点,推导稳定条件第四页word格式A卷2009-2010学年第2学期《数学模型》试题参考答案与评分标准专业班级开课系室数学与计算科学学院考试日期2010年7月word格式数学建模试卷(1007A)参考答案与评分标准一(10)(1)简述数学模型的概念,分析数学模型与数学建模的关系。

最新数学模型(数学建模)期末试卷及答案详解()

最新数学模型(数学建模)期末试卷及答案详解()

数学建模(数学模型)期末考试卷专业 级《数学模型与数学软件》考核命题卷(含答题卷)(编号1)闭卷)一、综合题(15分)为了研究同类车的刹车距离d (司机想刹车到车停下来所行驶的距离)与刹车时的车速v 之间存在什么样的函数关系,通过多组同条件实验测得一组数据如下表:(车速与距离都是多次实验的平均车速和平均距离)车速 (km/h) 29.3 44.0 58.7 62.2 73.3 88.0 102.7 110.2 117.3 刹车距离(m ) 39.0 76.6 126.2 135.8 187.8 261.4 347.1 388.9444.8 1.(6分)请简述数学建模一般步骤的基本方法。

2.(2分)为了研究刹车距离与车速的关系,需要做哪些资料数据的搜集?3.(7分)请给出合理的假设,建立合适的模型,来研究)(v fd 。

(注:模型不需要求解)二、综合题(16分)在研究存储模型中,设某产品日需求量为常数r ,每次生产为瞬间完成,每次生产的准备费为1c ,并与生产量无关, 每单位时间每件产品贮存费为2c 。

现需要制定最优的生产计划(即最佳的生产周期T 和每周期生产量Q 的确定)。

1.(6分)请简述数学建模的基本方法。

2.(10分)请在合适的假设下,建立不允许缺货的最优生产计划模型。

三、综合题(18分)研究奶制品深加工问题中,有80桶牛奶,共680小时的可利用工作时间,至多能加工80公斤A1产品,其他对于下列关系:1.(12化。

(注:不要求求解结果) 2.(6分)以此题为例,简述线性规划三个特征。

四、综合题(16分)研究治愈即免疫的传染病模型,设每个病人每天有效接触为a ,日治愈率为b ,初始状态下病人数和健康人数占总人数的比值分别为00,s i1(6分)做合适的假设,并建立传染病的SIR 模型;2(10分)写出利用ODE45函数求解此模型的MATLAB 程序代码。

获利44元/千克获利32元/千克五、综合题(20分)研究层次分析法模型,如下图:目标层准则层方案层如果现在已经得到五个准则的成对比较矩阵为:⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=1135/13/11125/13/13/12/117/14/1557123342/11A 1.(8分)阐述层次分析法的基本步骤;2.(8分)使用和法演算A 矩阵的最大特征值,并求这五个准则对目标层的权向量; 3.(4分)求A 矩阵的一致性指标CI 和CR ,已知12.1)5(=RI 。

《数学模型》习题参考解答

《数学模型》习题参考解答

《数学建模》习题解答第一章部分习题3(5). 决定十字路口黄灯亮的时间长度.4. 在1.3节“椅子能在不平的地面上放稳吗”的假设条件中,将四角的连线呈正方形改为长方形,其余不变,试构造模型并求解.5. 模仿1.4节商人过河问题中的状态转移模型,作下面这个众所周知的智力游戏:人带着猫、鸡、米过河,船除希望要人计划之外,至多能载猫、鸡、米三者之一,而当人不在场时猫要吃鸡、鸡要吃米,设计一个安全过河方案,并使渡河次数尽量地少.6. 利用1.5节表1和表3给出的1790-2000年的美国实际人口资料建立下列模型: (1) 分段的指数增长模型. 将时间分为若干段,分别确定增长率r. (2) 阻滞增长模型. 换一种方法确定固有增长率r 和最大容量x m .7. 说明1.5节中Logistic 模型(9)可以表示为()()01t t r me x t x --+=,其中t 0是人口增长出现拐点的时刻,并说明t 0与r ,x m 的关系.8. 假定人口的增长服从这样的规律:时刻t 的人口为x (t),t 到t +△t 时间内人口的增量与x m -x (t)成正比(其中为x m 最大容量). 试建立模型并求解. 作出解的图形并与指数增长模型、阻滞增长模型的结果进行比较.9(3). 甲乙两站之间有电车相通,每隔10分钟甲乙两站相互发一趟车,但发车时刻不一定相同。

甲乙之间一中间站丙,某人每天在随机的时刻到达丙站,并搭乘最先经过丙站的那趟车,结果发现100天中约有90天到达甲站,约有10天到达乙站。

问开往甲乙两站的电车经过丙站的时刻表是如何安排的。

参考答案3(5). 司机看到黄灯后停车要有一定的刹车距离1s ,设通过十字路口的距离为2s ,汽车行驶速度为v ,则黄灯的时间长度t 应使距停车线1s 之内的汽车能通过路口,即()vs s t 21+≈其中s 1可由试验得到,或按照牛顿第二定律解运动方程,进一步可考察不同车重、不同路面及司机反应灵敏程度等因素的影响.4. 相邻两椅脚与地面距离之和分别定义为()()θθg f 和,将椅子旋转ο180,其余作法与1.3节相同.5. 人、猫、鸡、米分别记为4,3,2,1=i ,当i 在此岸时记1=i x ,否则记0=i x ,则此岸的状态可用()4321,,,x x x x s =表示。

高一数学函数模型及其应用试题答案及解析

高一数学函数模型及其应用试题答案及解析

高一数学函数模型及其应用试题答案及解析1.一艘轮船在沿直线返回港口的途中,接到气象台的台风预报:台风中心位于轮船正西处,受影响的范围是半径长为km的圆形区域.轮船的航行方向为西偏北且不改变航线,假设台风中心不移动.如图所示,试问:(1)在什么范围内,轮船在航行途中不会受到台风的影响?(2)当时,轮船在航行途中受到影响的航程是多少?【答案】(1)(2)40km【解析】首先建立以台风中心为原点建立直角坐标系,(1)由轮船在直线l:x+y-80=0上移动,则得到原点到l的距离.根据条件来判断是否受台风影响.(2)根据,得到会受到台风影响的结论,其航程由弦长一半的平方等于半径的平方减去圆心到直线的距离的平方求解.试题解析:如图,以台风中心为原点建立直角坐标系.(1)轮船在直线上移动, 3分原点到的距离.5分时,轮船在途中不会受到台风影响. 7分(2)会受到台风影响. 9分航程为 11分【考点】直线和圆的方程的应用.2.如图,公园要把一块边长为的等边三角形的边角地修成草坪,把草坪分成面积相等的两部分,在上,在上.(1)设,,试用表示函数;(2)如果是灌溉水管,希望它最短,的位置应该在哪里?【答案】(1);(2) A为基点,分别在AB、AC上截取AD=AE=a时,线段DE最短.【解析】利用基本不等式解决实际问题时,应先仔细阅读题目信息,理解题意,明确其中的数量关系,并引入变量,依题意列出相应的函数关系式,然后利用基本不等式求解;(2)在求所列函数的最值时,若用基本不等式时,等号取不到时,可利用函数的单调性求解;(3)基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,常常用于比较数的大小或证明不等式,解决问题的关键是分析不等式两边的结构特点,选择好利用基本不等式的切入点.试题解析:(1)∵△ABC的边长为2,D在AB上,且,.∵∴.在△ADE中,由余弦定理得(2)令,则当且仅当,即时,取“=”号,故=a,此时x=a,所以以A为基点,分别在AB、AC上截取AD=AE=a时,线段DE最短.【考点】基本不等式在实际中的应用.3.如图,某单位准备修建一个面积为600平方米的矩形场地(图中)的围墙,且要求中间用围墙隔开,使得为矩形,为正方形,设米,已知围墙(包括)的修建费用均为800元每米,设围墙(包括)的修建总费用为元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学模型B 试卷及参考答案
一.概念题(共3小题,每小题5分,本大题共15分)
1、一般情况下,建立数学模型要经过哪些步骤?(5分)
答:数学建模的一般步骤包括:模型准备、模型假设、模型构成、模型求解、模型分析、模型检验、模型应用。

2、学习数学建模应注意培养哪几个能力?(5分)
答:观察力、联想力、洞察力、计算机应用能力。

3、人工神经网络方法有什么特点?(5分)
答:(1)可处理非线性;(2)并行结构.;(3)具有学习和记忆能力;(4)对数据的可容性大;
(5)神经网络可以用大规模集成电路来实现。

二、模型求证题(共2小题,每小题10分,本大题共20分)
1、 某人早8:00从山下旅店出发,沿一条路径上山,下午5:00到达山顶并留宿.次日早8:00沿同一路径下山,下午5:00回到旅店.证明:这人必在2天中同一时刻经过路途中某一地点(15分) 证明:
记出发时刻为t=a,到达目的时刻为t=b,从旅店到山顶的路程为s.
设某人上山路径的运动方程为f(t), 下山运动方程为g(t),t 是一天内时刻变量,则f(t),g(t)在
[a,b]是连续函数。

作辅助函数F(t)=f(t)-g(t),它也是连续的,
则由f(a)=0,f(b)>0和g(a)>0,g(b)=0,可知F (a )<0, F(b)>0,
由介值定理知存在t0属于(a,b)使F(t0)=0, 即f(t0)=g(t0) 。

2、三名商人各带一个随从乘船过河,一只小船只能容纳二人,由他们自己划行,随从们秘约,在河的任一岸,一旦随从的人数比商人多,就杀人越货,但是如何乘船渡河的大权掌握在商人们手中,商人们怎样才能安全渡河呢?(15分)
解:模型构成
记第k 次渡河前此岸的商人数为k x ,随从数为k y ,k=1,2,........,k x ,k y =0,1,2,3。

将二维向量k s =(k x ,k y )定义为状态。

安全渡河条件下的状态集合称为允许状态集合,记做S 。

S=()}{2,1;3,2,1,0,3;3,2,1,0,0|,======y x y x y x y x (3分)
记第k 次渡船上的商人数为k u 随从数为k v 将二维向量k d =(k u ,k v )定义为决策。

允许决策集合记作D ,由小船的容量可知
D=(){2
,1,0,,1|,=≤+≤v u v v u v u } (3分)
状态k s 随k d 的变化规律是: 1+k s = k s +()k k
d *-1 (3分) 模型求解 用图解法解这个模型更为方便,如下:(6分)
三、计算题(共5小题,每小题9分,本大题共45分)
1、⎪⎪⎪⎭
⎫ ⎝⎛=14/13/1411311A 试用和法求出A 的最大特征值,并做一致性检验(n=3时, RI=0.58)。

答:⎪⎪⎪⎭⎫ ⎝⎛=14/13/1411
311A 中各列归一化 ⎪⎪⎪⎭
⎫ ⎝⎛8/19/17/18/49/47/38/39/47/3 各行求和 ⎪⎪⎪⎭⎫ ⎝⎛569.0373.1248.1=w 2分 而⎪⎪⎪⎭
⎫ ⎝⎛=328.1897.4328.4Aw ,(1分) 所以最大特征根为
123.3)569
.0328.1373.1897.4248.1328.4(31)(3131=++==∑=i i i w Aw λ 2分 其一致性指标为: CI=
061.023123.3133=-=--λ 2分 CR=
1.0106.058.0061.0>==RI CI 所以A 不通过一致性检验。

2分
2、 一块土地,若从事农业生产可收100元,若将土地租给某乙用于工业生产,可收200元。

若租给某丙开发旅游业可收300元。

当丙请乙参与经营时,收入达400元,为促成最高收入的实现,试用shapley 值方法分配各人的所得。

(9分)
答:甲、乙、丙所得应为250元,50元,100元(步骤略)
3、产品每天需求量为常数r, 每次生产准备费用为C 1,每天每件产品贮存费用为C 2, 缺货损失费为C 3,试作一合理假设,建立允许缺贷的存贮模型,求生产周期及产量使总费用最小。

(9分) 解:模型假设:
1. 产品每天需求量为常数r
2. 每次生产准备费用为c1,每天每件产品贮存费用为c2
3. 生产能力无限大 ,缺货损失费为C 3 ,当t=T 1时产品已用完
4. 生产周期为T ,产量为Q (2分) 模型建立
一周期总费用如下: 2
)(2213121T T r C Q T C C C -++= (2分) 一周期平均费用为 rT
Q rT C rT Q C T C Q T f 2)(2),(2
3221-++= (2分) 模型求解: 用微分法解得周期 32321)(2C rC C C C T +=
(1分) 产量 )
(232231C C C C rC Q += (1分) 4、人的状态分为三种:1(健康),2(患病),3(死亡)。

设对特定年龄段的人,今年健康,明年保持健康的概率为0.8,患病的概率为0.18,而今年患病的人明年健康的概率为0.65,健康的概率为0.25,构造马氏链模型,说明它是吸收链,并求健康,患病出发变成死亡的平均转移次数。

解:状态()()()死亡患病健康32,1===,i i i
依歇易得转移概率阵为 ⎝⎛=065.08.0P 025.018.0 ⎪⎪⎪⎭
⎫11.002.0 2分
记()()()
)(),(,321n a n a n a n =α, 则 ()P n n ⋅=+)(1αα ),2,1(⋯⋯=n ………… (1分)
易是:()。

,i 马氏链是吸收链是吸收状态死亡∴=3 (2分)
⎝⎛=O Q P ⎪⎪⎭⎫I R ⎝
⎛=65.08.0Q ⎪⎪⎭⎫25.018.0 ⎪⎪⎭⎫ ⎝⎛=1.002.0R () ⎝⎛-=-=-65.02.01Q I M ⎝⎛=⎪⎪⎭⎫--65.075.0043.0125.018.01
⎪⎪⎭⎫2.018.0 ⎪⎪⎭
⎫ ⎝⎛==85.093.0043.01Me y (3分) ∴ 由健康、患病出发变成死亡的平均转移次数分别为
43
85043930和 。

(1分) 5.设渔场鱼量满足下列方程:(9分) h N
x rx t x --=))(1()(2 (1)讨论鱼场鱼量方程的平衡点稳定状况
(2)如何获得最大持续产量
解: 令h N
x rx x F --=))(1()(2,)31()(22N x r x F -=' h N x rx x f --=))(1()(2的最大值点为)32,3
(rN N (2分) 当3/2rN h >时,无平衡点 (1分) 当3/2rN h <时,有两个平衡点)3/(1N x <和)3/(2N x >,
经过判断x 1不稳定,x 2稳定 (2分)
当3/2rN h =时,平衡点3/0N x =,由0)(0='x F 不能判断它稳定性 (2分)
(2)为了获得最大持续产量,应使3/N x >且尽量3/N x =接近,但操作困难 (2分)
四、 建模题(共2小题,每小题10分,本大题共20分)
1考虑药物在体内的分布与排除之二室模型
即:把整个机体分为中心室与周边室两室,两室之间的血药相互转移,转移速率与该室的血药
浓度成正比,且只有中心室与体外有药物交换,药物向体外排除的速率与该室的血药浓度成正比,试建立两室血药浓度与时间的关系。

(不必求解)
解:假设)(t c i 、)(t x i 和i V 分别表示第i 室)2.1(=i 的血药浓度,药量和容积,2112k k 和是
两室之间药物转移速率系数,13k 是从中心室(第1室)向体外排除的速率系
数 ……………3分
则⎩⎨⎧⋅-=+⋅+⋅--=2211122
022********)()()(x k x k t x t f x k x k x k t x ……(1) ……………6分 (其中)(0t f 是给药速率) 及)2()()( t c V t x i i i ⋅= 于是:⎪⎪⎩
⎪⎪⎨⎧-⋅=+⋅+⋅+-=2211122121022112113121)()3()()()(c k c k v v t c v t f c k v v c k k t c …………4分
2、某工厂拟安排生产计划,已知一桶原料可加工10小时后生产A 产品2公斤,A 产品可获利30元/公斤 ,或加工8小时可生产B 产品3公斤,B 产品可获利18元/公斤,或加工6小时可生产C 产品4公斤,C 产品可获利12元/公斤,现每天可供加工的原料为60桶,加工工时至多为460小时,且A 产品至多只能生产58公斤。

为获取最大利润,问每应如何安排生产计划?请建立相应的线性规划模型(不必求解,10分)。

答:设每天安排x 1桶原料生产A 产品,x 2桶原料生产B 产品,x 3桶原料生产C 产品,则有:
⎪⎪⎩
⎪⎪⎨⎧≥≤≤++≤++++=0,,582460681060432..485460max 3211321
3213
21x x x x x x x x x x t s x x x z
参考评分标准:目标函数3分,约束条件7分。

相关文档
最新文档