遥感卫星影像辐射校正、几何校正、正射校正的方法
遥感影像辐射校正方法与技巧
遥感影像辐射校正方法与技巧引言:遥感技术在现代社会的应用日益广泛,无论是环境监测、农业发展还是城市规划,遥感影像都起到了不可或缺的作用。
然而,遥感影像需要进行辐射校正,以准确反映地物的光谱信息。
本文将介绍遥感影像辐射校正的方法与技巧。
一、什么是辐射校正辐射校正是遥感影像处理中的一项重要任务,通过消除大气、地表反射和传感器响应等误差,实现影像灰度与反射率、辐射率之间的转换。
辐射校正的目的是减小影像的空间和光谱差异,以便更好地进行后续分析和应用。
二、辐射校正的方法1. 经验模型方法经验模型方法适用于辐射校正的初步处理。
通过建立传感器响应与地物反射之间的经验模型,根据遥感影像中的亮度值进行校正。
这种方法适用于像素值的非线性校正,但不适用于不同光谱区域之间的校正。
2. 大气校正方法大气校正是辐射校正的关键步骤之一。
大气校正通过模拟大气的辐射传输过程,估算并消除大气对遥感影像的影响。
目前,主要的大气校正方法包括常规大气校正、基于模型的大气校正和基于辐射传输模型的大气校正等。
3. 地表反射校正方法地表反射校正是辐射校正中的另一重要步骤,主要解决地物反射率的转换问题。
地表反射校正方法可以分为基于定标面的校正和基于统计的校正两种。
其中,基于定标面的校正方法需要采集大量的地面参考数据,而基于统计的校正方法则通过统计地物的光谱反射特征进行校正。
三、辐射校正的技巧1. 模型选择与参数估计在进行辐射校正时,需要选择合适的模型和正确估计模型参数。
为了提高辐射校正的准确性,可通过大量的实地观测数据进行参数估计。
同时,对不同地区和不同影像进行适当调整和优化,以提高校正的精度。
2. 数据预处理在进行辐射校正之前,需要对遥感影像进行一定的数据预处理。
主要包括大气润湿校正、坐标转换、几何校正等。
这些预处理步骤有助于减小数据误差,提高辐射校正的精度。
3. 校正结果评价进行辐射校正后,需要对校正结果进行评价。
评价指标包括辐射定标误差、地物反射率的准确度等。
遥感卫星影像处理中的常见问题及解决方法
遥感卫星影像处理中的常见问题及解决方法现如今,遥感技术在地球科学、环境保护、城市规划等领域发挥着重要作用。
遥感卫星影像作为遥感数据的主要来源,其处理过程中常常会遇到一些困扰,本文将探讨其中的常见问题及相应解决方法。
1. 影像纠正问题遥感卫星拍摄的影像受到地球自转、地形起伏以及大气等因素的影响,容易产生图像畸变和色差问题。
针对这一问题,可以采用几何校正和辐射校正等方法来进行纠正。
几何校正主要包括地形校正和几何校正。
地形校正主要针对山区等地形复杂情况下产生的图像投影问题,可以通过数字高程模型(DEM)来解决。
几何校正则主要通过地面控制点的选取和几何模型的建立来校正影像的几何形态。
辐射校正则是针对大气影响导致的辐射畸变问题。
可以利用大气传输模型进行辐射校正,消除大气因素对影像的影响。
此外,还可以利用地面参考反射率进行光谱校正,在不同地物上分别测量反射光谱线进行标定。
2. 影像预处理问题影像的预处理是遥感图像处理的重要环节,可以帮助提取出感兴趣的信息。
然而,预处理过程中常常会遇到图像噪声、云状阴影和云覆盖等问题。
图像噪声主要由传感器本身以及数据传输和存储等过程中引入的噪声造成。
为了降低噪声的影响,可以采用滤波器等方法进行去噪处理。
常用的滤波器有均值滤波、中值滤波和小波去噪等。
云状阴影和云覆盖问题是由云层导致的。
对于云状阴影问题,可以通过校正云覆盖所造成的辐射变化进行修复。
对于云覆盖问题,可以利用多个相邻时刻的影像数据进行云去除,或者采用云检测算法进行自动云剔除。
3. 影像分类问题影像分类是遥感影像处理中的关键任务,可以帮助我们从大规模遥感影像中提取出感兴趣的地物信息。
然而,影像分类过程中常常会遇到地物混合、类别划分不清等问题。
地物混合问题主要由遥感影像中地物覆盖范围重叠较多导致的。
为了解决地物混合问题,可以运用混合像元分解算法将像元分解为纯度更高的子像元,从而更好地反映地物的实际分布。
类别划分不清问题主要由地物间相似性较高导致的。
第三章遥感图像辐射校正和几何校正
(a) 原始影像
(b)同分辨DEM数据 (c)地形坡度角影像辐
射校正结果影像
14
辐射校正
由遥感器引起的误差或由太阳高度引起的误差,一般 在数据生产过程中由生产单位根据遥感器参数进行校正, 而不需要用户进行自行处理。用户应该考虑大气影响引 起的辐射畸变。
Gij
M
di D
(gij
mi )
式中:gij:某一像元被计算前的输入灰度值;M:整个图 像所有像元灰值的平均值;D:整个图像所有像元数灰度
值的标准偏差;mi:每条扫描线上像元灰度平均值;di: 每条扫描线上像元灰度的标准偏差
7
按照上面查找条带公式。如果第i行是一个条带,由于
条带上所有像元都是零级灰值,故mi和di计算出来也为 零值,最后计算的Gij的灰度值应该等于整个像幅灰度值
度,亮度为 。Lp
22
大气影响的定量分析
可见,由于大气影响的存在,实际到达传感器的辐射 亮度是前面所分析的三项之和,即
L L1 L2 Lp
L
RT
S ( E0T
cos
ED )
SLp
23
大气影响的定量分析
比较以下两个公式:
L'0
R
E0
S
cos
L
RT
S ( E0T
cos
ED )
SLp
大气的主要影响是减少了图像的对比度,使原始
f (x, y) g(x, y)
sin 如果不考虑天空光的影响,各波段图像可采用 相同的 角进行校正。 太阳方位角的变化也会改变光照条件,它也随成像 季节、地理纬度的变化而变化。太阳方位角引起的图 像辐射值误差通常只对图像细部特征产生影响,它可 以采用与太阳高度角校正相类似的方法进行处理。
遥感影像正射校正流程
遥感影像正射校正流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!遥感影像正射校正流程:1. 影像预处理:影像几何校正(去除镜头畸变)。
如何进行卫星遥感影像的几何校正与精度评定
如何进行卫星遥感影像的几何校正与精度评定卫星遥感影像的几何校正与精度评定是遥感技术中非常重要的一项工作,它能够提高遥感影像的准确性和可信度。
本文将介绍卫星遥感影像几何校正和精度评定的基本原理和方法。
一、卫星遥感影像的几何校正卫星遥感影像的几何校正是指将原始影像转换为具有精确几何关系的图像的过程。
这是因为卫星遥感影像在获取过程中,由于各项误差的存在,常常呈现出几何畸变的情况。
几何校正的目的是消除这些误差,使得影像能够准确地反映地面实际情况。
几何校正的方法一般可以分为两种:地面控制点法和模型法。
地面控制点法是通过选择并测量地面上的控制点,并与影像中的对应点进行匹配,计算出转换参数,然后进行校正。
模型法是利用数学模型对影像进行几何校正,常用的模型有多项式模型和分层多项式模型。
这些方法都需要借助于地面控制点或其他辅助数据来进行几何校正。
除了几何校正,影像还需要进行辐射校正。
辐射校正是将原始影像转换为可以反映地物辐射特性的高光谱数据。
常见的辐射校正方法有大气校正和地表反射率校正。
大气校正是去除大气吸收和散射对影像造成的影响,地表反射率校正是消除影像中的地物纹理和细节。
二、卫星遥感影像的精度评定卫星遥感影像的精度评定是判断影像准确性和可靠性的一项工作。
它可以通过对比影像与已知真实数据进行对照,计算出各种误差指标来评价影像的精度。
影像的精度评定主要包括几何精度评定和辐射精度评定两个方面。
几何精度评定主要是通过计算影像的地面分辨率、地面形状和位置精度等指标来评估影像几何特征的精度。
辐射精度评定则是通过计算影像的辐射定标系数、重现性等指标来评估影像的辐射特性的精度。
在进行精度评定时,需要借助于地面控制点、高分辨率遥感影像或其他精确数据,进行对比和验证。
通过计算各个指标,并进行统计分析,可以得出影像的精度评定结果。
三、卫星遥感影像几何校正与精度评定的重要性卫星遥感影像的几何校正和精度评定对于遥感应用具有重要的意义。
遥感影像预处理的正确步骤
遥感影像预处理的正确步骤一、影像获取遥感影像预处理的第一步是获取原始影像数据。
通过卫星、飞机或其他遥感平台获取的影像数据,可以获得不同波段的光谱信息。
二、影像校正影像校正是为了消除由于影像获取过程中产生的各种误差,提高影像质量。
主要包括几何校正和辐射校正两个方面。
几何校正是通过对影像进行几何变换,将其与真实地物的位置和形状相对应。
这样可以消除由于视角、高程等因素引起的形变,使影像与实际地物一一对应。
辐射校正是为了消除由于大气、地表反射等因素引起的辐射差异。
通过对不同波段的辐射通量进行标定和校正,可以得到准确的辐射值。
三、影像配准影像配准是将不同时间、不同传感器或不同分辨率的影像对齐到同一坐标系统中。
通过对影像进行几何变换,使其在空间上一一对应。
这样可以实现影像的叠加和比较。
四、影像增强影像增强是为了提高影像的可视性和解译能力。
通过应用不同的滤波器、变换或增强算法,可以突出地物的特征,减少噪声和干扰,使影像更清晰、更易于分析。
五、影像分类影像分类是将影像像元划分为不同的地物类别。
根据不同的目标和需求,可以使用不同的分类方法,如基于像素的分类、基于对象的分类等。
六、影像融合影像融合是将多源、多尺度或多波段的影像融合成一幅综合影像。
通过融合可以充分利用各种影像的优势,提高地物提取和解译的精度。
七、影像制图影像制图是将处理后的影像转换为地图或图像产品。
通过对影像进行地理参考、投影变换和符号化处理,可以生成各种专题地图和影像产品。
八、影像分析影像分析是对处理后的影像进行定量和定性分析。
通过应用不同的遥感算法和模型,可以提取地物信息、监测变化和预测趋势。
九、结果验证结果验证是对影像分析结果进行验证和评估。
通过与实地调查数据进行比对,可以评估分析结果的准确性和可靠性。
总结:遥感影像预处理是遥感应用的重要环节,它涉及到影像获取、校正、配准、增强、分类、融合、制图、分析和结果验证等多个步骤。
每个步骤都有其独特的作用和意义,对于提高影像质量和分析精度具有重要意义。
卫片预处理流程
卫片预处理流程
卫片预处理流程是卫星遥感图像分析前必须进行的一系列技术处理步骤,其目的是消除或减少原始卫星图像中的各种噪声、失真和非物理信息,以便更好地提取有效信息。
以下是一个基本的卫片预处理流程:
1. 辐射校正:
目的是消除传感器响应的不均匀性和大气对电磁波传播的影响,如大气散射、吸收等,使得不同时间获取的图像具有可比性。
2. 几何校正(正射校正):
由于卫星姿态、地形起伏等因素导致的图像几何变形,通过地理坐标系下的控制点来实现几何纠正,使图像符合实际地表情况。
3. 图像融合(多光谱数据时适用):
将同一区域多个波段的数据融合成一个彩色合成图像,如RGB假彩色合成、NDVI植被指数计算等。
4. 去噪处理:
包括去除热噪声、斑点噪声、条带噪声等影响图像质量的各类噪声。
5. 云雾剔除:
对含有大量云层覆盖的卫星影像进行云区检测和剔除,确保有效地区域的清晰度。
6. 镶嵌处理:
当需要对相邻轨道或者不同时间获取的多幅图像进行拼接时,需要进行图像的镶嵌以形成连续无缝的大范围图像。
7. 图像增强:
提高图像对比度、亮度调整、边缘增强等,使得图像细节更加明显,便于后续的信息提取工作。
8. 感兴趣区域裁剪:
根据研究目标和需求,裁剪出特定的研究区域,减小后续处理的数据量。
以上每一个步骤都需要利用专业的遥感图像处理软件完成,并且根据不同的卫星数据源和应用需求可能还需要进行其他定制化的预处理操作。
测绘技术中的遥感图像纠正和融合方法
测绘技术中的遥感图像纠正和融合方法遥感图像的纠正和融合是测绘技术中的重要研究方向,具有广泛的应用价值。
本文将从遥感图像纠正和融合两个方面进行探讨,并介绍一些常见的方法和技术。
一、遥感图像的纠正方法1. 几何纠正几何纠正是指对遥感图像进行几何校正,使其与地理坐标系统相匹配。
常见的几何纠正方法包括地面控制点法和数字影像匹配法。
地面控制点法通过在图像上选择地物特征点,并与地面真实位置相对应,根据图像上的点与地面真值的差异进行几何变换,从而实现图像的几何纠正。
数字影像匹配法则是通过提取图像上的特征点,并与实际地面上的同名特征点进行匹配,然后根据匹配结果进行几何变换。
2. 辐射纠正辐射纠正是指对遥感图像进行辐射校正,消除光学、大气等因素对图像亮度和对比度的影响,使得图像能够真实反映地物的辐射特性。
常见的辐射纠正方法包括大气校正和辐射定标。
大气校正是通过模拟大气传输过程,根据测量的气象数据和大气传输模型,估算和减去大气散射和吸收对遥感图像的影响。
辐射定标则是通过将图像上的数字值转换为辐射度或反射率,以实现不同时间、不同传感器之间的数据比较和分析。
二、遥感图像的融合方法遥感图像融合是指将多个传感器获取的多源数据融合到一个整体图像中,以提供更全面、更准确的地物信息。
常见的遥感图像融合方法包括像素级融合和特征级融合。
1. 像素级融合像素级融合是通过将不同传感器获取的图像像素进行组合,生成具有更高分辨率、更丰富信息的图像。
常用的像素级融合方法包括加权平均法、主成分分析法和小波变换法。
加权平均法将不同传感器的图像按一定权重加权平均,得到融合后的图像。
主成分分析法是利用主成分分析对不同传感器的图像进行降维处理,然后通过反变换重构融合图像。
小波变换法则是利用小波变换对不同传感器的图像进行多尺度分解和重构,得到融合图像。
2. 特征级融合特征级融合是利用不同传感器获取的图像中的特征信息进行融合,提取和组合更全面、更准确的地物特征。
正射校正步骤
环境星影像正射纠正遥感图像在成像时,由于成像投影方式、传感器外方位元素变化、传感介质的不均匀、地球曲率、地形起伏、地球旋转等因素的影响,使获得的遥感图像相对于地表目标存在一定的几何变形,图像上的几何图形与该物体在所选定的地图投影中的几何图形产生差异,产生了几何形状或位置的失真。
主要表现为位移、旋转、缩放、仿射、弯曲和更高阶的歪曲。
消除这种差异的过程称为几何校正。
借助于地面控制资料及DEM,将数字图像投影到平面上,使其符合正射投影要求。
使用IMAGINE AutoSync模块对环境星做正射校正,具体步骤:1.在ERDAS EMAGINE 主界面上,点击AutoSync 模块,点击AutoSync Workstation下拉菜单。
2.打开IMAGINE AutoSync Workstation Startup对话框。
3.在IMAGINE AutoSync Workstation Startup 对话框中选择Create anew project,点击OK。
打开Create New Project 对话框。
这里输入工程名点击这里选择地理参考点击这里选择重采样点击打开ResampleSettings打开Resample Settings,选择重采样方法为“Nearest Neighbor”,点击ok。
4.在Default Output File Name Suffix字段中,键入输出文件名的后缀,这里选择默认的后缀为_output。
5. 确定工程文件的输出路径及名字后点击确定,即可进入自动正射校正界面。
6.加载图像。
在IMAGINEAutoSync工具条上,点击打开输入图像图标Select Image To Open 对话框,将待校正影像加载进来。
7.点击打开参考图像图标,或者从菜单条上选择File-Addimages-Set Reference Images……将拼接好的TM影像加载进来,这时待纠正影像会显示在左边窗口,参考影像会显示在右边窗口。
遥感卫星影像数据预处理一般流程介绍
镶嵌
当研究区超出单幅遥感图像所覆盖的范围时,通常需要将两幅或多幅图像拼接起来形 成一幅或一系列覆盖全区的较大的图像。
在进行图像的镶嵌时,需要确定一幅参考图像,参考图像将作为输出镶嵌图像的基 准,决定镶嵌图像的对比度匹配、以及输出图像的像元大小和数据类型等。镶嵌得两幅或 多幅图像选择相同或相近的成像时间,使得图像的色调保持一致。但接边色调相差太大 时,可以利用直方图均衡、色彩平滑等使得接边尽量一致,但用于变化信息提取时,相邻 图像的色调不允许平滑,避免信息变异。
1、GCP 在图像上有明显的、清晰的点位标志,如道路交叉点、河流交叉点等; 2、地面控制点上的地物不随时间而变化。
GCP 均匀分布在整幅图像内,且要有一定的数量保证,不同纠正模型对控制点个数的 需求不相同。卫星提供的辅助数据可建立严密的物理模型,该模型只需 9 个控制点即可; 对于有理多项式模型,一般每景要求不少于 30 个控制点,困难地区适当增加点位;几何 多项式模型将根据地形情况确定,它要求控制点个数多于上述几种模型,通常每景要求在 30-50 个左右,尤其对于山区应适当增加控制点。
的辐射值在不同时相遥感图像上一致,从而完成地物动态变化的遥感动态监测。
北京揽宇方圆信息技术有限公司
(3)图像重采样 重新定位后的像元在原图像中分布是不均匀的,即输出图像像元点在输入图像中的行 列号不是或不全是正数关系。因此需要根据输出图像上的各像元在输入图像中的位置,对 原始图像按一定规则重新采样,进行亮度值的插值计算,建立新的图像矩阵。常用的内插 方法包括: 1、最邻近法是将最邻近的像元值赋予新像元。该方法的优点是输出图像仍然保持原 来的像元值,简单,处理速度快。但这种方法最大可产生半个像元的位置偏移,可能造成 输出图像中某些地物的不连贯。
遥感图像校正
遥感影像变形的原因 遥感平台运动状态变化
航高变化的影响——地面分辨率不均匀 航速变化的影响——航向位移 俯仰变化的影响——旁向位移 翻滚变化的影响——扭曲变形 航偏变化的影响——倾斜畸变
21
遥感影像变形的原因 地球曲率的变形图示
一是像点位 置的移动, 当选择的地 图投影平面 是地球的切 平面时,使 地面点P0相 对于投影平 面点P有一高 差△h。
17
地形坡度辐射误差校正
太阳光线和地表作用以后再反射到传感器的太阳光的 辐射亮度和地面倾斜度有关。 辐射亮度和地面倾斜度有关。 若处在坡度为α的倾斜面上的地物影像为g(x,y), 则校正后的图像f(x,y)为: g (x , y ) f (x , y ) = cos α 地形坡度引起的辐射校正方法需要有图像对应地区的 DEM数据 校正较为麻烦, 数据, DEM数据,校正较为麻烦,一般只在地形坡度起伏较 大的情况下做校正。 大的情况下做校正。
15
太阳高度角的辐射误差校正
任何地表获得的能量都随太阳的高度变化, 任何地表获得的能量都随太阳的高度变化,而不同 的时间和季节太阳高度是不同的。 的时间和季节太阳高度是不同的。
16
太阳高度角的辐射误差校正
太阳高度角引起的畸变校正是将太阳光线倾斜照射时 获取的图像校正为太阳光线垂直照射时获取的图像。 获取的图像校正为太阳光线垂直照射时获取的图像 。 可根据成像时刻的时间、 太阳的高度角 θ 可根据成像时刻的时间 、 季节和地理 位置来确定, 位置来确定,即: sinθ=sinϕ ·sinδ±cosϕ ·cosδ·cost 太阳高度角的校正是通过调整一幅图像内的平均灰度 来实现的。 来实现的。
10
直方图最小值去除法
基本思路:每幅图像上
几何校正,几何配准,辐射校正,大气校正,辐射定标的区别和联系
几何校正;正射校正;几何配准;影像配准,空间配准;辐射定标;大气校正;辐射校正的概念本科四年地理信息系统,上了两年的遥感硕士,说句惭愧的话,自己之前对几何校正,几何配准,辐射定标,大气校正,辐射校正等等的概念依然是一知半解,甚至某些概念混淆在了一起,别人问起的时候支支吾吾....,因此迫切的需要总结一下这些概念,基本上都是网上搜到的解释,欢迎指正批评。
1.几何校正对于几何校正,有不同的定义,可分为按其产生原因和校正目的两种定义:按其产生原因的定义:是指消除或改正遥感影像几何误差的过程。
(来自百度,其中百度还有个遥感的几何校正,不知何意!)由此可引申出做几何校正的原因:遥感图像的几何畸变,其又可以分为两类:①内部畸变:由传感器性能差异引起,主要有:(a)比例尺畸变,可通过比例尺系数计算校正;(b)歪斜畸变,可经一次方程式变换加以改正;(c)中心移动畸变,可经平行移动改正;(d)扫描非线性畸变,必须获得每条扫描线校正数据才能改正;(e)辐射状畸变,经2次方程式变换即可校正;(f)正交扭曲畸变,经3次以上方程式变换才可加以改正;②外部畸变:由运载工具姿态变化(偏航、俯仰、滚动)引起的畸变,(g)如因倾斜引起的投影畸变,可用投影变换加以校正;(h)因高度变化引起的比例尺不一致 ,可用比例尺系数加以改正;(i)由目标物引起的畸变,如地形起伏引起的畸变,需要逐点校正;(j)若因地球曲率引起的畸变,则需经2次以上高次方 程式变换才能加以改正。
多光谱、多时相影像配准和遥感影像制图,必须经过上述几何校正。
因人们已习惯于用正射投影地图,故多数遥感影像的几何校正以正射投影为基准进行。
按其校正后的目的定义:几何校正是借助一组地面控制点,对一幅图像进行地理坐标的校正,把影像纳入一个投影坐标系中,有坐标信息地理参考。
一般的,从网站上下载的各个传感器的遥感影像,都经过了几何校正,毕竟几何校正是仪器或者搭载平台引起的。
2.正射校正正射校正其实是几何校正的一种,它相对普通的地形起伏的校正更加严格。
卫星遥感影像几何校正方法
卫星遥感影像几何校正方法
系统几何校正数据是指经过辐射校正和系统级几何校正处理的数据,即从卫星的下行数据中提取星历数据、卫星轨道和姿态数据、传感器参数以及地球模型和地图投影变换,模拟成像时卫星的状态,产生系统校正模型,对影像数据进行处理的过程。
来进行几何校正处理,其地理定位精度将大大提高。
经过几何校正的数据的格式可以是image格式或geotiff格式等。
在遥感成像过程中,由于飞行器的姿态、高度、速度和地球自转等因素的影响,图像相对于地面目标发生几何畸变。
这种畸变表现为像素相对于地面目标实际位置的挤压、扭曲、拉伸和偏移等。
对几何失真的误差校正称为几何校正。
多光谱多时相图像配准和遥感图像制图必须经过上述几何校正。
由于人们习惯使用正射投影图,遥感影像的几何校正大多是基于正射投影的。
在大比例尺遥感影像的一些专题制图中,可以使用不同的地图投影作为几何校正基准,主要解决投影变换的问题,有些畸变不能完全消除。
遥感图像的几何校正可以通过光学、电子学或计算机数字处理技术来实现。
常用的方法有:基于多项式的遥感影像校正、基于共线方程的遥感影像校正、基于有理函数的遥感影像校正、基于自动配准的小面板差分校正等。
几何校正,正射校正,影像配准,辐射定标,辐射校正,大气校正,地形校正概念详解
几何校正,正射校正,影像配准,辐射定标,辐射校正,大气校正,地形校正概念详解以下是这些校正和定标的概念详解:1. 几何校正:是指遥感成像过程中,受多种因素的综合影响,原始图像上地物的几何位置、形状、大小、尺寸、方位等特征与其对应的地面地物的特征往往是不一致的,这种不一致就是几何变形,也称几何畸变。
几何校正是通过一系列的数学模型来改正和消除遥感影像成像时因摄影材料变形、物镜畸变、大气折光、地球曲率、地球自转、地形起伏等因素导致的原始图像上各地物的几何位置、形状、尺寸、方位等特征与在参照系统中的表达要求不一致时产生的变形。
2. 正射校正:是对影像进行几何畸变纠正的一个过程,它将对由地形、相机几何特性以及与传感器相关的误差所造成的明显的几何畸变进行处理。
正射校正一般是通过在像片上选取一些地面控制点,并利用原来已经获取的该像片范围内的数字高程模型(DEM)数据,对影像同时进行倾斜改正和投影差改正,将影像重采样成正射影像。
3. 影像配准:是指对同一区域内以不同成像手段所获得的不同影像图形在同一地理坐标的匹配。
包括几何纠正、投影变换与统一比例尺三方面的处理。
在多时相、多信息的复合综合分析时常需进行各种配准处理,例如在多光谱影像进行彩色合成时,必须进行不同波段影像的配准,以保证相同景物的有关像元能一一对应,使结果准备可靠。
4. 辐射定标:是遥感数据处理中的一个关键步骤,旨在将原始遥感数据的数字值转换为具有物理意义的辐射度或反射率值。
这个过程是为了确保不同时间和传感器采集的遥感数据具有一致的标度,使其可以用于定量分析和比较。
5. 辐射校正:是指对由于外界因素,数据获取和传输系统产生的系统的、随机的辐射失真或畸变进行的校正,消除或改正因辐射误差而引起影像畸变的过程。
辐射误差产生的原因可以分为传感器响应特性、太阳辐射情况以及大气传输情况等。
6. 大气校正:是指传感器最终测得的地面目标的总辐射亮度并不是地表真实反射率的反映,其中包含了由大气吸收,尤其是散射作用造成的辐射量误差。
辐射定标、辐射校正、大气校正、正射校正概念
DN值(Digital Number ):遥感影像像元亮度值,记录地物的灰度值。
无单位,是一个整数值,值大小与传感器的辐射分辨率、地物发射率、大气透过率和散射率等相关。
反映地物的辐射率radiance地表反射率:地面反射辐射量与入射辐射量之比,表征地面对太阳辐射的吸收和反射能力。
反射率越大,地面吸收太阳辐射越少;反射率越小,地面吸收太阳辐射越多,表示:surface albedo表观反射率:表观反射率就是指大气层顶的反射率,辐射定标的结果之一,大气层顶表观反射率,简称表观反射率,又称视反射率。
英文表示为:apparent reflectance4、行星反射率:从文献“一种实用大气校正方法及其在TM影像中的应用”中看到“卫星所观测的行星反射率(未经大气校正的反射率)”;在“基于地面耦合的TM影像的大气校正-以珠江口为例”一文有“该文应用1998年的LANDSAT5 TM影像,对原始数据进行定标、辐射校正,求得地物的行星反射率”。
因此行星反射率就是表观反射率。
英文表示:planetary albedo,辐射校正VS. 辐射定标辐射校正:Radiometric correction 一切与辐射相关的误差的校正。
目的:消除干扰,得到真实反射率的数据。
干扰主要有:传感器本身、大气、太阳高度角、地形等。
包括:辐射定标,大气纠正,地形对辐射的影响辐射定标:Radiometric calibration 将记录的原始DN值转换为大气外层表面反射率(或称为辐射亮度值)。
用户需要计算地物的光谱反射率或光谱辐射亮度时,或者需要对不同时间、不同传感器获取的图像进行比较时,都必须将图像的亮度灰度值转换为绝对的辐射亮度,这个过程就是辐射定标目的:消除传感器本身的误差,确定传感器入口处的准确辐射值方法:实验室定标、机上/星上定标、场地定标不同的传感器,其辐射定标公式不同。
L=gain*DN+Bias在ENVI4.8中,定标模块:Basic Tools>Preprocessing>Calibration Utilities>模块大气校正:Atmospheric correction 将辐射亮度或者表面反射率转换为地表实际反射率目的:消除大气散射、吸收、反射引起的误差。
遥感图像影像几何校正方法与精度评价
遥感图像影像几何校正方法与精度评价遥感技术是一种通过航空器或卫星获取地球表面信息的技术手段。
为了获得准确的地理空间信息,遥感图像需要经过几何校正。
本文将介绍几种常用的遥感图像影像几何校正方法,并探讨它们的精度评价。
一、几何校正方法1. 多点校正法多点校正法是一种常用的几何校正方法。
它通过在图像中选择多个控制点,然后根据这些控制点在现实地面上的坐标,使用几何变换公式进行图像的几何校正。
这种方法简单易行,适用于中等分辨率的图像。
2. 数字高程模型校正法数字高程模型校正法是一种基于数字高程模型的几何校正方法。
首先,通过获取地面的数字高程模型,然后将图像与数字高程模型进行配准,最后进行几何校正。
这种方法的优点是精度较高,适用于高分辨率的图像。
3. 惯导校正法惯导校正法是一种利用航空器或卫星的惯性导航系统进行几何校正的方法。
惯性导航系统可以测量航空器或卫星的姿态和位置信息,根据这些信息对图像进行几何校正。
这种方法的精度较高,适用于航空器或卫星上配备有惯性导航系统的情况。
二、精度评价几何校正的精度评价是衡量几何校正过程中误差大小的方法。
常用的评价指标有均方根误差(RMSE)和控制点定位精度。
1. 均方根误差(RMSE)均方根误差是通过对校正前后的像素位置误差进行统计分析得到的一个指标。
它是校正后图像中所有像素位置误差的平方和的开方。
均方根误差越小,表示几何校正的精度越高。
2. 控制点定位精度控制点定位精度是通过选取一组已知坐标的控制点,然后对校正后图像中的相应像素进行位置测量,计算其与控制点的位置误差。
控制点定位精度越小,表示几何校正的精度越高。
三、案例分析以一幅航拍图像为例,使用多点校正法、数字高程模型校正法和惯导校正法进行几何校正,并对校正后的图像进行精度评价。
多点校正法得到的校正图像的RMSE为0.5个像素,控制点定位精度为2米。
数字高程模型校正法得到的校正图像的RMSE为0.2个像素,控制点定位精度为0.5米。
如何进行卫星影像的几何校正
如何进行卫星影像的几何校正卫星影像是现代遥感技术中的重要组成部分,可以为地理信息系统(GIS)提供大量的空间信息。
然而,卫星影像由于各种因素的影响,如大气干扰、地球表面的曲率和旋转等,会导致影像中出现几何畸变。
为了提高卫星影像的几何精度和准确性,需要进行几何校正。
本文将介绍如何进行卫星影像的几何校正的方法和步骤。
一、几何校正的目的和意义卫星影像的几何校正是通过对影像数据进行处理,消除因空间分辨率、光学系统、传感器运动等原因引起的几何畸变,让影像数据的地理位置和真实度量之间的关系得以恢复。
几何校正的目的是提高影像的空间精度和位置精度,以便用于精确的地理空间分析、遥感监测和地图制作等工作。
二、几何校正方法1.地面控制点法地面控制点法是一种常用且有效的几何校正方法。
它基于地物特征点在卫星影像中的位置,并通过与现实世界真实地理位置的对应关系来进行几何校正。
该方法需要在影像中选择一些具有明显标志的地物特征点,比如道路交叉口、建筑物的角点等,然后通过与地面测量数据的对比,计算并调整影像的位置和形状,达到几何校正的目的。
2.地理模型法地理模型法是一种比较先进的几何校正方法。
它通过建立地理模型来分析并校正影像中的几何畸变。
具体而言,地理模型法利用卫星影像中的地理控制点和其他地物特征点的位置信息,与数字高程模型(DEM)相结合,建立影像的地理模型。
然后,通过调整影像的几何变换参数,如旋转、缩放和平移等,来消除几何畸变。
三、几何校正步骤1. 数据预处理首先,需要对卫星影像进行数据预处理。
这包括去除大气干扰、进行辐射校正和几何校正预处理等工作。
这些预处理操作有助于提高影像的质量和准确度,为后续的几何校正提供可靠的数据基础。
2. 选择地面控制点其次,需要选择地面控制点。
这些地面控制点应该分布在整个影像区域,并具有明显的特征,以便在影像中进行定位和匹配。
3. 影像匹配和几何校正在选择了地面控制点后,需要进行影像匹配和几何校正。
如何进行遥感影像的预处理和分类
如何进行遥感影像的预处理和分类遥感影像作为一种高效的地球观测手段,发挥着日益重要的作用。
然而,在利用遥感影像进行分析和研究之前,我们通常需要对其进行预处理和分类。
本文将探讨如何进行遥感影像的预处理和分类,以提高遥感数据的质量和准确性。
1. 导言遥感影像预处理是一项关键任务,其目的是消除或降低影像中的噪声、增强影像的细节、减小数据的冗余等。
预处理的步骤主要包括辐射校正、大气校正、几何校正和影像增强。
2. 遥感影像预处理辐射校正是遥感影像预处理的重要步骤之一。
由于遥感传感器的特性以及各种外界因素的干扰,遥感影像中的辐射值往往存在偏差。
因此,我们需要对数据进行辐射校正,以消除这些偏差,使得影像数据具有可比性和可量化比较的能力。
大气校正是指对影像中的大气折射进行校正。
由于大气层的存在,遥感影像中的辐射能量会受到大气散射的影响,从而降低影像的质量。
通过大气校正,我们可以消除或减小大气散射所引起的影响,进一步提高影像的准确性和可用性。
几何校正是为了消除遥感影像中的几何畸变。
由于拍摄时的姿态变化、传感器的畸变等因素,遥感影像中常常存在几何失真。
通过将影像与地面控制点进行匹配,并利用地面控制网进行几何变换,可以实现影像的几何校正,使得影像的尺度和形状具有真实的地理意义。
影像增强是为了改善遥感影像的可视性和信息提取能力。
通过增强对比度、增强细节、增强色彩等方式,我们可以使得影像更加清晰、更具特征、更易于解译。
3. 遥感影像分类遥感影像分类是指根据图像中的像元特征,将图像划分为不同的类别。
分类的目的是为了提取地表覆盖信息,如农田、森林、水体等。
在进行分类之前,通常需要进行特征选择和样本训练。
特征选择是选择对分类有区分度的特征。
在遥感影像中,常用的特征包括光谱特征、纹理特征、形状特征等。
通过分析这些特征的统计信息和空间关系,我们可以选择具有较高区分度的特征进行分类。
样本训练是指用已知类别的样本数据对分类器进行训练。
通过对样本数据的学习和分析,分类器可以建立一个数学模型,从而对未知样本进行分类。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京揽宇方圆信息技术有限公司
遥感卫星影像辐射校正、几何校正、正射校正的方法
a)辐射校正:进入传感器的辐射强度反映在图像上就是亮度值(灰度值)。
辐射强度越大,亮度值(灰度值)越大。
该值主要受两个物理量影像:一是太阳辐射照射到地面的辐射强度,二是地物的光谱反射率。
当太阳辐射相同时,图像上像元亮度值差异直接反映了地物目标光谱反射率的差异。
但实际测量时,辐射强度值还受到其他因素的影响而发生改变。
这一改变就是需要校正的部分,故称为辐射畸变。
引起辐射畸变有两个原因:一是传感器本身的误差;二是大气对辐射的影响。
仪器引起的误差是由于多个检测器之间存在的差异,以及仪器系统工作产生的误差,这导致了接收的图像不均匀,产生条纹和“噪声”。
一般来说,这种畸变在数据生产过程中已经由生产单位根据传感器参数进行了校正,不需要用户自行校正。
b)几何校正:当遥感图像在几何位置上发生了变化,产生诸如行列不均匀,像元大小与地面大小对应不准确,地物形状不规则变化等畸变时,即说明遥感影像发生了几何畸变。
遥感影像的总体变形(相对与地面真实形态而言)是平移、缩放、旋转、偏扭、弯曲及其他变形综合作用的结果。
产生畸变的图像给定量分析及位置配准造成困难,因此遥感数据接收后,首先由接收部门进行校正,这种校正往往根据遥感平台、地球、传感器的各种参数进
行处理。
而用户拿到这种产品后,由于使用目的的不同或者投影及比例尺的不同,仍然需要作进一步的几何校正。
几何校正一般包括精校正和正射校正。
精校正:利用地面控制点对由于各种因素引起的遥感图像的几何畸变进行校正。
简单理解:和地形图的校正,校正后有准确的经纬度信息。
精校正适合于在地面平坦,不需要考虑高程信息,或地面起伏较大而无高程信息的情况。
有时根据遥感平台的各种参数已做过一次校正,但仍不能满足要求,就可以用该方法作遥感影像相对于地面坐标的配准校正,遥感影像相对于地图投影坐标系统的配准校正,以及不同类型或不同时相的遥感数据之间的几何配准和复合分析,以得到比较精确的结果。
C)正射校正:正射影像制作一般是通过在像片上选取一些地面控制点,并利用原来已经获取的该像片范围内的数字高程模型(DEM)数据,对影像同时进行倾斜改正和投影差改正,将影像重采样成正射影像。
将多个正射影像拼接镶嵌在一起,并进行色彩平衡处理后,按照一定范围内裁切出来的影像就是正射影像图。
正射影像同时具有地形图特性和影像特性,信息丰富,可作为GI S的数据源,从而丰富地理信息系统的表现形式。
所谓正射影像,指改正了因地形起伏和传感器误差而引起的像点位移的影像。
数字正射影像不仅精度高,信息丰富,直观真实,而且数据结构简单,生产周期短,能很好的满足社会各行业的需要。
在地势起伏较大的地方,使用正射校正来解决地势起伏较大引起的误差,做正射校正需要用DEM
北京揽宇方圆信息技术有限公司是国内的领先遥感卫星数据机构,而且是整合全球的遥感卫星数据资源,分发不同性能、技术应用上可以互补的多种卫星影像,包括光学、雷达卫星影像、历史遥感影像等各种卫星数据服务,各种专业应用目的的图像处理、解译、顾问服务以及基于卫星影像的各种解决方案等。
遥感卫星影像数据贯穿中国1960年至今的所有卫星影像数据,是中国遥感卫星数据资源最多的专业遥感卫星数据服务机构,提供多尺度、多分辨率、全覆盖的遥感卫星影像数据服务,最大限度的保证了遥感影像数据获取的及时性和完整性。
优势:
1:北京揽宇方圆国内老牌卫星数据公司,经营时间久,行业口碑相传,1800个行业用户选择的实力见证。
2:北京揽宇方圆遥感数据购买专人数据查询一对一服务,数据查询网址是卫星公司网。
3:北京揽宇方圆拥有大型正版遥感处理软件,遥感数据处理工程师有10年以上遥感处理工作经验,并有国家大型项目工作经验自主卫星数据处理软件著作权,最大限度保持遥感卫星影像处理的真实度。
4:北京揽宇方圆国家高新技术企业,通过ISO900认证的国际质量管理操作体系,无论是遥感卫星品质和遥感数据处理质量,都能得到保障。
5:影像数据官方渠道:所有的卫星数据都是卫星公司授权的原始数据,全球公众数据查询网址公开查询,影像数据质量一目了然,数据反应客观公正实事求是,数据处理技术团队国标规范操作,提供的是行业优质的专业化服务。
6:签定正规合同:影像数据服务付款前,买卖双方须签订服务合同,提供合同相应的正规发票,发票国家税网可以详细查询,有增值税普通发票和增值税专用发票两种发票类型可供选择。
以最有效的法律手段来保障您的权益。
7:对公帐号转款:合同约定的对公帐号,与合同主体名发票上面的帐号名称一致,是由工商行政管理部门核准的公司银行账户,所有交易记录均能查询,保障资金安全。
8:售后服务:完善的售后服务体制,全国热线,登陆官网客服服务同步。
技术能力说明
北京揽宇方圆拥有大型正版遥感处理软件,遥感数据处理工程师有10年以上遥感处理工作经验,并有国家大型项目工作经验自主卫星数据处理软件著作权,最大限度保持遥感卫星影像处理的真实度。
公司形象展示
信誉证书、荣誉证书、相关资质证书
卫星遥感影像技术服务ISO(9001)认证证书复印件
高新技术企业认定证明文件
国家A级纳税人
卫星影像质量快速检验系统著作权登记证
历史遥感图像检验系统著作权登记证
锁眼卫星影像处理软件著作权登记证
多时空多光谱数据处理系统著作权登记证
北京揽宇方圆信息技术有限公司。