2019-2020学年河北省唐山市遵化市八年级第二学期期中数学试卷 含解析

合集下载

2019-2020学年八年级下学期期中考试数学试卷附解答

2019-2020学年八年级下学期期中考试数学试卷附解答

2019-2020学年八年级下学期期中考试数学试卷一、选择题(每小题3分,共30分 1.(3分)如图分别给出了变量x 与y 之间的对应关系,其中y 不是x 的函数是( )A .B .C .D .2.(3分)下列式子中,属于最简二次根式的是( ) A .12B .23C .0.3D .73.(3分)已知三角形三边的长分别为3、2、5,则该三角形的形状是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .无法确定4.(3分)下列判断错误的是( ) A .对角线相等四边形是矩形B .对角线相互垂直平分四边形是菱形C .对角线相互垂直且相等的平行四边形是正方形D .对角线相互平分的四边形是平行四边形 5.(3分)当0b <时,一次函数2y x b =+的图象经过( )A .第一、二、三象限B .第一、二、四象限C .第二、三、四象限D .第一、三、四象限 6.(3分)如图,一个梯子AB 斜靠在一竖直的墙AO 上,测得2AO m =.若梯子的顶端沿墙下滑0.5m ,这时梯子的底端也恰好外移0.5m ,则梯子的长度AB 为( )m .A .2.5B .3C .1.5D .3.57.(3分)已知点1(2,)y -,(1,0),2(3,)y 都在一次函数2y kx =-的图象上,则1y ,2y ,0的大小关系是( ) A .120y y <<B .120y y <<C .120y y <<D .210y y <<8.(3分)如图,菱形ABCD的对角线AC,BD相交于O点,E,F分别是AB,BC边上的中点,连接EF.若3EF=,4BD=,则菱形ABCD的周长为()A.4B.46C.47D.289.(3分)矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),点D的坐标为(2,0),E为AB上的点,当CDE∆的周长最小时,点E的坐标为()A.(1,3)B.(3,1)C.(4,1)D.(3,2)10.(3分)如图,在平面直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,则ABC∆的周长最小是()A.12B.4522+C.55D.2542+二、填空题(每小题3分,共15分)11.(3分)函数2xyx+=的自变量x的取值范围是.12.(3分)如图,平行四边形ABCD的对角线AC,BD交于点O,已知10AD=,14BD=,8AC=,则OBC∆的周长为.13.(3分)若方程组2x y b x y a +=⎧⎨-=⎩的解是13x y =-⎧⎨=⎩,则直线2y x b =-+与直线y x a =-的交点坐标是 .14.(3分)已知:如图,90ABC ADC ∠=∠=︒,M 、N 分别是AC 、BD 的中点,10AC =,8BD =,则MN = .15.(3分)如图1,在平面直角坐标系中,将ABCD Y 放置在第一象限,且//AB x 轴.直线y x =-从原点出发沿x 轴正方向平移,在平移过程中直线被平行四边形截得的线段长度n 与直线在x 轴上平移的距离m 的函数图象如图2所示,则ABCD Y 的面积为 .三、解答题(共8题,共75分)16.(10分)(1)计算132728712483⨯-÷+- (2)已知21x =-,21y =+,求代数式22x y xy +的值. 17.(8分)已知一次函数的图象经过(3,8)A 和(3,4)B --两点. (1)求这个一次函数的关系式;(2)若点(,21)P a a -+在这个函数的图象上,求a 的值.18.(9分)如图,点D ,C 在BF 上,//AC DE ,A E ∠=∠,BD CF =. (1)求证:AB EF =;(2)连接AF ,BE ,猜想四边形ABEF 的形状,并说明理由.19.(9分)如图,在边长为1的小正方形组成的网格中,四边形ABCD 的四个顶点都在格点上,请按要求完成下列各题.(1)线段AB 的长为 ,BC 的长为 ,CD 的长为 ;(2)连接AC ,通过计算说明ACD ∆和ABC ∆是什么特殊三角形.20.(9分)某汽车出发前油箱内有油42L ,行驶若干小时后,在途中加油站加油若干升.邮箱中剩余油量()Q L 与行驶时间()t h 之间的函数关系如图所示. (1)汽车行驶 h 后加油,加油量为 L ;(2)求加油前油箱剩余油量Q 与行驶时间t 之间的函数关系式;(3)如果加油站离目的地还有200km ,车速为40/km h ,请直接写出汽车到达目的地时,油箱中还有多少汽油?21.(9分)某市在城中村改造中,需要种植A 、B 两种不同的树苗共3000棵,经招标,承包商以15万元的报价中标承包了这项工程,根据调查及相关资料表明,A 、B 两种树苗的成本价及成活率如表: 品种 购买价(元/棵)成活率 A 28 90%B4095%设种植A 种树苗x 棵,承包商获得的利润为y 元. (1)求y 与x 之间的函数关系式;(2)政府要求栽植这批树苗的成活率不低于93%,承包商应如何选种树苗才能获得最大利润?最大利润是多少? 22.(10分)如图,在ABC ∆中,点O 是AC 边上的一个动点,过点O 作直线//MN BC ,设MN 交BCA ∠的角平分线于点E ,交BCA ∠的外角平分线于点F . (1)求证:EO FO =;(2)当点O 运动到何处时,四边形AECF 是矩形?并证明你的结论.(3)当点O 运动到何处,且ABC ∆满足什么条件时,四边形AECF 是正方形?并说明理由.23.(11分)如图,已知直线334y x =+与坐标轴交于B ,C 两点,点A 是x 轴正半轴上一点,并且15ABC S ∆=,点F 是线段AB 上一动点(不与端点重合),过点F 作//FE x 轴,交BC 于E .(1)求AB 所在直线的解析式;(2)若FD x ⊥轴于D ,且点D 的坐标为(,0)m ,请用含m 的代数式表示DF 与EF 的长; (3)在x 轴上是否存在一点P ,使得PEF ∆为等腰直角三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(每小题3分,共30分 1.(3分)如图分别给出了变量x 与y 之间的对应关系,其中y 不是x 的函数是( )A .B .C .D .【考点】2E :函数的概念【分析】函数的意义反映在图象上简单的判断方法是:做垂直x 轴的直线在左右平移的过程中与函数图象只会有一个交点.【解答】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,所以B中y不是x的函数.故选:B.【点评】本题主要考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.2.(3分)下列式子中,属于最简二次根式的是()A.12B.23C.0.3D.7【考点】74:最简二次根式【分析】根据最简二次根式的定义(①被开方数不含有能开得尽方的因式或因数,②被开方数不含有分母,满足以上两个条件的二次根式叫最简二次根式)逐个判断即可.【解答】解:A、1223=,不是最简二次根式,故本选项错误;B、21633=,不是最简二次根式,故本选项错误;C、10.33010=,不是最简二次根式,故本选项错误;D、7是最简二次根式,故本选项正确;故选:D.【点评】本题考查了最简二次根式的定义的应用,能熟记最简二次根式的定义是解此题的关键,注意:最简二次根式满足以下两个条件:①被开方数不含有能开得尽方的因式或因数,②被开方数不含有分母.3.(3分)已知三角形三边的长分别为3、2、5,则该三角形的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.无法确定【考点】KS:勾股定理的逆定理【分析】两小边的平方和等于最长边的平方,即可由勾股定理的逆定理证明三角形是直角三角形.【解答】解:2222(5)3+=Q,∴该三角形是直角三角形,故选:B.【点评】本题考查勾股定理的逆定理:如果三角形的三边长a,b,c满足222a b c+=,那么这个三角形就是直角三角形.知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.4.(3分)下列判断错误的是()A.对角线相等四边形是矩形B.对角线相互垂直平分四边形是菱形C.对角线相互垂直且相等的平行四边形是正方形D.对角线相互平分的四边形是平行四边形【考点】7L:平行四边形的判定与性质;LC:矩形的判定;9L:菱形的判定;LF:正方形的判定【分析】利用菱形的判定定理、矩形的判定定理、平行四边形的判定定理、正方形的判定定理分别对每个选项进行判断后即可确定正确的选项. 【解答】解:A 、对角线相等四边形是矩形,错误; B 、对角线相互垂直平分四边形是菱形,正确;C 、对角线相互垂直且相等的平行四边形是正方形,正确;D 、对角线相互平分的四边形是平行四边形,正确; 故选:A .【点评】本题考查了命题与定理的知识,解题的关键是能够了解矩形和菱形的判定定理,难度不大. 5.(3分)当0b <时,一次函数2y x b =+的图象经过(( ) A .第一、二、三象限 B .第一、二、四象限 C .第二、三、四象限 D .第一、三、四象限 【考点】7F :一次函数图象与系数的关系【分析】根据一次函数系数的正负,可得出一次函数图象经过的象限,由此即可得出结论. 【解答】解:10k =>Q ,0b <,∴一次函数y x b =+的图象经过第一、三、四象限.故选:D . 【点评】本题考查了一次函数图象与系数的关系,解题的关键是找出函数图象经过的象限.本题属于基础题,难度不大,解决该题型题目时,根据一次函数的解析式结合一次函数图象与系数的关系找出函数图象经过的象限是关键. 6.(3分)如图,一个梯子AB 斜靠在一竖直的墙AO 上,测得2AO m =.若梯子的顶端沿墙下滑0.5m ,这时梯子的底端也恰好外移0.5m ,则梯子的长度AB 为( )m .A .2.5B .3C .1.5D .3.5 【考点】KU :勾股定理的应用【分析】设BO xm =,利用勾股定理用x 表示出AB 和CD 的长,进而求出x 的值,即可求出AB 的长度.【解答】解:设BO xm =,依题意,得0.5AC =,0.5BD =,2AO =. 在Rt AOB ∆中,根据勾股定理得 222222AB AO OB x =+=+, 在Rt COD ∆中,根据勾股定理22222(20.5)(0.5)CD CO OD x =+=-++, 22222(20.5)(0.5)x x ∴+=-++,解得 1.5x =,22215 2.5AB ∴=+=g ,答:梯子AB 的长为2.5m .故选:A .【点评】本题考查了勾股定理在实际生活中的应用,本题中找到AB CD =为梯子长等量关系是解题的关键.7.(3分)已知点1(2,)y -,(1,0),2(3,)y 都在一次函数2y kx =-的图象上,则1y ,2y ,0的大小关系是( ) A .120y y <<B .120y y <<C .120y y <<D .210y y <<【考点】8F :一次函数图象上点的坐标特征【分析】先根据点(1,0)在一次函数2y kx =-的图象上,求出20k =>,再利用一次函数的性质判断出函数的增减性,然后根据三点横坐标的大小得出结论. 【解答】解:Q 点(1,0)在一次函数2y kx =-的图象上, 20k ∴-=,20k ∴=>,y ∴随x 的增大而增大, 213-<<Q ,120y y ∴<<.故选:B . 【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.也考查了一次函数的性质. 8.(3分)如图,菱形ABCD 的对角线AC ,BD 相交于O 点,E ,F 分别是AB ,BC 边上的中点,连接EF .若3EF =,4BD =,则菱形ABCD 的周长为( )A .4B .46C .47D .28【考点】KX :三角形中位线定理;8L :菱形的性质【分析】首先利用三角形的中位线定理得出AC ,进一步利用菱形的性质和勾股定理求得边长,得出周长即可.【解答】解:EQ,F分别是AB,BC边上的中点,3EF=,223AC EF∴==,Q四边形ABCD是菱形,AC BD ∴⊥,132OA AC==,122OB BD==,227AB OA OB∴=+=,∴菱形ABCD的周长为47.故选:C.【点评】此题考查菱形的性质,三角形的中位线定理,勾股定理,掌握菱形的性质是解决问题的关键.9.(3分)矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),点D的坐标为(2,0),E为AB上的点,当CDE∆的周长最小时,点E的坐标为()A.(1,3)B.(3,1)C.(4,1)D.(3,2)【考点】5D:坐标与图形性质;LB:矩形的性质;PA:轴对称-最短路线问题【分析】如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时CDE∆的周长最小,先求出直线CH解析式,再求出直线CH与AB的交点即可解决问题.【解答】解:如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时CDE∆的周长最小.(2,0)DQ,(3,0)A,(4,0)H∴,设直线CH解析式为y ax b=+,则404a bb+=⎧⎨=⎩,解得:14ab=-⎧⎨=⎩,故直线CH解析式为4y x=-+,3x∴=时,341y=-+=,∴点E坐标(3,1)故选:B.【点评】本题考查矩形的性质、坐标与图形的性质、轴对称-最短问题、一次函数等知识,解题的关键是利用轴对称找到点E位置,学会利用一次函数解决交点问题,属于中考常考题型.10.(3分)如图,在平面直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,则ABC∆的周长最小是()A.12B.4522++C.55D.2542【考点】5D:坐标与图形性质;PA:轴对称-最短路线问题【分析】根据轴对称作最短路线得出AE B E=',进而得出B O C O∆的周'=',即可得出ABC长最小时C点坐标进而可求出ABC∆的周长.【解答】解:作B点关于y轴对称点B'点,连接AB',交y轴于点C',此时ABC∆的周长最小,Q点A、B的坐标分别为(1,4)和(3,0),∴'点坐标为:(3,0)AE=,B-,4则4B E'=,即B E AE'=,Q,'C O AE//∴'='=,3B OC O∆的周长最小为∴点C'的坐标是(0,3),此时ABC2222'+=+++=+.AB AB44244225故选:D.【点评】此题主要考查了利用轴对称求最短路线以及平行线的性质和勾股定理的运用,根据已知得出C 点位置是解题关键. 二、填空题(每小题3分,共15分)11.(3分)函数2x y x+=的自变量x 的取值范围是 2x -…且0x ≠ . 【考点】4E :函数自变量的取值范围【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.【解答】解:根据二次根式有意义,分式有意义得:20x +…且0x ≠, 解得:2x -…且0x ≠.故答案为:2x -…且0x ≠. 【点评】本题考查函数自变量的取值范围,知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.12.(3分)如图,平行四边形ABCD 的对角线AC ,BD 交于点O ,已知10AD =,14BD =,8AC =,则OBC ∆的周长为 21 .【考点】5L :平行四边形的性质【分析】由平行四边形的性质得出4OA OC ==,7OB OD ==,10BC AD ==,即可求出OBC ∆的周长.【解答】解:Q 四边形ABCD 是平行四边形,4OA OC ∴==,7OB OD ==,10BC AD ==,OBC ∴∆的周长471021OB OC AD =++=++=.故答案为:21【点评】本题主要考查了平行四边形的性质,并利用性质解题.平行四边形基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.13.(3分)若方程组2x y b x y a +=⎧⎨-=⎩的解是13x y =-⎧⎨=⎩,则直线2y x b =-+与直线y x a =-的交点坐标是 (1,3)- .【考点】FE :一次函数与二元一次方程(组)【分析】根据两个函数图象的交点就是两个函数组成的方程组的解可得答案.【解答】解:因为方程组2x y b x y a +=⎧⎨-=⎩的解是13x y =-⎧⎨=⎩, 所以直线2y x b =-+与直线y x a =-的交点坐标是(1,3)-,故答案为:(1,3)-,【点评】此题主要考查了二元一次方程(组)与一次函数的关系,关键是掌握两条直线的交点坐标应该是联立两个一次函数解析式所组方程组的解.14.(3分)已知:如图,90ABC ADC ∠=∠=︒,M 、N 分别是AC 、BD 的中点,10AC =,8BD =,则MN = 3 .【考点】KP :直角三角形斜边上的中线【分析】根据在直角三角形中,斜边上的中线等于斜边的一半得到5BM DM ==,根据等腰三角形的性质得到4BN =,根据勾股定理得到答案.【解答】解:连接BM 、DM ,90ABC ADC ∠=∠=︒Q ,M 是AC 的中点,152BM DM AC ∴===, N Q 是BD 的中点,MN BD ∴⊥,142BN BD ∴==, 由勾股定理得:2222543MN BM BN =-=-=,故答案为:3.【点评】本题考查的是直角三角形的性质、等腰三角形的性质,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.15.(3分)如图1,在平面直角坐标系中,将ABCD Y 放置在第一象限,且//AB x 轴.直线y x =-从原点出发沿x 轴正方向平移,在平移过程中直线被平行四边形截得的线段长度n 与直线在x 轴上平移的距离m 的函数图象如图2所示,则ABCD Y 的面积为 10 .【考点】7E :动点问题的函数图象【分析】根据图象可以得到当移动的距离是3时,直线经过点A ,当移动距离是7时,直线经过D ,在移动距离是8时经过B ,则835AB =-=,当直线经过D 点,设交AB 与N ,则22DN =,作DM AB ⊥于点M .利用三角函数即可求得DM 即平行四边形的高,然后利用平行四边形的面积公式即可求解.【解答】解:根据图象可以得到当移动的距离是4时,直线经过点A ,当移动距离是7时,直线经过D ,在移动距离是8时经过B ,则835AB =-=, 当直线经过D 点,设交AB 与N ,则22DN =,如图,作DM AB ⊥于点M .y x =-Q 与x 轴形成的角是45︒,又//AB x Q 轴,45DNM ∴∠=︒,2sin 452222DM DN ∴=︒=⨯=g , 则平行四边形的面积是:5210AB DM =⨯=g ,故答案为:10.【点评】本题考查了函数的图象,根据图象理解AB 的长度,正确求得平行四边形的高是关键.三、解答题(共8题,共75分) 16.(10分)(1)计算132728712483⨯-÷+- (2)已知21x =-,21y =+,求代数式22x y xy +的值.【考点】7A :二次根式的化简求值;76:分母有理化【分析】(1)利用二次根式运算法则计算即可;(2)先分解因式,然后代入求值.【解答】解:(1)原式924343=-+-11=;(2)22x y xy +()xy x y =+ (21)(21)(2121)=-+-++122=⨯22=.【点评】本题考查了二次根式的化简求值,熟练分解因式是解题的关键.17.(8分)已知一次函数的图象经过(3,8)A 和(3,4)B --两点.(1)求这个一次函数的关系式;(2)若点(,21)P a a -+在这个函数的图象上,求a 的值.【考点】8F :一次函数图象上点的坐标特征;FA :待定系数法求一次函数解析式【分析】(1)直接利用待定系数法求出一次函数解析式进而得出答案;(2)把点P 的坐标代入函数解析式,利用方程求得a 的值.【解答】解:(1)设直线AB 的表达式为y kx b =+,Q 一次函数的图象经过(3,8)A 和(3,4)B --两点,∴3834k b k b +=⎧⎨-+=-⎩, 解得22k b =⎧⎨=⎩∴直线AB 的表达式为22y x =+;(2)由(1)知,直线AB 的表达式为22y x =+,把(,21)P a a -+代入,得2221a a +=-+解得14a =-. 【点评】主要考查了待定系数法求函数解析式,一次函数图象上点的坐标特征,解本题的关键是用方程的思想解决问题.18.(9分)如图,点D ,C 在BF 上,//AC DE ,A E ∠=∠,BD CF =.(1)求证:AB EF =;(2)连接AF ,BE ,猜想四边形ABEF 的形状,并说明理由.【考点】KD :全等三角形的判定与性质【分析】(1)利用AAS 证明ABC EFD ∆≅∆,再根据全等三角形的性质可得AB EF =;(2)首先根据全等三角形的性质可得B F ∠=∠,再根据内错角相等两直线平行可得到//AB EF ,又AB EF =,可证出四边形ABEF 为平行四边形.【解答】(1)证明://AC DE Q ,ACD EDF ∴∠=∠,BD CF =Q ,BD DC CF DC ∴+=+,即BC DF =,在ABC ∆与EFD ∆中ACD EDF A EBC DF ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ABC EFD AAS ∴∆≅∆,AB EF ∴=;(2)猜想:四边形ABEF 为平行四边形,理由如下:由(1)知ABC EFD ∆≅∆,B F ∴∠=∠,//AB EF ∴,又AB EF =Q ,∴四边形ABEF 为平行四边形.【点评】此题主要考查了全等三角形的判定与性质,平行四边形的判定,解决问题的关键是证明ABC EFD ∆≅∆.19.(9分)如图,在边长为1的小正方形组成的网格中,四边形ABCD 的四个顶点都在格点上,请按要求完成下列各题.(1)线段AB 的长为5 ,BC 的长为 ,CD 的长为 ;(2)连接AC ,通过计算说明ACD ∆和ABC ∆是什么特殊三角形.【考点】KQ :勾股定理;KS :勾股定理的逆定理【分析】(1)把线段AB 、BC 、CD 、放在一个直角三角形中利用勾股定理计算即可;(2)根据勾股定理的逆定理求出AC AD =,即可判断ACD ∆的形状;由勾股定理的逆定理得出ABC ∆是直角三角形.【解答】解:(1)由勾股定理得:22215AB =+=,22345BC =+=,222222CD =+=;故答案为:5,5,22;(2)222425AC =+=Q ,222425AD ==+=,AC AD ∴=,ACD ∴∆是等腰三角形;22252025AB AC BC +=+==Q ,ABC ∴∆是直角三角形.【点评】此题主要考查了勾股定理、勾股定理的逆定理以及等腰三角形的判定;熟练掌握勾股定理是解决问题的关键.20.(9分)某汽车出发前油箱内有油42L ,行驶若干小时后,在途中加油站加油若干升.邮箱中剩余油量()Q L 与行驶时间()t h 之间的函数关系如图所示.(1)汽车行驶 5 h 后加油,加油量为 L ;(2)求加油前油箱剩余油量Q 与行驶时间t 之间的函数关系式;(3)如果加油站离目的地还有200km ,车速为40/km h ,请直接写出汽车到达目的地时,油箱中还有多少汽油?【考点】FH :一次函数的应用【分析】(1)根据函数图象的横坐标,可得答案;根据函数图象的纵坐标,可得加油量;(2)根据待定系数法,可得函数解析式;(3)根据汽车每小时的耗油量乘以汽车行驶200km 所需时间,可得汽车行驶200km 的耗油量,再用36升减去行驶200km 的耗油量,可得答案.【解答】解:(1)由横坐标看出,汽车行驶5小时后加油,由纵坐标看出,加了361224L -=油.故答案为5,24;(2)设解析式为Q kt b =+,将(0,42),(5,12)代入函数解析式,得42512b k b =⎧⎨+=⎩,解得642k b =-⎧⎨=⎩. 故加油前油箱剩余油量Q 与行驶时间t 之间的函数关系式为642Q t =-+;(3)汽车每小时耗油量为421265-=升, 汽车行驶200km ,车速为40/km h ,需要耗油20063040⨯=升, 36306-=升.故汽车到达目的地时,油箱中还有6升汽油.【点评】本题考查了一次函数的应用,利用待定系数法求一次函数的解析式.观察函数图象的横坐标得出时间,观察函数图象的纵坐标得出剩余油量是解题关键.21.(9分)某市在城中村改造中,需要种植A 、B 两种不同的树苗共3000棵,经招标,承包商以15万元的报价中标承包了这项工程,根据调查及相关资料表明,A 、B 两种树苗的成本价及成活率如表:品种购买价(元/棵) 成活率 A28 90% B 40 95%设种植A 种树苗x 棵,承包商获得的利润为y 元.(1)求y 与x 之间的函数关系式;(2)政府要求栽植这批树苗的成活率不低于93%,承包商应如何选种树苗才能获得最大利润?最大利润是多少?【考点】9C :一元一次不等式的应用;FH :一次函数的应用【分析】(1)根据题意和表格中的数据可以得到y 与x 的函数关系式;(2)根据题意可以的得到相应的不等式,从而可以解答本题.【解答】解:(1)由题意可得,1500002840(3000)3000012y x x x =---=+,即y 与x 之间的函数关系式是1230000y x =+;(2)由题意可得,90%95%(3000)300093%x x +-⨯…,解得,1200x …,1230000y x =+Q ,∴当1200x =时,y 取得最大值,此时44400y =,即承包商购买A 种树苗1200棵,B 种树苗1800棵时,能获得最大利润,最大利润是44400元.【点评】本题考查一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,列出相应的方程和不等式.22.(10分)如图,在ABCMN BC,∆中,点O是AC边上的一个动点,过点O作直线//设MN交BCA∠的角平分线于点E,交BCA∠的外角平分线于点F.(1)求证:EO FO=;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.(3)当点O运动到何处,且ABC∆满足什么条件时,四边形AECF是正方形?并说明理由.【考点】LD:矩形的判定与性质;LF:正方形的判定【分析】(1)由平行线的性质和角平分线的定义得出OCE OEC∠=∠,得∠=∠,OCF OFC出EO CO=,即可得出结论;=,FO CO(2)先证明四边形AECF是平行四边形,再由对角线相等,即可得出结论;(3)由正方形的性质得出45ACB ACE∠=∠=︒即可.∠=︒,得出290ACE【解答】解:(1)Q,MN BC//∴∠=∠,32又CF∠,Q平分GCO∴∠=∠,12∴∠=∠,13∴=,FO CO同理:EO CO=,EO FO∴=.(2)当点O运动到AC的中点时,四边形AECF是矩形.Q当点O运动到AC的中点时,AO CO=,又EO FOQ,=∴四边形AECF是平行四边形,由(1)可知,FO CO=,∴===,AO CO EO FO=,AO CO EO FO∴+=+,即AC EF∴四边形AECF是矩形.(3)当点O运动到AC的中点时,且ABC∠为直角的直角三角形时,四边形∆满足ACBAECF是正方形.Q 由(2)知,当点O 运动到AC 的中点时,四边形AECF 是矩形,//MN BC Q ,AOE ACB ∴∠=∠90ACB ∠=︒Q ,90AOE ∴∠=︒,AC EF ∴⊥,∴四边形AECF 是正方形.【点评】本题考查了平行线的性质、等腰三角形的判定、矩形的判定、菱形的判定、正方形的性质;熟练掌握平行线的性质和矩形、菱形的判定方法,并能进行推理论证是解决问题的关键.23.(11分)如图,已知直线334y x =+与坐标轴交于B ,C 两点,点A 是轴正半轴上一点,并且15ABC S ∆=,点F 是线段AB 上一动点(不与端点重合),过点F 作//FE x 轴,交BC 于E .(1)求AB 所在直线的解析式;(2)若FD x ⊥轴于D ,且点D 的坐标为(,0)m ,请用含m 的代数式表示DF 与EF 的长;(3)在x 轴上是否存在一点P ,使得PEF ∆为等腰直角三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.【考点】FI :一次函数综合题【分析】(1)由直线334y x =+可求得B 、C 坐标,再结合15ABC S ∆=,则可求得A 点坐标,利用待定系数法可求得直线AB 的解析式;(2)根据直线AB 解析式可求得F 点的纵坐标,即可表示出DF 的长,由//EF x 轴则可得出E 点纵坐标,代入直线BC 解析式可求得E 点横坐标,从而可表示出EF 的长;(3)设(,0)P t ,当90PFE ∠=︒时,则有PF EF =,则可得到关于x 的方程,可求得P 点坐标;当90PEF ∠=︒时,则有PE EF DF ==,可求得P 点坐标;当90EPF ∠=︒时,过P 作PH EF ⊥,由等腰直角三角形的性质可知12PH EF =,可求得D 点坐标,从而可求得P 点坐标.【解答】解:(1)在334y x =+中,令0x =可得3y =,令0y =可求得4x =-, (0,3)B ∴,(4,0)C -,3OB ∴=,4OC =,15ABC S ∆=Q ,∴1152AC OB =g ,即1(4)3152OA +⨯=,解得6OA =, (6,0)A ∴,设直线AB 解析式为y kx b =+,∴603k b b +=⎧⎨=⎩,解得123k b ⎧=-⎪⎨⎪=⎩, ∴直线AB 解析式为132y x =-+; (2)FD x ⊥Q 轴,且(,0)D m ,F ∴点横坐标为m , 在132y x =-+中,令x m =,可得132y m =-+, 132DF m ∴=-+, //EF x Q 轴,E ∴点纵坐标为132m -+, 在334y x =+中,令132y m =-+,可得133324m x -+=+,解得23x m =-, F Q 在线段AB 上,06m ∴<<2533EF m m m ∴=+=; (3)假设存在满足条件的点P ,设其坐标为(,0)t ,PEF ∆Q 为等腰直角三角形,∴有90PFE ∠=︒、90PEF ∠=︒和90EPF ∠=︒三种情况,①当90PFE ∠=︒时,则有PF EF =,由(2)可得132PF t =-+,53EF t =, 15323t t ∴-+=,解得1813t =, 18(13P ∴,0); ②当90PEF ∠=︒时,则有PE EF =, 在334y x =+中,令x t =可得334y t =+, 334PE t ∴=+, 在132y x =-+中,令334y t =+,可得313342t x +=-+,解得32x t =-, 35()22EF t t t ∴=-+-=-,∴35342t t +=-,解得1213t =-, 12(13P ∴-,0); ③当90EPF ∠=︒时,如图,过P 作PH EF ⊥于点H ,则PH HF PD EH DF ====,由(2)可知132DF m =-+,53EF m =, 1153223m m ∴-+=⨯,解得94m =, 19153248PD DF ∴==-⨯+=,94OD =, 9153488OP OD PD ∴=-=-=, 3(8P ∴,0); 综上可知存在满足条件的点P ,其坐标为18(13,0)或12(13-,0)或3(8P ,0). 【点评】本题为一次函数的综合应用,涉及三角形的面积、待定系数法、函数图象上点的坐标特征、等腰直角三角形的性质、方程思想及分类讨论思想.在(1)中求得A 点坐标是解题的关键,在(2)中分别表示出E 、F 的坐标是解题的关键,在(3)中确定出P 点的位置,利用等腰直角三角形的性质得到关于P 点坐标的方程是解题的关键,注意分三种情况.本题考查知识点较多,综合性较强,难度适中.。

2019-2020学年八年级下学期期中数学试卷(含解析)

2019-2020学年八年级下学期期中数学试卷(含解析)

2019-2020学八年级第二学期期中数学试卷一、选择题1.(3分)下列运算正确的是()A.=﹣2B.C.=x D.2.(3分)下列式子是最简二次根式的是()A.B.C.D.3.(3分)若在实数范围内有意义,则x的取值范围是()A.x<﹣2B.x>﹣2C.x≤﹣2D.x≥﹣24.(3分)下列二次根式中,与是同类二次根式的是()A.B.C.D.5.(3分)下列计算正确的是()A.=±2B.C.2﹣=2D.6.(3分)下列计算正确的是()A.=x B.x2•x5=x10C.(x2)3=x6D.=+ 7.(3分)下列各组数据不是勾股数的是()A.2,3,4B.3,4,5C.5,12,13D.6,8,10 8.(3分)如图,正方形ABCD的面积是()A.5B.25C.7D.19.(3分)如图,数轴上的点A表示的数是﹣2,点B表示的数是1,CB⊥AB于点B,且BC=2,以点A为圆心,AC为半径画弧交数轴于点D,则点D表示的数为()A.B.+2C.﹣2D.210.(3分)由下列条件不能判断△ABC是直角三角形的是()A.∠A:∠B:∠C=3:4:5B.AB:BC:AC=3:4:5C.∠A+∠B=∠C D.AB2=BC2+AC211.(3分)如图,△ABC中,∠ACB=90°,AC=2,BC=3.设AB的长是m,下列关于m的四种说法,其中,所有正确说法的序号是()①m是无理数②m是13的算术平方根③2<m<3④m可以用数轴上的一个点来表示A.①②B.①③C.①②④D.②③④12.(3分)如图,高速公路上有A、B两点相距10km,C、D为两村庄,已知DA=4km,CB=6km.DA⊥AB于A,CB⊥AB于B,现要在AB上建一个服务站E,使得C、D两村庄到E站的距离相等,则EB的长是()kmA.4B.5C.6D.二、填空题(本大题共6小题,每小题3分,共18分)请把答案填在答题卷指定的位置上.13.(3分)将二次根式化为最简二次根式.14.(3分)化简:=.15.(3分)如果最简二次根式与是同类二次根式,那么a=.16.(3分)已知a=﹣1,则a2+2a+2的值是.17.(3分)如图,两树高分别为10米和4米,相距8米,一只鸟从一树的树梢飞到另一树的树梢,问小鸟至少飞行米.18.(3分)如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为.三、解答题(本大题共9小题,共66分)请在答题卷指定位置上写出解答过程.19.(6分)计算:(1);(2).20.(6分)计算:(1);(2).21.(8分)计算:(3﹣)(3+)+(2﹣)22.(8分)已知a=3+,b=3﹣,分别求下列代数式的值:(1)a2﹣b2(2)a2﹣2ab+b2.23.(8分)如图,在平面直角坐标系中,正方形网格的每个小方格都是边长为1的正方形,△ABC的顶点都在格点上.(1)直接写出点A,B,C的坐标;(2)试判断△ABC是不是直角三角形,并说明理由.24.(10分)一架梯子长25米,斜靠在一面墙上,梯子底端离墙7米,(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米到A′,那么梯子的底端在水平方向滑动了几米?25.(10分)如图,小明将升旗的绳子拉到旗杆底端,并在绳子上打了一个结,然后将绳子拉到离旗杆底端9米处,发现此时绳子底端距离打结处约3米,请算出旗杆的高度.26.(5分)如图,某工厂C前面有一条笔直的公路,原来有两条路AC、BC可以从工厂C 到达公路,经测量AC=600m,BC=800m,AB=1000m,现需要修建一条公路,使工厂C到公路的距离最短.请你帮工厂C设计一种方案,并求出新建的路的长.27.(5分)如图,∠ADC=90°,AD=4m,CD=3m,AB=13m,BC=12m.(1)试判断以点A,B,C为顶点的三角形的形状,并说明理由;(2)求该图的面积.参考答案一、选择题(本大题共12小题,每小题3分,共36分)每小题都给出代号为A,B,C,D的四个结论,其中只有一个是正确的,请用2B铅笔在答题卷上将选定的答案代号涂黑.1.(3分)下列运算正确的是()A.=﹣2B.C.=x D.解:A.=|﹣2|=2,此选项错误;B.与不是同类二次根式,不能合并,此选项错误;C.=|x|,此选项错误;D.==×=2,此选项正确;故选:D.2.(3分)下列式子是最简二次根式的是()A.B.C.D.解:A、=2,则不是最简二次根式,故此选项不合题意;B、是最简二次根式,故此选项符合题意;C、==,则不是最简二次根式,故此选项不合题意;D、=,则不是最简二次根式,故此选项不合题意;故选:B.3.(3分)若在实数范围内有意义,则x的取值范围是()A.x<﹣2B.x>﹣2C.x≤﹣2D.x≥﹣2解:由题意,得x+2≥0,解得x≥﹣2.故选:D.4.(3分)下列二次根式中,与是同类二次根式的是()A.B.C.D.解:A、=2,与不是同类二次根式,故本选项错误;B、=3,与不是同类二次根式,故本选项错误;C、=,与是同类二次根式,故本选项正确;D、与不是同类二次根式,故本选项错误.故选:C.5.(3分)下列计算正确的是()A.=±2B.C.2﹣=2D.解:A、原式=2,所以A选项错误;B、原式==,所以B选项正确;C、原式=,所以C选项错误;D、与不能合并,所以D选项错误.故选:B.6.(3分)下列计算正确的是()A.=x B.x2•x5=x10C.(x2)3=x6D.=+解:A、,错误;B、x2•x5=x7,错误;C、(x2)3=x6,正确;D、,错误;故选:C.7.(3分)下列各组数据不是勾股数的是()A.2,3,4B.3,4,5C.5,12,13D.6,8,10解:A、12+32≠42 ,不能构成直角三角形,所以不是勾股数,故符合题意;B、32+42=52,能构成直角三角形,所以是勾股数,故不符合题意;C、52+122=132,能构成直角三角形,所以是勾股数,故不符合题意;D、62+82=102,能构成直角三角形,所以是勾股数,故不符合题意;故选:A.8.(3分)如图,正方形ABCD的面积是()A.5B.25C.7D.1解:设正方形的边长为c,由勾股定理可知:c2=32+42,∴c2=25,故选:B.9.(3分)如图,数轴上的点A表示的数是﹣2,点B表示的数是1,CB⊥AB于点B,且BC=2,以点A为圆心,AC为半径画弧交数轴于点D,则点D表示的数为()A.B.+2C.﹣2D.2解:由题意可得,AB=3,BC=2,AB⊥BC,∴AC===,∴AD=.∴点D表示数为﹣2.故选:C.10.(3分)由下列条件不能判断△ABC是直角三角形的是()A.∠A:∠B:∠C=3:4:5B.AB:BC:AC=3:4:5C.∠A+∠B=∠C D.AB2=BC2+AC2解:A、∵∠A:∠B:∠C=3:4:5,且∠A+∠B+∠C=180°,可求得∠C≠90°,故△ABC不是直角三角形;B、不妨设AB=3x,BC=4x,AC=5x,此时AB2+BC2=25x2=AC2,故△ABC是直角三角形;C、∠A+∠B=∠C,且∠A+∠B+∠C=180°,可求得∠C=90°,故△ABC是直角三角形;D、AB2=BC2+AC2,满足勾股定理的逆定理,故△ABC是直角三角形;故选:A.11.(3分)如图,△ABC中,∠ACB=90°,AC=2,BC=3.设AB的长是m,下列关于m的四种说法,其中,所有正确说法的序号是()①m是无理数②m是13的算术平方根③2<m<3④m可以用数轴上的一个点来表示A.①②B.①③C.①②④D.②③④解:由勾股定理可知:m===,故①②④正确,∵3<<4,∴3<m<4,故③错误,故选:C.12.(3分)如图,高速公路上有A、B两点相距10km,C、D为两村庄,已知DA=4km,CB=6km.DA⊥AB于A,CB⊥AB于B,现要在AB上建一个服务站E,使得C、D两村庄到E站的距离相等,则EB的长是()kmA.4B.5C.6D.解:设BE=x,则AE=(10﹣x)km,由勾股定理得:在Rt△ADE中,DE2=AD2+AE2=42+(10﹣x)2,在Rt△BCE中,CE2=BC2+BE2=62+x2,由题意可知:DE=CE,所以:62+x2=42+(10﹣x)2,解得:x=4km.所以,EB的长是4km.故选:A.二、填空题(本大题共6小题,每小题3分,共18分)请把答案填在答题卷指定的位置上.13.(3分)将二次根式化为最简二次根式5.解:原式=5,故答案为:514.(3分)化简:=.解:原式===,故答案为.15.(3分)如果最简二次根式与是同类二次根式,那么a=1.解:∵最简二次根式与是同类二次根式,∴1+a=4a﹣2,解得a=1.故答案为1.16.(3分)已知a=﹣1,则a2+2a+2的值是12.解:∵a=﹣1,∴a2+2a+2=(a+1)2+1=(﹣1+1)2+1=11+1=12.故答案为:12.17.(3分)如图,两树高分别为10米和4米,相距8米,一只鸟从一树的树梢飞到另一树的树梢,问小鸟至少飞行10米.解:如图,设大树高为AB=10m,小树高为CD=4m,过C点作CE⊥AB于E,则EBDC是矩形,连接AC,则EB=4m,EC=8m,AE=AB﹣EB=10﹣4=6(m),在Rt△AEC中,AC═=10(m),答:小鸟至少飞行10米.故答案为:10.18.(3分)如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为10.解:易证△AFD′≌△CFB,∴D′F=BF,设D′F=x,则AF=8﹣x,在Rt△AFD′中,(8﹣x)2=x2+42,解之得:x=3,∴AF=AB﹣FB=8﹣3=5,∴S△AFC=•AF•BC=10.故答案为:10.三、解答题(本大题共9小题,共66分)请在答题卷指定位置上写出解答过程.19.(6分)计算:(1);(2).解:(1)原式=7﹣25=﹣18;(2)原式==.20.(6分)计算:(1);(2).解:(1)原式=2+2×2=+4=5;(2)原式=+6﹣=2+6﹣4=2+2.21.(8分)计算:(3﹣)(3+)+(2﹣)解:原式=9﹣7+2﹣2=2.22.(8分)已知a=3+,b=3﹣,分别求下列代数式的值:(1)a2﹣b2(2)a2﹣2ab+b2.解:(1)∵a=3+,b=3﹣,∴a+b=3++3﹣=6,a﹣b=3+﹣3+=2,则a2﹣b2=(a+b)(a﹣b)=6×=12;(2)由(1)知a﹣b=2,∴a2﹣2ab+b2=(a﹣b)2=(2)2=8.23.(8分)如图,在平面直角坐标系中,正方形网格的每个小方格都是边长为1的正方形,△ABC的顶点都在格点上.(1)直接写出点A,B,C的坐标;(2)试判断△ABC是不是直角三角形,并说明理由.解:(1)A(﹣1,5),B(﹣5,2),C(﹣3,1);(2)△ABC是直角三角形.证明:∵AB=,BC=,AC=,∴.由勾股定理的逆定理可知,△ABC是直角三角形,∠ACB=90°.24.(10分)一架梯子长25米,斜靠在一面墙上,梯子底端离墙7米,(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米到A′,那么梯子的底端在水平方向滑动了几米?解:(1)由题意得:AC=25米,BC=7米,AB==24(米),答:这个梯子的顶端距地面有24米;(2)由题意得:BA′=20米,BC′==15(米),则:CC′=15﹣7=8(米),答:梯子的底端在水平方向滑动了8米.25.(10分)如图,小明将升旗的绳子拉到旗杆底端,并在绳子上打了一个结,然后将绳子拉到离旗杆底端9米处,发现此时绳子底端距离打结处约3米,请算出旗杆的高度.解:设旗杆的高度为x米,根据勾股定理,得x2+92=(x+3)2,解得:x=12;答:旗杆的高度为12米26.(5分)如图,某工厂C前面有一条笔直的公路,原来有两条路AC、BC可以从工厂C 到达公路,经测量AC=600m,BC=800m,AB=1000m,现需要修建一条公路,使工厂C到公路的距离最短.请你帮工厂C设计一种方案,并求出新建的路的长.解:过A作CD⊥AB,垂足为D,∵6002+8002=10002,∴AC2+BC2=AB2,∴∠ACB=90°,S△ACB=AB•CD=AC•BC,×600×800=×1000×DB,解得:BD=480,∴新建的路的长为480m.27.(5分)如图,∠ADC=90°,AD=4m,CD=3m,AB=13m,BC=12m.(1)试判断以点A,B,C为顶点的三角形的形状,并说明理由;(2)求该图的面积.解:(1)以点A,B,C为顶点的三角形的形状是直角三角形,理由是:∵∠ADC=90°,AD=4m,CD=3m,∴由勾股定理得:AC==5cm,∵AB=13m,BC=12m,∴AC2+BC2=AB2,∴∠ACB=90°,即以点A,B,C为顶点的三角形的形状是直角三角形;(2)图形的面积S=S△ACB﹣S△ADC===24(cm)2.。

2019-2020学年八年级数学下学期期中试卷(解析版)

2019-2020学年八年级数学下学期期中试卷(解析版)

2019-2020学年八年级数学下学期期中试卷(解析版)一、选择题(本大题共6小题,每小题3分,共计18分.在每小题所给的四个选项中,请将符合要求的选项前面的字母填入下表相应的空格内)1.(3分)函数y=﹣的图象与x轴的交点的个数是()A.零个B.一个C.两个D.不能确定考点:反比例函数的图象.分析:此题可根据反比例函数的图象与两坐标轴无限接近但不相交进行解答.解答:解:∵反比例函数的图象与两坐标轴无限接近但不相交,∴函数y=﹣的图象与x轴没有交点.故选A.点评:本题考查的是反比例函数图象上点的坐标特点,即反比例函数的图象与两坐标轴无限接近但不相交.2.(3分)代数式,,,中分式有()A.1个B.2个C.3个D.4个考点:分式的定义.分析:找到分母中含有字母的式子的个数即可.解答:解:分式共有,2个,故选B.点评:本题考查分式的定义:分母中含有字母的式子就叫做分式;注意π是一个具体的数,不是字母.3.(3分)2008年1月11日,埃科学研究中心在浙江大学成立,“埃”是一个长度单位,是一个用来衡量原子间距离的长度单位.同时,“埃”还是一位和诺贝尔同时代的从事基础研究的瑞典著名科学家的名字,这代表埃科学研究中心的研究要有较为深刻的理论意义.十“埃”等于1纳米.已知:1米=109纳米,那么:15“埃”等于()A.15×10﹣8米B.1.5×10﹣8米C.15×10﹣9米D.1.5×10﹣9米考点:科学记数法—表示较小的数.专题:应用题.分析:小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:15“埃”=0.000 000 001 5米=1.5×10﹣9米.故选D.点评:注意弄清“埃”和纳米的关系.十“埃”等于1纳米,1米=109纳米.4.(3分)如果点P为反比例函数的图象上一点,PQ⊥x轴,垂足为Q,那么△POQ的面积为()A.2B.4C.6D.8考点:反比例函数系数k的几何意义.分析:此题可从反比例函数系数k的几何意义入手,△POQ的面积为点P向两条坐标轴作垂线,与坐标轴围成的矩形面积的一半即S=.解答:解:由题意得,点P 位于反比例函数的图象上,故S△POQ =|k|=2.故选A.点评:本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.本知识点是中考的重要考点,同学们应高度关注.5.(3分)在同一平面直角坐标系中,函数的图象大致是()A.B.C.D.考点:反比例函数的图象;一次函数的图象.分析:根据一次函数的系数、反比例函数的系数确定直线和双曲线所经过的象限即可.解答:解:∵k>0,∴3k>0,2k>0,∴直线y=3kx+3k经过第一、二、三象限,双曲线y=经过第一、三象限,故选D.点评:本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.6.(3分)(2006•天津)已知,则的值等于()A.6B.﹣6 C.D.考点:分式的基本性质;分式的加减法.专题:计算题.分析:由已知可以得到a﹣b=﹣4ab,把这个式子代入所要求的式子,化简就得到所求式子的值.解答:解:已知可以得到a﹣b=﹣4ab,则==6.故选A.点评:观察式子,得到已知与未知的式子之间的关系是解决本题的关键.二、填空题(本大题共8小题,每小题3分,共计24分.)7.(3分)已知y与(2x+1)成反比例,且当x=1时,y=2,那么当x=﹣1时,y= ﹣6 .考点:待定系数法求反比例函数解析式.分析:根据y与(2x+1)成反比例可设出反比例函数的解析式为y=(k≠0),再把已知代入求出k的值,再把x=﹣1时,代入求得y的值.解答:解:∵y与(2x+1)成反比例,∴设反比例函数的解析式为y=(k≠0),又∵当x=1时,y=2,即2=,解得:k=6,∴反比例函数的解析式为:y=,则当x=﹣1时,y=﹣6.故答案为:﹣6.点评:本题主要考查了用待定系数法求反比例函数的解析式,关键是根据题意设出解析式,求出k的值.8.(3分)如果点(m,﹣2m)在双曲线上,那么双曲线在第二、四象限.考点:反比例函数图象上点的坐标特征.分析:根据反比例函数图象上的点的坐标特征:图象上的点(x,y)的横纵坐标的积是定值k,即xy=k可得k=﹣2m2<0,根据反比例函数的性质可得答案.解答:解:∵点(m,﹣2m)在双曲线(k≠0)上,∴m•(﹣2m)=k,解得:k=﹣2m2,∵﹣2m2<0,∴双曲线在第二、四象限.故答案为:第二、四.点评:此题主要考查了反比例函数图象上的点的坐标特征,以及反比例函数的性质,关键是掌握图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.9.(3分)若分式方程无解,则m的值为 3 .考点:分式方程的解.专题:计算题.分析:分式方程去分母转化为整式方程,根据分式方程无解得到x=3,代入整式方程即可求出m的值.解答:解:去分母得:x﹣2x+6=m,将x=3代入得:﹣3+6=m,则m=3.故答案为:3.点评:此题考查了分式方程的解,方程的解即为能使方程左右两边相等的未知数的值.10.(3分)(2011•哈尔滨模拟)反比例函数y=(k≠0)的图象经过点(2,5),若点(1,n)在图象上,则n= 10 .考点:待定系数法求反比例函数解析式.专题:计算题;待定系数法.分析:将点(2,5)代入反比例函数解析式得出k值,然后再将(1,n)代入所求出的函数解析式可得出n的值.解答:解:将点(2,5)代入y=得:5=∴k=10,函数解析式为y=,将点(1,n)代入y=得:n==10∴n=10.故答案为:10.点评:本题考查了待定系数法求函数解析式,属于比较经典的题目,要注意待定系数法的掌握.11.(3分)(2006•南汇区二模)当x= ﹣2 时,分式的值为0.考点:分式的值为零的条件.专题:计算题.分析:分式的值为0的条件是:(1)分子=0;(2)分母≠0.两个条件需同时具备,缺一不可.据此可以解答本题.解答:解:∵=0,∴x=﹣2.故答案为﹣2.点评:此题考查的是对分式的值为0的条件的理解,比较简单.12.(3分)反比例函,x>0时,y随着x的增大而增大,则m的值是﹣1 .考点:反比例函数的性质;反比例函数的定义.分析:先根据反比例函数的性质判断出(2m﹣1)的符号以及利用m2﹣2=﹣1求出m的值,再写出符合条件的m即可.解答:解:∵反比例函,x>0时,y随着x的增大而增大,∴m2﹣2=﹣1,∴m2=1,m=±1,∵2m﹣1<0,∴m<,∴m=﹣1.故答案为:﹣1.点评:本题考查的是反比例函数的性质,利用反比例函数y=(k≠0),当k<0时,反比例函数图象在第二、四象限内,在每一象限内y随x的增大而增大是解题关键.13.(3分)(2011•南京)设函数y=与y=x﹣1的图象的交点坐标为(a,b),则﹣的值为﹣.考点:反比例函数与一次函数的交点问题.专题:计算题;压轴题.分析:把交点坐标代入2个函数后,得到2个方程,求得a,b的解,整理求得﹣的值即可.解答:解:∵函数y=与y=x﹣1的图象的交点坐标为(a,b),∴b=,b=a﹣1,∴=a﹣1,a2﹣a﹣2=0,(a﹣2)(a+1)=0,解得a=2或a=﹣1,∴b=1或b=﹣2,∴﹣的值为﹣.故答案为:﹣.点评:考查函数的交点问题;得到2个方程判断出a,b的值是解决本题的关键.14.(3分)观察下面给定的一列分式:,,,,…(其中y≠0).根据你发现的规律,给定的这列分式中的第7个分式是.考点:分式的定义.专题:规律型.分析:分子的指数是3,5,7,9…是连续奇数,分母的指数是大于0的自然数,奇数项的符号是负号.解答:解:第奇数个式子的符号是负数,偶数个是正数,分母是第几个式子就是y的几次方;分子是第几个式子就是x的第几加1个奇数次方.所以第七个分式是.点评:注意观察每项变化,然后找出的规律.三、解答题(本大题共10小题,共78分)15.(6分)计算:(2m2n﹣1)2÷3m3n﹣5.考点:负整数指数幂.分析:根据负整数指数幂的意义计算即可.解答:解:原式=4m4n﹣2÷3m3n﹣5=mn3.点评:本题主要考查了负指数幂的运算,解题的关键是根据负整数指数幂的意义计算.16.(6分)(2011•莒南县模拟)化简:.考点:分式的混合运算.专题:计算题.分析:先通分,计算括号里的,再除法转化成乘法,最后算减法.解答:解:原式=1﹣×=1﹣=﹣.点评:本题考查了分式的混合运算,解题的关键是注意通分以及对分式分子分母的因式分解.17.(6分)先化简,.考点:分式的混合运算.专题:计算题.分析:原式第一项利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分后通分并利用同分母分式的加法法则计算即可得到结果.解答:解:原式=•+=+=.点评:此题考查了分式的混合运算,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是约分,约分的关键是找公因式.18.(6分)解方程.考点:解分式方程.分析:观察可得最简公分母是(x﹣1)(x+2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:方程的两边同乘(x﹣1)(x+2),得x(x+2)﹣(x﹣1)(x+2)=3,解得x=1.检验:把x=1代入(x﹣1)(x+2)=0.所以原方程无解.点评:本题考查了分式方程的解法,注意:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.19.(8分)已知函数 y=(5m﹣3)x2﹣n+(n+m),(1)当m,n为何值时是一次函数?(2)当m,n为何值时,为正比例函数?(3)当m,n为何值时,为反比例函数?考点:反比例函数的定义;一次函数的定义;正比例函数的定义.分析:(1)根据一次函数的定义知2﹣n=1,且5m﹣3≠0,据此可以求得m、n的值;(2)根据正比例函数的定义知2﹣n=1,m+n=0,5m﹣3≠0,据此可以求得m、n的值;(3)根据反比例函数的定义知2﹣n=﹣1,m+n=0,5m﹣3≠0,据此可以求得m、n的值.解答:解:(1)当函数y=(5m﹣3)x2﹣n+(m+n)是一次函数时,2﹣n=1,且5m﹣3≠0,解得,n=1,m≠;(2)当函数y=(5m﹣3)x2﹣n+(m+n)是正比例函数时,,解得,n=1,m=﹣1.(3)当函数y=(5m﹣3)x2﹣n+(m+n)是反比例函数时,,解得n=3,m=﹣3.点评:本题考查了一次函数、正比例函数、反比例函数的定义.关键是掌握正比例函数是一次函数的一种特殊形式以及三种函数的关系是形式.20.(8分)A、B两种机器人都被用来搬运化工原料,A型机器人比B型机器人每小时多搬运30kg,A型机器人搬运900kg原料所用时间与B型机器人搬运600kg原料所用时间相等,两种机器人每小时分别搬运多少千克化工原料?考点:分式方程的应用.分析:设B种机器人每小时搬运x千克化工原料,则A种机器人每小时搬运(x+30)千克化工原料,根据A型机器人搬运900kg原料所用时间与B型机器人搬运600kg原料所用时间相等建立方程求出其解就可以得出结论.解答:解:设B种机器人每小时搬运x千克化工原料,则A种机器人每小时搬运(x+30)千克化工原料,由题意得,解得:x=60,经检验,x=60是原方程的解,故A种机器人每小时搬运90千克化工原料.答:B种机器人每小时搬运60千克化工原料,则A种机器人每小时搬运90千克化工原料.点评:本题考查了列分时方程解实际问题的运用,分式方程的解法的运用,解答时根据A型机器人搬运900kg原料所用时间与B型机器人搬运600kg原料所用时间相等建立方程是关键.21.(9分)(2009•桂林)在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?考点:分式方程的应用.专题:工程问题.分析:(1)求的是乙的工效,工作时间明显.一定是根据工作总量来列等量关系.等量关系为:甲20天的工作量+甲乙合作24天的工作总量=1.(2)把在工期内的情况进行比较.解答:解:(1)设乙队单独完成需x天.(1分)根据题意,得:×20+(+)×24=1.(3分)解这个方程得:x=90.(4分)经检验,x=90是原方程的解.∴乙队单独完成需90天.(5分)(2)设甲、乙合作完成需y天,则有(+)y=1.解得y=36,(6分)甲单独完成需付工程款为60×3.5=210(万元).乙单独完成超过计划天数不符题意,甲、乙合作完成需付工程款为36×(3.5+2)=198(万元).(7分)答:在不超过计划天数的前提下,由甲、乙合作完成最省钱.(8分)点评:本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.22.(10分)在25℃的室内烧开一壶水用了5分钟(水温与时间的关系是一次函数关系),又过了一分钟(其中在5﹣6分钟之间,水温保持不变),随后壶中的水温按反比例关系下降.(1)在这个过程中,水温超过60℃的时间是多少分钟?(2)从水烧开到水温降至25℃用了多长时间?考点:一次函数的应用.分析:设水温为y,时间为x.(1)则由题意得到y=k1x+b(k1≠0).所以把x=0,y=25;x=5,y=100代入其中可以求得k1的值,易求该一次函数解析式;把y=60代入该解析式即可求得相应的x,即所需的时间;(2)设y=(k2≠0).把x=6,y=100代入该反比例函数解析式可以求得k2的值,易求该反比例函数解析式,然后把y=25代入该解析式即可求得x的值.解答:解:设水温为y,时间为x.(1)依题意可设y=k1x+b(k1≠0).则,解得,,则该一次函数解析式为y=15x+25.所以,当y=60时,60=15x+25,(2)由题意可设y=(k2≠0).则100=,解得x=,即在这个过程中,水温超过60℃的时间是分钟;解得,k2=600.所以,该反比例函数解析式为:y=.则当y=25时,25=,解得,x=24,即从水烧开到水温降至25℃用了24分钟.点评:本题考查了一次函数的应用.注意开水的温度是100℃,所以在解题中,这是隐含在题中的已知条件.23.(10分)如图,小明家、王老师家、学校在同一条路上.小明家到王老师家路程为3km,王老师家到学校的路程为0.5km,由于小明父母战斗在抗“非典”第一线,为了使他能按时到校,王老师每天骑自行车接小明上学,已知王老师骑自行车的速度是步行速度的3倍,每天比平时步行上班多用了20分钟,问王老师的步行速度及骑自行车的速度各是多少km/h?考点:分式方程的应用.分析:王老师接小明上学后走的总路程为3+3+0.5=6.5km,平时步行去学的路程为0.5km,根据时间=路程÷速度,以及关键语“比平时步行上班多用了20分钟”可得出的等量关系是:接小明上学后走的路程÷骑车的速度=平时上班的路程÷步行的速度+20分钟.解答:解:设王老师步行速度为xkm/h,则骑自行车的速度为3xkm/h,依题意,得=+,解得x=5,经检验x=5是原方程的根,∴3x=15.答:王老师步行速度为5km/h,骑自行车的速度为15km/h.点评:此题主要考查了分式方程的应用题,重点在于准确地找出相等关系,这是列方程的依据.本题要注意时间的单位要一致.24.(9分)(2011•临沂)如图,一次函数y=kx+b与反比例函数y=的图象相交于A(2,3),B(﹣3,n)两点.(1)求一次函数与反比例函数的解析式;(2)根据所给条件,请直接写出不等式kx+b>的解集;(3)过点B作BC⊥x轴,垂足为C,求S△ABC.考点:反比例函数与一次函数的交点问题.专题:压轴题.分析:(1)由一次函数y=kx+b与反比例函数y=的图象相交于A(2,3),B(﹣3,n)两点,首先求得反比例函数的解析式,则可求得B点的坐标,然后利用待定系数法即可求得一次函数的解析式;(2)根据图象,观察即可求得答案;(3)因为以BC为底,则BC边上的高为3+2=5,所以利用三角形面积的求解方法即可求得答案.解答:解:(1)∵点A(2,3)在y=的图象上,∴m=6,∴反比例函数的解析式为:y=,∴n==﹣2,∵A(2,3),B(﹣3,﹣2)两点在y=kx+b上,∴,解得:,∴一次函数的解析式为:y=x+1;(2)﹣3<x<0或x>2;(3)以BC为底,则BC边上的高AE为3+2=5,∴S△ABC=×2×5=5.点评:此题考查了反比例函数与一次函数的交点问题.注意待定系数法的应用是解题的关键.。

八年级下册期中考试数学试题含答案解析.doc

八年级下册期中考试数学试题含答案解析.doc

2019-2020 年八年级下册期中考试数学试题含答案解析一、选择题(本题共 12 个小题。

在每题所列四个选项中,只有一个符合题意,把符合题意的选项所对应的字母代号写在答题纸中各题对应的方格里)。

1 .若 1 2x 有意义 , 则 x的取值范围 ( )A.x > 2B. x ≤1C. x≠1D. x ≤ 2222 .已知一个直角三角形的两边长分别为3 和 4,则第三边长的平方是()A. 25B. 14C. 7D.7 或 253 .下列各组数中不能作为直角三角形的三边长的是()A. 1.5, 2, 3;B. 7, 24, 25;C. 6 ,8, 10;D. 9, 12, 15.4. 如图, 四边形 ABCD 中,对角线 AC , BD 相交于点 O ,下列条件不能判定这个四边形是平行四边形的是 ()A. AB ∥ DC ,AD ∥ BCB. AB=DC,AD=BCC.AO=CO,BO=DOD.AB ∥DC ,AD=BC5 .在 5a ,8a , c, a 2b 2 , a 3 中,最简二次根式有( )9A. 1 个B. 2 个C. 3 个D. 4 个6 .如图,长为 8cm 的橡皮筋放置在 x 轴上,固定两端 A 和 B ,然后把中点 C 向上拉升3cm 至 D 点,则橡皮筋被拉长了 ( )A. 2cmB.3cmC.4cmD. 5cm7 .如图:平行四边形 ABCD 的对角线交于点 O ,且 AB=6,△OCD 的周长为 16, 则 AC 与 BD 的和是 ()A. 10B. 16C. 20D. 228 .如下图字母 B 所代表的正方形的面积是()A. 12B. 13C. 144D. 1949. 如果 最简 根 式是能合并,那么使4a2x 有意义的x 的范围是() A. x ≤10B. x≥10C. x<10D. x>1010.如图所示,在菱形 ABCD 中,AC 、BD 相交于点若 OE=3,则菱形 ABCD 的周长是()O ,E 为AB 中点,A.12B.18C. 24D. 3011.矩形一个内角的平分线把矩形的一边分成3cm和5cm ,则矩形的周长为( )A.16cmB.22cm或 26cmC.26cmD.以上都不对12 .实数 a 在数轴上的位置如图所示,则( a 4) 2(a 11) 2化简后为()A. 7B. -7C. 2a -15D.无法确定二、填空题(本题共 6 个小题。

2019-2020学年河北省唐山市遵化市八年级(下)期中数学试卷

2019-2020学年河北省唐山市遵化市八年级(下)期中数学试卷

2019-2020学年河北省唐山市遵化市八年级(下)期中数学试卷一.选择题(本题共20小题,每小题3分,共60分)1.(3分)(2020春•高新区期末)2019年是大家公认的5G商用元年,移动通讯行业人员想了解5G手机的使用情况,在某高校随机对500位大学生进行了问卷调查,下列说法正确的是()A.该调查方式是普查B.该调查中的个体是每一位大学生C.该调查中的样本是被随机调查的500位大学生5G手机的使用情况D.该调查中的样本容量是500位大学生2.(3分)(2012•济宁)空气是由多种气体混合而成的,为了简明扼要的介绍空气的组成情况,较好的描述数据,最适合使用的统计图是()A.扇形图B.条形图C.折线图D.直方图3.(3分)(2017•瑶海区校级模拟)统计得到的一组数据有80个,其中最大值为141,最小值为50,取组距为10,可以分成()A.10组B.9组C.8组D.7组4.(3分)(2020春•平罗县期末)根据下列表述,能确定位置的是()A.天益广场南区B.凤凰山北偏东42°C.红旗影院5排9座D.学校操场的西面5.(3分)(2019•新华区校级模拟)如图,象棋盘上,若“将”位于点(1,﹣2),“象”位于点(5,0),则炮位于点()A.(﹣1,1)B.(﹣1,2)C.(﹣2,1)D.(﹣2,2)6.(3分)(2007•乌兰察布)在坐标平面内,若点P(x﹣2,x+1)在第二象限,则x的取值范围是()A.x>2B.x<2C.x>﹣1D.﹣1<x<27.(3分)(2017•广安)当k<0时,一次函数y=kx﹣k的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限8.(3分)(2020春•遵化市期中)如图,将平面直角坐标系中“鱼”的每个“顶点”的纵坐标保持不变,横坐标变为原来的,则点A的对应点A′的坐标是()A.(2,3)B.(6,1)C.(2,1)D.(3,3)9.(3分)(2020春•迁西县期末)圆周长公式C=2πR中,下列说法正确的是()A.π、R是变量,2为常量B.C、R为变量,2、π为常量C.R为变量,2、π、C为常量D.C为变量,2、π、R为常量10.(3分)(2020•岳麓区模拟)在平面直角坐标系中,点A的坐标是(﹣1,2),作点A关于y轴的对称点,得到点A',再将点A'向下平移4个单位,得到点A″,则点A″的坐标是()A.(﹣1,﹣2)B.(1,2)C.(1,﹣2)D.(﹣2,1)11.(3分)(2020春•遵化市期中)下列函数(1)y=x(2)y=2x﹣1(3)y=(4)y=2﹣3x(5)y=x2﹣1中,是一次函数的有()A.4个B.3个C.2个D.1个12.(3分)(2020•济宁模拟)函数y=的自变量x的取值范围是()A.x>1B.x≥1C.x≥1且x≠0D.x≤113.(3分)(2020•阳谷县校级模拟)若y=(m﹣1)x2﹣|m|+3是关于x的一次函数,则m的值为()A.1B.﹣1C.±1D.±214.(3分)(2017•毕节市)把直线y=2x﹣1向左平移1个单位,平移后直线的关系式为()A.y=2x﹣2B.y=2x+1C.y=2x D.y=2x+215.(3分)(2017春•凌源市期末)下列各曲线中,表示y是x的函数的是()A.B.C.D.16.(3分)(2012•定西)地球的水资源越来越枯竭,全世界都提倡节约用水,小明把自己家1月至6月份的用水量绘制成折线图,那么小明家这6个月的月平均用水量是()A.10吨B.9吨C.8吨D.7吨17.(3分)(2014•孝感)如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D (5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是()A.(2,10)B.(﹣2,0)C.(2,10)或(﹣2,0)D.(10,2)或(﹣2,0)18.(3分)(2016•海南校级模拟)如图,正方形ABCD的边长为2,动点P从点D出发,沿折线D→C→B作匀速运动,则△APD的面积S与点P运动的路程x之间的函数图象大致是()A.B.C.D.19.(3分)(2020春•遵化市期中)如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0),将△ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段BC扫过的面积为()A.4B.8C.16D.1020.(3分)(2020春•遵化市期中)甲、乙两车同时从A地出发,各自都以自己的速度匀速向B地行驶,甲车先到B地,停车1小时后按原速匀速返回,直到两车相遇.已知,乙车的速度是60千米/时,如图是两车之间的距离y(千米)与乙车行驶的时间x(小时)之间的函数图象,则下列说法不正确的是()A.A、B两地之间的距离是450千米B.乙车从出发到与甲车返回时相遇所用的时间是6.6小时C.甲车的速度是80千米/时D.点M的坐标是(6,90)二.填空题(共5小题,每小题5分,共25分)21.(5分)(2019春•柯桥区期末)某校开展捐书活动,七(1)班同学积极参与,现将捐书数量绘制成频数分布直方图(如图所示),如果捐书数量在3.5﹣4.5组别的人数占总人数的,那么捐书数量在4.5﹣5.5组别的人数是.22.(5分)(2020春•遵化市期中)如图是一个运算程序的示意图,若输出y的值为2,则输入x的值可能为.23.(5分)(2013•崂山区模拟)如图,过A点的一次函数图象与正比例函数y=2x的图象相交于点B,则这个一次函数的表达式是.24.(5分)(2020春•遵化市期中)一辆经营长途运输的货车在高速公路的A处加满油后,以每小时80千米的速度匀速行驶,前往B地,如表记录的是货车一次加满油后油箱内余油量y(升)与行驶时间x(时)之间的关系:行驶时间x/时012 2.5余油量y/升100806050则y与x的函数关系式为,自变量x的取值范围为.25.(5分)(2020春•遵化市期中)正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示放置,点A1,A2,A3,…和C1,C2,C3,…分别在直线y=x+1和x轴上,则点B2020的纵坐标是,点B n的纵坐标是.三.解答题(共1小题,15分)26.(15分)(2016•卧龙区一模)某森林公园从正门到侧门有一条公路供游客运动,甲徒步从正门出发匀速走向侧门,出发一段时间开始休息,休息了0.6小时后仍按原速继续行走.乙与甲同时出发,骑自行车从侧门匀速前往正门,到达正门后休息0.2小时,然后按原路原速匀速返回侧门.图中折线分别表示甲、乙到侧门的路程y(km)与甲出发时间x (h)之间的函数关系图象.根据图象信息解答下列问题.(1)求甲在休息前到侧门的路程y(km)与出发时间x(h)之间的函数关系式.(2)求甲、乙第一次相遇的时间.(3)直接写出乙回到侧门时,甲到侧门的路程.2019-2020学年河北省唐山市遵化市八年级(下)期中数学试卷参考答案与试题解析一.选择题(本题共20小题,每小题3分,共60分)1.【解答】解:A、该调查方式是普查,说法错误,应为抽样调查;B、该调查中的个体是每一位大学生,说法错误,该调查中的个体是每一位大学生5G手机的使用情况;C、该调查中的样本是被随机调查的500位大学生5G手机的使用情况,说法正确;D、该调查中的样本容量是500位大学生,说法错误,应为该调查中的样本容量是500;故选:C.2.【解答】解:根据题意,得要求直观反映空气的组成情况,即各部分在总体中所占的百分比,结合统计图各自的特点,应选择扇形统计图.故选:A.3.【解答】解:在样本数据中最大值为141,最小值为50,它们的差是141﹣50=91,已知组距为10,那么由于91÷10=9.1,故可以分成10组.故选:A.4.【解答】解:A、天益广场南区,不能确定位置,故本选项错误;B、凤凰山北偏东42°,没有明确具体位置,故本选项错误;C、红旗影院5排9座,能确定位置,故本选项正确;D、学校操场的西面,不能确定位置,故本选项错误;故选:C.5.【解答】解:根据题意可建立如图所示坐标系,由坐标系知炮位于点(﹣2,1),故选:C.6.【解答】解:因为点P(x﹣2,x+1)在第二象限,所以x﹣2<0,x+1>0,解得﹣1<x <2.故选:D.7.【解答】解:∵k<0,∴﹣k>0,∴一次函数y=kx﹣k的图象经过第一、二、四象限.故选:C.8.【解答】解:点A变化前的坐标为(6,3),将纵坐标保持不变,横坐标变为原来的,则点A的对应点A′坐标是(2,3).故选:A.9.【解答】解:在圆周长公式C=2πR中,2、π是常量,C,R是变量.故选:B.10.【解答】解:∵点A的坐标是(﹣1,2),作点A关于y轴的对称点,得到点A',∴A′(1,2),∵将点A'向下平移4个单位,得到点A″,∴点A″的坐标是:(1,﹣2).故选:C.11.【解答】解:(1)y=x是一次函数,符合题意;(2)y=2x﹣1是一次函数,符合题意;(3)y=是反比例函数,不符合题意;(4)y=2﹣3x是一次函数,符合题意;(5)y=x2﹣1是二次函数,不符合题意;故是一次函数的有3个.故选:B.12.【解答】解:根据题意得:x﹣1≥0且x≠0,解得:x≥1.故选:B.13.【解答】解:∵函数y=(m﹣1)x2﹣|m|+3是关于x的一次函数,∴2﹣|m|=1,m﹣1≠0.解得:m=﹣1.故选:B.14.【解答】解:根据题意,将直线y=2x﹣1向左平移1个单位后得到的直线解析式为:y=2(x+1)﹣1,即y=2x+1,故选:B.15.【解答】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,所以B正确.故选:B.16.【解答】解:这6个月的平均用水量:(8+12+10+15+6+9)÷6=10吨,故选:A.17.【解答】解:∵点D(5,3)在边AB上,∴BC=5,BD=5﹣3=2,①若顺时针旋转,则点D′在x轴上,OD′=2,所以,D′(﹣2,0),②若逆时针旋转,则点D′到x轴的距离为10,到y轴的距离为2,所以,D′(2,10),综上所述,点D′的坐标为(2,10)或(﹣2,0).故选:C.18.【解答】解:当点D在DC上运动时,DP=x,所以S=AD•DP=•2•x=x(0△APD<x≤2);当点P在CB上运动时,如图,PC=x﹣4,所以S=AD•DC=•2•2=2(2<x≤△APD4).故选:D.19.【解答】解:如图所示.∵点A、B的坐标分别为(1,0)、(4,0),∴AB=3.∵∠CAB=90°,BC=5,∴AC=4.∴A′C′=4.∵点C′在直线y=2x﹣6上,∴2x﹣6=4,解得x=5.即OA′=5.∴CC′=5﹣1=4.=4×4=16(面积单位).∴S▱BCC′B′即线段BC扫过的面积为16面积单位.故选:C.20.【解答】解:根据题意仔细观察图象可知5小时后两车相距150千米,故甲车比乙车每小时多走30千米,所以甲车的速度为90千米/时;所以A、B两地之间的距离为:90×5=450千米.故选项A不合题意;设乙车从出发到与甲车返回时相遇所用的时间是x小时,根据题意得:60x+90(x﹣6)=450,解得x=6.6,所以乙车从出发到与甲车返回时相遇所用的时间是6.6小时.故选项B不合题意;甲车的速度为90千米/时.故选项C符合题意;点M的纵坐标为:90×5﹣60×6=90,故选项D不合题意.故选:C.二.填空题(共5小题,每小题5分,共25分)21.【解答】解:∵被调查的总人数为12÷=40(人),∴捐书数量在4.5﹣5.5组别的人数是40﹣(4+12+8)=16(人),故答案为:16人.22.【解答】解:当x+1=2时,x=1,不符合x≤0;当x2+1=2时,x=±1,此时x=1符合;当=2时,x=3,此时符合;∴x=3或x=1,故答案为:1或3.23.【解答】解:当x=1时,y=2x=2,所以B点坐标为(1,2),设直线AB的解析式为y=kx+b,把A(0,3)和B(1,2)代入得,解得,所以一次函数的解析式为y=﹣x+3.故答案为y=﹣x+3.24.【解答】解:设y与x之间的关系为一次函数,其函数表达式为y=kx+b,将(0,100),(1,80)代入上式得,,解得,∴y=﹣20x+100;100÷20=5,∴0≤x≤5.故答案为:y=﹣20x+100;0≤x≤5.25.【解答】解:当x=0时,y=x+1=1,∴点A1的坐标为(0,1).∵A1B1C1O为正方形,∴点C1的坐标为(1,0),点B1的坐标为(1,1).同理,可得:B2(3,2),B3(7,4),B4(15,8),∴点B n的坐标为(2n﹣1,2n﹣1),∴点B n的纵坐标为2n﹣1,∴点B2020的纵坐标为22019.故答案为:22019,2n﹣1.三.解答题(共1小题,15分)26.【解答】解:(1)设甲在休息前到侧门的路程y(km)与出发时间x(h)之间的函数关系式为:y=kx+b,∵点(0,15)和点(1,10)在此函数的图象上,∴,解得k=﹣5,b=15.∴y=﹣5x+15.即甲在休息前到侧门的路程y(km)与出发时间x(h)之间的函数关系式为:y=﹣5x+15.(2)设乙骑自行车从侧门匀速前往正门对应的函数关系式y=kx,将(1,15)代入可得k=15,∴乙骑自行车从侧门匀速前往正门对应的函数关系式y=15x,∴解得x=0.75.即第一次相遇时间为0.75h.(3)乙回到侧门时,甲到侧门的路程是7km.设甲休息了0.6小时后仍按原速继续行走对应的函数解析式为:y=kx+b.将x=1.2代入y=﹣5x+15得,y=9.∵点(1.8,9),(3.6,0)在y=kx+b上,∴,解得k=﹣5,b=18.∴y=﹣5x+18.将x=2.2代入y=﹣5x+18,得y=7.即乙回到侧门时,甲到侧门的路程是7km.。

2019-2020学年度第二学期八年级数学期中试卷及答案

2019-2020学年度第二学期八年级数学期中试卷及答案
1.C2.A3.D4.B5.B6.C 7.C8.D
二、填空题(本大题共8小题,每小题3分,共24分)
9. 10. 11. 12.
13.114.6015.616.
三、解答题(本大题共有11小题,共102分.解答时应写出文字说明、推理过程或演算步骤)
17.(6分)解:(1) × = = =4―――2分
(2) ―――2分
(第14题)(第15题)(第16题)
三、解答题(本大题共有11小题,共102分.解答时应写出文字说明、推理过程或演算步骤)
17.(6分)计算:(1) × (2) (3) ÷
18.(6分)计算:(1) × (2)
19.(8分)作出反比例函数 的图象,结合图象回答:
(1)当 时, 的值;
(2)当 时, 的取值范围.
根据题意,得 ―――3分
解得:
经检验 是原方程的解,且符合题意,―――3分
答:第一批某品牌盒装粽子每盒的进价是 元.―――2分
(过程不规范不整齐的,酌情扣1-2分.文字书写不一定要完备,但要有)
26.(12分)解:(1)由题意得: , ,代入反比例函数关系 中,
解得: ,
所以函数关系式为: .―――6分
(3) ―――2分
18.(6分)解:(1)原式= × +2 × = +6 ―――2分
(2)原式= 2- 2=3-2=1―――2分
19.(8分)解:(1)图略. .―――6分(图4分)
(2) .―――2分
20.(8分)解:(1) ―――2分
(2) ―――2分
(3) · = ―――2分
(4) ÷ = பைடு நூலகம் ―――2分
1.下面图形中,不是中心对称图形的是(▲)
A. B. C. D.

2019-2020学年___八年级(下)期中数学试卷-解析版

2019-2020学年___八年级(下)期中数学试卷-解析版

2019-2020学年___八年级(下)期中数学试卷-解析版2019-2020学年___八年级(下)期中数学试卷一、选择题(本大题共8小题,共24.0分)1.下列图形,①角;②两相交直线;③圆;④平行四边形,其中一定是轴对称图形的有()A.四个B.三个C.两个D.一个2.2019年被称为中国的5G元年,如果运用5G技术下载一个4.8M的短视频,大约只需要0.秒,将数字0.用科学记数法表示应为()A.0.96×10^-4B.9.6×10^-3C.9.6×10^-5D.96×10^-63.要使√(x+4)有意义,则()A.x<-4B.x≤-4C.x≥-4D.x>-44.如图,在△ABC中,AB=AC,分别以点A、点B为圆心,以大于AB长为半径画弧,两弧交点的连线交AC于点D,交AB于点E,连接BD,若∠x=40°,则∠xxx=()A.40°B.30°C.20°D.10°5.疫情无情,人有情爱心捐款传真情,感染的肺炎疫情期间,某班同学积极参加献爱心活动,该班50名学生的捐款统计情况如表:金额/元人数5 610 1730 1450 8100 5则他们捐款金额的平均数和中位数分别是()A.39,10B.39,30C.30.4,30D.30.4,106.如图,在△ABC中,已知AB=15,AC=13,CD=5,则BC的长为()A.14B.13C.12D.97.设计一个摸球游戏,先在一个不透明的小盒子中放入5个白球,如果希望从中任意摸出一个球,是白球的概率为4/5,那么应该向盒子中再放入多少个其他颜色的球(游戏用球除颜色外均相同)()A.5B.10C.158.在平行四边形ABCD中,对角线AC的垂直平分线交AD于点E连接CE,若平行四边形ABCD的周长为30,则△CDE的周长为()A.25B.20C.15D.20二、填空题(本大题共12小题,共36.0分)9.等腰三角形一个角等于100°,则它的一个底角是80°.10.若点P(a,-3)在第四象限,且到原点的距离是5,则a=4.11.如图,在△ABC中,∠C=90°,∠BAC=∠ADC=60°,若CD=4,则BD=4√3.12.如果分式(a-2)/(a+3)的值是-1/2,则a=1.三、解答题(共4小题,共20.0分)13.如图,已知ABCD为矩形,AC=2BD,E为BC上一点,且∠BAE=45°,连接DE交AC于F,若AF=6,则DF的长为()解:由题意,AC=2BD,又ABCD为矩形,故AD=BC=BD,因此△ABD为等腰直角三角形,∠ABD=45°,又∠BAE=45°,所以△ABE为等腰直角三角形,BE=AB/√2,即BD/√2,又∠BDE=45°,所以△BDE为等腰直角三角形,DE=BD,因此DF=AF-AE=6-DE=6-BD=6-AD/√2=6-BC/√2=6-AC/2√2=6-6/2√2=6-3√2.答:DF的长为6-3√2.14.如图,在△ABC中,∠A=60°,D为BC上一点,且AD=AC,连接AC,BD,交于点E,若AB=2,则BE的长为()解:由题意,AD=AC=AB/2,所以△ACD为等边三角形,∠ACD=60°,又∠A=60°,所以△ABC为等边三角形,AB=BC=AC=2AD,所以BD=AB-AD=3AD,又由相似三角形可得AE=2AD,所以DE=AE-AD=AD,所以△BDE为等腰直角三角形,BE=BD/√2=3AD/√2=3AC/√2=3AB/4√2=3/2√3.答:BE的长为3/2√3.15.解不等式:(x+1)/(x-2)>0.解:首先求出不等式的定义域,即x≠2,然后找出函数的零点,即x=-1,然后根据零点将实数轴分成三段:x2,然后在每一段上确定函数的正负性,x0,x>2时,(x+1)/(x-2)2}.答:不等式的解集为{x|x2}.16.如图,在△ABC中,∠C=90°,AB=8,BC=6,D为BC上一点,且AD垂直于BC,连接AC,BD,交于点E,若∠BAE=∠CAD,则AE的长为()解:由题意,∠BAE=∠CAD,所以△ABE与△CAD相似,因此AE/AC=AB/AD,即AE/(AE+CE)=AB/BD,代入已知条件可得AE/(AE+6)=8/AD,又由勾股定理可得AD=10,代入上式可得AE=20/3.答:AE的长为20/3.1.判断轴对称图形的关键在于寻找对称轴,图形两部沿对称轴叠后可重合。

河北省2019-2020年八年级下学期期中考试数学试卷2

河北省2019-2020年八年级下学期期中考试数学试卷2

河北省2019-2020年八年级下学期期中考试数学试卷一、选择题(共16小题,每小题2分,满分32分)1.(2分)函数y=中自变量x的取值范围是()A.x≥1 B.x≥﹣1 C.x≤1 D.x≤﹣12.(2分)在平面直角坐标系中,点(﹣1,3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.(2分)如图,如果点M的位置用(﹣40,﹣30)表示,那么(﹣10,20)表示的位置是()A.点A B.点B C.点C D.点D4.(2分)点A(1,﹣2)关于x轴对称的点的坐标是()A.(1,﹣2)B.(﹣1,2)C.(﹣1,﹣2)D.(1,2)5.(2分)有一本书,每20页厚为1mm,设从第1页到第x页的厚度为y(mm),则()A.y=x B.y=20x C.y=+x D.y=6.(2分)如果P(m+3,2m+4)在y轴上,那么点P的坐标是()A.(﹣2,0)B.(0,﹣2)C.(1,0)D.(0,1)7.(2分)今年我市有4万名学生参加2015届中考,为了了解这些考生的数学成绩,从中抽取2000名考生的数学成绩进行统计分析.在这个问题中,下列说法:①这4万名考生的数学2015届中考成绩的全体是总体;②每个考生是个体;③2000名考生是总体的一个样本;④样本容量是2000.其中说法正确的有()A.4个B.3个C.2个D.1个8.(2分)某人驾车从A地上高速公路前往B地,中途在服务区休息了一段时间.出发时油箱中存油40升,到B地后发现油箱中还剩油4升,则从出发后到B地油箱中所剩油y(升)与时间t(小时)之间函数的大致图象是()A.B.C.D.9.(2分)线段CD是由线段AB平移得到的,若点A(﹣1,4)的对应点为C(4,7),则点B(﹣4,﹣1)的对应点D的坐标为()A.(1,2)B.(5,3)C.(2,9)D.(﹣9,﹣4)10.(2分)某校为了了解2015届九年级学生的体能情况,随机抽查了其中的30名学生,测试了1分钟仰卧起座的次数,并绘制成如图所示的频数分布直方图,请根据图示计算,仰卧起座次数在15~20次之间的频率是()A.0.1 B.0.17 C.0.33 D.0.411.(2分)在圆的面积公式S=πr2中,是常量的是()A.S B.πC.r D.S和r12.(2分)根据如图所示程序计算函数值,若输入的x的值为,则输出的函数值为()A.B.C.D.13.(2分)若点M(x,y)满足(x+y)2=x2+y2﹣2,则点M所在的象限是()A.第一象限或第三象限B.第一象限或第二象限C.第二象限或第四象限D.不能确定14.(2分)现定义一种新运算:a※b=b2﹣ab,如:1※2=22﹣1×2=2,则(﹣1※2)※3等于()A.﹣9 B.﹣6 C.6D.915.(2分)若点A在第二象限,且到x轴的距离为2,到y轴的距离为3,则点A的坐标为()A.(﹣3,2)B.(3,﹣2)C.(﹣2,3)D.(2,﹣3)16.(2分)如图,△ABC中,已知BC=16,高AD=10,动点C′由点C沿CB向点B移动(不与点B重合).设CC′的长为x,△ABC′的面积为S,则S与x之间的函数关系式为()A.S=80﹣5x B.S=5x C.S=10x D.S=5x+80二、填空题(共4小题,每小题3分,满分12分)17.(3分)函数的自变量x的取值范围为.18.(3分)某实验中学2015届九年级(1)班全体同学的综合素质评价“运动与健康”方面的等级统计如图所示,其中评价为“A”所在扇形的圆心角是度.19.(3分)小明放学后步行回家,他离家的路程s(米)与步行时间t(分钟)的函数图象如图所示,则他步行回家的平均速度是米/分钟.20.(3分)如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)…则第81个点的横坐标为是.三、解答题(共6小题,满分56分)21.(6分)已知函数y=,求当x=时的函数值.22.(6分)小明从家里出发到超市买东西,再回到家,他离家的距离y(千米)与时间t(分钟)的关系如图所示.请你根据图象回答下列问题:(1)小明家离超市的距离是千米;(2)小明在超市买东西的时间为小时;(3)小明去超市时的速度是千米/小时.23.(10分)如图(小方格的边长为1),这是某市部分简图.(1)请你根据下列条件建立平面直角坐标系(在图中直接画出):①火车站为原点;②宾馆的坐标为(2,2).(2)市场、超市的坐标分别为、;(3)请将体育场、宾馆和火车站看作三点,用线段连起来,得△ABC,然后将此三角形向下平移4个单位长度,再画出平移后的△A′B′C′(在图中直接画出);(4)根据坐标情况,求△ABC的面积.24.(10分)是第23个“世界水日”,为鼓励居民节约用水,某市规定如下用水收费标准:每户每月的用水量不超过6m3时,水费按a元/立方米收费;超过时,不超过6m3的部分仍按a元/立方米收费,超过的部分按c元/立方米(c>a)收费,已知该市小明家今年3月份和4月份的用水量、水费如表所示:月份用水量/m3水费/元3 5 7.54 9 27(1)求a,c的值;(2)设某户1个月的用水量为x(m3),应交水费y(元)①分别写出用水量不超过6m3和超过6m3时,y与x之间的函数关系式;②已知一户5月份的用水量为8m3,求该户5月份的水费.25.(12分)在“走基层,树新风”的活动中,青年记者石剑深入边远山区,随机走访农户,调查农村儿童生活教育现状,根据收集的数据,编制了不完整的统计图表如下山区农村儿童生活教育现状类别现状户数比例A 父母常年在外打工,孩子留在老家由老人照顾100B 父母常年在外打工,孩子带在身边10%C 父母就近在城镇打工,晚上回家照顾孩子50D 父母在家务农并照顾孩子15%请你用学过的统计知识,解决问题:(1)记者石剑走访了边远山区多少农户?(2)将统计图中的空缺数据正确填写完整;(3)分析数据后,请你提一条合理建议.26.(12分)如图,矩形ABCD中,点P是线段AD上的一个动点,O为BD的中点,PO 的延长线交BC于Q.(1)求证:OP=OQ;(2)若AD=8cm,AB=6cm,点P从点A出发,以1cm/s的速度向点D运动(不与D重合).设点P运动的时间为t秒,请用t表示PD的长;(3)当t为何值时,四边形PBQD是菱形?八年级下学期期中数学试卷参考答案与试题解析一、选择题(共16小题,每小题2分,满分32分)1.(2分)函数y=中自变量x的取值范围是()A.x≥1 B.x≥﹣1 C.x≤1 D.x≤﹣1考点:函数自变量的取值范围.分析:根据二次根式的意义,被开方数是非负数即可求解.解答:解:根据题意得:x﹣1≥0,解得x≥1.故选A.点评:考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.2.(2分)在平面直角坐标系中,点(﹣1,3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限考点:点的坐标.分析:根据点的横纵坐标的符号可确定所在象限.解答:解:∵该点的横坐标为负数,纵坐标为正数,∴所在象限为第二象限,故选B.点评:考查点的坐标的相关知识;用到的知识点为:第二象限点的符号特点为(﹣,+).3.(2分)如图,如果点M的位置用(﹣40,﹣30)表示,那么(﹣10,20)表示的位置是()A.点A B.点B C.点C D.点D考点:坐标确定位置.专题:数形结合.分析:利用点M的位置坐标确定直角坐标系和单位长度,然后找出坐标(﹣10,20)所对应的点.解答:解:(﹣10,20)表示的位置是点A.故选A.点评:本题考查了坐标确定位置:平面内的点与有序实数对一一对应;记住直角坐标系中特殊位置点的坐标特征.4.(2分)点A(1,﹣2)关于x轴对称的点的坐标是()A.(1,﹣2)B.(﹣1,2)C.(﹣1,﹣2)D.(1,2)考点:关于x轴、y轴对称的点的坐标.分析:根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可直接得到答案.解答:解:点A(1,﹣2)关于x轴对称的点的坐标是(1,2),故选:D.点评:此题主要考查了关于x轴对称点的坐标特点,关键是掌握点的坐标的变化规律.5.(2分)有一本书,每20页厚为1mm,设从第1页到第x页的厚度为y(mm),则()A.y=x B.y=20x C.y=+x D.y=考点:列代数式.分析:总厚度=每页的厚度×页数.解答:解:y=x.故选A.点评:注意代数式的正确书写:数字应写在字母的前面,数字和字母之间的乘号要省略不写.6.(2分)如果P(m+3,2m+4)在y轴上,那么点P的坐标是()A.(﹣2,0)B.(0,﹣2)C.(1,0)D.(0,1)考点:点的坐标.分析:根据点在y轴上,可知P的横坐标为0,即可得m的值,再确定点P的坐标即可.解答:解:∵P(m+3,2m+4)在y轴上,∴m+3=0,解得m=﹣3,2m+4=﹣2,∴点P的坐标是(0,﹣2).故选B.点评:解决本题的关键是记住y轴上点的特点:横坐标为0.7.(2分)今年我市有4万名学生参加2015届中考,为了了解这些考生的数学成绩,从中抽取2000名考生的数学成绩进行统计分析.在这个问题中,下列说法:①这4万名考生的数学2015届中考成绩的全体是总体;②每个考生是个体;③2000名考生是总体的一个样本;④样本容量是2000.其中说法正确的有()A.4个B.3个C.2个D.1个考点:总体、个体、样本、样本容量.分析:总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象,从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.解答:解:这4万名考生的数学2015届中考成绩的全体是总体;每个考生的数学2015届中考成绩是个体;2000名考生的2015届中考数学成绩是总体的一个样本,样本容量是2000.故正确的是①④.故选:C.点评:本题考查了总体、个体、样本、样本容量的概念,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.8.(2分)某人驾车从A地上高速公路前往B地,中途在服务区休息了一段时间.出发时油箱中存油40升,到B地后发现油箱中还剩油4升,则从出发后到B地油箱中所剩油y(升)与时间t(小时)之间函数的大致图象是()A.B.C.D.考点:函数的图象.专题:压轴题;图表型.分析:根据某人驾车从A地上高速公路前往B地,中途在服务区休息了一段时间,休息时油量不再发生变化,再次出发油量继续减小,即可得出符合要求的图象.解答:解:某人驾车从A地上高速公路前往B地,油量在减小;中途在服务区休息了一段时间,休息时油量不发生变化;再次出发油量继续减小;到B地后发现油箱中还剩油4升;只有C符合要求.故选:C.点评:本题考查了利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.9.(2分)线段CD是由线段AB平移得到的,若点A(﹣1,4)的对应点为C(4,7),则点B(﹣4,﹣1)的对应点D的坐标为()A.(1,2)B.(5,3)C.(2,9)D.(﹣9,﹣4)考点:坐标与图形变化-平移.分析:由于线段CD是由线段AB平移得到的,而点A(﹣1,4)的对应点为C(4,7),比较它们的坐标发现横坐标增加5,纵坐标增加3,利用此规律即可求出点B(﹣4,﹣1)的对应点D的坐标.解答:解:∵线段CD是由线段AB平移得到的,而点A(﹣1,4)的对应点为C(4,7),∴由A平移到C点的横坐标增加5,纵坐标增加3,则点B(﹣4,﹣1)的对应点D的坐标为(1,2).故选A.点评:本题考查了坐标系中点、线段的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.10.(2分)某校为了了解2015届九年级学生的体能情况,随机抽查了其中的30名学生,测试了1分钟仰卧起座的次数,并绘制成如图所示的频数分布直方图,请根据图示计算,仰卧起座次数在15~20次之间的频率是()A.0.1 B.0.17 C.0.33 D.0.4考点:频数(率)分布直方图;频数与频率.专题:图表型.分析:根据直方图中各组的频率之和等于1及频率的计算公式,结合题意可得仰卧起做次数在15~20间小组的频数,再由频率的计算公式可得其频率,进而可得答案.解答:解:由频率的意义可知,从左到右各个小组的频率之和是1,同时每小组的频率=,所以仰卧起坐次数在15~20间的小组的频数是30﹣5﹣10﹣12=3,其频率为=0.1,故选A.点评:本题属于统计内容,考查分析频数分布直方图和频率的求法.解本题要懂得频率分布直分图的意义,了解频率分布直分图是一种以频数为纵向指标的条形统计图.11.(2分)在圆的面积公式S=πr2中,是常量的是()A.S B.πC.r D.S和r考点:常量与变量.分析:根据常量、变量的定义,可得答案.解答:解:在圆的面积公式S=πr2中,π是常量,S、r是变量,故选:B.点评:本题考查了常量与变量,常量是在事物的变化中保持不变的量.12.(2分)根据如图所示程序计算函数值,若输入的x的值为,则输出的函数值为()A.B.C.D.考点:函数值.分析:根据自变量的取值范围确定输入的x的值按照第三个函数解析式进行运算,然后把自变量x的值代入函数解析式进行计算即可得解.解答:解:∵x=,满足2≤x≤4,∴y=.故选:A.点评:本题主要考查了分段函数,解答本题的关键就是弄清楚题图给出的计算程序.13.(2分)若点M(x,y)满足(x+y)2=x2+y2﹣2,则点M所在的象限是()A.第一象限或第三象限B.第一象限或第二象限C.第二象限或第四象限D.不能确定考点:点的坐标.分析:利用完全平方公式展开并整理得到xy=﹣1,从而判断出x、y异号,再根据各象限内点的坐标特征解答.解答:解:∵(x+y)2=x2+2xy+y2,∴2xy=﹣2,∴xy=﹣1,∴x、y异号,∴点M(x,y)在第二、四象限.故选C.点评:本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).14.(2分)现定义一种新运算:a※b=b2﹣ab,如:1※2=22﹣1×2=2,则(﹣1※2)※3等于()A.﹣9 B.﹣6 C.6D.9考点:有理数的混合运算.专题:新定义.分析:原式利用题中的新定义计算即可得到结果.解答:解:根据题中的新定义得:(﹣1※2)※3=(4+1×2)※3=6※3=9﹣18=﹣9,故选A点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.15.(2分)若点A在第二象限,且到x轴的距离为2,到y轴的距离为3,则点A的坐标为()A.(﹣3,2)B.(3,﹣2)C.(﹣2,3)D.(2,﹣3)考点:点的坐标.分析:根据第二象限内点的横坐标小于零,纵坐标大于零,可得横坐标是负数,纵坐标是正数,根据到x轴的距离是纵坐标的绝对值,到y轴的距离是横坐标的绝对值,可得答案.解答:解:点A在第二象限,且到x轴的距离为2,到y轴的距离为3,则点A的坐标为(﹣3,2),故选:A.点评:本题考查了点的坐标,利用到x轴的距离是纵坐标的绝对值,到y轴的距离是横坐标的绝对值,又利用了第二象限内点的横坐标小于零,纵坐标大于零.16.(2分)如图,△ABC中,已知BC=16,高AD=10,动点C′由点C沿CB向点B移动(不与点B重合).设CC′的长为x,△ABC′的面积为S,则S与x之间的函数关系式为()A.S=80﹣5x B.S=5x C.S=10x D.S=5x+80考点:函数关系式;三角形的面积.分析:设CC′的长为x,得出BC′的长为(16﹣x),再根据三角形的面积公式列出关系式即可.解答:解:设CC′的长为x,可得BC′的长为(16﹣x),所以S与x之间的函数关系式为S=.故选A.点评:此题考查了函数关系式问题,有了点C′的运动,才有了S的变化,形的变化引起了数量的变化,关键是利用三角形面积公式列出关系式.二、填空题(共4小题,每小题3分,满分12分)17.(3分)函数的自变量x的取值范围为x≠1.考点:函数自变量的取值范围;分式有意义的条件.专题:计算题.分析:根据分式的意义,分母不能为0,据此求解.解答:解:根据题意,得x﹣1≠0,解得x≠1.故答案为:x≠1.点评:函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.18.(3分)某实验中学2015届九年级(1)班全体同学的综合素质评价“运动与健康”方面的等级统计如图所示,其中评价为“A”所在扇形的圆心角是108度.考点:扇形统计图.分析:首先计算出A部分所占百分比,再利用360°乘以百分比可得答案.解答:解:A所占百分比:100%﹣15%﹣20%﹣35%=30%,圆心角:360°×30%=108°,故答案为:108.点评:此题主要考查了扇形统计图,关键是掌握圆心角度数=360°×所占百分比.19.(3分)小明放学后步行回家,他离家的路程s(米)与步行时间t(分钟)的函数图象如图所示,则他步行回家的平均速度是80米/分钟.考点:函数的图象.专题:几何图形问题.分析:他步行回家的平均速度=总路程÷总时间,据此解答即可.解答:解:由图知,他离家的路程为1600米,步行时间为20分钟,则他步行回家的平均速度是:1600÷20=80(米/分钟),故答案为:80.点评:本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.20.(3分)如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)…则第81个点的横坐标为是9.考点:规律型:点的坐标.分析:观察图形可知,以最外边的矩形边长上的点为准,点的总个数等于x轴上右下角的点的横坐标的平方,并且右下角的点的横坐标是奇数时最后以横坐标为该数,纵坐标为0结束,当右下角的点横坐标是偶数时,以横坐标为1,纵坐标为右下角横坐标的偶数减1的点结束,根据此规律解答即可.解答:解:根据图形,以最外边的矩形边长上的点为准,点的总个数等于x轴上右下角的点的横坐标的平方,例如:右下角的点的横坐标为1,共有1个,1=12,右下角的点的横坐标为2时,共有4个,4=22,右下角的点的横坐标为3时,共有9个,9=32,右下角的点的横坐标为4时,共有16个,16=42,…右下角的点的横坐标为n时,共有n2个,∵92=81,9是奇数,∴第81个点是(9,0),所以,第81个点的横坐标为9.故答案为:9.点评:本题考查了点的坐标,观察出点个数与横坐标的存在的平方关系是解题的关键.三、解答题(共6小题,满分56分)21.(6分)已知函数y=,求当x=时的函数值.考点:函数值.分析:把x的值代入函数关系式进行计算即可得解.解答:解:当x=时,y==1.点评:本题考查了函数值求解,是基础题,准确计算是解题的关键.22.(6分)小明从家里出发到超市买东西,再回到家,他离家的距离y(千米)与时间t(分钟)的关系如图所示.请你根据图象回答下列问题:(1)小明家离超市的距离是3千米;(2)小明在超市买东西的时间为1小时;(3)小明去超市时的速度是15千米/小时.考点:函数的图象.分析:(1)根据函数图象的纵坐标,可得答案;(2)根据函数图象的横坐标,可得答案;(3)根据函数图象的纵坐标,可得距离,根据函数图象的横坐标,可得时间,根据路程与时间的关系,可得答案.解答:解:(1)由纵坐标看出,小明家离超市的距离是3千米;(2)由横坐标看出到达超市是12,离开超市是72,在超市的时间为72﹣12=60分钟=1(小时);(3)由纵坐标看出,小明家离超市的距离是3千米,由横坐标看出到达超市是12分钟=小时,小明去超市时的速度是3÷=15千米/小时;故答案为:3,1,15.点评:本题考查了函数图象,观察函数图象获得有效信息是解题关键.23.(10分)如图(小方格的边长为1),这是某市部分简图.(1)请你根据下列条件建立平面直角坐标系(在图中直接画出):①火车站为原点;②宾馆的坐标为(2,2).(2)市场、超市的坐标分别为(4,3)、(2,﹣3);(3)请将体育场、宾馆和火车站看作三点,用线段连起来,得△ABC,然后将此三角形向下平移4个单位长度,再画出平移后的△A′B′C′(在图中直接画出);(4)根据坐标情况,求△ABC的面积.考点:坐标确定位置.专题:数形结合.分析:(1)利用火车站和宾馆的坐标画出直角坐标系;(2)利用坐标系中各象限点的坐标特征写出市场、超市的坐标;(3)把体育场、宾馆和火车站的横坐标不变,纵坐标减去4描出各点即可得到△A′B′C′;(4)用矩形的面积分别减去三个三角形的面积求解.解答:解:(1)如图,(2)市场的坐标为(4,3),超市的坐标为(2,﹣3);(3)如图;(4)△ABC面积=3×6﹣×2×2﹣×4×3﹣×1×6=18﹣2﹣6﹣3=7.故答案为(4,3),(2,﹣3).点评:本题考查了坐标确定位置:平面坐标系中的点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.会利用面积的和差计算不规则几何图形的面积.24.(10分)是第23个“世界水日”,为鼓励居民节约用水,某市规定如下用水收费标准:每户每月的用水量不超过6m3时,水费按a元/立方米收费;超过时,不超过6m3的部分仍按a元/立方米收费,超过的部分按c元/立方米(c>a)收费,已知该市小明家今年3月份和4月份的用水量、水费如表所示:月份用水量/m3水费/元3 5 7.54 9 27(1)求a,c的值;(2)设某户1个月的用水量为x(m3),应交水费y(元)①分别写出用水量不超过6m3和超过6m3时,y与x之间的函数关系式;②已知一户5月份的用水量为8m3,求该户5月份的水费.考点:一次函数的应用.分析:(1)根据题意直接计算即可;(2)①根据题意讨论,列出用水量不超过6m3和超过6m3时,y与x之间的函数关系式;②把x=8代入相应的关系式求出水费.解答:解:(1)由题意得:5a=7.5,6a+(9﹣6)c=16.2,解得:a=1.5,c=2.4,(2)①用水量不超过6m3时,y=1.5x (0<x≤6),用水量超过6m3时,y=1.5×6+(x﹣6)2.4=2.4x﹣5.4 (x>6),②∵8>6∴当x=8时,y=2.4×8﹣5.4=13.8元,答:该用户5月份的水费为13.8元.点评:本题考查的是一次函数的应用,根据图表信息和题意列出函数关系式是解题的关键,注意分段函数的取值范围的确定.25.(12分)在“走基层,树新风”的活动中,青年记者石剑深入边远山区,随机走访农户,调查农村儿童生活教育现状,根据收集的数据,编制了不完整的统计图表如下山区农村儿童生活教育现状类别现状户数比例A 父母常年在外打工,孩子留在老家由老人照顾100B 父母常年在外打工,孩子带在身边10%C 父母就近在城镇打工,晚上回家照顾孩子50D 父母在家务农并照顾孩子15%请你用学过的统计知识,解决问题:(1)记者石剑走访了边远山区多少农户?(2)将统计图中的空缺数据正确填写完整;(3)分析数据后,请你提一条合理建议.考点:条形统计图;扇形统计图.分析:(1)根据扇形图可知C类占25%,总人数=C类÷C类所占百分比;(2)利用总人数×各类所占百分比即可算出各类户数;用各类户数÷总人数=各类户数所占百分比,计算后填表即可;(3)此问是一个开放题,答案不唯一.解答:解:(1)由扇形图和表格可知,C类占25%,总户数为:50÷25%=200.答:记者石剑走访了200户农家.(2)A类占:100%﹣15%﹣25%﹣10%=50%,B类户数200×10%=20,D类户数:200×15%=30,补全图表空缺数据:类别现状户数比例A类父母常年在外打工孩子留在老家由老人照顾100 50%B类父母常年在外打工,孩子带在身边20 10%C类父母就近在城镇打工,晚上回家照顾孩子50 25%D类父母在家务农,并照顾孩子30 15%(3)由图表可知孩子带在身边有益孩子的身心健康,建议社会关心留守儿童的生活状况.点评:此题主要考查了扇形图与条形图,关键是读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.26.(12分)如图,矩形ABCD中,点P是线段AD上的一个动点,O为BD的中点,PO 的延长线交BC于Q.(1)求证:OP=OQ;(2)若AD=8cm,AB=6cm,点P从点A出发,以1cm/s的速度向点D运动(不与D重合).设点P运动的时间为t秒,请用t表示PD的长;(3)当t为何值时,四边形PBQD是菱形?考点:菱形的判定;全等三角形的判定与性质;勾股定理;矩形的性质.专题:动点型.分析:(1)由矩形ABCD中,O为BD的中点,易证得△PDO≌△QBO(ASA),继而证得OP=OQ;(2)AD=8cm,AP=tcm,即可用t表示PD的长;(3)由四边形PBQD是菱形,可得PB=PD,即可得AB2+AP2=PD2,继而可得方程62+t2=(8﹣t)2,解此方程即可求得答案.解答:解:(1)∵四边形ABCD是矩形,∴AD∥BC,∴∠PDO=∠QBO,∵O为BD的中点,∴DO=BO,在△PDO和△QBO中,,∴△PDO≌△QBO(ASA),∴OP=OQ;(2)由题意知:AD=8cm,AP=tcm,∴PD=8﹣t,(3)∵PB=PD,∴PB2=PD2,即AB2+AP2=PD2,∴62+t2=(8﹣t)2,解得t=,∴当t=时,PB=PD.点评:此题考查了菱形的性质与判定、全等三角形的判定与性质以及矩形的性质.注意利用AB2+AP2=PD2,得方程62+t2=(8﹣t)2是解此题的关键.。

2019-2020学年八年级下学期期中数学试卷(含解析)

2019-2020学年八年级下学期期中数学试卷(含解析)

2019-2020学年八年级第二学期期中数学试卷一、填空题(共6小题).1.(3 分)计算6X24^=.2.(3分)已知一个直角三角般的两直角边长分别为3和4,则斜边长是.3.(3分)要使式子J市有意义,则x的取值范围是.4.(3分)如国,在ZUBC中,。

、E分别为A3、4c边的中点,若DE=2,则8c边的长为.5.(3分)如图,一棵大树在离地面3加、5加两处折成三段,中间一段43恰好与地面平行,大树顶部落在离大树底部6加处,则大树折断前的高度是.6.(3分)菱形A3CO的对角线AC=4, 30=2,以AC为边作正方形ACEF,则3尸的长为____ 二、选择题(本大题共8小题,每小题4分,共32分)7.(4分)下列式子是最简二次根式的是()A.任B.C. V2QD./8.(4分)判断下列各组数能作为直角三角形三边的是()A. 3, 4, 6B. 4, 5, 7C. 2, 3, ^7D. 7, 6, A/139.(4分)如图,已知菱形A3CD的对角线交于点O, DB=6f AD=5,则菱形A3CD的面积为()10. (4 分)在 RtAABC 中,ZABC=90° , 0 为斜边 AC 的中点,30=5,则 AC=()11. (4分)下列计算中,正确的是( A.收-3) 2二 ±3 B.历+ 如二9C.D.卑一心V 212. (4分)不能判定四边形A3CD 为平行四边形的条件是(13. (4分)如图,延长翅形A5co 的边BC 至点E,使CE=CA,连接AE,若N5AC=三、解答题(本大题共9小题,共70分)15. (6分)计算:倔+(证-3)°-导(2%)216. (6分)国家交通法规定:小汽车在城市街道上行驶速度不得超过60々加小,一辆小汽车在一条城市街道上由西向东行驶,此时在小汽车正南方向25m 处有一个车速检测仪, 过了 4s 后,测得小汽车距禺测速仪65m.这辆小汽车超速了吗?通过计算说明理由(lw/s=3.6k”i/h)17. (8分)如图,四边形43。

2019-2020学年八年级下学期期中考试数学试卷(解析版)

2019-2020学年八年级下学期期中考试数学试卷(解析版)

2019-2020学年八年级下学期期中考试数学试卷一.填空题(每小题4分,共24分)1.若,则的值是.2.命题“角平分线上的点到角的两边的距离相等”的逆命题是.3.如图,已知在Rt△ABC中,∠ACB=90°,AB=4,分别以AC、BC为直径作半圆,面积分别记为S1、S2,则S1+S2等于.4.如图,△ABC的周长为32,且AB=AC,AD⊥BC于D,△ACD的周长为24,那么DC的长为.5.如图,正方形ABCD被分成两个小正方形和两个长方形,如果两个小正方形的面积分别是6cm2和2cm2,那么两个长方形的面积和为cm2.6.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是.二.选择题(每小题4分,共32分)下列各小题均有四个答案,其中只有一个是正确的,把你认为正确的答案前的代号字母填入题后括号内7.下列二次根式中属于最简二次根式的是()A.B.C.D.8.等式成立的条件是()A.a>5B.a≥0且a≠5C.a≠5D.a≥09.下列各数中,与的积为有理数的是()A.B.C.D.10.已知直角三角形两直角边的边长之和为,斜边长为2,则这个三角形的面积是()A.0.25B.0.5C.1D.211.如图一直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD等于()A.2cm B.3cm C.4cm D.5cm12.如图,在正方形ABCD的外侧,作等边三角形ADE,连结BE交AD于点F,则∠DFE的度数为()A.45°B.55°C.60°D.75°13.如图,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,那么阴影部分的面积是矩形ABCD的面积的()A.B.C.D.14.如图,在▱ABCD中,AE⊥BC于点E,AF⊥CD于点F,若AE=4,AF=6,且▱ABCD的周长为40,则▱ABCD的面积为()A.24B.36C.40D.48三.解答题(共44分)15.(5分)计算(1).(2).16.(5分)先将化简,然后自选一个合适的x值,代入化简后的式子求值.17.(6分)如图,在4×4正方形网格中,每个小正方形的边长都为1.(1)求△ABC的周长;(2)求证:∠ABC=90°.18.(6分)如图,ABCD是平行四边形,P是CD上一点,且AP和BP分别平分∠DAB和∠CBA.(1)求∠APB的度数;(2)如果AD=5cm,AP=8cm,求△APB的周长.19.(7分)如图所示,DE是▱ABCD的∠ADC的平分线,EF∥AD,交DC于F.(1)求证:四边形AEFD是菱形;(2)如果∠A=60°,AD=5,求菱形AEFD的面积.20.(7分)如图:已知在△ABC中,AB=AC,D为BC边的中点,过点D作DE⊥AB,DF⊥AC,垂足分别为E,F.(1)求证:△BED≌△CFD;(2)若∠A=90°,求证:四边形DFAE是正方形.21.(8分)阅读下列材料,然后回答问题.在进行二次根式的化简与运算时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简:(一)==(二)===﹣1(三)以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:====﹣1(四)(1)请用不同的方法化简.参照(三)式得=;参照(四)式得=.(2)化简:+++…+.参考答案与试题解析一.填空题(每小题4分,共24分)1.若,则的值是2.【分析】直接利用二次根式的性质计算得出答案.【解答】解:∵,∴a=,b=﹣1,∴=2÷=2.故答案为:2.【点评】此题主要考查了非负数的性质以及二次根式的乘除运算,正确掌握相关运算法则是解题关键.2.命题“角平分线上的点到角的两边的距离相等”的逆命题是到角的两边的距离相等的是角平分线上的点.【分析】把一个命题的题设和结论互换即可得到其逆命题,“角平分线上的点到角的两边的距离相等”的条件是“到角两边距离相等的点”,结论是“角平分线上的点”.【解答】解:“角平分线上的点到角的两边的距离相等”的逆命题是“到角的两边的距离相等的是角平分线上的点”.故答案为:到角的两边的距离相等的是角平分线上的点.【点评】根据逆命题的定义来回答,对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题.3.如图,已知在Rt△ABC中,∠ACB=90°,AB=4,分别以AC、BC为直径作半圆,面积分别记为S1、S2,则S1+S2等于2π.【分析】根据半圆面积公式结合勾股定理,知S1+S2等于以斜边为直径的半圆面积.【解答】解:S1=π()2=πAC2,S2=πBC2,所以S1+S2=π(AC2+BC2)=πAB2=2π.故答案为:2π.【点评】此题根据半圆的面积公式以及勾股定理证明:以直角三角形的两条直角边为直径的半圆面积和等于以斜边为直径的半圆面积,重在验证勾股定理.4.如图,△ABC的周长为32,且AB=AC,AD⊥BC于D,△ACD的周长为24,那么DC的长为6.【分析】由已知条件根据等腰三角形三线合一的性质可得到BD=DC,再根据三角形的周长定义得到AD,然后根据勾股定理即可得到结论.【解答】解:∵AB=AC,AD⊥BC,∴BD=DC.∵AB+AC+BC=32,即AB+BD+CD+AC=32,∴AC+DC=16∴AC+DC+AD=24∴AD=8,设CD=x,则AC=16﹣x,∵AC2=AD2+CD2,∴(16﹣x)2=82+x2,∴x=6,∴CD=6,故答案为:6.【点评】本题考查等腰三角形的性质,勾股定理,由已知条件结合图形发现并利用AC+CD是△ABC的周长的一半是正确解答本题的关键.5.如图,正方形ABCD被分成两个小正方形和两个长方形,如果两个小正方形的面积分别是6cm2和2cm2,那么两个长方形的面积和为4cm2.【分析】先根据两个小正方形的面积分别是6cm2和2cm2求出正方形的边长,进而可得出矩形的长和宽,进而得出结论.【解答】解:∵两个小正方形的面积分别是6cm2和2cm2,∴两个正方形的边长分别为和,∴两个矩形的长是,宽是,∴两个长方形的面积和=2××=4cm2.故答案为:4.【点评】本题考查的是实数的运算,熟知实数混合运算的法则是解答此题的关键.6.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是16.【分析】由把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,∠EFB=60°,易证得△EFB′是等边三角形,继而可得△A′B′E中,B′E=2A′E,则可求得B′E的长,然后由勾股定理求得A′B′的长,继而求得答案.【解答】解:在矩形ABCD中,∵AD∥BC,∴∠DEF=∠EFB=60°,∵把矩形ABCD沿EF翻折点B恰好落在AD边的B′处,∴∠EFB=∠EFB′=60°,∠B=∠A′B′F=90°,∠A=∠A′=90°,AE=A′E=2,AB =A′B′,在△EFB′中,∵∠DEF=∠EFB=∠EB′F=60°∴△EFB′是等边三角形,Rt△A′EB′中,∵∠A′B′E=90°﹣60°=30°,∴B′E=2A′E,而A′E=2,∴B′E=4,∴A′B′=2,即AB=2,∵AE=2,DE=6,∴AD=AE+DE=2+6=8,∴矩形ABCD的面积=AB•AD=2×8=16.故答案为:16.【点评】此题考查了矩形的性质、折叠的性质、勾股定理以及等边三角形的判定与性质.此题难度适中,注意掌握折叠前后图形的对应关系,注意掌握数形结合思想的应用.二.选择题(每小题4分,共32分)下列各小题均有四个答案,其中只有一个是正确的,把你认为正确的答案前的代号字母填入题后括号内7.下列二次根式中属于最简二次根式的是()A.B.C.D.【分析】判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察.【解答】解:A、=,二次根式的被开方数中含有没开的尽方的数,故A选项错误;B、==4,二次根式的被开方数中含有没开的尽方的数,故B选项错误;C、符合最简二次根式的定义,故C选项正确;D、的被开方数中含有分母,故D选项错误;故选:C.【点评】本题考查了最简二次根式的定义.在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式.8.等式成立的条件是()A.a>5B.a≥0且a≠5C.a≠5D.a≥0【分析】直接利用二次根式的性质分析得出答案.【解答】解:等式成立的条件是:,解得:a>5.故选:A.【点评】此题主要考查了二次根式的乘除运算,正确掌握二次根式的性质是解题关键.9.下列各数中,与的积为有理数的是()A.B.C.D.【分析】利用二次根式乘法法则判断即可.【解答】解:•2=6,故选:C.【点评】此题考查了分母有理化,熟练掌握二次根式乘法法则是解本题的关键.10.已知直角三角形两直角边的边长之和为,斜边长为2,则这个三角形的面积是()A.0.25B.0.5C.1D.2【分析】此题可借助于方程.设直角三角形两直角边的边长分别为x、y,根据题意得:x+y=,x2+y2=4;把xy看作整体求解即可.【解答】解:设直角三角形两直角边的边长分别为x、y,根据题意得:x+y=,x2+y2=4,则(x+y)2=x2+y2+2xy,∴6=4+2xy,∴xy=1,∴这个三角形的面积是xy==0.5,故选:B.【点评】此题考查了勾股定理的应用,解题时注意方程思想与整体思想的应用.11.如图一直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD等于()A.2cm B.3cm C.4cm D.5cm【分析】首先根据题意得到:△AED≌△ACD;进而得到AE=AC=6,DE=CD;根据勾股定理求出AB=10;再次利用勾股定理列出关于线段CD的方程,问题即可解决.【解答】解:由勾股定理得:==10,由题意得:△AED≌△ACD,∴AE=AC=6,DE=CD(设为x);∠AED=∠C=90°,∴BE=10﹣6=4,BD=8﹣x;由勾股定理得:(8﹣x)2=42+x2,解得:x=3(cm),故选:B.【点评】该命题主要考查了翻折变换及其应用问题;解题的关键是借助翻折变换的性质,灵活运用勾股定理、全等三角形的性质等几何知识来分析、判断、推理或解答.12.如图,在正方形ABCD的外侧,作等边三角形ADE,连结BE交AD于点F,则∠DFE的度数为()A.45°B.55°C.60°D.75°【分析】根据正方形的性质得出AB=AD,∠BAD=90°,根据等边三角形的性质得出∠AED=∠EAD=60°,AE=AD,求出∠BAE=150°,AB=AE,∠ABE=∠AEB=15°,求出∠AFB即可.【解答】解:∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°,∵△AED是等边三角形,∴∠AED=∠EAD=60°,AE=AD,∴∠BAE=150°,AB=AE,∴∠ABE=∠AEB=(180°﹣150°)=15°,∴∠DFE=∠AFB=90°﹣15°=75°,故选:D.【点评】本题考查了正方形的性质,等边三角形的性质,三角形的内角和定理,等腰三角形的性质和判定的应用,解此题的关键是求出∠ABE的度数,难度适中.13.如图,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,那么阴影部分的面积是矩形ABCD的面积的()A.B.C.D.【分析】本题主要根据矩形的性质,得△EBO≌△FDO,再由△AOB与△OBC同底等高,△AOB 与△ABC同底且△AOB的高是△ABC高的得出结论.【解答】解:∵四边形为矩形,∴OB =OD =OA =OC ,在△EBO 与△FDO 中, ∵,∴△EBO ≌△FDO (ASA ),∴阴影部分的面积=S △AEO +S △EBO =S △AOB ,∵△AOB 与△ABC 同底且△AOB 的高是△ABC 高的,∴S △AOB =S △OBC =S 矩形ABCD .故选:B .【点评】本题考查矩形的性质,矩形具有平行四边形的性质,又具有自己的特性,要注意运用矩形具备而一般平行四边形不具备的性质.14.如图,在▱ABCD 中,AE ⊥BC 于点E ,AF ⊥CD 于点F ,若AE =4,AF =6,且▱ABCD 的周长为40,则▱ABCD 的面积为( )A .24B .36C .40D .48【分析】根据平行四边形的周长求出BC +CD =20,再根据平行四边形的面积求出BC =CD ,然后求出CD 的值,再根据平行四边形的面积公式计算即可得解.【解答】解:∵▱ABCD 的周长=2(BC +CD )=40,∴BC +CD =20①,∵AE ⊥BC 于E ,AF ⊥CD 于F ,AE =4,AF =6,∴S ▱ABCD =4BC =6CD ,整理得,BC =CD ②,联立①②解得,CD =8,∴▱ABCD 的面积=AF •CD =6CD =6×8=48.故选:D .【点评】本题考查了平行四边形的性质,根据平行四边形的周长与面积得到关于BC、CD的两个方程并求出CD的值是解题的关键.三.解答题(共44分)15.(5分)计算(1).(2).【分析】(1)直接利用二次根式的性质以及零指数幂的性质、绝对值的性质分别化简得出答案;(2)利用二次根式的乘法运算法则计算得出答案.【解答】解:(1)原式=﹣﹣(﹣1)﹣1+=﹣﹣+1﹣1+=0;(2)原式=1﹣12﹣(1+3﹣2)=﹣15+2.【点评】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.16.(5分)先将化简,然后自选一个合适的x值,代入化简后的式子求值.【分析】先化简,再代入计算即可,注意x>2.【解答】解:原式=×=当x=4时,原式=2.【点评】本题考查二次根式的化简求值,解题的关键是熟练掌握二次根式的性质,注意一定要先化简再代入求值.17.(6分)如图,在4×4正方形网格中,每个小正方形的边长都为1.(1)求△ABC的周长;(2)求证:∠ABC=90°.【分析】(1)运用勾股定理求得AB,BC及AC的长,即可求出△ABC的周长.(2)运用勾股定理的逆定理求得AC2=AB2+BC2,得出∠ABC=90°.【解答】解:(1)AB==2,BC==,AC==5,△ABC的周长=2++5=3+5,(2)∵AC2=25,AB2=20,BC2=5,∴AC2=AB2+BC2,∴∠ABC=90°.【点评】本题主要考查了勾股定理及勾股定理的逆定理,熟记勾股定理是解题的关键.18.(6分)如图,ABCD是平行四边形,P是CD上一点,且AP和BP分别平分∠DAB和∠CBA.(1)求∠APB的度数;(2)如果AD=5cm,AP=8cm,求△APB的周长.【分析】(1)根据平行四边形性质得出AD∥CB,AB∥CD,推出∠DAB+∠CBA=180°,求出∠PAB+∠PBA=90°,在△APB中求出∠APB即可;(2)求出AD=DP=5,BC=PC=5,求出DC=10=AB,即可求出答案.【解答】解:(1)∵四边形ABCD是平行四边形,∴AD∥CB,AB∥CD∴∠DAB+∠CBA=180°,又∵AP和BP分别平分∠DAB和∠CBA,∴∠PAB+∠PBA=(∠DAB+∠CBA)=90°,在△APB中,∴∠APB=180°﹣(∠PAB+∠PBA)=90°;(2)∵AP平分∠DAB,∴∠DAP=∠PAB,∵AB∥CD,∴∠PAB=∠DPA∴∠DAP=∠DPA∴△ADP是等腰三角形,∴AD=DP=5cm同理:PC=CB=5cm即AB=DC=DP+PC=10cm,在Rt△APB中,AB=10cm,AP=8cm,∴BP==6(cm)∴△APB的周长是6+8+10=24(cm).【点评】本题考查了平行四边形性质,平行线性质,等腰三角形的性质和判定,三角形的内角和定理,勾股定理等知识点的综合运用.19.(7分)如图所示,DE是▱ABCD的∠ADC的平分线,EF∥AD,交DC于F.(1)求证:四边形AEFD是菱形;(2)如果∠A=60°,AD=5,求菱形AEFD的面积.【分析】(1)可先证明四边形DAEF是平行四边形,再由角的关系求得∠AED=∠1,根据等角对等边得AD=AE,再依据有一组邻边相等的平行四边形是菱形可得四边形AEFD是菱形;(2)由已知求得两条对角线的长,根据菱形的面积等于两条对角线的积的一半,求得菱形的面积.【解答】(1)证明:∵四边形ABCD是平行四边形,∴DF∥AE,∵EF∥AD,∴四边形DAEF是平行四边形,∵∠2=∠AED,∵DE是▱ABCD的∠ADC的平分线∴∠1=∠2,∴∠AED=∠1.∴AD=AE.∴四边形AEFD是菱形.(2)解:∵∠A=60°,∴△AED为等边三角形.∴DE=5,连接AF与DE相交于O,则EO=.∴OA==.∴AF=5.=AF•DE=.∴S菱形AEFD【点评】此题主要考查菱形的性质和判定以及面积的计算,使学生能够灵活运用菱形知识解决有关问题.20.(7分)如图:已知在△ABC中,AB=AC,D为BC边的中点,过点D作DE⊥AB,DF⊥AC,垂足分别为E,F.(1)求证:△BED≌△CFD;(2)若∠A=90°,求证:四边形DFAE是正方形.【分析】(1)利用等腰三角形的性质,可得到∠B=∠C,D又是BC的中点,利用AAS,可证出:△BED≌△CFD.(2)利用(1)的结论可知,DE=DF,再加上三个角都是直角,可证出四边形DFAE是正方形.【解答】证明:(1)∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°.∵AB=AC,∴∠B=∠C.∵D是BC的中点,∴BD=CD.∴△BED≌△CFD.(2)∵DE⊥AB,DF⊥AC,∴∠AED=∠AFD=90°.∵∠A=90°,∴四边形DFAE为矩形.∵△BED≌△CFD,∴DE=DF.∴四边形DFAE为正方形.【点评】本题利用了全等三角形的判定和性质以及矩形、正方形的判定.解答此题的关键是利用等腰三角形的两个底角相等,从而证明Rt△BED和Rt△CFD中的两个锐角对应相等.21.(8分)阅读下列材料,然后回答问题.在进行二次根式的化简与运算时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简:(一)==(二)===﹣1(三)以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:====﹣1(四)(1)请用不同的方法化简.参照(三)式得=;参照(四)式得=.(2)化简:+++…+.【分析】(1)中,通过观察,发现:分母有理化的两种方法:1、同乘分母的有理化因式;2、因式分解达到约分的目的;(2)中,注意找规律:分母的两个被开方数相差是2,分母有理化后,分母都是2,分子可以出现抵消的情况.【解答】解:(1)=,=;(2)原式=+…+=++…+=.【点评】学会分母有理化的两种方法.。

河北省2019-2020学年八年级下学期数学期中考试试卷(II)卷

河北省2019-2020学年八年级下学期数学期中考试试卷(II)卷

河北省2019-2020学年八年级下学期数学期中考试试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019八上·道外期末) 下列各式中,不是分式的是()A .B .C .D .2. (2分)已知点P(a+1,2a﹣3)在第一象限,则a的取值范围是()A . a<﹣1B . a>C . ﹣<a<1D . ﹣1<a<3. (2分)一次函数y=kx+b的图象如图所示,当y<0时,x的取值范围是()A . x>0B . x<0C . x>2D . x<24. (2分) (2018八上·番禺期末) 若分式的值为0,则x的值为()A . 0B . 1C . -1D .5. (2分) (2017八下·常州期末) 下列运算中,错误的是()A .B . =﹣1C . = ﹣1D . =a6. (2分)(2014·湖州) 二次根式中字母x的取值范围是()A . x<1B . x≤1C . x>1D . x≥17. (2分) (2017八下·海淀期末) 已知两个一次函数,的图象相互平行,它们的部分自变量与相应的函数值如下表:则m的值是()A .B .C .D .8. (2分)(2017·鹤岗) 若关于x的分式方程的解为非负数,则a的取值范围是()A . a≥1B . a>1C . a≥1且a≠4D . a>1且a≠49. (2分)下列四个点,在反比例函数y=图象上的是()A . (-1,-6)B . (2,4)C . (3,-2)D . (-6,1)10. (2分)如图,正比例函数y1=k1x和反比例函数y2=的图象交于A(﹣1,2)、B(1,﹣2)两点,若y1<y2 ,则x的取值范围是()A . x<﹣1或x>1B . x<﹣1或0<x<1C . ﹣1<x<0或0<x<1D . ﹣1<x<0或x>1二、填空题 (共8题;共8分)11. (1分)(2019·铁岭模拟) 空气中有一种有害粉尘颗粒,其直径大约为0.000 000 017m,该直径可用科学记数法表示为________.12. (1分)(2017·道外模拟) 把直线y=2x﹣1向下平移4个单位,所得直线为________.13. (1分) (2017七下·金乡期末) 将点P(﹣4,y)向左平移2个单位长度,向下平移3个单位长度后,得到点Q(x,﹣1),则xy=________.14. (1分) (2017八下·扬州期中) 不改变分式的值,将分式的分子、分母的各项系数都化为整数,则= ________.15. (1分) (2016八上·个旧期中) 已知点A的坐标为(3,2),设点A关于y轴对称点为B,则点B的坐标是________16. (1分)把直线y=﹣x+3向上平移m个单位后,与直线y=2x+4的交点在第一象限,则m的取值范围是________.17. (1分) (2017八下·安岳期中) 若,则分式的值是________;18. (1分)(2017·岳池模拟) 如图:点A在双曲线上,AB丄x轴于B,且△AOB的面积S△AOB=2,则k=________.三、解答题 (共9题;共72分)19. (10分)计算(1)(﹣3a)3﹣(﹣a)•(﹣3a)2(2)(y﹣x)2(x﹣y)+(x﹣y)3+2(x﹣y)2•(y﹣x)(3) 1﹣(0.5)2014×(﹣2)2015.20. (5分)(2018·福建) 先化简,再求值:(﹣1)÷ ,其中m= +1.21. (5分) (2017八下·徐汇期末) 解方程:.22. (5分) (2018八上·黑龙江期末) 要在规定的日期内加工一批机器零件,如果甲单独做,刚好在规定日期内完成,乙单独做则要超过3天.现在甲、乙两人合作2天后,再由乙单独做,正好按期完成,问规定日期是多少天?23. (10分)(2020·宿州模拟) (1)计算:【答案】解:原式==10;(1)解方程:24. (2分) (2018九上·如皋期中) 在平面直角坐标系中,我们不妨把横坐标与纵坐标相等的点称为梦之点,例如,点(1,1),(﹣ 2,﹣ 2),(,),…,都是梦之点,显然梦之点有无数个.(1)若点 P(2,b)是反比例函数 (n为常数,n≠0)的图象上的梦之点,求这个反比例函数解析式;(2)⊙O的半径是,①求出⊙O上的所有梦之点的坐标;②已知点M(m,3),点Q是(1)中反比例函数图象上异于点P的梦之点,过点Q的直线l与y轴交于点A,∠OAQ=45°.若在⊙O上存在一点N,使得直线MN∥l或MN⊥l,求出m的取值范围.25. (10分)(2017·邗江模拟) 在平面直角坐标系xOy中,反比例函数y1= 的图象与一次函数y2=ax+b 的图象交于点A(1,3)和B(﹣3,m).(1)求反比例函数y1= 和一次函数y2=ax+b的表达式;(2)点C 是坐标平面内一点,BC∥x 轴,AD⊥BC 交直线BC 于点D,连接AC.若AC= CD,求点C的坐标.26. (10分)(2017·成华模拟) 骑自行车旅行越来越受到人们的喜爱,各种品牌的山地自行车相继投放市场,某车行经营的A型车去年3月份销售总额为3.2万元,今年经过改造升级后A型车每辆销售价比去年增加400元,若今年3月份与去年3月份卖出的A型车数量相同,则今年3月份A型车销售总额将比去年3月份销售总额增加25%.(1)求今年3月份A型车每辆销售价多少元?(2)该车行计划今年4月份新进一批A型车和B型车共50辆,且B型车的进货数量不超过A型车数量的两倍,A、B两种型号车的进货和销售价格如下表,问应如何进货才能使这批车获利最多?A型车B型车进货价格(元/辆)11001400销售价格(元/辆)今年的销售价格240027. (15分) (2017八下·怀柔期末) 已知直线y=-x+4.(1)直接写出直线与x轴、y轴的交点A、B的坐标;(2)画出图象;(3)求直线与坐标轴围成的三角形的面积.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共8分)11-1、12-1、13-1、14-1、答案:略15-1、16-1、17-1、答案:略18-1、三、解答题 (共9题;共72分) 19-1、答案:略19-2、答案:略19-3、答案:略20-1、21-1、22-1、23-1、24-1、答案:略24-2、答案:略25-1、25-2、答案:略26-1、26-2、27-1、27-2、27-3、第11 页共11 页。

人教版初中数学八年级下册期中试卷(2019-2020学年河北省唐山市遵化市

人教版初中数学八年级下册期中试卷(2019-2020学年河北省唐山市遵化市

2019-2020学年河北省唐山市遵化市八年级(下)期中数学试卷一.选择题(本题共20小题,每小题3分,共60分)1.(3分)2019年是大家公认的5G商用元年,移动通讯行业人员想了解5G手机的使用情况,在某高校随机对500位大学生进行了问卷调查,下列说法正确的是()A.该调查方式是普查B.该调查中的个体是每一位大学生C.该调查中的样本是被随机调查的500位大学生5G手机的使用情况D.该调查中的样本容量是500位大学生2.(3分)空气是由多种气体混合而成的,为了简明扼要的介绍空气的组成情况,较好的描述数据,最适合使用的统计图是()A.扇形图B.条形图C.折线图D.直方图3.(3分)统计得到的一组数据有80个,其中最大值为141,最小值为50,取组距为10,可以分成()A.10组B.9组C.8组D.7组4.(3分)根据下列表述,能确定位置的是()A.天益广场南区B.凤凰山北偏东42°C.红旗影院5排9座D.学校操场的西面5.(3分)如图,象棋盘上,若“将”位于点(1,﹣2),“象”位于点(5,0),则炮位于点()A.(﹣1,1)B.(﹣1,2)C.(﹣2,1)D.(﹣2,2)6.(3分)在坐标平面内,若点P(x﹣2,x+1)在第二象限,则x的取值范围是()A.x>2B.x<2C.x>﹣1D.﹣1<x<2 7.(3分)当k<0时,一次函数y=kx﹣k的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限8.(3分)如图,将平面直角坐标系中“鱼”的每个“顶点”的纵坐标保持不变,横坐标变为原来的,则点A的对应点A′的坐标是()A.(2,3)B.(6,1)C.(2,1)D.(3,3)9.(3分)圆周长公式C=2πR中,下列说法正确的是()A.π、R是变量,2为常量B.C、R为变量,2、π为常量C.R为变量,2、π、C为常量D.C为变量,2、π、R为常量10.(3分)在平面直角坐标系中,点A的坐标是(﹣1,2),作点A关于y轴的对称点,得到点A',再将点A'向下平移4个单位,得到点A″,则点A″的坐标是()A.(﹣1,﹣2)B.(1,2)C.(1,﹣2)D.(﹣2,1)11.(3分)下列函数(1)y=x(2)y=2x﹣1 (3)y=(4)y=2﹣3x(5)y=x2﹣1中,是一次函数的有()A.4个B.3个C.2个D.1个12.(3分)函数y=的自变量x的取值范围是()A.x>1B.x≥1C.x≥1且x≠0D.x≤113.(3分)若y=(m﹣1)x2﹣|m|+3是关于x的一次函数,则m的值为()A.1B.﹣1C.±1D.±214.(3分)把直线y=2x﹣1向左平移1个单位,平移后直线的关系式为()A.y=2x﹣2B.y=2x+1C.y=2x D.y=2x+2 15.(3分)下列各曲线中,表示y是x的函数的是()A.B.C.D.16.(3分)地球的水资源越来越枯竭,全世界都提倡节约用水,小明把自己家1月至6月份的用水量绘制成折线图,那么小明家这6个月的月平均用水量是()A.10吨B.9吨C.8吨D.7吨17.(3分)如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是()A.(2,10)B.(﹣2,0)C.(2,10)或(﹣2,0)D.(10,2)或(﹣2,0)18.(3分)如图,正方形ABCD的边长为2,动点P从点D出发,沿折线D→C→B作匀速运动,则△APD的面积S与点P运动的路程x之间的函数图象大致是()A.B.C.D.19.(3分)如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0),将△ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段BC扫过的面积为()A.4B.8C.16D.1020.(3分)甲、乙两车同时从A地出发,各自都以自己的速度匀速向B地行驶,甲车先到B地,停车1小时后按原速匀速返回,直到两车相遇.已知,乙车的速度是60千米/时,如图是两车之间的距离y(千米)与乙车行驶的时间x(小时)之间的函数图象,则下列说法不正确的是()A.A、B两地之间的距离是450千米B.乙车从出发到与甲车返回时相遇所用的时间是6.6小时C.甲车的速度是80千米/时D.点M的坐标是(6,90)二.填空题(共5小题,每小题5分,共25分)21.(5分)某校开展捐书活动,七(1)班同学积极参与,现将捐书数量绘制成频数分布直方图(如图所示),如果捐书数量在3.5﹣4.5组别的人数占总人数的,那么捐书数量在4.5﹣5.5组别的人数是.22.(5分)如图是一个运算程序的示意图,若输出y的值为2,则输入x的值可能为.23.(5分)如图,过A点的一次函数图象与正比例函数y=2x的图象相交于点B,则这个一次函数的表达式是.24.(5分)一辆经营长途运输的货车在高速公路的A处加满油后,以每小时80千米的速度匀速行驶,前往B地,如表记录的是货车一次加满油后油箱内余油量y(升)与行驶时间x(时)之间的关系:行驶时间x/时012 2.5余油量y/升100806050则y与x的函数关系式为,自变量x的取值范围为.25.(5分)正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示放置,点A1,A2,A3,…和C1,C2,C3,…分别在直线y=x+1和x轴上,则点B2020的纵坐标是,点B n 的纵坐标是.三.解答题(共1小题,15分)26.(15分)某森林公园从正门到侧门有一条公路供游客运动,甲徒步从正门出发匀速走向侧门,出发一段时间开始休息,休息了0.6小时后仍按原速继续行走.乙与甲同时出发,骑自行车从侧门匀速前往正门,到达正门后休息0.2小时,然后按原路原速匀速返回侧门.图中折线分别表示甲、乙到侧门的路程y(km)与甲出发时间x(h)之间的函数关系图象.根据图象信息解答下列问题.(1)求甲在休息前到侧门的路程y(km)与出发时间x(h)之间的函数关系式.(2)求甲、乙第一次相遇的时间.(3)直接写出乙回到侧门时,甲到侧门的路程.2019-2020学年河北省唐山市遵化市八年级(下)期中数学试卷参考答案与试题解析一.选择题(本题共20小题,每小题3分,共60分)1.(3分)2019年是大家公认的5G商用元年,移动通讯行业人员想了解5G手机的使用情况,在某高校随机对500位大学生进行了问卷调查,下列说法正确的是()A.该调查方式是普查B.该调查中的个体是每一位大学生C.该调查中的样本是被随机调查的500位大学生5G手机的使用情况D.该调查中的样本容量是500位大学生【分析】根据总体:我们把所要考察的对象的全体叫做总体;个体:把组成总体的每一个考察对象叫做个体;样本:从总体中取出的一部分个体叫做这个总体的一个样本;样本容量:一个样本包括的个体数量叫做样本容量进行分析即可.【解答】解:A、该调查方式是普查,说法错误,应为抽样调查;B、该调查中的个体是每一位大学生,说法错误,该调查中的个体是每一位大学生5G手机的使用情况;C、该调查中的样本是被随机调查的500位大学生5G手机的使用情况,说法正确;D、该调查中的样本容量是500位大学生,说法错误,应为该调查中的样本容量是500;故选:C.【点评】此题主要考查了总体、个体、样本、样本容量以及抽样调查,关键是掌握样本容量只是个数字,没有单位.2.(3分)空气是由多种气体混合而成的,为了简明扼要的介绍空气的组成情况,较好的描述数据,最适合使用的统计图是()A.扇形图B.条形图C.折线图D.直方图【分析】扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目;频数分布直方图,清楚显示在各个不同区间内取值,各组频数分布情况,易于显示各组之间频数的差别.【解答】解:根据题意,得要求直观反映空气的组成情况,即各部分在总体中所占的百分比,结合统计图各自的特点,应选择扇形统计图.故选:A.【点评】此题考查扇形统计图、折线统计图、条形统计图各自的特点.3.(3分)统计得到的一组数据有80个,其中最大值为141,最小值为50,取组距为10,可以分成()A.10组B.9组C.8组D.7组【分析】根据组数=(最大值﹣最小值)÷组距计算,注意小数部分要进位.【解答】解:在样本数据中最大值为141,最小值为50,它们的差是141﹣50+1=92,已知组距为10,那么由于92÷10=9.2,故可以分成10组.故选:A.【点评】本题考查的是组数的计算,属于基础题,只要根据组数的定义“数据分成的组的个数称为组数”来解即可.4.(3分)根据下列表述,能确定位置的是()A.天益广场南区B.凤凰山北偏东42°C.红旗影院5排9座D.学校操场的西面【分析】根据有序数对可以确定坐标位置对各选项分析判断后利用排除法求解.【解答】解:A、天益广场南区,不能确定位置,故本选项错误;B、凤凰山北偏东42°,没有明确具体位置,故本选项错误;C、红旗影院5排9座,能确定位置,故本选项正确;D、学校操场的西面,不能确定位置,故本选项错误;故选:C.【点评】本题考查了坐标位置的确定,有序数对可以确定一个具体位置,即确定一个位置需要两个条件,二者缺一不可.5.(3分)如图,象棋盘上,若“将”位于点(1,﹣2),“象”位于点(5,0),则炮位于点()A.(﹣1,1)B.(﹣1,2)C.(﹣2,1)D.(﹣2,2)【分析】根据“将”的位置向左平移一个单位所得直线是y轴,向上平移2个单位所得直线是x轴,根据“炮”的位置,可得答案.【解答】解:根据题意可建立如图所示坐标系,由坐标系知炮位于点(﹣2,1),故选:C.【点评】本题考查了坐标确定位置,利用“将”的位置向左平移一个单位所得直线是y 轴,向上平移2个单位所得直线是x轴是解题关键.6.(3分)在坐标平面内,若点P(x﹣2,x+1)在第二象限,则x的取值范围是()A.x>2B.x<2C.x>﹣1D.﹣1<x<2【分析】根据点的坐标满足第二象限的条件是横坐标<0,纵坐标>0可得到一个关于x 的不等式组,求解即可.【解答】解:因为点P(x﹣2,x+1)在第二象限,所以x﹣2<0,x+1>0,解得﹣1<x <2.故选:D.【点评】解答此题的关键是熟记平面直角坐标系中各个象限内点的符号,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).7.(3分)当k<0时,一次函数y=kx﹣k的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【分析】由k<0可得出﹣k>0,结合一次函数图象与系数的关系即可得出一次函数y=kx﹣k的图象经过第一、二、四象限,此题得解.【解答】解:∵k<0,∴﹣k>0,∴一次函数y=kx﹣k的图象经过第一、二、四象限.故选:C.【点评】本题考查了一次函数图象与系数的关系,牢记“k<0,b>0⇔y=kx+b的图象在一、二、四象限”是解题的关键.8.(3分)如图,将平面直角坐标系中“鱼”的每个“顶点”的纵坐标保持不变,横坐标变为原来的,则点A的对应点A′的坐标是()A.(2,3)B.(6,1)C.(2,1)D.(3,3)【分析】先写出点A的坐标为(6,3),纵坐标保持不变,横坐标变为原来的,即可判断出答案.【解答】解:点A变化前的坐标为(6,3),将纵坐标保持不变,横坐标变为原来的,则点A的对应点A′坐标是(2,3).故选:A.【点评】本题考查了坐标与图形性质的知识,属于基础题,比较简单.本题的关键是根据图形得到点A的坐标.9.(3分)圆周长公式C=2πR中,下列说法正确的是()A.π、R是变量,2为常量B.C、R为变量,2、π为常量C.R为变量,2、π、C为常量D.C为变量,2、π、R为常量【分析】根据变量是指在程序的运行过程中随时可以发生变化的量,常量是指在程序的运行过程不发生变化的量,可得答案.【解答】解:在圆周长公式C=2πR中,2、π是常量,C,R是变量.故选:B.【点评】本题考查了常量与变量,变量是指在程序的运行过程中随时可以发生变化的量,常量是指在程序的运行过程不发生变化的量,注意π是常量.10.(3分)在平面直角坐标系中,点A的坐标是(﹣1,2),作点A关于y轴的对称点,得到点A',再将点A'向下平移4个单位,得到点A″,则点A″的坐标是()A.(﹣1,﹣2)B.(1,2)C.(1,﹣2)D.(﹣2,1)【分析】直接利用关于y轴对称点的性质得出点A'坐标,再利用平移的性质得出答案.【解答】解:∵点A的坐标是(﹣1,2),作点A关于y轴的对称点,得到点A',∴A′(1,2),∵将点A'向下平移4个单位,得到点A″,∴点A″的坐标是:(1,﹣2).故选:C.【点评】此题主要考查了关于y轴对称点的性质以及平移变换,正确掌握相关平移规律是解题关键.11.(3分)下列函数(1)y=x(2)y=2x﹣1 (3)y=(4)y=2﹣3x(5)y=x2﹣1中,是一次函数的有()A.4个B.3个C.2个D.1个【分析】分别利用一次函数、二次函数和反比例函数的定义分析得出即可.【解答】解:(1)y=x是一次函数,符合题意;(2)y=2x﹣1是一次函数,符合题意;(3)y=是反比例函数,不符合题意;(4)y=2﹣3x是一次函数,符合题意;(5)y=x2﹣1是二次函数,不符合题意;故是一次函数的有3个.故选:B.【点评】此题主要考查了一次函数、二次函数和反比例函数的定义,正确把握相关定义是解题关键.12.(3分)函数y=的自变量x的取值范围是()A.x>1B.x≥1C.x≥1且x≠0D.x≤1【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.【解答】解:根据题意得:x﹣1≥0且x≠0,解得:x≥1.故选:B.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.13.(3分)若y=(m﹣1)x2﹣|m|+3是关于x的一次函数,则m的值为()A.1B.﹣1C.±1D.±2【分析】由一次函数的定义得关于m的方程,解出方程即可.【解答】解:∵函数y=(m﹣1)x2﹣|m|+3是关于x的一次函数,∴2﹣|m|=1,m﹣1≠0.解得:m=﹣1.故选:B.【点评】本题主要考查的是一次函数的定义,掌握一次函数的定义是解题的关键.14.(3分)把直线y=2x﹣1向左平移1个单位,平移后直线的关系式为()A.y=2x﹣2B.y=2x+1C.y=2x D.y=2x+2【分析】根据“左加右减”的函数图象平移规律来解答.【解答】解:根据题意,将直线y=2x﹣1向左平移1个单位后得到的直线解析式为:y=2(x+1)﹣1,即y=2x+1,故选:B.【点评】本题考查的是一次函数的图象与几何变换,熟知“左加右减、上加下减”的原则是解答此题的关键15.(3分)下列各曲线中,表示y是x的函数的是()A.B.C.D.【分析】根据函数的意义即可求出答案.【解答】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,所以B正确.故选:B.【点评】主要考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.函数的意义反映在图象上简单的判断方法是:做垂直x轴的直线在左右平移的过程中与函数图象只会有一个交点.16.(3分)地球的水资源越来越枯竭,全世界都提倡节约用水,小明把自己家1月至6月份的用水量绘制成折线图,那么小明家这6个月的月平均用水量是()A.10吨B.9吨C.8吨D.7吨【分析】从图中得到6个月用水量的6个数据,然后根据平均数的概念计算这6个数据的平均数就可得到平均用水量.【解答】解:这6个月的平均用水量:(8+12+10+15+6+9)÷6=10吨,故选:A.【点评】此题主要考查了折线图的应用以及平均数求法,要熟悉统计图,读懂统计图,熟练掌握平均数的计算方法是解题关键.17.(3分)如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是()A.(2,10)B.(﹣2,0)C.(2,10)或(﹣2,0)D.(10,2)或(﹣2,0)【分析】分顺时针旋转和逆时针旋转两种情况讨论解答即可.【解答】解:∵点D(5,3)在边AB上,∴BC=5,BD=5﹣3=2,①若顺时针旋转,则点D′在x轴上,OD′=2,所以,D′(﹣2,0),②若逆时针旋转,则点D′到x轴的距离为10,到y轴的距离为2,所以,D′(2,10),综上所述,点D′的坐标为(2,10)或(﹣2,0).故选:C.【点评】本题考查了坐标与图形变化﹣旋转,正方形的性质,难点在于分情况讨论.18.(3分)如图,正方形ABCD的边长为2,动点P从点D出发,沿折线D→C→B作匀速运动,则△APD的面积S与点P运动的路程x之间的函数图象大致是()A.B.C.D.【分析】分类讨论:当点D在DC上运动时,DP=x,根据三角形面积公式得到S△APD =x,自变量x的取值范围为0<x≤2;当点P在CB上运动时,S△APD为定值2,自变量x的取值范围为2<x≤4,然后根据两个解析式对各选项中的图象进行判断即可.【解答】解:当点D在DC上运动时,DP=x,所以S△APD=AD•DP=•2•x=x(0<x≤2);当点P在CB上运动时,如图,PC=x﹣4,所以S△APD=AD•DC=•2•2=2(2<x≤4).故选:D.【点评】本题以动态的形式考查了分类讨论的思想、函数的知识、正方形的性质和三角形的面积公式.注意自变量的取值范围.19.(3分)如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0),将△ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段BC扫过的面积为()A.4B.8C.16D.10【分析】根据题意,线段BC扫过的面积应为一平行四边形的面积,其高是AC的长,底是点C平移的路程.求当点C落在直线y=2x﹣6上时的横坐标即可.【解答】解:如图所示.∵点A、B的坐标分别为(1,0)、(4,0),∴AB=3.∵∠CAB=90°,BC=5,∴AC=4.∴A′C′=4.∵点C′在直线y=2x﹣6上,∴2x﹣6=4,解得x=5.即OA′=5.∴CC′=5﹣1=4.∴S▱BCC′B′=4×4=16 (面积单位).即线段BC扫过的面积为16面积单位.故选:C.【点评】此题考查平移的性质及一次函数的综合应用,解决本题的关键是明确线段BC 扫过的面积应为一平行四边形的面积.20.(3分)甲、乙两车同时从A地出发,各自都以自己的速度匀速向B地行驶,甲车先到B地,停车1小时后按原速匀速返回,直到两车相遇.已知,乙车的速度是60千米/时,如图是两车之间的距离y(千米)与乙车行驶的时间x(小时)之间的函数图象,则下列说法不正确的是()A.A、B两地之间的距离是450千米B.乙车从出发到与甲车返回时相遇所用的时间是6.6小时C.甲车的速度是80千米/时D.点M的坐标是(6,90)【分析】(1)仔细观察图象可知:两车行驶5小时后,两车相距150千米,据此可得两车的速度差,进而得出甲车的速度,从而得出A、B两地之间的距离;(2)根据路程,时间与速度的关系解答即可;(3)由(1)的解答过程可得结论;(4)根据题意列式计算即可得出点M的纵坐标..【解答】解:根据题意仔细观察图象可知5小时后两车相距150千米,故甲车比乙车每小时多走30千米,所以甲车的速度为90千米/时;所以A、B两地之间的距离为:90×5=450千米.故选项A不合题意;设乙车从出发到与甲车返回时相遇所用的时间是x小时,根据题意得:60x+90(x﹣6)=450,解得x=6.6,所以乙车从出发到与甲车返回时相遇所用的时间是6.6小时.故选项B不合题意;甲车的速度为90千米/时.故选项C符合题意;点M的纵坐标为:90×5﹣60×6=90,故选项D不合题意.故选:C.【点评】本题主要考查了一次函数的综合题,解答要注意数形结合思想的运用,是各地中考的热点,同学们要加强训练,属于中档题.二.填空题(共5小题,每小题5分,共25分)21.(5分)某校开展捐书活动,七(1)班同学积极参与,现将捐书数量绘制成频数分布直方图(如图所示),如果捐书数量在3.5﹣4.5组别的人数占总人数的,那么捐书数量在4.5﹣5.5组别的人数是16人.【分析】根据捐书数量在3.5﹣4.5组别的频数是12、频率是0.3,由频率=频数÷总数求得总人数,根据频数之和等于总数可得答案.【解答】解:∵被调查的总人数为12÷=40(人),∴捐书数量在4.5﹣5.5组别的人数是40﹣(4+12+8)=16(人),故答案为:16人.【点评】本题主要考查频数(率)分布表,掌握频率=频数÷总数是解题的关键.22.(5分)如图是一个运算程序的示意图,若输出y的值为2,则输入x的值可能为1或3.【分析】分别令三种情况的y=2,求出相应的x,判断x是否满足所在范围即可.【解答】解:当x+1=2时,x=1,不符合x≤0;当x2+1=2时,x=±1,此时x=1符合;当=2时,x=3,此时符合;∴x=3或x=1,故答案为:1或3.【点评】本题考查函数值;熟练掌握由函数值求对应自变量的值的方法是解题的关键.23.(5分)如图,过A点的一次函数图象与正比例函数y=2x的图象相交于点B,则这个一次函数的表达式是y=﹣x+3.【分析】先利用直线y=2x过B点确定B点坐标,然后利用待定系数法求直线AB的解析式.【解答】解:当x=1时,y=2x=2,所以B点坐标为(1,2),设直线AB的解析式为y=kx+b,把A(0,3)和B(1,2)代入得,解得,所以一次函数的解析式为y=﹣x+3.故答案为y=﹣x+3.【点评】本题考查了两条直线相交或平行问题:若直线y=k1x+b1与直线y=k2x+b2平行,则k1=k2;若直线y=k1x+b1与直线y=k2x+b2相交,则由两解析式所组成的方程组的解为交点坐标.24.(5分)一辆经营长途运输的货车在高速公路的A处加满油后,以每小时80千米的速度匀速行驶,前往B地,如表记录的是货车一次加满油后油箱内余油量y(升)与行驶时间x(时)之间的关系:行驶时间x/时012 2.5余油量y/升100806050则y与x的函数关系式为y=﹣20x+100,自变量x的取值范围为0≤x≤5.【分析】从表格可看出,货车每行驶一小时,耗油量为20升,即余油量y与行驶时间x 成一次函数关系,设y=kx+b,把表中的任意两对值代入即可求出y与x的关系.【解答】解:设y与x之间的关系为一次函数,其函数表达式为y=kx+b,将(0,100),(1,80)代入上式得,,解得,∴y=﹣20x+100;100÷20=5,∴0≤x≤5.故答案为:y=﹣20x+100;0≤x≤5.【点评】本题意在考查学生利用待定系数法求解一次函数关系式,难度适中.25.(5分)正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示放置,点A1,A2,A3,…和C1,C2,C3,…分别在直线y=x+1和x轴上,则点B2020的纵坐标是22019,点B n 的纵坐标是2n﹣1.【分析】根据一次函数图象上点的坐标特征结合正方形的性质即可得出点B1、B2、B3、…的坐标,根据点坐标的变化找出点B n的坐标,依此即可得出结论.【解答】解:当x=0时,y=x+1=1,∴点A1的坐标为(0,1).∵A1B1C1O为正方形,∴点C1的坐标为(1,0),点B1的坐标为(1,1).同理,可得:B2(3,2),B3(7,4),B4(15,8),∴点B n的坐标为(2n﹣1,2n﹣1),∴点B n的纵坐标为2n﹣1,∴点B2020的纵坐标为22019.故答案为:22019,2n﹣1.【点评】本题考查了一次函数图象上点的坐标特征、正方形的性质以及规律型中点的坐标,根据点坐标的变化找出变化规律“点B n的坐标为(2n﹣1,2n﹣1)”是解题的关键.三.解答题(共1小题,15分)26.(15分)某森林公园从正门到侧门有一条公路供游客运动,甲徒步从正门出发匀速走向侧门,出发一段时间开始休息,休息了0.6小时后仍按原速继续行走.乙与甲同时出发,骑自行车从侧门匀速前往正门,到达正门后休息0.2小时,然后按原路原速匀速返回侧门.图中折线分别表示甲、乙到侧门的路程y(km)与甲出发时间x(h)之间的函数关系图象.根据图象信息解答下列问题.(1)求甲在休息前到侧门的路程y(km)与出发时间x(h)之间的函数关系式.(2)求甲、乙第一次相遇的时间.(3)直接写出乙回到侧门时,甲到侧门的路程.【分析】(1)根据函数图象可知点(0,15)和点(1,10)在甲在休息前到侧门的路程y (km)与出发时间x(h)之间的函数图象上,从而可以解答本题;(2)根据函数图象可以分别求得甲乙刚开始两端对应的函数解析式,联立方程组即可求得第一次相遇的时间;(3)根据函数图象可以得到在最后一段甲对应的函数解析式,乙到侧门时时间为2.2h,从而可以得到乙回到侧门时,甲到侧门的路程.【解答】解:(1)设甲在休息前到侧门的路程y(km)与出发时间x(h)之间的函数关系式为:y=kx+b,∵点(0,15)和点(1,10)在此函数的图象上,∴,解得k=﹣5,b=15.∴y=﹣5x+15.即甲在休息前到侧门的路程y(km)与出发时间x(h)之间的函数关系式为:y=﹣5x+15.(2)设乙骑自行车从侧门匀速前往正门对应的函数关系式y=kx,将(1,15)代入可得k=15,∴乙骑自行车从侧门匀速前往正门对应的函数关系式y=15x,∴解得x=0.75.即第一次相遇时间为0.75h.(3)乙回到侧门时,甲到侧门的路程是7km.设甲休息了0.6小时后仍按原速继续行走对应的函数解析式为:y=kx+b.将x=1.2代入y=﹣5x+15得,y=9.∵点(1.8,9),(3.6,0)在y=kx+b上,∴,解得k=﹣5,b=18.∴y=﹣5x+18.将x=2.2代入y=﹣5x+18,得y=7.即乙回到侧门时,甲到侧门的路程是7km.【点评】本题考查一次函数的应用,解题的关键是能看懂题意,根据数形结合的数学思想,找出所求问题需要的条件.。

2019-2020学年八年级下学期期中考试数学试卷(含答案)

2019-2020学年八年级下学期期中考试数学试卷(含答案)

2019-2020学年八年级下学期期中考试数学试卷一、选择题(本题共12个小题.在每题所列四个选项中,只有一个符合题意,把符合题意的选项所对应的字母代号写在答题纸中各题对应的方格里).1、下列式子:①;②;③﹣;④;⑤,是二次根式的有()A.①③ B.①③⑤ C.①②③ D.①②③⑤2、在菱形ABCD中,如果∠B=110°,那么∠D的度数是A.35° B.70° C.110° D.130°3、在三边分别为下列长度的三角形中,是直角三角形的是()A.9,12,14 B.2,, C.4,3, D.4,3,54、化简的结果是()A.﹣ B.﹣ C.﹣ D.﹣5、如图,在▱ABCD中,∠ODA=90°,AC=20cm,BD=12cm,则AD的长为()A.8cm B.10cm C.12cm D.16cm6、已知a、b、c是三角形的三边长,如果满足(a﹣6)2+=0,则三角形形状是(A.底与腰不相等的等腰三角形B.等边三角形C.钝角三角形 D.直角三角形7、下列运算正确的是()A.﹣= B. =2 C.﹣= D. =2﹣8、如图,四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD的面积为16,则BE=()A.2 B.3 C.4 D.59、如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BA E=22.5°,则BE的长为()A. B.2 C.4﹣4 D.4﹣210、已知a<b,则化简二次根式的正确结果是()A.B.C.D.11、实数a在数轴上的位置如图所示,则化简后为()A.7 B.﹣7 C.2a﹣15 D.无法确定12、已知直角梯形ABCD中,AD∥BC,AB⊥BC,AD=4,BC=DC=5,点P在BC上移动,则当PA+PD取最小值时,BP长为()A.1 B.2 C.2.5 D.3二、填空题(本题共6个小题.请把最终结果填写在答题纸中各题对应的横线上13、小红说:“因为4=2,所以4不是二次根式.”你认为小红的说法对吗?(填对或错).14、已知x=+1,则x2﹣2x+4= .15、如图,四边形ABCD中,AD=3,AB=4,BC=12,CD=13,∠A=90°,计算四边形ABCD的面积.16、如图,▱ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点,若AC+BD=24厘米,△OAB的周长是18厘米,则EF= 厘米.17、如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若EF=2,BC=10,则AB的长为.18、对于任意不相等的两个数a,b,定义一种运算※如下:a※b=,如3※2=.那么12※4= .三、解答题(共66分。

2019-2020学年初中八年级(下)数学期中考试试卷(含答案)

2019-2020学年初中八年级(下)数学期中考试试卷(含答案)

是这个台阶两个相对的端点,A 点有一只蚂蚁,想到 B 点去吃可口的食物,则蚂蚁沿着台
阶面爬到 B 点的最短路程是_________.
16.△ABC 中,AB=2 3 ,AC=2,BC 边上的高 AD= 3 ,则 BC=__________.
三、解答题(共 72 分) 17.(20 分)计算:
(1) 3 3 8 2 27

13.三角形的两边长分别为 3 和 5,要使这个三角形是直角三角形,则第三边长是

14 . 在 数 轴 上 表 示 实 数 a 的 点 如 图 所 示 , 化 简 (a 5)2 a 2 的 结 果


0 2 a5
15.如图,是一个三级台阶,它的每一级的长、宽、高分别为 20dm、3dm、2dm,A 和 B
(2) (4 2 3 6) 2 2
(3) 46 0.5) ( 8 6 1 )
2
32
3
18.(8分)已知等式 | a 2019 | a 2020 a 成立,求 a 20192 的值.
19、(10 分)如图,在四边形 ABCD 中,∠B=90°,AB=BC=2,AD=1,CD=3. (1)求∠DAB 的度数. (2)求四边形 ABCD 的面积.
A.16 B.8 C.4 D.2
6.甲、乙两艘客轮同时离开港口,航行的速度都是 40m/min,甲客轮用 15min 到达点 A,
乙客轮用 20min 到达点 B,若 A,B 两点的直线距离为 1000m,甲客轮沿着北偏东 30°的方
向航行,则乙客轮的航行方向可能是( )
A.北偏西 30°
B.南偏西 30°
D. 6
A. 8 2 10 B. 2 2 2 2 C. 2 3 6 D. 12 2 6

2019-2020学年八年级第二学期期中考试数学试题(含答案)

2019-2020学年八年级第二学期期中考试数学试题(含答案)

2019-2020学年八年级第二学期期中考试数学试题一、精心选一选(10小题,每题3分,共30分).1、下列式子中,属于最简二次根式的是()A. B. C. D.2、下列计算中,结果错误的是()A. += B.5﹣2=3C.÷= D.(﹣)2=23、如图,Rt△ABC中,∠ACB=90°,若AB=15cm,则正方形ADEC和正方形BCFG的面积和为()A.150cm2 B.200cm2 C.225cm2 D.无法计算4、三角形的三边为a、b、c,由下列条件不能判断它是直角三角形的是()A. a:b:c =13∶5∶12 B. a2-b2=c2C.a2=(b+c)(b-c) D.a:b:c=8∶16∶175、已知:如图,在矩形ABCD中,E、F、G、H分别为边AB、BC、CD、DA的中点.若AB=2,AD=4,则图中阴影部分的面积为 ( )A.5B.4.5C.4D.3.56、已知矩形ABCD中,AB=2﹣,BC=+1,则矩形ABCD的面积是()A.5 B.4﹣ C.5﹣4 D.5+47、如图,在Rt△ABC中,∠BAC=90°,D、E分别是AB、BC的中点,F在CA延长线上,∠FDA=∠B,AC=6,AB=8,则四边形AEDF的周长为()A.14 B.15 C.16 D.188、已知﹣2<m <3,化简+|m+2|的结果是( ) A .5 B .1 C .2m ﹣1 D .2m ﹣59、数学课上,老师要同学们判断一个四边形门框是否为矩形.下面是某合作小组的4位同学拟定的方案,其中正确的是( )A .测量对角线是否互相平分B .测量两组对边是否分别相等C .测量一组对角是否都为直角D .测量三个角是否为直角10、如图,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD+PE 最小,则这个最小值为( )A .B .2C .D .2二、耐心填一填(6小题,每题3分,共18分).11、计算:﹣= .﹣2= .12、如图,在正方形ABCD 中,E 是对角线BD 上任意一点,过E 作EF ⊥BC 于F ,作EG ⊥CD 于G ,若正方形ABCD 的周长为m ,则四边形EFCG 的周长为 。

河北省2019-2020年八年级下学期期中考试数学试卷1

河北省2019-2020年八年级下学期期中考试数学试卷1

河北省2019-2020年八年级下学期期中考试数学试卷一、选择题:1-6每题2分;7-14每题3分,共36分2014~2015学年度第二学期期中教学质量检测2014-2015学年八年级数学试卷1.(2分)下列二次根式中,最简二次根式是()A.B.C. D.2.(2分)下列能构成直角三角形三边长的是()A.1,2,3 B.2,3,4 C.3,4,5 D.4,5,63.(2分)下列说法中正确的是()A.两条对角线垂直的四边形的菱形B.对角线垂直且相等的四边形是正方形C.两条对角线相等的四边形是矩形D.两条对角线相等的平行四边形是矩形4.(2分)二次根式中,x的取值范围是()A.x>1 B.x≥1 C.x<1 D.x≤15.(2分)如图,在▱ABCD中,AD=8,点E,F分别是BD,CD的中点,则EF等于()A.2B.3C.4D.56.(2分)矩形具有而菱形不具有的性质是()A.对角线相等B.两组对边分别平行C.对角线互相平分D.两组对角分别相等7.(3分)面积为16cm2的正方形,对角线的长为()cm.A.4B.4C.8D.88.(3分)已知ABCD是平行四边形,则下列各图中∠1与∠2一定不相等的是()A.B.C.D.9.(3分)下列计算正确的是()A.B.C.D.10.(3分)计算(﹣)2()A.2015 B.﹣2015 C.±2015 D.2015211.(3分)如果菱形的边长是2cm,一条对角线的长也是2cm,那么该菱形的另一条对角线的长是()A.3cm B.4cm C.cm D.2cm12.(3分)如图所示:是一段楼梯,高BC是3m,斜边AC是5m,如果在楼梯上铺地毯,那么至少需要地毯()A.5m B.6m C.7m D.8m13.(3分)如图,四边形ABCD是正方形,延长AB到点E,使AE=AC,则∠BCE的度数是()A.45°B.35°C.22.5°D.15.5°14.(3分)若a=,b=,则()A.a=b B.a、b互为倒数C.a b=2 D.a、b互为相反数二、填空题:(每小题3分,共18分)15.(3分)直角三角形三边长分别为2,3,m,则m=.16.(3分)定义运算“@”的运算法则为:x@y=,则(2@6)@8=.17.(3分)已知,则x=,y=.18.(3分)如图,菱形ABCD的两条对角线相交于O,若AC=6,BD=4,则菱形ABCD的周长是.19.(3分)计算的结果是.20.(3分)如图,在菱形ABCD中,对角线AC,BD相交于点O,E为AB的中点,且OE=a,则菱形ABCD的周长为.三、解答题21.(6分)先化简,再求值:3(a+1)2﹣(2a+1)(2a﹣1),其中a=.22.(8分)计算题:(1)+﹣;(2)(1+)(﹣)﹣(2﹣1)2.23.(10分)如图,在△ABC中,AD⊥BC,垂足为D,∠B=60°,∠C=45°.(1)求∠BAC的度数.(2)若AC=2,求AD的长.24.(10分)已知:如图,▱ABCD中,E、F分别是边AB、CD的中点.(1)求证:四边形EBFD是平行四边形;(2)若AD=AE=2,∠A=60°,求四边形EBFD的周长.25.(12分)如图,已知点E、F在四边形ABCD的对角线延长线上,AE=CF,DE∥BF,∠1=∠2.(1)求证:△AED≌△CFB;(2)若AD⊥CD,四边形ABCD是什么特殊四边形?请说明理由.八年级下学期期中数学试卷参考答案与试题解析一、选择题:1-6每题2分;7-14每题3分,共36分2014~2015学年度第二学期期中教学质量检测2014-2015学年八年级数学试卷1.(2分)下列二次根式中,最简二次根式是()A.B.C.D.考点:最简二次根式.分析:根据最简二次根式的定义对各选项分析判断后利用排除法求解.解答:解:A、被开方数中含有分母,不是最简二次根式,故本选项错误;B、是最简二次根式,故本选项正确;C、被开方数中含有能开得尽方的因数,不是最简二次根式,故本选项错误;D、被开方数中含有能开得尽方的因数,不是最简二次根式,故本选项错误;故选B.点评:本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.2.(2分)下列能构成直角三角形三边长的是()A.1,2,3 B.2,3,4 C.3,4,5 D.4,5,6考点:勾股定理的逆定理.分析:根据勾股定理的逆定理可知,当三角形中三边的关系为:a2+b2=c2时,则三角形为直角三角形.解答:解:因为只有C中能满足此关系:32+42=52,故选C.点评:本题利用了勾股定理的逆定理求解.3.(2分)下列说法中正确的是()A.两条对角线垂直的四边形的菱形B.对角线垂直且相等的四边形是正方形C.两条对角线相等的四边形是矩形D.两条对角线相等的平行四边形是矩形考点:多边形.分析:根据菱形,正方形,矩形的判定定理,进行判定,即可解答.解答:解:A.两条对角线垂直的平行四边形是菱形,故错误;B.对角线垂直且相等的四边形不一定是正方形,故错误;C.两条对角线相等的平行四边形是矩形,故错误;D.两条对角线相等的平行四边形是矩形,正确;故选:D.点评:本题考查了菱形,正方形,矩形的判定定理,解决本题的关键是熟记四边形的判定定理.4.(2分)二次根式中,x的取值范围是()A.x>1 B.x≥1 C.x<1 D.x≤1考点:二次根式有意义的条件.分析:根据二次根式有意义:被开方数为非负数,可得x的取值范围.解答:解:∵二次根式有意义,∴1﹣x≥0,∴x≤1.故选D.点评:本题考查了二次根式有意义的条件,解答本题得关键是掌握二次根式有意义:被开方数为非负数.5.(2分)如图,在▱ABCD中,AD=8,点E,F分别是BD,CD的中点,则EF等于()A.2B.3C.4D.5考点:三角形中位线定理;平行四边形的性质.分析:由四边形ABCD是平行四边形,根据平行四边形的对边相等,可得BC=AD=8,又由点E、F分别是BD、CD的中点,利用三角形中位线的性质,即可求得答案.解答:解:∵四边形ABCD是平行四边形,∴BC=AD=8,∵点E、F分别是BD、CD的中点,∴EF=BC=×8=4.故选C.点评:此题考查了平行四边形的性质与三角形中位线的性质.此题比较简单,注意掌握数形结合思想的应用.6.(2分)矩形具有而菱形不具有的性质是()A.对角线相等B.两组对边分别平行C.对角线互相平分D.两组对角分别相等考点:矩形的性质;菱形的性质.分析:根据矩形与菱形的性质求解即可求得答案.注意矩形与菱形都是平行四边形.解答:解:∵矩形具有的性质是:对角线相等且互相平分,两组对边分别平行,两组对角分别相等;菱形具有的性质是:两组对边分别平行,对角线互相平分,两组对角分别相等;∴矩形具有而菱形不具有的性质是:对角线相等.故选A.点评:此题考查了矩形与菱形的性质.注意熟记定理是解此题的关键.7.(3分)面积为16cm2的正方形,对角线的长为()cm.A.4B.4C.8D.8考点:正方形的性质.分析:根据对角线互相垂直的四边形的面积等于对角线乘积的一半,且正方形对角线相等,列方程解答即可.解答:解:设对角线长是xcm.则有x2=16,解得x=±4(负值舍去).故选B.点评:本题考查了正方形的性质,解题时注意结论:对角线互相垂直的四边形的面积等于对角线乘积的一半.此题也可首先根据面积求得正方形的边长,再根据勾股定理进行求解.8.(3分)已知ABCD是平行四边形,则下列各图中∠1与∠2一定不相等的是()A.B.C.D.考点:平行四边形的性质.分析:仔细观察图形,利用平行四边形的性质进行分析从而得到答案.解答:解:A、根据两直线平行内错角相等可得到,故正确;B、根据对顶角相等可得到,故正确;C、根据两直线平行内错角相等可得到∠1=∠ACB,∠2为一外角,所以不相等,故不正确;D、根据平行四边形对角相等可得到,故正确;故选C.点评:此题主要考查学生对平等四边形的性质的理解及运用.9.(3分)下列计算正确的是()A.B.C.D.考点:二次根式的乘除法;二次根式的加减法.分析:根据×=,÷=,可得答案.解答:解:A、×==,故A错误;B、二次根式的加法,被开方数不能相加,故B错误;C、﹣=2﹣=,故C正确;D、÷===2,故D错误;故选:C.点评:本题考查了二次根式的乘除法,利用了二次根式的乘除法运算.10.(3分)计算(﹣)2()A.2015 B.﹣2015 C.±2015 D.20152考点:二次根式的乘除法.分析:根据二次根式的乘法法则求解.解答:解:原式=(﹣)(﹣)=2015.故选A.点评:本题考查了二次根式的乘除法,解答本题的关键是掌握二次根式的乘法法则和除法法则.11.(3分)如果菱形的边长是2cm,一条对角线的长也是2cm,那么该菱形的另一条对角线的长是()A.3cm B.4cm C.cm D.2cm考点:菱形的性质.分析:根据菱形的对角线和一边长组成一个直角三角形的性质,再由勾股定理得出另一条对角线的长即可.解答:解:∵菱形的对角线互相垂直平分,∴另一条对角线的一半长=,则另一条对角线长是2cm.故选:D.点评:此题主要考查菱形的基本性质:菱形的对角线互相垂直平分,以及综合利用勾股定理.12.(3分)如图所示:是一段楼梯,高BC是3m,斜边AC是5m,如果在楼梯上铺地毯,那么至少需要地毯()A.5m B.6m C.7m D.8m考点:勾股定理.分析:先根据直角三角形的性质求出AB的长,再根据楼梯高为BC的高=3m,楼梯的宽的和即为AB的长,再把AB、BC的长相加即可.解答:解:∵△ABC是直角三角形,BC=3m,AC=5m∴AB===4m,∴如果在楼梯上铺地毯,那么至少需要地毯为AB+BC=7米.故选C.点评:本题考查的是勾股定理,解答此题的关键是找出楼梯的高和宽与直角三角形两直角边的等量关系.13.(3分)如图,四边形ABCD是正方形,延长AB到点E,使AE=AC,则∠BCE的度数是()A.45°B.35°C.22.5°D.15.5°考点:正方形的性质;等腰三角形的性质.分析:根据正方形的性质,易知∠CAE=∠ACB=45°;等腰△CAE中,根据三角形内角和定理可求得∠ACE的度数,进而可由∠BCE=∠ACE﹣∠ACB得出∠BCE的度数.解答:解:∵四边形ABCD是正方形,∴∠CAB=∠BCA=45°;△ACE中,AC=AE,则:∠ACE=∠AEC=(180°﹣∠CAE)=67.5°;∴∠BCE=∠ACE﹣∠ACB=22.5°.故选C.点评:此题主要考查的是正方形、等腰三角形的性质及三角形内角和定理.14.(3分)若a=,b=,则()A.a=b B.a、b互为倒数C.a b=2 D.a、b互为相反数考点:分母有理化.分析:利用二次根式的性质化简求出即可.解答:解:∵a===,b=,∴a=b.故选:A.点评:此题主要考查了分母有理化,正确化简二次根式是解题关键.二、填空题:(每小题3分,共18分)15.(3分)直角三角形三边长分别为2,3,m,则m=或.考点:勾股定理.专题:分类讨论.分析:因为不明确直角三角形的斜边长,故应分3为直角边和斜边两种情况讨论.解答:解:①当3为斜边时,m==;当长3的边为斜边时,m==.故m=5或.故答案为:或.点评:本题利用了勾股定理求解,解答本题的关键是注意要分边长为a的边是否为斜边来讨论.16.(3分)定义运算“@”的运算法则为:x@y=,则(2@6)@8=6.考点:二次根式的混合运算.专题:新定义.分析:认真观察新运算法则的特点,找出其中的规律,再计算.解答:解:∵x@y=,∴(2@6)@8=@8=4@8==6,故答案为:6.点评:解答此类题目的关键是认真观察新运算法则的特点,找出其中的规律,再计算.17.(3分)已知,则x=2,y=﹣3.考点:二次根式有意义的条件.专题:计算题.分析:根据二次根式有意义的条件得到得,解得x=2,然后把x=2代入计算即可.解答:解:根据题意得,解得x=2,所以y=﹣3.故答案为2,﹣3.点评:本题考查了二次根式有意义的条件:二次根式,当a≥0时有意义.18.(3分)如图,菱形ABCD的两条对角线相交于O,若AC=6,BD=4,则菱形ABCD的周长是4.考点:菱形的性质.分析:在Rt△AOD中求出AD的长,再由菱形的四边形等,可得菱形ABCD的周长.解答:解:∵四边形ABCD是菱形,∴AO=AC=3,DO=BD=2,AC⊥BD,在Rt△AOD中,AD==,∴菱形ABCD的周长为4.故答案为:4.点评:本题考查了菱形的性质,解答本题的关键是掌握菱形的对角线互相垂直且平分.19.(3分)计算的结果是+1.考点:分母有理化.专题:计算题.分析:分子分母同时乘以即可进行分母有理化.解答:解:原式===+1.故答案为:+1.点评:此题考查了分母有理化的知识,属于基础题,注意掌握分母有理化的法则.20.(3分)如图,在菱形ABCD中,对角线AC,BD相交于点O,E为AB的中点,且OE=a,则菱形ABCD的周长为8a.考点:菱形的性质;三角形中位线定理.分析:根据已知可得菱形性质和直角三角形斜边上的中线等于斜边的一半可以求得AB=2OE,从而不难求得其周长.解答:解:∵四边形ABCD是菱形,∴AC⊥BD,又∵点E是AB的中点,∴AB=20E,则菱形ABCD的周长为8a.故答案为:8a.点评:此题主要考查学生对菱形的性质及中位线的性质的理解及运用,属于基础题.三、解答题21.(6分)先化简,再求值:3(a+1)2﹣(2a+1)(2a﹣1),其中a=.考点:整式的混合运算—化简求值.分析:先利用完全平方公式和平方差公式计算,进一步合并,最后代入求得数值即可.解答:解:原式=3(a2+2a+1)﹣(4a2﹣1)=3a2+6a+3﹣4a2+1=﹣a2+6a+4当a=时,原式=﹣2+6+4=6+2.点评:此题考查整式的化简求值,注意先化简,再代入求得数值即可.22.(8分)计算题:(1)+﹣;(2)(1+)(﹣)﹣(2﹣1)2.考点:二次根式的混合运算.分析:(1)先进行二次根式的化简,然后合并;(2)先进行二次根式的乘法运算,然后合并.解答:解:(1)原式=3+﹣=4﹣;(2)原式=﹣+﹣3﹣13+4=4﹣2﹣13.点评:本题考查了二次根式的混合运算,解答本题的关键是掌握二次根式的乘法法则以及二次根式的化简.23.(10分)如图,在△ABC中,AD⊥BC,垂足为D,∠B=60°,∠C=45°.(1)求∠BAC的度数.(2)若AC=2,求AD的长.考点:勾股定理.分析:(1)根据三角形内角和定理,即可推出∠BAC的度数;(2)由题意可知AD=DC,根据勾股定理,即可推出AD的长度.解答:解:(1)∠BAC=180°﹣60°﹣45°=75°;(2)∵AD⊥BC,∴△ADC是直角三角形,∵∠C=45°,∴∠DAC=45°,∴AD=DC,∵AC=2,∴AD=.点评:本题主要考查勾股定理、三角形内角和定理,关键在于推出AD=DC.24.(10分)已知:如图,▱ABCD中,E、F分别是边AB、CD的中点.(1)求证:四边形EBFD是平行四边形;(2)若AD=AE=2,∠A=60°,求四边形EBFD的周长.考点:平行四边形的判定与性质;三角形中位线定理.专题:计算题;证明题.分析:1、在▱ABCD中,AB=CD,AB∥CD,又E、F分别是边AB、CD的中点,所以BE=CF,因此四边形EBFD是平行四边形2、由AD=AE=2,∠A=60°知△ADE是等边三角形,又E、F分别是边AB、CD的中点,四边形EBFD是平行四边形,所以EB=BF=FD=DE=2,四边形EBFD是平行四边形的周长是2+2+2+2=8解答:解:(1)在▱ABCD中,AB=CD,AB∥CD.∵E、F分别是AB、CD的中点,∴.∴BE=DF.∴四边形EBFD是平行四边形(2)∵AD=AE,∠A=60°,∴△ADE是等边三角形.∴DE=AD=2,又∵BE=AE=2,由(1)知四边形EBFD是平行四边形,∴四边形EBFD的周长=2(BE+DE)=8.点评:本题考查了平行四边形的判定与性质,熟练掌握性质定理和判定定理是解题的关键.平行四边形的五种判定方法与平行四边形的性质相呼应,每种方法都对应着一种性质,在应用时应注意它们的区别与联系.25.(12分)如图,已知点E、F在四边形ABCD的对角线延长线上,AE=CF,DE∥BF,∠1=∠2.(1)求证:△AED≌△CFB;(2)若AD⊥CD,四边形ABCD是什么特殊四边形?请说明理由.考点:全等三角形的判定与性质;矩形的判定.专题:证明题.分析:(1)根据两直线平行,内错角相等可得∠E=∠F,再利用“角角边”证明△AED和△CFB全等即可;(2)根据全等三角形对应边相等可得AD=BC,∠DAE=∠BCF,再求出∠DAC=∠BCA,然后根据内错角相等,两直线平行可得AD∥BC,再根据一组对边平行且相等的四边形是平行四边形证明四边形ABCD是平行四边形,再根据有一个角是直角的平行四边形是矩形解答.解答:(1)证明:∵DE∥BF,∴∠E=∠F,在△AED和△CFB中,,∴△AED≌△CFB(AAS);(2)解:四边形ABCD是矩形.理由如下:∵△AED≌△CFB,∴AD=BC,∠DAE=∠BCF,∴∠DAC=∠BCA,∴AD∥BC,∴四边形ABCD是平行四边形,又∵AD⊥CD,∴四边形ABCD是矩形.点评:本题考查了全等三角形的判定与性质,矩形的判定,平行四边形的判定以及平行四边形与矩形的联系,熟记各图形的判定方法和性质是解题的关键.。

河北省唐山市遵化市2023-2024学年八年级下学期期中数学试题(含答案)

河北省唐山市遵化市2023-2024学年八年级下学期期中数学试题(含答案)

遵化市2023—2024学年度第二学期期中学业水平评估八年级数学试卷考生注意:1.本试卷共4页,总分120分,考试时间90分钟。

2.答题前考生务必将姓名、准考证号填写在试卷和答题卡相应位置上。

3.考生务必将答案写在试卷上。

一、选择题(本大题有12个小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项符合题目要求)。

1.用下列方式获取的数据中,可信度较低的是()A .社会上的传闻B .从报纸上摘录的C .看电视新闻得到的D .小组实地考察或测量得到的2.下列关系式中,是的函数的是()A .B .C .D .3.下列调查中,不适宜采用抽样调查方式的是()A .了解一批多媒体一体机的使用寿命B .了解全国七年级学生身高的现状C .了解全国市民对“杭州亚运会新增运动项目”的了解程度D .检查嫦娥六号探测器的各零部件4.下列数据不能确定物体具体位置的是()A .5楼6号B .北偏东C .希望路20号D .东经,北纬5.要反应我区2019年12月份每天的最高气温的变化情况,宜采用( )A .条形统计图B .扇形统计图C .折线统计图D .统计表6.在平面直角坐标系中,点在( )A .轴的负半轴上B .轴的负半轴上C .轴的正半轴上D .轴的正半轴上7.在一个样本中,40个数据分别落在5个小组内,第小组的频数分别是2,8,15,5,则第4小组的频数是()A .5B .10C .15D .208.在平面直角坐标系中,将点向下平移3个单位长度,所得点的坐标是()A .B .C .D .9.某汽车油箱中盛有油,装满货物行驶的过程中每小时耗油8L ,则油箱中的剩油量与时间之间的关系式是( )A .B .C .D .y x 22x y -31y x =-23y x =235y x =-30︒118︒20︒()0,2A -x y x y 1,2,3,5()2,1()1,1-()5,1()2,4()2,2-100L ()L Q ()h t 1008Q t =+8Q t=1008Q t =-8100Q t =-10.已知点在正比例函数的图象上,则的值是()A .B .C .6D .11.已知是一次函数,则的值为( )A .B .3C .D .12.在平面直角坐标系中,一次函数的图像与轴的交点坐标为()A .B .C .D .二、填空题(本大题有4个小题,每小题3分,共12分。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年八年级第二学期期中数学试卷一、选择题1.2019年是大家公认的5G 商用元年,移动通讯行业人员想了解5G 手机的使用情况,在某高校随机对500位大学生进行了问卷调查,下列说法正确的是( ) A .该调查方式是普查B .该调查中的个体是每一位大学生C .该调查中的样本是被随机调查的500位大学生5G 手机的使用情况D .该调查中的样本容量是500位大学生2.空气是由多种气体混合而成的,为了简明扼要的介绍空气的组成情况,较好的描述数据,最适合使用的统计图是( )A .扇形图B .条形图C .折线图D .直方图 3.统计得到的一组数据有80个,其中最大值为141,最小值为50,取组距为10,可以分成( )A .10组B .9组C .8组D .7组 4.根据下列表述,能确定位置的是( )A .天益广场南区B .凤凰山北偏东42°C .红旗影院5排9座D .学校操场的西面5.如图,象棋盘上,若“将”位于点(1,﹣2),“象”位于点(5,0),则炮位于点( )A .(﹣1,1)B .(﹣1,2)C .(﹣2,1)D .(﹣2,2) 6.在坐标平面内,若点P (x ﹣2,x +1)在第二象限,则x 的取值范围是( ) A .x >2 B .x <2 C .x >﹣1 D .﹣1<x <2 7.当k <0时,一次函数y =kx ﹣k 的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限 8.如图,将平面直角坐标系中“鱼”的每个“顶点”的纵坐标保持不变,横坐标变为原来的13,则点A 的对应点A ′的坐标是( )A.(2,3)B.(6,1)C.(2,1)D.(3,3)9.圆周长公式C=2πR中,下列说法正确的是()A.π、R是变量,2为常量B.C、R为变量,2、π为常量C.R为变量,2、π、C为常量D.C为变量,2、π、R为常量10.在平面直角坐标系中,点A的坐标是(﹣1,2),作点A关于y轴的对称点,得到点A',再将点A'向下平移4个单位,得到点A″,则点A″的坐标是()A.(﹣1,﹣2)B.(1,2)C.(1,﹣2)D.(﹣2,1)11.下列函数(1)y=x(2)y=2x﹣1 (3)y=1x(4)y=2﹣3x(5)y=x2﹣1中,是一次函数的有()A.4个B.3个C.2个D.1个12.函数y=√x−1x的自变量x的取值范围是()A.x>1B.x≥1C.x≥1且x≠0D.x≤1 13.若y=(m﹣1)x2﹣|m|+3是关于x的一次函数,则m的值为()A.1B.﹣1C.±1D.±2 14.把直线y=2x﹣1向左平移1个单位,平移后直线的关系式为()A.y=2x﹣2B.y=2x+1C.y=2x D.y=2x+2 15.下列各曲线中,表示y是x的函数的是()A.B.C.D.16.地球的水资源越来越枯竭,全世界都提倡节约用水,小明把自己家1月至6月份的用水量绘制成折线图,那么小明家这6个月的月平均用水量是()A.10吨B.9吨C.8吨D.7吨17.如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是()A.(2,10)B.(﹣2,0)C.(2,10)或(﹣2,0)D.(10,2)或(﹣2,0)18.如图,正方形ABCD的边长为2,动点P从点D出发,沿折线D→C→B作匀速运动,则△APD的面积S与点P运动的路程x之间的函数图象大致是()A.B.C.D.19.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0),将△ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段BC扫过的面积为()A.4B.8C.16D.1020.甲、乙两车同时从A地出发,各自都以自己的速度匀速向B地行驶,甲车先到B地,停车1小时后按原速匀速返回,直到两车相遇.已知,乙车的速度是60千米/时,如图是两车之间的距离y(千米)与乙车行驶的时间x(小时)之间的函数图象,则下列说法不正确的是()A.A、B两地之间的距离是450千米B.乙车从出发到与甲车返回时相遇所用的时间是6.6小时C.甲车的速度是80千米/时D.点M的坐标是(6,90)二.填空题(共5小题)21.某校开展捐书活动,七(1)班同学积极参与,现将捐书数量绘制成频数分布直方图(如图所示),如果捐书数量在3.5﹣4.5组别的人数占总人数的30100,那么捐书数量在4.5﹣5.5组别的人数是.22.如图是一个运算程序的示意图,若输出y的值为2,则输入x的值可能为.23.如图,过A点的一次函数图象与正比例函数y=2x的图象相交于点B,则这个一次函数的表达式是.24.一辆经营长途运输的货车在高速公路的A处加满油后,以每小时80千米的速度匀速行驶,前往B地,如表记录的是货车一次加满油后油箱内余油量y(升)与行驶时间x(时)之间的关系:行驶时间x/时012 2.5余油量y/升100806050则y与x的函数关系式为,自变量x的取值范围为.25.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示放置,点A1,A2,A3,…和C1,C2,C3,…分别在直线y=x+1和x轴上,则点B2020的纵坐标是,点B n的纵坐标是.三.解答题(共1小题,15分)26.某森林公园从正门到侧门有一条公路供游客运动,甲徒步从正门出发匀速走向侧门,出发一段时间开始休息,休息了0.6小时后仍按原速继续行走.乙与甲同时出发,骑自行车从侧门匀速前往正门,到达正门后休息0.2小时,然后按原路原速匀速返回侧门.图中折线分别表示甲、乙到侧门的路程y(km)与甲出发时间x(h)之间的函数关系图象.根据图象信息解答下列问题.(1)求甲在休息前到侧门的路程y(km)与出发时间x(h)之间的函数关系式.(2)求甲、乙第一次相遇的时间.(3)直接写出乙回到侧门时,甲到侧门的路程.参考答案一.选择题(本题共20小题,每小题3分,共60分)1.2019年是大家公认的5G商用元年,移动通讯行业人员想了解5G手机的使用情况,在某高校随机对500位大学生进行了问卷调查,下列说法正确的是()A.该调查方式是普查B.该调查中的个体是每一位大学生C.该调查中的样本是被随机调查的500位大学生5G手机的使用情况D.该调查中的样本容量是500位大学生【分析】根据总体:我们把所要考察的对象的全体叫做总体;个体:把组成总体的每一个考察对象叫做个体;样本:从总体中取出的一部分个体叫做这个总体的一个样本;样本容量:一个样本包括的个体数量叫做样本容量进行分析即可.解:A、该调查方式是普查,说法错误,应为抽样调查;B、该调查中的个体是每一位大学生,说法错误,该调查中的个体是每一位大学生5G手机的使用情况;C、该调查中的样本是被随机调查的500位大学生5G手机的使用情况,说法正确;D、该调查中的样本容量是500位大学生,说法错误,应为该调查中的样本容量是500;故选:C.2.空气是由多种气体混合而成的,为了简明扼要的介绍空气的组成情况,较好的描述数据,最适合使用的统计图是()A.扇形图B.条形图C.折线图D.直方图【分析】扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目;频数分布直方图,清楚显示在各个不同区间内取值,各组频数分布情况,易于显示各组之间频数的差别.解:根据题意,得要求直观反映空气的组成情况,即各部分在总体中所占的百分比,结合统计图各自的特点,应选择扇形统计图.故选:A.3.统计得到的一组数据有80个,其中最大值为141,最小值为50,取组距为10,可以分成()A.10组B.9组C.8组D.7组【分析】根据组数=(最大值﹣最小值)÷组距计算,注意小数部分要进位.解:在样本数据中最大值为141,最小值为50,它们的差是141﹣50+1=92,已知组距为10,那么由于92÷10=9.2,故可以分成10组.故选:A.4.根据下列表述,能确定位置的是()A.天益广场南区B.凤凰山北偏东42°C.红旗影院5排9座D.学校操场的西面【分析】根据有序数对可以确定坐标位置对各选项分析判断后利用排除法求解.解:A、天益广场南区,不能确定位置,故本选项错误;B、凤凰山北偏东42°,没有明确具体位置,故本选项错误;C、红旗影院5排9座,能确定位置,故本选项正确;D、学校操场的西面,不能确定位置,故本选项错误;故选:C.5.如图,象棋盘上,若“将”位于点(1,﹣2),“象”位于点(5,0),则炮位于点()A.(﹣1,1)B.(﹣1,2)C.(﹣2,1)D.(﹣2,2)【分析】根据“将”的位置向左平移一个单位所得直线是y轴,向上平移2个单位所得直线是x轴,根据“炮”的位置,可得答案.解:根据题意可建立如图所示坐标系,由坐标系知炮位于点(﹣2,1),故选:C .6.在坐标平面内,若点P (x ﹣2,x +1)在第二象限,则x 的取值范围是( ) A .x >2 B .x <2 C .x >﹣1 D .﹣1<x <2【分析】根据点的坐标满足第二象限的条件是横坐标<0,纵坐标>0可得到一个关于x 的不等式组,求解即可.解:因为点P (x ﹣2,x +1)在第二象限,所以x ﹣2<0,x +1>0,解得﹣1<x <2. 故选:D .7.当k <0时,一次函数y =kx ﹣k 的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限【分析】由k <0可得出﹣k >0,结合一次函数图象与系数的关系即可得出一次函数y =kx ﹣k 的图象经过第一、二、四象限,此题得解.解:∵k <0,∴﹣k >0,∴一次函数y =kx ﹣k 的图象经过第一、二、四象限.故选:C .8.如图,将平面直角坐标系中“鱼”的每个“顶点”的纵坐标保持不变,横坐标变为原来的13,则点A 的对应点A ′的坐标是( )A .(2,3)B .(6,1)C .(2,1)D .(3,3)【分析】先写出点A 的坐标为(6,3),纵坐标保持不变,横坐标变为原来的13,即可判断出答案.解:点A 变化前的坐标为(6,3),将纵坐标保持不变,横坐标变为原来的13, 则点A 的对应点A ′坐标是(2,3).故选:A .9.圆周长公式C =2πR 中,下列说法正确的是( )A .π、R 是变量,2为常量B .C 、R 为变量,2、π为常量C .R 为变量,2、π、C 为常量D .C 为变量,2、π、R 为常量 【分析】根据变量是指在程序的运行过程中随时可以发生变化的量,常量是指在程序的运行过程不发生变化的量,可得答案.解:在圆周长公式C =2πR 中,2、π是常量,C ,R 是变量.故选:B .10.在平面直角坐标系中,点A 的坐标是(﹣1,2),作点A 关于y 轴的对称点,得到点A ',再将点A '向下平移4个单位,得到点A ″,则点A ″的坐标是( )A .(﹣1,﹣2)B .(1,2)C .(1,﹣2)D .(﹣2,1)【分析】直接利用关于y 轴对称点的性质得出点A '坐标,再利用平移的性质得出答案.解:∵点A 的坐标是(﹣1,2),作点A 关于y 轴的对称点,得到点A ',∴A ′(1,2),∵将点A '向下平移4个单位,得到点A ″,∴点A ″的坐标是:(1,﹣2).故选:C.11.下列函数(1)y=x(2)y=2x﹣1 (3)y=1x(4)y=2﹣3x(5)y=x2﹣1中,是一次函数的有()A.4个B.3个C.2个D.1个【分析】分别利用一次函数、二次函数和反比例函数的定义分析得出即可.解:(1)y=x是一次函数,符合题意;(2)y=2x﹣1是一次函数,符合题意;(3)y=1x是反比例函数,不符合题意;(4)y=2﹣3x是一次函数,符合题意;(5)y=x2﹣1是二次函数,不符合题意;故是一次函数的有3个.故选:B.12.函数y=√x−1x的自变量x的取值范围是()A.x>1B.x≥1C.x≥1且x≠0D.x≤1【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.解:根据题意得:x﹣1≥0且x≠0,解得:x≥1.故选:B.13.若y=(m﹣1)x2﹣|m|+3是关于x的一次函数,则m的值为()A.1B.﹣1C.±1D.±2【分析】由一次函数的定义得关于m的方程,解出方程即可.解:∵函数y=(m﹣1)x2﹣|m|+3是关于x的一次函数,∴2﹣|m|=1,m﹣1≠0.解得:m=﹣1.故选:B.14.把直线y=2x﹣1向左平移1个单位,平移后直线的关系式为()A.y=2x﹣2B.y=2x+1C.y=2x D.y=2x+2【分析】根据“左加右减”的函数图象平移规律来解答.解:根据题意,将直线y=2x﹣1向左平移1个单位后得到的直线解析式为:y=2(x+1)﹣1,即y=2x+1,故选:B.15.下列各曲线中,表示y是x的函数的是()A.B.C.D.【分析】根据函数的意义即可求出答案.解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,所以B 正确.故选:B.16.地球的水资源越来越枯竭,全世界都提倡节约用水,小明把自己家1月至6月份的用水量绘制成折线图,那么小明家这6个月的月平均用水量是()A.10吨B.9吨C.8吨D.7吨【分析】从图中得到6个月用水量的6个数据,然后根据平均数的概念计算这6个数据的平均数就可得到平均用水量.解:这6个月的平均用水量:(8+12+10+15+6+9)÷6=10吨,故选:A.17.如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是()A.(2,10)B.(﹣2,0)C.(2,10)或(﹣2,0)D.(10,2)或(﹣2,0)【分析】分顺时针旋转和逆时针旋转两种情况讨论解答即可.解:∵点D(5,3)在边AB上,∴BC=5,BD=5﹣3=2,①若顺时针旋转,则点D′在x轴上,OD′=2,所以,D′(﹣2,0),②若逆时针旋转,则点D′到x轴的距离为10,到y轴的距离为2,所以,D′(2,10),综上所述,点D′的坐标为(2,10)或(﹣2,0).故选:C.18.如图,正方形ABCD的边长为2,动点P从点D出发,沿折线D→C→B作匀速运动,则△APD的面积S与点P运动的路程x之间的函数图象大致是()A.B.C.D.【分析】分类讨论:当点D在DC上运动时,DP=x,根据三角形面积公式得到S△APD=x,自变量x的取值范围为0<x≤2;当点P在CB上运动时,S△APD为定值2,自变量x的取值范围为2<x≤4,然后根据两个解析式对各选项中的图象进行判断即可.解:当点D在DC上运动时,DP=x,所以S△APD=12AD•DP=12•2•x=x(0<x≤2);当点P在CB上运动时,如图,PC=x﹣4,所以S△APD=12AD•DC=12•2•2=2(2<x≤4).故选:D.19.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0),将△ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段BC扫过的面积为()A.4B.8C.16D.10【分析】根据题意,线段BC扫过的面积应为一平行四边形的面积,其高是AC的长,底是点C平移的路程.求当点C落在直线y=2x﹣6上时的横坐标即可.解:如图所示.∵点A、B的坐标分别为(1,0)、(4,0),∴AB=3.∵∠CAB=90°,BC=5,∴AC=4.∴A′C′=4.∵点C′在直线y=2x﹣6上,∴2x﹣6=4,解得x=5.即OA′=5.∴CC′=5﹣1=4.∴S▱BCC′B′=4×4=16 (面积单位).即线段BC扫过的面积为16面积单位.故选:C.20.甲、乙两车同时从A地出发,各自都以自己的速度匀速向B地行驶,甲车先到B地,停车1小时后按原速匀速返回,直到两车相遇.已知,乙车的速度是60千米/时,如图是两车之间的距离y(千米)与乙车行驶的时间x(小时)之间的函数图象,则下列说法不正确的是()A.A、B两地之间的距离是450千米B.乙车从出发到与甲车返回时相遇所用的时间是6.6小时C.甲车的速度是80千米/时D.点M的坐标是(6,90)【分析】(1)仔细观察图象可知:两车行驶5小时后,两车相距150千米,据此可得两车的速度差,进而得出甲车的速度,从而得出A、B两地之间的距离;(2)根据路程,时间与速度的关系解答即可;(3)由(1)的解答过程可得结论;(4)根据题意列式计算即可得出点M的纵坐标..解:根据题意仔细观察图象可知5小时后两车相距150千米,故甲车比乙车每小时多走30千米,所以甲车的速度为90千米/时;所以A、B两地之间的距离为:90×5=450千米.故选项A不合题意;设乙车从出发到与甲车返回时相遇所用的时间是x小时,根据题意得:60x+90(x﹣6)=450,解得x=6.6,所以乙车从出发到与甲车返回时相遇所用的时间是6.6小时.故选项B不合题意;甲车的速度为90千米/时.故选项C符合题意;点M的纵坐标为:90×5﹣60×6=90,故选项D不合题意.故选:C.二.填空题(共5小题,每小题5分,共25分)21.某校开展捐书活动,七(1)班同学积极参与,现将捐书数量绘制成频数分布直方图(如图所示),如果捐书数量在3.5﹣4.5组别的人数占总人数的30100,那么捐书数量在4.5﹣5.5组别的人数是16人.【分析】根据捐书数量在3.5﹣4.5组别的频数是12、频率是0.3,由频率=频数÷总数求得总人数,根据频数之和等于总数可得答案. 解:∵被调查的总人数为12÷30100=40(人), ∴捐书数量在4.5﹣5.5组别的人数是40﹣(4+12+8)=16(人), 故答案为:16人.22.如图是一个运算程序的示意图,若输出y 的值为2,则输入x 的值可能为 1或3 .【分析】分别令三种情况的y =2,求出相应的x ,判断x 是否满足所在范围即可. 解:当x +1=2时,x =1,不符合x ≤0; 当x 2+1=2时,x =±1,此时x =1符合; 当6x =2时,x =3,此时符合;∴x =3或x =1, 故答案为:1或3.23.如图,过A 点的一次函数图象与正比例函数y =2x 的图象相交于点B ,则这个一次函数的表达式是 y =﹣x +3 .【分析】先利用直线y =2x 过B 点确定B 点坐标,然后利用待定系数法求直线AB 的解析式.解:当x =1时,y =2x =2, 所以B 点坐标为(1,2), 设直线AB 的解析式为y =kx +b ,把A (0,3)和B (1,2)代入得{b =3a +b =2,解得{a =−1b =3,所以一次函数的解析式为y =﹣x +3. 故答案为y =﹣x +3.24.一辆经营长途运输的货车在高速公路的A 处加满油后,以每小时80千米的速度匀速行驶,前往B 地,如表记录的是货车一次加满油后油箱内余油量y (升)与行驶时间x (时)之间的关系: 行驶时间x /时 0 1 2 2.5 余油量y /升100806050则y 与x 的函数关系式为 y =﹣20x +100 ,自变量x 的取值范围为 0≤x ≤5 . 【分析】从表格可看出,货车每行驶一小时,耗油量为20升,即余油量y 与行驶时间x 成一次函数关系,设y =kx +b ,把表中的任意两对值代入即可求出y 与x 的关系. 解:设y 与x 之间的关系为一次函数,其函数表达式为y =kx +b , 将(0,100),(1,80)代入上式得, {b =100k +b =80,解得{k =−20b =100, ∴y =﹣20x +100; 100÷20=5, ∴0≤x ≤5.故答案为:y =﹣20x +100;0≤x ≤5.25.正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2,…按如图所示放置,点A 1,A 2,A 3,…和C 1,C 2,C 3,…分别在直线y =x +1和x 轴上,则点B 2020的纵坐标是 22019 ,点B n 的纵坐标是 2n ﹣1 .【分析】根据一次函数图象上点的坐标特征结合正方形的性质即可得出点B 1、B 2、B 3、…的坐标,根据点坐标的变化找出点B n 的坐标,依此即可得出结论.解:当x=0时,y=x+1=1,∴点A1的坐标为(0,1).∵A1B1C1O为正方形,∴点C1的坐标为(1,0),点B1的坐标为(1,1).同理,可得:B2(3,2),B3(7,4),B4(15,8),∴点B n的坐标为(2n﹣1,2n﹣1),∴点B n的纵坐标为2n﹣1,∴点B2020的纵坐标为22019.故答案为:22019,2n﹣1.三.解答题(共1小题,15分)26.某森林公园从正门到侧门有一条公路供游客运动,甲徒步从正门出发匀速走向侧门,出发一段时间开始休息,休息了0.6小时后仍按原速继续行走.乙与甲同时出发,骑自行车从侧门匀速前往正门,到达正门后休息0.2小时,然后按原路原速匀速返回侧门.图中折线分别表示甲、乙到侧门的路程y(km)与甲出发时间x(h)之间的函数关系图象.根据图象信息解答下列问题.(1)求甲在休息前到侧门的路程y(km)与出发时间x(h)之间的函数关系式.(2)求甲、乙第一次相遇的时间.(3)直接写出乙回到侧门时,甲到侧门的路程.【分析】(1)根据函数图象可知点(0,15)和点(1,10)在甲在休息前到侧门的路程y(km)与出发时间x(h)之间的函数图象上,从而可以解答本题;(2)根据函数图象可以分别求得甲乙刚开始两端对应的函数解析式,联立方程组即可求得第一次相遇的时间;(3)根据函数图象可以得到在最后一段甲对应的函数解析式,乙到侧门时时间为2.2h,从而可以得到乙回到侧门时,甲到侧门的路程.解:(1)设甲在休息前到侧门的路程y (km )与出发时间x (h )之间的函数关系式为:y =kx +b ,∵点(0,15)和点(1,10)在此函数的图象上, ∴{15=b 10=k +b , 解得k =﹣5,b =15. ∴y =﹣5x +15.即甲在休息前到侧门的路程y (km )与出发时间x (h )之间的函数关系式为:y =﹣5x +15. (2)设乙骑自行车从侧门匀速前往正门对应的函数关系式y =kx , 将(1,15)代入可得k =15,∴乙骑自行车从侧门匀速前往正门对应的函数关系式y =15x , ∴{y =−5x +15y =15x 解得x =0.75.即第一次相遇时间为0.75h .(3)乙回到侧门时,甲到侧门的路程是7km .设甲休息了0.6小时后仍按原速继续行走对应的函数解析式为:y =kx +b . 将x =1.2代入y =﹣5x +15得,y =9. ∵点(1.8,9),(3.6,0)在y =kx +b 上, ∴{1.8k +b =93.6k +b =0, 解得k =﹣5,b =18. ∴y =﹣5x +18.将x =2.2代入y =﹣5x +18,得y =7. 即乙回到侧门时,甲到侧门的路程是7km .。

相关文档
最新文档