七年级数学知识网络图

合集下载

2021年北师大版七年级数学下册全册知识点与典型例题配套练习

2021年北师大版七年级数学下册全册知识点与典型例题配套练习

4. 若 2x1 16 ,则 x=________.
5. 若 am a3a4 ,则 m=________;若 x4 xa x16 ,则 a=__________; 若 xx2 x3x4x5 x y ,则 y=______;若 ax (a)2 a5 ,则 x=_______.
6. 若 am 2, an 5 ,则 amn =________.
第一章 整式
一、整式关于概念
1、单项式:数与字母乘积,这样代数式叫单项式。单独一种数或字母也是单项式。
2、单项式系数:单项式中数字因数。
3、单项式次数:单项式中所有字母指数和。
4、多项式: 几种单项式和叫多项式。
5、多项式项及次数:构成多项式中单项式叫多项式项,多项式中次数最高项次数
叫多项式次数。
6、整式:单项式与多项式统称整式。(分母具有字母代数式不是整式)
(1)(2a) (x 2 y 3c),
(2)(x 2)( y 3) (x 1)( y 2)
(3)(x y)(2x 1 y) 2
(2)计算下图中阴影某些面积
8、平方差公式 法则:两数各乘以这两数差,等于这两数平方差。 数学符号表达:
(a b)(a b) a2 b2 其中a, b既可以是数, 也可以是代数式.
(4)( 2 a2bc3 ) ( 3 c5 ) (1 ab2c)
3
43
6、单项式乘以多项式
法则:单项式乘以多项式,就是依照分派律用单项式去乘多项式每一项,再把所得积相
加。
7、多项式乘以多项式
法则:多项式乘以多项式,先用一种多项式每一项去乘另一种多项式每一项,再把所得积
相加。
练习七:(1)计算下列各式。
3)1.5104 _____________

概率论与数理统计知识网络图

概率论与数理统计知识网络图

概率论与数理统计知识网络图概率论与数理统计这一章可以分为概率论和数理统计两部分,基本思想是用随机的思想来研究随机现象的统计规律性。

其内容是学习随机事件和概率、随机变量及其概率分布、二维随机变量及其联合概率分布、随机变量的数字特征、大数定律和中心极限定理、数理统计的基本概念、参数估计、假设检验等知识。

在研究生入学考试中,本章是《高等数学一》、《高等数学三》和《高等数学四》的考试内容。

通过这一章的学习,我们认为应达到如下要求:1、对于随机事件,特别是随机变量及其分布函数、二维随机变量及其联合分布函数应该有清晰的概念。

2、对于随机性的方法能运用自如。

3、具备对实际问题理解能力,定性分析和定量计算相统一的能力和推理、演绎的逻辑思维能力。

知识网络图⎧⎪⎪⎨⎪⎪⎩⎧⎪⎨⎪⎩事件的运算和概率计算加法公式、乘法公式、条件概率公式随机事件和概率以及全概率公式和贝叶斯公式的应用事件独立性的判定,古典概型、几何概型问题概率分布和分布函数的性质和计算随机变量及其分布函数离散型和连续型随机变量的计算问题随机变量的函数的分布的求法二维离散型和连续型随机变量概率分布的计算二维随机变量取某范围值的概率概率论二维随机变量及其联合分布函数二维离散型随机变量函数的分布⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎨⎨⎪⎪⎪⎪⎩⎪⎪⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩⎪⎪⎧⎪⎨⎪⎩⎩⎧⎧⎪⎨⎨⎩⎪⎩的求法二维连续型随机变量函数的分布的求法离散型和连续型随机变量的数字特征正态分布的数字特征的计算随机变量的数字特征随机变量的独立性、相关性和相关系数切比雪夫不等式数字特征的应用大数定律大数定律和中心极限定理中心极限定理数理统计的基本概念矩估计点估计数理统计参数估计最大似然估计区间估计⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩⎩假设检验,主要是正态总体未知参数的假设检验。

苏教版七年级上册数学[《平面图形的认识(一)》全章复习与巩固(基础)知识点整理及重点题型梳理]

苏教版七年级上册数学[《平面图形的认识(一)》全章复习与巩固(基础)知识点整理及重点题型梳理]

苏教版七年级上册数学重难点突破知识点梳理及重点题型巩固练习《平面图形的认识(一)》全章复习与巩固(基础)知识讲解【学习目标】1.掌握直线、射线、线段、角这些基本图形的概念、性质、表示方法和画法;2.初步学会应用图形与几何的知识解释生活中的现象及解决简单的实际问题;3.正确理解“相交”、“互相平行”、“互相垂直”等概念,发展空间想象力.【知识网络】【要点梳理】要点一、直线、射线、线段1.直线,射线与线段的区别与联系2. 基本性质(1)直线的性质:两点确定一条直线. (2)线段的性质:两点之间线段最短. 要点诠释:①本知识点可用来解释很多生活中的现象. 如:要在墙上固定一个木条,只要两个钉子就可以了,因为如果把木条看作一条直线,那么两点可确定一条直线. ②连接两点间的线段的长度,叫做两点的距离.3.画一条线段等于已知线段(1)度量法:可用直尺先量出线段的长度,再画一条等于这个长度的线段. (2)用尺规作图法:用圆规在射线AC 上截取AB =a,如下图: 4.线段的比较与运算(1)线段的比较:比较两条线段的长短,常用两种方法,一种是度量法;一种是叠合法.(2)线段的和与差:如下图,有AB+BC =AC ,或AC =a+b ;AD =AB-BD.(3)线段的中点:把一条线段分成两条相等线段的点,叫做线段的中点.如下图,有:12AM MB AB ==.要点诠释:①线段中点的等价表述:如上图,点M 在线段上,且有12AM AB =,则点M 为线段AB 的中点.②除线段的中点(即二等分点)外,类似的还有线段的三等分点、四等分点等. 如下图,点M,N,P 均为线段AB 的四等分点,则有AB PB NP MN AM 41====. PNMBA(4)线段的延长线:如下图,图①称为延长线段AB ,或称为反向延长线段BA ;图②称为延长线段BA ,或称为反向延长线段AB. 图中延长的部分叫做原线段的延长线.要点二、角1.角的概念及其表示(1)角的定义:从一点引出的两条射线所形成的图形叫做角,这个点叫做角的顶点,这两条射线是角的边;此外,角也可以看作由一条射线绕着它的端点旋转而形成的图形.(2)角的表示方法:角通常有三种表示方法:一是用三个大写英文字母表示,二是用角的顶点的一个大写英文字母表示,三是用一个小写希腊字母或一个数字表示.例如下图:要点诠释:①角的两种定义是从不同角度对角进行的定义.②当一个角的顶点有多个角的时候,不能用顶点的一个大写字母来表示. 2.角的分类3.角的度量1周角=360°,1平角=180°,1°=60′,1′=60″. 要点诠释:①度、分、秒的换算是60进制,与时间中的小时分钟秒的换算相同. ②度分秒之间的转化方法:由度化为度分秒的形式(即从高级单位向低级单位转化)时用乘法逐级进行;由度分秒的形式化成度(即低级单位向高级单位转化)时用除法逐级进行. ③同种形式相加减:度加(减)度,分加(减)分,秒加(减)秒;超60进一,减一 成60.4.角的平分线从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线,例如:如下图,因为OC 是∠AOB 的平分线,所以∠1=∠2=12∠AOB ,或∠AOB =2∠1=2∠2. ∠β 锐角 直角 钝角 平角 周角 范围0<∠β<90°∠β=90°90°<∠β<180°∠β=180°∠β=360°类似地,还有角的三等分线等.5.余角、补角、对顶角(1)余角、补角:若∠1+∠2=90°,则∠1与∠2互为余角.其中∠1是∠2的余角,∠2是∠1的余角. 若∠1+∠2=180°,则∠1与∠2互为补角.其中∠1是∠2的补角,∠2是∠1的补角. 结论: 同角(或等角)的余角相等;同角(或等角)的补角相等.要点诠释:①余角(或补角)是两个角的关系,是成对出现的,单独一个角不能称其为余角(或补角).②一个角的余角(或补角)可以不止一个,但是它们的度数是相同的.③只考虑数量关系,与位置无关.④“等角是相等的几个角”,而“同角是同一个角”.(2)对顶角:对顶角相等.要点三、平行与垂直1.同一平面内的两条直线的位置关系:平行与相交. 平行用符号“∥”表示.要点诠释:只有一个公共点的两条直线叫做相交直线,这个公共点叫做交点.2.垂线(1)垂线的定义:两条直线相交所成的四个角中,有一个角是直角时,就称这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫垂足.垂直用符号“⊥”表示,如下图.(2)垂线的性质:①在同一平面内,过一点有且只有一条直线与已知直线垂直.②垂线段最短.(3)点到直线的距离:从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.【典型例题】类型一、概念或性质的理解1.(2016春•永登县期中)下列叙述中,正确的是()A.在同一平面内,两条直线的位置关系有三种,分别是相交、平行、垂直B.不相交的两条直线叫平行线C.两条直线的铁轨是平行的D.我们知道,对顶角是相等的,那么反过来,相等的角就是对顶角【思路点拨】根据直线的关系,平行线的定义,可得答案.【答案】C【解析】解:A、在同一平面内,两条直线的位置关系有两种,分别是相交、平行,故A错误;B、在同一个平面内,不相交的两条直线叫平行线,故B错误;C、两条直线的铁轨是平行的,故C正确;D、我们知道,对顶角是相等的,那么反过来,相等的角不一定是对顶角,故D错误;故选:C.【总结升华】本题考查了平行线,在同一个平面内,不相交的两条直线叫平行线,注意相等的角不一定是对顶角.举一反三:【变式】(2015春•通辽期末)下列说法不正确的是()A.过任意一点可作已知直线的一条平行线B.同一平面内两条不相交的直线是平行线C.在同一平面内,过直线外一点只能画一条直线与已知直线垂直D.平行于同一直线的两直线平行解:A中,若点在直线上,则不可以作出已知直线的平行线,而是与已知直线重合,错误.B、C、D是公理,正确.故选【答案】A.类型二、角的度量2.钟表分针的运动可看作是一种旋转现象,一只标准时钟的分针匀速旋转,经过15分钟旋转了________度.【思路点拨】画出图形,利用钟表表盘的特征解答.【答案】90【解析】根据钟表的特征;整个钟面是360°,分针每5分钟旋转30°,所以经过15分钟旋转了90°.【总结升华】在钟表问题中,常利用时针与分针转动的度数关系:时钟上的分针匀速旋转一分钟时的度数为6°,时针一分钟转过的度数为0.5°;两个相邻数字间的夹角为30°,每个小格夹角为6°,并且利用起点时间时针和分针的位置关系建立角的图形.举一反三:【变式】100°-60°52′10″=【答案】39°7′50″类型三、利用数学思想方法解决有关线段或角的计算1.方程的思想方法3. 如图所示,在射线OF上,顺次取A、B、C、D四点,使AB:BC:CD=2:3:4,又M、N 分别是AB、CD的中点,已知AD=90cm,求MN的长.【思路点拨】有关比例问题,可设每一份为x,列方程求解,再利用中点定义,找出线段的【答案与解析】解:设线段AB,BC,CD的长分别是2x cm,3x cm,4x cm,∵AB+BC+CD=AD=90 cm,∴ 2x+3x+4x=90,x=10,∴AB=20 cm, BC=30 cm, CD=40 cm,∴MN=MB+BC+CN=12AB+BC+12CD=10+30+20=60(cm).【总结升华】当已知某线段被分成的几条线段的长度比时,可根据比设未知数x,用x的式子表示相关的线段的长度,列方程求出x的值,进而求出线段的长.举一反三:【变式】如图所示,已知∠AOC=∠BOD=100°,且∠AOB:∠AOD=2:7,求∠BOC和∠COD 的度数.【答案】解:设∠AOB的度数为2x,则∠AOD的度数为7x.由∠AOD=∠AOB+∠BOD及∠BOD=100°,可得7x=2x+100°.解得x=20°,所以∠AOB=2x=40°.所以∠BOC=∠AOC-∠AOB=100°-40°=60°,∠COD=∠BOD -∠BOC=100°-60°=40°.2.分类的思想方法4.以∠AOB的顶点O为端点的射线OC,使∠AOC:∠BOC=5:4.(1)若∠AOB=18°,求∠AOC与∠BOC的度数;(2)若∠AOB=m,求∠AOC与∠BOC的度数.【答案与解析】解:(1)分两种情况:①OC在∠AOB的外部,可设∠AOC=5x,则∠BOC=4x得∠AOB=x,即x=18°所以∠AOC=90°,∠BOC=72°②OC在∠AOB的内部,可设∠AOC=5x,则∠BOC=4x∠AOB=∠AOC+∠BOC=9x所以9x=18°,则x=2°所以∠AOC=10°,∠BOC=8°(2)仿照(1),可得:若∠AOB=m,则∠AOC=59m,∠BOC=49m,或∠AOC=5m,∠BOC=4m.【总结升华】本题中的已知条件没有明确地说明OC在∠AOB的内部或外部,所以两个问题都必须分类讨论.【变式1】已知线段AB=8cm,在直线AB上画线段BC=3cm,求线段AC的长.【答案】解:分两种情况:(1)如图(1),AC=AB-BC=8-3=5(cm);(2)如图(2),AC=AB+BC=8+3=11(cm).所以线段AC的长为5cm或11cm.【变式2】下列判断正确的个数有 ( ) .①已知A、B、C三点,过其中两点画直线一共可画三条.②过已知任意三点的直线有1条.③三条直线两两相交,有三个交点.A.0个 B.1个 C.2个 D.3个【答案】A3.类比的思想方法【图形认识初步章节复习399079 类比思想例5】5.(1)如图,线段AD上有两点B、C,图中共有______条线段.(2)如图,在∠AOD的内部有两条射线OB、OC,则图中共有个角.【答案】(1)6;(2)6.【解析】(1)以A为端点的线段有3条,同样以B,C,D为一个端点的线段也各有3条,又因为所有线段均重复了一次,所以共有线段条数:3462⨯=(条).(2)以射线OA为一边的角有3个,同样以OB,OC,OD为一边的角也各有3个,又因为所有角均重复一次,所以共有角的个数:3462⨯=(个).【总结升华】用同样的方法解决了不同的问题,用已知的知识类比地学习未知的内容.类型四、平行与垂直6.(2015春•印江县期末)如图,点B在点A的南偏东60°方向,点C在点B的北偏东30°方向,且BC=12km,则点C到直线AB的距离是.【答案】12km.【解析】解:∵AD∥BE,∴∠EBA=∠A=60°,∴∠ABC=∠ABE+∠CBE=90°,∴点C到直线AB的距离是BC,即12km,故答案为:12km.【总结升华】本题考查的是方位角和点到直线的距离,正确理解方位角和点到直线的距离的概念是解题的关键.举一反三:【变式1】梯形中,()是平行的.A.上底和下底 B.上底和腰 C.两条腰【答案】A【变式2】已知:如图,在△ABC中,∠ACB=90°,AB=13cm,BC=5cm,AC=12cm ,且CD⊥AB于D.则CD的长.【答案】60 13cm。

七年级数学有理数(学生讲义)

七年级数学有理数(学生讲义)

第一章有理数知识网络结构图知识点1:有理数的基本概念中考要求:有理数 理解有理数的意义会比较有理数的大小数轴 能用数轴上的点表示有理数;知道实数与数轴上的点的对应关系会借助数轴比较有理数的大小相反数 会用有理数表示具有相反意义的量,借助数轴理解相反数的意义,会求实数的相反数掌握相反数的性质绝对值 借助数轴理解绝对值的意义,会求实数的绝对值会利用绝对值的知识解决简单的化简问题知识点总结:正数、负数、有理数随着同学们视野的拓展,小学学过的自然数、分数和小数已经不能满足认知需要了.譬如一些具有相反意义的量,收入300元和支出200元,向东50米和向西30米,零上6C ︒和零下4C ︒等等,它们不但意义相反,而且表示一定的数量,怎么表示它们呢?我们把一种意义的量规定为正的,把另一种和它意义相反的量规定为负的,这样就产生了正数和负数.正数:像3、1、0.33+等的数,叫做正数.在小学学过的数,除0外都是正数.正数都大于0.负数:像1-、 3.12-、175-、2008-等在正数前加上“-”(读作负)号的数,叫做负数.负数都小于0.0既不是正数,也不是负数.一个数字前面的“+”,“-”号叫做它的符号. 正数前面的“+”可以省略,注意3与3+表示是同一个正数. 用正、负数表示相反意义的量:如果正数表示某种意义,那么负数表示它的相反的意义,反之亦然. 譬如:用正数表示向南,那么向北3km 可以用负数表示为3km -. “相反意义的量”包括两个方面的含意:一是相反意义;二是相反意义的基础上要有量.有理数:按定义整数与分数统称有理数. ()⎧⎧⎫⎪⎬⎪⎨⎭⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数自然数整数零有理数按定义分类负整数正分数分数负分数()()⎧⎧⎪⎨⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数有理数按符号分类零零既不是正数,也不是负数负整数负有理数负分数注:⑴正数和零统称为非负数;⑵负数和零统称为非正数; ⑶正整数和零统称为非负整数; ⑷负整数和零统称为非正整数.板块一、基本概念 例题讲解1、选择下面是关于0的一些说法,其中正确说法的个数是( )①0既不是正数也不是负数;②0是最小的自然数;③0是最小的正数;④0是最小的非负数;⑤0既不是奇数也不是偶数.2、下面关于有理数的说法正确的是( ). A .有理数可分为正有理数和负有理数两大类.B. 正整数集合与负整数集合合在一起就构成整数集合C. 整数和分数统称为有理数D. 正数、负数和零的统称为有理数 板块二、数轴、相反数、倒数、绝对值3、a 和b 是满足ab ≠0的有理数,现有四个命题: ①224a b -+的相反数是224a b -+;②a b -的相反数是a 的相反数与b 的相反数的差; ③ab 的相反数是a 的相反数和b 的相反数的乘积;④ab 的倒数是a 的倒数和b 的倒数的乘积.其中真命题有( )A. 1个B. 2个C. 3个D. 4个4、一个数的绝对值大于它本身,那么这个数是( )A 、正有理数B 、负有理数C 、零D 、不可能 5、数轴上离开原点2个单位长度的点表示的数是____________; 6、有理数-3,0,20,,,-∣-12∣,-(-5)中,正整数有________个, 非负数有______个;7、绝对值最小的有理数是________;绝对值等于3的数是______; 绝对值等于本身的数是_______;绝对值等于相反数的数是_________数;一个数的绝对值一定是________数。

北师大版初中数学七年级上册知识讲解,巩固练习(教学资料):第17讲《基本平面图形》全章复习与巩固(提高)

北师大版初中数学七年级上册知识讲解,巩固练习(教学资料):第17讲《基本平面图形》全章复习与巩固(提高)

《基本平面图形》全章复习与巩固(提高)知识讲解【学习目标】1.掌握直线、射线、线段、角这些基本图形的概念、性质、表示方法和画法;2. 掌握圆、扇形及多边形的概念及相关计算;3.初步学会应用图形与几何的知识解释生活中的现象及解决简单的实际问题;4.逐步掌握学过的几何图形的表示方法,能根据语句画出相应的图形,会用语句描述简单的图形.【知识网络】【要点梳理】要点一、线段、射线、直线1.直线,射线与线段的区别与联系2.基本性质(1)直线的性质:两点确定一条直线. (2)线段的性质:两点之间,线段最短. 要点诠释:①本知识点可用来解释很多生活中的现象. 如:要在墙上固定一个木条,只要两个钉子就可以了,因为如果把木条看作一条直线,那么两点可确定一条直线. ②连接两点间的线段的长度,叫做两点的距离.3.画一条线段等于已知线段(1)度量法:可用直尺先量出线段的长度,再画一条等于这个长度的线段. (2)用尺规作图法:用圆规在射线AC 上截取AB=a,如下图:4.线段的比较与运算 (1)线段的比较:比较两条线段的长短,常用两种方法,一种是度量法;一种是叠合法.(2)线段的和与差:如下图,有AB+BC=AC ,或AC=a+b ;AD=AB-BD 。

(3)线段的中点:把一条线段分成两条相等线段的点,叫做线段的中点.如下图,有:12AM MB AB ==Cba要点诠释:①线段中点的等价表述:如上图,点M 在线段AB 上,且有,则点M 为线段AB 的中点.②除线段的中点(即二等分点)外,类似的还有线段的三等分点、四等分点等.如下图,点M,N,P 均为线段AB 的四等分点.要点二、角 1.角的度量(1)角的定义:有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边;此外,角也可以看作由一条射线绕着它的端点旋转而形成的图形. (2)角的表示方法:角通常有三种表示方法:一是用三个大写英文字母表示,二是用角的顶点的一个大写英文字母表示,三是用一个小写希腊字母或一个数字表示.例如下图:要点诠释:①角的两种定义是从不同角度对角进行的定义;②当一个角的顶点有多个角的时候,不能用顶点的一个大写字母来表示. (3)角度制及角度的换算1周角=360°,1平角=180°,1°=60′,1′=60″,以度、分、秒为单位的角的度量制,叫做角度制. 要点诠释:①度、分、秒的换算是60进制,与时间中的小时分钟秒的换算相同.②度分秒之间的转化方法:由度化为度分秒的形式(即从高级单位向低级单位转化)时用乘法逐级进行;由度分秒的形式化成度(即低级单位向高级单位转化)时用除法逐级进行. ③同种形式相加减:度加(减)度,分加(减)分,秒加(减)秒;超60进一,减一 成60.(4)角的分类:12AM AB =PNAB PB NP MN AM 41====MBA(1)借助三角尺能画出15°的倍数的角,在0~180°之间共能画出11个角.(2)借助量角器能画出给定度数的角.(3)用尺规作图法.2.角的比较与运算(1)角的比较方法: ①度量法;②叠合法.(2)角的平分线:从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线,例如:如下图,因为OC是∠AOB的平分线,所以∠1=∠2=∠AOB,或∠AOB=2∠1=2∠2.类似地,还有角的三等分线等.3.方位角以正北、正南方向为基准,描述物体运动的方向,这种表示方向的角叫做方位角.要点诠释:(1)方位角还可以看成是将正北或正南的射线旋转一定角度而形成的.所以在应用中一要确定其始边是正北还是正南.二要确定其旋转方向是向东还是向西,三要确定旋转角度的大小.(2)北偏东45°通常叫做东北方向,北偏西45°通常叫做西北方向,南偏东45°通常叫做东南方向,南偏西45°通常叫做西南方向.(3)方位角在航行、测绘等实际生活中的应用十分广泛.要点三、多边形和圆的初步认识1.多边形及正多边形:多边形是由一些不在同一条直线上的线段依次首尾相连组成的封闭平面图形.其中,各边相等、各角也相等的多边形叫做正多边形.如下图:要点诠释:12∠β锐角直角钝角平角周角范围0<∠β<90°∠β=90°90°<∠β<180°∠β=180°∠β=360°(1)n 边形有n 个顶点、n 条边,对角线的条数为. (2)多边形按边数的不同可分为三角形、四边形、五边形、六边形等. 2. 圆及扇形:(1)圆:如图,在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,另一个端点A所形成的图形叫做圆,固定的端点O 叫做圆心,线段OA 叫做半径. 以点O 为圆心的圆,记作“⊙O ”,读作“圆O ”.要点诠释:圆心确定圆的位置,半径确定圆的大小.(2)扇形:由一条弧AB 和经过这条弧的端点的两条半径OA ,OB 所组成的图形叫做扇形.如下图:要点诠释: 扇形OAB 的面积公式:;扇形OAB 的弧长公式:.【典型例题】类型一、线段、射线、直线1.下列判断错误的有( )①延长射线OA ;②直线比射线长,射线比线段长;③如果线段PA =PB ,则点P 是线段AB 的中点;④连接两点间的线段,叫做两点间的距离. A .0个 B .2个 C .3个 D .4个 【答案】D【解析】①由于射线向一方无限延伸,因此,不能延长射线;②由于直线向两方无限延伸,射线向一方无限延伸,因此它们都是不能度量的,所以它们不存在相等或不相等的关系,而线段是可以度量的,可以比较线段的长短;③线段PA =PB ,只有当点P 在线段AB 上时,才是线段AB 的中点,否则就不是;④两点间的距离是表示大小的量,而线段是图形,二者的本质属性不同.【总结升华】本题考查的是基本概念,要抓住概念间的本质区别.(3)2n n-180n Rl π=举一反三:【变式】平面上有五条直线,则这五条直线最多有_____交点,最少有_____个交点.【答案】10, 0.类型二、角2.(2019春•南充校级期中)如图:若∠AOB与∠BOC是一对邻补角,OD平分∠AOB,OE在∠BOC内部,并且∠BOE=∠COE,∠DOE=72°.则∠COE的度数是.【思路点拨】设∠EOB=x度,∠EOC=2x度,把角用未知数表示出来,建立x的方程,用代数方法解几何问题是一种常用的方法.【答案】72°.【解析】解:设∠EOB=x,则∠EOC=2x,则∠BOD=(180°﹣3x),则∠BOE+∠BOD=∠DOE,即x+(180°﹣3x)=72°,解得x=36°,故∠EOC=2x=72°.故答案为:72°.【总结升华】本题考查了对顶角、邻补角,设未知数,把角用未知数表示出来,列方程组,求解.角平分线的运用,为解此题起了一个过渡的作用.举一反三:【变式】(2018•陆川县校级模拟)在同一平面内,若∠AOB=90°,∠BOC=40°,则∠AOB的平分线与∠BOC的平分线的夹角等于.【答案】25°或65°.解:本题分两种情况讨论:(1)当OC在三角形内部时,如图1,∵∠AOB=90°,∠BOC=40°,OD,OE是∠AOB的与∠BOC的平分线,∴∠AOD=∠DOB=∠AOB=×90°=45°,∠BOE=∠EOC=∠BOC=×40°=20°,∴∠DOE=∠DOB﹣∠EOB=45°﹣20°=25°;(2)当OC在三角形外部时,如图2,∵∠AOB=90°,∠BOC=40°,OD,OE是∠AOB的与∠BOC的平分线,∴∠AOD=∠DOB=∠AOB=×90°=45°,∠BOE=∠EOC=∠BOC=×40°=20°,∴∠DOE=∠DOB+∠EOB=45°+20°=65°,故答案为:25°或65°.3.(2018•深圳校级模拟)如图,C岛在A岛的北偏东45°方向,C岛在B岛的北偏西25°方向,则从C岛看A、B两岛的视角∠ACB的度数是()A.70° B.20° C.35° D.110°【思路点拨】根据两直线平行,同旁内角互补求得∠C的度数即可.【答案】A【解析】解:如图,连接AB,∵两正北方向平行,∴∠CAB+∠CBA=180°﹣45°﹣25°=110°,∴∠ACB=180°﹣110°=70°.【总结升华】本题考查了方向角,解决本题的关键是利用平行线的性质.举一反三:【变式】考点办公室设在校园中心O 点,带队老师休息室A 位于O 点的北偏东45°,某考室B 位于O 点南偏东60°,请在图(1)中画出射线OA 、OB ,并计算∠AOB 的度数.【答案】解:如图(2),以O 为顶点,正北方向线为始边向东旋转45°,得OA ;以O 为顶点,正南方向线为始边向东旋转60°,得OB ,则∠AOB =180°-(45°+60°)=75°.4. 如图所示,时钟的时针由3点整的位置(顺时针方向)转过多少度时,与分针第一次重合.【答案与解析】解:设时针转过的度数为x 时,与分针第一次重合,依题意有 12x =90+x 解得答:时针转过时,与分针第一次重合. 【总结升华】在相同时间里,分针转过的度数是时针的12倍,此外此问题可以转化为追及问题来解决.类型三、利用数学思想方法解决有关线段或角的计算 1.方程的思想方法9011x =9011⎛⎫⎪⎝⎭°5. 如图所示,B 、C 是线段AD 上的两点,且,AC =35cm ,BD =44cm ,求线段AD 的长.【答案与解析】解:设AB =x cm ,则 或于是列方程,得 解得:x =18,即AB =18(cm) 所以BC =35-x =35-18=17(cm)(cm) 所以AD =AB+BC+CD =18+17+27=62(cm)【总结升华】根据题中的线段关系,巧设未知数,列方程求解. 2.分类的思想方法6. 同一直线上有A 、B 、C 、D 四点,已知AD =DB ,AC =CB ,且CD =4cm ,求AB 的长.【思路点拨】先根据题意画出图形,再从图上直观的看出各线段的关系及大小. 【答案与解析】 解:利用条件中的AD =DB ,AC =CB ,设DB =9x ,CB =5y , 则AD =5x ,AC =9y ,分类讨论:(1)当点D ,C 均在线段AB 上时,如图所示:∵ AB =AD+DB =14x ,AB =AC+CB =14y ,∴ x =y∵ CD =AC -AD =9y -5x =4x =4,∴ x =1,∴ AB =14x =14(cm). (2)当点D ,C 均不在线段AB 上时,如图所示:方法同上,解得(cm). 32CD AB=3cm 2CD x =(35)cm BC x =-3(44)cm 2x -335442x x -=-33182722CD x ==⨯=5995599587AB =(3)如图所示,当点D 在线段AB 上而点C 不在线段AB 上时,方法同上,解得(cm).(4)如图所示,当点C 在线段AB 上而点D 不在线段AB 上时,方法同上,解得(cm).综上可得:AB 的长为14cm ,cm , cm .【总结升华】解决没有图形的题目时,一要注意满足条件下的图形的多样性;二要注意解决的方法,注意方程法在解决图形问题中的应用. 在正确答案中,(3)与(4)的答案虽然相同,但作为图形上的差别应了解.类型四、多边形和圆7.(1)操作与证明:如图所示,O 是边长为a 的正方形ABCD 的中心,将一块半径足够长,圆心角为直角的扇形纸板的圆心放在O 处,并将纸板绕O 点旋转,求证:正方形ABCD 的边被纸板覆盖部分的总长度为定值a .(2)尝试与思考:如图a 、b 所示,•将一块半径足够长的扇形纸板的圆心角放在边长为a 的正三角形或边长为a 的正五边形的中心点处,并将纸板绕O 旋转,当扇形纸板的圆心角为________时,正三角形边被纸板覆盖部分的总长度为定值a ;当扇形纸板的圆心角为_______时,正五边形的边长被纸板覆盖部分的总长度也为定值a .11253AB=11253AB=8711253ECB O(a) (b)【答案与解析】解:(1)如图所示,不妨设扇形纸板的两边与正方形的边AB、AD•分别交于点M、N,连结OA、OD.∵四边形ABCD是正方形∴OA=OD,∠AOD=90°,∠MAO=∠NDO=45°,又∠MON=90°,∠AOM=∠DON.∴△AMO与△DNO形状完全相同.∴AM=DN∴AM+AN=DN+AN=AD=a(2),所以当扇形纸板的圆心角为120°时,正三角形边被纸板覆盖部分的总长度为定值a;同理可得,当扇形纸板的圆心角为72°时,正五边形的边长被纸板覆盖部分的总长度也为定值a.【总结升华】一般地,将一块半径足够长的扇形纸板的圆心放在边长为a的正n边形的中心O点处,若将纸板绕O点旋转,当扇形纸板的圆心角为时,正n边形的边被纸板覆盖部分的总长度为定值a.【巩固练习】一、选择题1.下面说法错误的是( ) .A.M是线段AB的中点,则AB=2AMB.直线上的两点和它们之间的部分叫做线段C.一条射线把一个角分成两个角,这条射线叫做这个角的平分线D.同角的补角相等2.从点O出发有五条射线,可以组成的角的个数是( ) .A. 4个B. 5个C. 7个D. 10个3.用一副三角板画角,下面的角不能画出的是().A.15°的角 B.135°的角C.145°的角 D.150°的角4.(2018•河北)已知:岛P位于岛Q的正西方,由岛P,Q分别测得船R位于南偏东30°和南偏西45°方向上,符合条件的示意图是()3601203︒︒=360n︒A .B .C .D .5.(2019•花都区一模)已知线段AB=8cm ,点C 是直线AB 上一点,BC=2cm ,若M 是AB 的中点,N 是BC 的中点,则线段MN 的长度为( )A .5cmB .5cm 或3cmC .7cm 或3cmD .7cm 6. 平面内两两相交的6条直线,其交点个数最少为m 个,最多为n 个,则m+n 等于( ).A.12B.16C.20D.以上都不对 7.一块等边三角形的木板,边长为1,若将木板沿水平线翻滚(如图),则点从开始至结束走过的路径长度为( ). A. B.C.D.8.如图,扇形的圆心角为,且半径为,分别以,为直径在扇形内作半圆,和分别表示两个阴影部分的面积,那么和的大小关系是( ).A.B.C.D.无法确定二、填空题 9.(2018秋•栾城县期中)把34.27°用度、分、秒表示,应为 ° ′ ″.B 3π24π34322+πOAB 90oR OA OB P Q P Q P Q =P Q >P Q <Q OA P C B ABC10.若∠α是它的余角的2倍,∠β是∠α的2倍,那么把∠α和∠β拼在一起(有一条边重合)组成的角是________度.11.已知圆的面积为,若其圆周上一段弧长为,则这段弧所对的圆心角的度数为.12.平面上有四个点,无三点共线,以其中一点为端点,并且经过另一点的射线共有_______条.13.如图,点B、O、C在同一条直线上,∠AOB=90°,∠AOE=∠BOD,下列结论:①∠EOD=90°;②∠COE=∠AOD;③∠COE=∠BOD;④∠COE+∠BOD=90°.其中正确的是 .14.如图,∠AOB是钝角,OC、OD、OE是三条射线,若OC⊥OA,OD平分∠AOB,OE平分∠BOC,那么∠DOE的度数是.15. 如图所示,实线部分是半径为9m的两条等弧组成的游泳池,若每条弧所在的圆都经过另一个圆的圆心,则游泳池的周长为.16.一根绳子弯曲成如下图1所示的形状.当用剪刀像下图2那样沿虚线a把绳子剪断时,绳子被剪为5段;当用剪刀像下图3那样沿虚线b(b∥a)把绳子再剪一次时,绳子就被剪为9段.若用剪刀在虚线a,b之间把绳子再剪(n-1)次(剪刀的方向与a平行),这样一共剪n次时绳子的段数是.281cmπ3cmπ图1图2图3……a a b三、解答题17.钟表在12点钟时三针重合,经过多少分钟秒针第一次将分针和时针所夹的锐角平分?18.19.(2019春•龙口市期中)如图,∠AOB=90°,∠AOC=30°,且OM 平分∠BOC ,ON 平分∠AOC ,(1)求∠MON 的度数;(2)若∠AOB=α其他条件不变,求∠MON 的度数;(3)若∠AOC=β(β为锐角)其他条件不变,求∠MON 的度数; (4)从上面结果中看出有什么规律?20.(2018秋•栾城县期中)如图,已知点C 在线段AB 上,点M 、N 分别是AC 、BC 的中点.(1)若AC=8,CB=6,求线段MN 的长;(2)若点C 为线段AB 上任意一点,且满足AC+BC=a ,请直接写出线段MN 的长; (3)若点C 为线段AB 延长线上任意一点,且满足AC ﹣CB=b ,求线段MN 的长.【答案与解析】一、选择题 1.【答案】C ; 2.【答案】D ;【解析】(个) . 3.【答案】C ;【解析】用三角板能画出的角应该是15的倍数,因为145°不是15的倍数,所以选B .432110+++=4.【答案】D .5.【答案】B ;【解析】解:如图1,由M 是AB 的中点,N 是BC 的中点,得 MB=AB=4cm ,BN=BC=1cm , 由线段的和差,得 MN=MB+BN=4+1=5cm ; 如图2,由M 是AB 的中点,N 是BC 的中点,得 MB=AB=4cm ,BN=BC=1cm ,由线段的和差,得 MN=MB ﹣BN=4﹣1=3cm ; 故选:B .6.【答案】B ;【解析】①6条直线相交于一点时交点最少,所以;②6条直线任意两直线相交都产生一个交点时交点最多,又因为任意三条直线不过同一点,∴ 此时交点为:. 7.【答案】B ;【解析】点从开始至结束走过的路径是两个圆心角为120°,半径为1的扇形弧长之和. 8.【答案】A ;【解析】P =S 扇OAB -S 圆+Q ,即P -Q =S 扇OAB -S 圆=,所以P =Q . 二、填空题9.【答案】34°16′12″. 10.【答案】60度或180 .【解析】分∠α在∠β内部和外部两种情况来讨论. 11.【答案】60°;【解析】根据圆的面积求出半径,再根据弧长求扇形的圆心角. 12.【答案】12;【解析】每个点都可以作3条射线,共有4个点,所以3×4=12条射线. 13.【答案】①②④; 14.【答案】45°;【解析】设∠BOC =x ,则∠DOE =∠BOD -∠BOE =.1m =12345615n =+++++=B 2211()042ππR R -=1(902)452x x ︒︒+-=15.【答案】24m ;【解析】如下图,可得每个圆中虚线部分弧所对的圆心角为120°,利用弧长公式即得答案.16.【答案】4n +1. 三、解答题 17.【解析】解:设经过x 分钟秒针第一次将分针和时针所夹的锐角平分. 6x-360(x-1)=360(x-1)-0.5x , 解得:x =(分). 答:经过分钟秒针第一次将分针和时针所夹的锐角平分. 18.【解析】144014271440142719.【解析】解:(1)∵∠AOB=90°,∠AOC=30°,∴∠BOC=120°∵OM平分∠BOC,ON平分∠AOC∴∠COM=60°,∠CON=15°∴∠MON=∠COM﹣∠CON=45°.(2)∵∠AOB=α,∠AOC=30°,∴∠BOC=α+30°∵OM平分∠BOC,ON平分∠AOC∴∠COM=+15°,∠CON=15°∴∠MON=∠COM﹣∠CON=.(3)∵∠AOB=90°,∠AOC=β,∴∠BOC=90°+β∵OM平分∠BOC,ON平分∠AOC∴∠COM=45°+,∠CON=.∴∠MON=∠COM﹣∠CON=45°.(4)从上面的结果中,发现:∠MON的大小只和∠AOB得大小有关,与∠A0C的大小无关.20.【解析】解:(1)∵M、N分别是AC、BC的中点,∴MC=AC,CN=CB,∴MN=MC+CN,=( AC+CB)=(8+6)=7;(2)∵若M、N分别是线段AC、BC的中点,∴AM=MC,CN=BN,AM+CM+CN+NB=a,2(CM+CN)=a,CM+CN=,∴MN=a;(3)∵M、N分别是AC、BC的中点,∴MC=AC,NC=BC,∴MN=MC﹣NC=(AC﹣BC)=b.。

知识网络图——数学

知识网络图——数学

一、知识网络图——代数1、第一章有理数2、第二章整式加减3、第三章一元一次方程4、第六章平面直角坐标系5、第八章二元一次方程组6、第九章不等式与不等式组7、第十三章实数8、第十四章一次函数9、第十五章整式的乘除与因式分解10、第十六章分式11、第十七章反比例函数12、第十八章勾股定理13、第二十一章二次根式14、第二十二章一元二次方程有理数1、正数和负数(概念)2、有理数:①有理数②数轴(要点:三要素-原点、正方向、单位长度)③相反数④绝对值(一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。

)3、有理数的加减法:①有理数加法有理数加法法则:1.同号两数相加,取相同符号,并把绝对值相加。

2.绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两个数相加得03.一个数同0相加,仍得这个数。

②有理数减法:减去一个数,等于加上这个数的相反数4、有理数的乘除法:①有理数的乘法有理数乘法法则:1.两数相乘,同号得正,异号得负,并把绝对值相乘2.任何数同0相乘,都得0②有理数除法有理数除法法则1.除以一个不等于0的数,等于乘这个数的倒数。

2. 两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数,都得0。

5.有理数的乘方:①乘方(指数,底数,幂)②科学计数法③近似数(有效数字)整式的加减1、整式(单项式:系数、单项式的次数多项式:项、常数项、多项式次数)2、整式的加减(同类项、合并同类项、拆括号)一元一次方程1、从算式到方程:①一元一次方程(定义)②等式的性质:性质1 等式两边加(或减)同一个数(或式子),结果仍相等性质2 等式两边同乘一个数,或同除以一个不为0的数,结果仍相等2、解一元一次方程(一)—合并同类项与移项(移项要变号)3、解一元一次方程(二)—去括号与去分母(注意符号)4、实际问题与一元一次方程(分析问题)平面直角坐标系1、平面直角坐标系:①有序数对【(x,y)】②平面直角坐标系(横轴x、纵轴y、原点o、象限及象限特征)2、坐标方法的简单运用:①用坐标表示地理位置(描述坐标所用的语言)②用坐标平移(平移的顺序)二元一次方程组1、二元一次方程组(定义、解的定义)2、消元——二元一次方程组的解法(代入消元法,加减消元法)3、实际问题与二元一次方程组(分析题目)4、三元一次方程组解法举例(定义、解法)不等式与不等式组1、不等式①不等式及其结集(不等式的解、解的集合)②不等式的性质性质1 不等式两边加(或减)同一个数(或式子),不等号的方向不变性质2 不等式两边乘(或除以)同一个正数,不等号的方向不变。

人教版七年级数学下册知识点及典型试题汇总——适用于期末总复习

人教版七年级数学下册知识点及典型试题汇总——适用于期末总复习

人教版七年级数学下册知识点汇总第五章相交线与平行线相交线相交线垂线同位角、内错角、同旁内角平行线:在同一平面内,不相交的两条直线叫平行线定义:___________________________________________判定1 :同位角相等,两直线平行平行线及其判定平行线及其判定平行线的判定判定2 :内错角相等,两直线平行判定3 :同旁内角互补,两直线平行判定4 :平行于同一条直线的两直线平行性质1:两直线平行,同位角相等性质2:两直线平行,内错角相等平行线的性质性质3:两直线平行,同旁内角互补性质4:平行于同一条直线的两直线平行命题、定理平移、知识网络结构二、知识要点1、在同一平面内,2、在同一平面内, 两条直线的位置关系有两种:相交和平行,垂直是相交的一种特殊情况。

不相交的两条直线叫平行线。

如果两条直线只有-可编辑修改-一个公共点,称这两条直线相交;如相交线与平行线的两个角叫同位角。

图3中,共有对同位角:果两条直线没有公共点,称这两条直线平行。

3、两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。

邻补角的性质:邻补角互补。

如图1所示,与互为邻补角,_____ 与___ 互为邻补角。

____ + _ = 180 ° ;______ +____ = 180 ° ;_____ +____ = 180 ° ;____ +____ = 180 °。

4、两条直线相交所构成的四个角中,一个角的两边分别是另一个角的两边的反向延长线,这样的两个角互为对顶角。

对顶角的性质:对顶角相等。

如图1所示,与互为对顶角。

= ;=5、两条直线相交所成的角中,如果有一个是直角或90。

时,称这两条直线互相垂直,其中一条叫做另一条的垂线。

如图2所示,当=90。

时,丄o b垂线的性质: 性质1:过一点有且只有一条直线与已知直线垂直。

性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。

初中数学《平行线》单元教学设计以及思维导图

初中数学《平行线》单元教学设计以及思维导图

形吗?
学生答后,教师出示复合投影片 在(1、2 题的)图上添加一条直线 CD,使 CD 与 EF 相交 于某一点(如图),直线 AB、CD 都与相交或者说两条直 线 AB、CD 被第三条直线 EF 所截,这样图中就构成八个 角,在这八个角中,有公共顶点的两个角的关系前面已 经学过,今天,我们来研究那些没有公共顶点的两个角 的关系. 这些角也是与相交线有关系的角,两条直线被第三条直 线所截,是相交线的又一种情况.认识事物间是发展变 化的辩证关系.
1.结合图形识别同位角、内错角、同旁内角。 2.使学生经历从现实空间中抽象出平行线的过程,培养学习“空间与图形”的兴趣,发展空间观念。 3.在平行线的性质的探究过程中,让学生经历观察、比较、 联想、分析、归纳、猜想、概括的全过程。 4.在观察实验的基础上进行判定方法的概括与推导. 情感态度与价值观: 1.从复杂图形分解为基本图形过程中,渗透化繁为简,化难为易的化归思想,从图形变化过程中,使学生
主题 单元 问题 设计
1.怎样根据图形识别哪两条直线被哪条直线所截构成的同位角、内错角、同旁内角? 2.在复杂图形中如何辨别同位角、内错角、同旁内角? 3.怎样判定平面上两条直线的平行关系,认识平行线? 4.能借助直尺、三角尺等工具画平行线? 5.平行线的有哪些性质公理及以及怎样推导平行线性质定理? 6.如何判定平行线? 7.平行线性质与判定有哪些区别?
1.学生自己尝试学习,阅读课本例题前的内容. 2.设计以下问题,帮助学生正确理解概念. (1)同位角:∠4 和∠8 与截线及两条被截直线在位置 上有什么特点?图中还有其他同位角吗? (2)内错角:∠3 和∠5 与截线及两条被截直线在位置 上有什么特点?图中还有其他内错角吗? (3)同旁内角:∠4 和∠5 与截线及两条被截直线在位 置上有什么特点?图中还有其他同分内角吗?

数学分析第二章极限与连续知识网络思维导图及复习

数学分析第二章极限与连续知识网络思维导图及复习
极限,并会利用它们求极限。 5、 理解无穷大量、无穷小量的概念以及性质,掌握无穷小量的比较方法,会用等价无穷小
量求极限。 6、 理解函数连续的概念,会判断函数不连续点的类型。 7、 掌握用基本定理证明闭区间上连续函数的最大值、最小值、介值性定理的基本思路和方
法。 8、 理解一致连续的概念,并会应用其证明相关命题。 三、知识点梳理 1、数列极限的概念、性质与定理
不一致连续: 0
0,
xn
,xn
,
lim(
n
xn
x)
0 ,而 lim( n
f
(xn )
f
( xn)
c
0.
四、典型例题分析
基本题型 I 利用定义证明数列的极限

证明
lim
n
n 2n
0
证 明 : 0, 要 使 得
n 2n
0
成立,只要
n 2n
0
n 2n
2 n
(这是因为
2n (11)n 1 n n(n 1) ... n2
(ii) 同 阶 无 穷 小 : lim f (x) a 0 , 则 称 f (x) 是 g(x) 的 同 阶 无 穷 小 , 记 为 xx0 g(x)
f (x) Og(x) x x0 ,
0
特别地,如果 f (x) 在 O(x0 ) 有界,记作 f (x) O(1), (x x0 )
③ 函数的不连续点
(i)第一类不连续点: f (x0 0), f (x0 0) 存在,但不相等。
(ii)第二类不连续点: f (x0 0), f (x0 0) 中至少有一个不存在.
(iii)可移不连续点:
f (x0
0)
f
(x0

初中数学七年级下册第六章:实数知识讲解

初中数学七年级下册第六章:实数知识讲解

举一反三:
【变式】已知 x、y 是实数,且 3x 4 +(y2-6y+9)=0,若 axy-3x=y,则实数 a 的值是( )
1
A.
4
1
B.-
4
7
C.
4
7
D.-
4
【答案】A. ∵ 3x 4 +(y-3)2=0,
3, 4
a3
1 1 3
.
4,
a4
1 . 1 4
1, 3
3
4
a5
1. 1 ( 1)
3, 4
a6
1 1 3
.
4, ……..三个一循环,因此 a2009
a2
1 1 ( 1)
3 .
4
3
4
3
类型三、实数大小的比较
3.若 a 2007 , b 2008 ,试不用将分数化小数的方法比较 a、b 的大小.
2008
要点诠释:
若 a a, 则 a 0、 a -a, 则 a 0、 a-b 表示的几何意义就是在数轴上表示数 a 与数 b 的点之间
的距离.
考点三、实数与数轴 规定了原点、正方向和单位长度的直线叫做数轴,数轴的三要素缺一不可. 每一个实数都可以用数轴上的一个点来表示,反过来,数轴上的每一个点都表示一个实数.
C.3 个
D.4 个
【答案】C;
【解析】在上面所给的实数中,只有 3 , ,-0.1010010001…这三个数是无理数,其它五个数都是
2
有理数,故选 C. 【点评】对实数分类,不能只为表面形式迷惑,而应从最后结果去判断.首先明确无理数的概念,即
“无限不循环小数叫做无理数”.一般来说,用根号表示的数不一定就是无理数,如 4 =2 是

初中数学《角》单元教学设计以及思维导图

初中数学《角》单元教学设计以及思维导图

3.初步会用运动、变化的观点看待几何图形。 情感态度与价值观: 培养学生勇于探索创新的精神;增强学生的自主性和合作精神;增强学 生学习的兴趣。
对应课标(说明:学科课程标准对本单元学习的要求)
1. 通过丰富的实例,进一步认识角的概念 2. 会比较角的大小,认识角的和、差、倍、分,理解角平分线的 概念。 3. 认识度、分、秒,会进行角的和、差的简单计算。了解直角、 锐角、钝角、余角的概念,知道同角或等角的余角、补角相等。 4. 了解对顶角概念,知道对顶角相等 5. 了解垂线、垂线段的概念,知道过一点能画并且只能画一条直 线与已知直线垂直,会用三角尺或量角器过一点画一条已知直线的垂 线,了解垂线段最短的性质和点到直线距离的意义。
所需教学环境和教学资源(说明:在此列出本专题所需要的教学环境 和学习过程中所需的信息化资源、常规资源等和各种支持资源)
教学环境:配有电子白板的教室 信息化资源:电脑、实物投影仪、网络及相关应用软件 常规资源:三角尺、圆规、量角器
学习活动设计
第一课时 活动一:创设情境 合作探究 1.观察有关角的图片,让学生总结角的特点。
主题单元问 题设计
1.角是怎样形成的?如何度量与比较角的大小呢? 2.角按照大小怎样进行分类? 3.对顶角与什么有关系呢,是大小还是位置?
专题划分
专题一:角的比较与度量
( 4 课时)
专题二:角的和、差、倍、分 ( 1 课时)
专题三:对顶角
( 1 课时)
其中,或专题 一 中的活动 第二课时作为研究性学 习)
3. 怎 样用 叠合 法比 较角 的大 小? 什么 是角 的平 分源自线?专题问题设 计
4.角的度量单位是什么?度、分、秒之间是怎样转化 的? 5.直角、锐角、钝角是怎样定义的?当两个角满足怎

青岛版数学七年级下册第13章《平面图形的认识》复习课件

青岛版数学七年级下册第13章《平面图形的认识》复习课件
2. 三角形有下面三个特性: (1)三角形有三条线段 (2)三条线段不在同一直线上 三角形是封闭图形 (3)首尾顺次相接 三角形用符号“”表示,顶点是A、B、C的三角形记作 “ABC”,读作“三角形ABC”。 3.三角形中的主要线段及数量关系 (1)三角形的一个角的平分线与这个角的对边相交,这个角的 顶点和交点间的线段叫做三角形的角平分线。 (2)在三角形中,连接一个顶点和它对边的中点的线段叫做三 角形的中线。 (3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的 线段叫做三角形的高线(简称三角形的高)。

面 图 形
的 认
多边形、正多边形的有关概念及表示



多边形的内、外角和、角平分线计算公式

多边形的密铺
圆的概念(两种观点)、两要素

点与圆的位置关系
直径、弧、等弧、等圆、同心圆的概念
三角形知识 1.三角形的概念
由不在同意直线上的三条线段首尾顺次相接所组成的图形叫
做三角形。组成三角形的线段叫做三角形的边;相邻两边的公 共端点叫做三角形的顶点;相邻两边所组成的角叫做三角形的 内角,简称三角形的角。
角形,如果第三根木棒的长为整数,则第三根木棒的长
度有哪几种选法?
A
3.如图,在直角△ABC中,∠C=90°, AD平分∠BAC,BE平分∠ABC,
E
P
则∠APB= 度.
C
D
B
4.求图中∠A+∠B+∠C+∠D+∠E的度数. A
E
D
B C
5.一个凸多边形的每一个内角都等于140°,那么从这个多边 形的一个顶点出发地对角线的条数是( )
三角形的中线练习
练习:AD 是△ABC的中线,BE是△ABD的中

人教版数学七年级上册第二章整式的加减全章总复习课件

人教版数学七年级上册第二章整式的加减全章总复习课件
, =
, =
, =

×

×

×

×






=
, =
, 所以第7个数为: =


×

×

×
(2)由(1)可得:第n个数是
(3)根据题意可得:


=





(+)

×


,∴







(4)解:原式 = − + − + − +
=−
解:ab2−3a2b−3(ab2−a2b)
=ab2−3a2b−(3ab2−3a2b)
=ab2−3a2b−3ab2+3a2b
Байду номын сангаас
直接化简求值法
=−2a2b
当a=2,b=−1时,原式=−2╳22 ╳(−1)=4.
典型例题
(2).若多项式x2+2x−8=0,求2x2+4x−17的值.
分析:没有直接求出的x值,如果把x2+2x看成一个整体,

+
=

+
.

是第12个数;











+ − + ⋯+ −

+

典型例题
②.图形的规律.
一张长方形桌子可坐6人,按图3将桌子拼在一起.
(1)2张桌子拼在一起可坐________人,4张桌子拼在一起可坐
________人,n张桌子拼在一起可坐________人;

人教版初中数学7-9年级第一单元重点知识整理

人教版初中数学7-9年级第一单元重点知识整理

人教版初中数学7-9年级第一单元重点知识整理七年级上册第一章有理数一.知识概念1.有理数:(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;不是有理数;2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0a+b=0a、b互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2)绝对值可表示为:或;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;若ab=1a、b互为倒数;若ab=-1a、b 互为负倒数.7.有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).10.有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11.有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a (bc);(3)乘法的分配律:a(b+c)=ab+ac.12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,.13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时:(-a)n=-an或(a-b)n=-(b-a)n,当n为正偶数时:(-a)n=an或(a-b)n=(b-a)n.14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。

新人教版初中数学中考总复习:统计与概率--知识点整理及重点题型梳理

新人教版初中数学中考总复习:统计与概率--知识点整理及重点题型梳理

新人教版初中数学中考总复习重难点突破知识点梳理及重点题型巩固练习中考总复习:统计与概率—知识讲解【考纲要求】1.能根据具体的实际问题或者提供的资料,运用统计的思想收集、整理和处理一些数据,并从中发现有价值的信息,在中考中多以图表阅读题的形式出现;2.了解总体、个体、样本、平均数、加权平均数、中位数、众数、极差、方差、频数、频率等概念,并能进行有效的解答或计算;3.能够对扇形统计图、列频数分布表、画频数分布直方图和频数折线图等几种统计图表进行具体运用,并会根据实际情况对统计图表进行取舍;4.在具体情境中了解概率的意义;能够运用列举法(包括列表、画树状图)求简单事件发生的概率.能够准确区分确定事件与不确定事件;5.加强统计与概率的联系,这方面的题型以综合题为主,将逐渐成为新课标下中考的热点问题.【知识网络】「I 统计图表——।阅读图表提取信息T 集中程度I 怦均数中位教嬴【考点梳理】考点一、数据的收集及整理1 .一般步骤:调查收集数据的过程一般有下列六步:明确调查问题、确定调查对象、选择调查方法、展 开调查、记录结果、得出结论.2 .调查收集数据的方法:普查与抽样调查. 要点诠释:(1)通过调查总体的方式来收集数据的,抽样调查是通过调查样本方式来收集数据的.(2)一般地,当总体中个体数目较多,普查的工作量较大;受客观条件的限制,无法对所有个体进行 普查;或调查具有破坏性时,不允许普查,这时我们往往会用抽样调查来体现估计总体的思想 (3)用抽签的办法决定哪些个体进入样本.统计学家们称这种理想的抽样方法为简单的随机抽样 3 .数据的统计:条形统计图、折线统计图、扇形统计图是三种最常用的统计图. 要点诠释:这三种统计图各具特点:条形统计图可以直观地反映出数据的数量特征;折线统计图可以直观地反映出数据的数量变化规律;扇形统计图可以直观地反映出各部分数量在总量中所占的份额.收集数据媒体查询抽样调查-抽样的基本要求总体个体样本T 整理数据借助统计活动研究概率从概 率角度分析善数据特征离散程度限差方差标准差实验估计概必然事不可能事游戏的 公平与模拟等效实考点二.数据的分析 1 .基本概念:总体:把所要考查的对象的全体叫做总体; 个体:把组成总体的每一个考查对象叫做个体;样本:从总体中取出的一部分个体叫做总体的一个样本; 样本容量:样本中包含的个体的个数叫做样本容量;频数:在记录实验数据时,每个对象出现的次数称为频数;频率:每个对象出现的次数与总次数的比值(或者百分比)称为频率;平均数:在一组数据中,用数据的总和除以数据的总个数就得到这组数据的平均数;中位数:将一组数据从小到大依次排列,位于正中间位置的数(或正中间两个数据的平均数)叫做这组 数据的中位数;众数:在一组数据中,出现频数最多的数叫做这组数据的众数; 极差:一组数据中的最大值减去最小值所得的差称为极差;方差:我们可以用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的 情况,这个结果通常称为方差.计算方差的公式:设一组数据是/,无是这组数据的平均数。

青岛版七年级下册数学课件第13章《平面图形的认识》复习课件

青岛版七年级下册数学课件第13章《平面图形的认识》复习课件

三角形知识
5.三角形的三边关系定理及推论 (1)三角形三边关系定理:三角形的两边之和大于第 三边。 (2)三角形三边关系定理及推论的作用: 判断三条已知线段能否组成三角形 6.三角形的内角和定理及推论 三角形的内角和定理:三角形三个内角和等于180°。 推论: ①直角三角形的两个锐角互余。 ②三角形的一个外角等于和它不相邻的来两个内角的和。 ③三角形的一个外角大于任何一个和它不相邻的内角。 1 7.三角形的面积 三角形的面积= ×底×高
平 面 图 形 的 认 识
多 边 形
多边形、正多边形的有关概念及表示 多边形的内、外角和、角平分线计算公式 多边形的密铺 圆的概念(两种观点)、两要素

点与圆的位置关系 直径、弧、等弧、等圆、同心圆的概念
三角形知识 1.三角形的概念 由不在同意直线上的三条线段首尾顺次相接所组成的图形叫 做三角形。组成三角形的线段叫做三角形的边;相邻两边的公 共端点叫做三角形的顶点;相邻两边所组成的角叫做三角形的 内角,简称三角形的角。 2. 三角形有下面三个特性: (1)三角形有三条线段 (2)三条线段不在同一直线上 三角形是封闭图形 (3)首尾顺次相接 三角形用符号“”表示,顶点是A、B、C的三角形记作 “ABC”,读作“三角形ABC”。 3.三角形中的主要线段及数量关系 (1)三角形的一个角的平分线与这个角的对边相交,这个角的 顶点和交点间的线段叫做三角形的角平分线。 (2)在三角形中,连接一个顶点和它对边的中点的线段叫做三 角形的中线。 (3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的 线段叫做三角形的高线(简称三角形的高)。
·新课标
如图,已知BF为△ABC的角平分线, CD为△ABC的外角∠ACE的平分线, 它与BF的延长线交于D,请说明 ∠A=2∠D的理由。 A

北师大数学七年级下册第二章《相交线与平行线》全章复习与巩固(基础)

北师大数学七年级下册第二章《相交线与平行线》全章复习与巩固(基础)

《相交线与平行线》全章复习与巩固(基础)知识讲解【学习目标】1.熟练掌握对顶角,余角,补角,邻补角及垂线的概念及性质,了解点到直线的距离与两平行线间的距离的概念;2. 区别平行线的判定与性质,并能灵活运用;3. 了解尺规作图的概念,熟练掌握用尺规作角或线段的方法.【知识网络】【要点梳理】要点一、两条直线的位置关系1.同一平面内两条直线的位置关系:相交与平行要点诠释:(1)只有一个公共点的两条直线叫做相交直线,这个公共点叫做交点.(2)在同一平面内不相交的两条直线叫做平行线.平行用符号“∥”表示.2.对顶角、补角、余角(1)定义:①由两条直线相交构成的四个角中,有公共顶点且两边互为反向延长线的两个角叫做对顶角.②如果两个角的和是180°,那么这两个角互为补角,简称互补,其中一个角叫做另一个角的补角.类似地,如果两个角的和是90°,那么这两个角互为余角.简称互余,其中一个角叫做另一个角的余角.(2)性质:同角或等角的余角相等.同角或等角的补角相等.对顶角相等.3.垂线(1)垂线的定义:两条直线相交所成的四个角中,有一个角是直角时,就称这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫垂足.垂直用符号“⊥”表示,如下图.(2)垂线的性质:①在同一平面内,过一点有且只有一条直线与已知直线垂直.②垂线段最短.(3)点到直线的距离:从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.要点二、平行线的判定与性质1.平行线的判定判定方法1:同位角相等,两直线平行.判定方法2:内错角相等,两直线平行.判定方法3:同旁内角互补,两直线平行.要点诠释:根据平行线的定义和平行公理的推论,平行线的判定方法还有:(1)平行线的定义:在同一平面内,如果两条直线没有交点(不相交),那么两直线平行. (2)如果两条直线都平行于第三条直线,那么这两条直线平行(平行线的传递性). (3)在同一平面内,垂直于同一直线的两条直线平行.(4)平行公理:经过直线外一点,有且只有一条直线与这条直线平行.2.平行线的性质性质1:两直线平行,同位角相等;性质2:两直线平行,内错角相等;性质3:两直线平行,同旁内角互补.要点诠释:根据平行线的定义和平行公理的推论,平行线的性质还有:(1)若两条直线平行,则这两条直线在同一平面内,且没有公共点.(2)如果一条直线与两条平行线中的一条直线垂直,那么它必与另一条直线垂直.3.两条平行线间的距离如图,直线AB∥CD,EF⊥AB于E,EF⊥CD于F,则称线段EF的长度为两平行线AB与CD间的距离.要点诠释:(1)两条平行线之间的距离处处相等.(2)初中阶级学习了三种距离,分别是两点间的距离、点到直线距离、平行线间的距离.这三种距离的共同点在于都是线段的长度,它们的区别是两点间的距离是连接这两点的线段的长度,点到直线距离是直线外一点引已知直线的垂线段的长度, 平行线间的距离是一条直线上的一点到与之平行的另一直线的距离.(3)如何理解“垂线段”与“距离”的关系:垂线段是一个图形,距离是线段的长度,是一个量,它们之间不能等同.要点三、用尺规作线段和角1.用尺规作线段(1)用尺规作一条线段等于已知线段.(2)用尺规作一条线段等于已知线段的倍数.(3)用尺规作一条线段等于已知线段的和.(4)用尺规作一条线段等于已知线段的差.2.用尺规作角(1)用尺规作一个角等于已知角.(2)用尺规作一个角等于已知角的倍数.(3)用尺规作一个角等于已知角的和.(4)用尺规作一个角等于已知角的差.【典型例题】类型一、两条直线的位置关系1.如图,直线AB、CD、EF相交于点O,那么互为对顶角(平角除外)的角共有对,它们分别是,共有对邻补角.【思路点拨】根据邻补角定义和对顶角定义,每一个顶点处有四个角,可以组成四对邻补角和两对对顶角,而本题图形中,三个顶点重叠在一起,所以再乘以3即可.【答案】6,∠AOC与∠BOD,∠AOF与∠BOE,∠COF与∠DOE, ∠BOC与∠AOD,∠BOF与∠AOE, ∠DOF与∠COE ,12.【解析】找对顶角或邻补角,先从某一个角开始,顺时针或逆时针旋转,这样做,既不漏也不重.【总结升华】两条直线相交得到的四个角中,共有2对对顶角,4对邻补角.举一反三:【变式】如图所示,已知∠AOD=∠BOC,请在图中找出∠BOC的补角,邻补角及对顶角.【答案】解:因为∠BOC+∠AOC=180º(平角定义),所以∠AOC是∠BOC的补角.因为∠AOD+∠BOD=180º(平角定义),∠AOD=∠BOC(已知),所以∠BOC+∠BOD=180º.所以∠BOD是∠BOC的补角.所以∠BOC的补角有两个:∠BOD和∠AOC.而∠BOC的邻补角只有一个∠AOC,且∠BOC没有对顶角.2.已知:如图,直线a、b、c两两相交,且a⊥b,∠1=2∠3,,求∠4的度数.【答案与解析】解:∵a⊥b,∴∠2=∠1=90°.又∵∠1=2∠3,∴90°=2∠3,∴∠3=45°,又∠3与∠4互为邻补角,所以∠3+∠4=180°即45°+∠4=180°.所以∠4=135°.【总结升华】涉及到角的运算时,充分利用已知条件和隐含条件(平角、余角、补角、对顶角等)是解题的关键.类型二、平行线的性质与判定3.如图,EF∥AD,∠1=∠2,∠BAC=70°,将求∠AGD的过程填写完整:因为EF∥AD,所以∠2= ()又因为∠1=∠2,所以∠1=∠3所以AB∥()所以∠BA C+ =180°()因为∠BAC=70°,所以∠AGD= .【答案】∠3,两直线平行,同位角相等;DG,内错角相等,两直线平行;∠AGD,两直线平行,同旁内角互补;110°.【解析】首先由已知EF∥AD根据两直线平行同位角相等可得∠2=∠3,再由∠1=∠2,利用等量代换可得∠1=∠3,根据内错角相等,两直线平行可得AB∥DG,再根据两直线平行同旁内角互补可得∠BAC+∠AGD=180°,进而得到答案.【总结升华】本题主要考查的是平行线的判定与性质,平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.此外注意证明题规范的书写格式.举一反三:【变式】如图,已知∠ADE=∠B,∠1=∠2,那么CD∥FG吗?并说明理由.【答案】解:平行,理由如下:因为∠ADE=∠B,所以DE∥BC(同位角相等,两直线平行),所以∠1=∠BCD(两直线平行,内错角相等).又因为∠1=∠2(已知),所以∠BCD=∠2.所以CD∥FG(同位角相等,两直线平行).4.(2015春•杭州期末)如图,已知BC∥GE,AF∥DE,∠1=50°.(1)求∠AFG的度数;(2)若AQ平分∠FAC,交BC于点Q,且∠Q=15°,求∠ACB的度数.【答案与解析】解:(1)∵BC∥EG,∴∠E=∠1=50°.∵AF∥DE,∴∠AFG=∠E=50°;(2)作AM∥BC,∵BC∥EG,∴AM∥EG,∴∠AFM=∠AFG=50°.∵AM∥BC,∴∠QAM=∠Q=15°,∴∠FA Q=∠AFM+∠FAQ=65°.∵AQ平分∠FAC,∴∠QAC=∠FA Q=65°,∴∠M AC=∠QAC+∠QAM=80°.∵AM∥BC,∴∠ACB=∠MAC=80°.【总结升华】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.类型三、用尺规作线段和角5. 在如图中,补充作图:(1)在AD的右侧作∠DCP=∠DAB(尺规作图,不写作法,保留作图痕迹);(2)CP与AB会平行吗?为什么?【思路点拨】(1)根据作一个角等于已知角的方法即可作出;(2)根据平行线的判定方法即可判断.【答案与解析】解:(1)作图如下:(2)会平行.用同位角相等,两直线平行.【总结升华】本题考查了基本作图:作一个角等于已知角,以及平行线的判定定理,正确掌握基本作图是关键.举一反三:【变式】(2014秋•娄底期中)尺规作图的画图工具是()A.刻度尺、量角器 B.三角板、量角器C.直尺、量角器 D.没有刻度的直尺和圆规【答案】D提示:尺规作图的画图工具是没有刻度的直尺和圆规.类型四、实际应用6.如图,107国道a上有一个出口M,想在附近公路b旁建一个加油站,欲使通道最短,应沿怎样的线路施工?【答案与解析】解:如图,过点M作MN⊥b,垂足为N,欲使通道最短,应沿线路MN施工.【总结升华】灵活运用垂线段最短的性质是解答此类问题的关键.《相交线与平行线》全章复习与巩固(基础)巩固练习【巩固练习】一、选择题1.下列图中,∠1和∠2是对顶角的有()个.A.1个B.2个C.3个D.4个2.如图所示是同位角关系的是().A.∠3和∠4 B.∠1和∠4 C.∠2和∠4 D.不存在3.下列说法正确的是().A.相等的角是对顶角.B.两条直线被第三条直线所截,内错角相等.C.如果两条直线都和第三条直线平行,那么这两条直线也互相平行.D.若两个角的和为180°,则这两个角互为余角.4.(2015•宜昌)如图,AB∥CD,FE⊥DB,垂足为E,∠1=50°,则∠2的度数是()A.60°B.50° C.40° D.30°5.用尺规作图,已知三边作三角形,用到的基本作图是().A.作一个角等于已知角B.作已知直线的垂线C.作一条线段等于已知线段D.作角的平分线6.一个人从A点出发向北偏东60°方向走到B点,再从B点出发向南偏西15°方向走到C点,那么∠ABC等于().A.75°B.105°C.45°D.135°7.下列说法中,正确的是().A.过点P画线段AB的垂线.B.P是直线AB外一点,Q是直线AB上一点,连接PQ,使PQ⊥AB.C.过一点有且只有一条直线垂直于已知直线.D.过一点有且只有一条直线平行于已知直线.8.如图,∠1和∠2互补,∠3=130°,那么∠4的度数是( ).A. 50°B. 60°C.70°D.80°二、填空题9. 如图所示,AB∥CD,EF分别交AB、CD于G、H两点,若∠1=50°,则∠EGB=________.10.如图所示,已知BC∥DE,则∠ACB+∠AOE=.11.每天小明上学时,需要先由家向东走150米到公共汽车站点,然后再乘车向西900米到学校,每天小明由家到学校移动的方向是________,移动的距离是________.12. (广东湛江)如图所示,请写出能判断CE∥AB的一个条件,这个条件是:①:________ ②:________ ③:________13.如图,已知AB∥CD,CE,AE分别平分∠ACD,∠CAB,则∠1+∠2=________.14.如图所示,直线AB与直线CD相交于点O,EO⊥AB,∠EOD=25°,则∠BOD= ,∠AOC=,∠BOC=.15. 如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西.Array 16.(2015秋•丰台区期末)阅读下面材料:在数学课上,老师提出如下问题:小聪、小明、小敏三位同学在黑板上分别画出了设计方案:根据以上信息,你认为同学的方案最节省材料,理由是.三、解答题17.如图所示,直线AB、CD、EF相交于点O,若∠1+∠2=90°,∠3=40°,求∠1的度数,并说明理由.18.(2015春•监利县期末)如图,已知∠ABC=180°﹣∠A,BD⊥CD于D,EF⊥CD于F.(1)求证:AD∥BC;(2)若∠1=36°,求∠2的度数.19. 如图所示,已知∠1=50°,∠2=130°,∠4=50°,∠6=130°,试说明a∥b,b∥c,d∥e,a∥c.20.如图所示,点P是∠ABC内一点.(1)画图:①过点P画BC的垂线,垂足为D;②过点P画BC的平行线交AB于点E,过点P画AB的平行线交BC于点F.(2)∠EPF等于∠B吗? 为什么?【答案与解析】一、选择题1. 【答案】A;【解析】只有第三个图中的∠1与∠2是对顶角.2. 【答案】B;【解析】同位角的特征:在截线同旁,在两条被截直线同一方向上.3. 【答案】C;【解析】一个角的平分线分得两个角相等,但不是对顶角,A错误;内错角相等的前提必须是两条直线平行,B错误;若两个角的和为180°,这两个角互为补角,D错误;C是平行公理的推论,正确.4. 【答案】C;【解析】∵FE⊥DB,∴∠DEF=90°.∵∠1=50°,∴∠D=90°﹣50°=40°.∵AB∥CD,∴∠2=∠D=40°.故选C.5. 【答案】C;【解析】根据三边做三角形用到的基本作图是:作一条线段等于已知线段.故选C.6. 【答案】C;【解析】根据直线平行,内错角相等,从A点北偏东60°方向等于从B点南偏西60°,再从B点向南偏西15°方向到C点,∠ABC应等于这两个角的差,故C正确.7.【答案】C;【解析】应是过一点画线段所在直线的垂线,不能是画线段的垂线,故A错误;P是直线AB外一点,Q是直线AB上一点,如果P点不在过Q点与AB垂直的直线上,或Q 点不在过P点与AB垂直的直线上,连接PQ,不可能有PQ⊥AB,故B错误;过一点画直线的平行线,这点不能在直线上,否则是同一条直线,故D错误;只有C是垂线的性质,故C正确.8.【答案】A;【解析】平行线的判定与性质综合应用.二、填空题9.【答案】50°;【解析】因为AB∥CD,所以∠1=∠AGF,因为∠AGF与∠EGB是对顶角,所以∠EGB =∠AGF,故∠EGB=50°.10.【答案】180°;【解析】由BC∥DE可知∠ACB=∠EOC,又因为∠AOE+∠EOC=180°,故可得解.11.【答案】向西,750米;【解析】移动的方向是起点到终点的方向,移动的距离是起点到终点的线段的长度. 12.【答案】∠DCE=∠A,∠ECB=∠B,∠A+∠ACE=180°;【解析】根据平行线的判定,CE∥AB成立的条件可以是∠DCE=∠A或∠ECB=∠B 或∠A+∠ACE=180°.13.【答案】90°;【解析】∠BAC+∠ACD=180°,11BAC+ ACD22∠∠=90°,即∠1+∠2=90°.14.【答案】115°,115°,65°;【解析】邻补角或对顶角的性质进行求解.15.【答案】48°;【解析】内错角相等,两直线平行.16.【答案】小聪;两点之间线段最短;点到直线垂线段最短;【解析】小明与小聪的方案比较:在小明的方案中∵AD+BD>AB,∴小聪的方案比小明的节省材料;小聪与小敏的方案比较:小聪方案中AC<小敏的方案中AC∴小聪同学的方案最节省材料,理由:两点之间线段最短;点到直线垂线段最短.三、解答题17.【解析】解:因为∠2=∠3(对顶角相等),∠3=40°(已知),所以∠2=40°(等量代换).又因为∠1+∠2=90°(已知),所以∠1=90°-∠2=50°.18.【解析】(1)证明:∵∠ABC=180°﹣∠A,∴∠ABC+∠A=180°,∴AD∥BC;(2)解:∵AD∥BC,∠1=36°,∴∠3=∠1=36°,∵BD⊥CD,EF⊥CD,∴BD∥EF,∴∠2=∠3=36°.19.【解析】解:因为∠1=50°,∠2=130°(已知),所以∠1+∠2=180°.所以a∥b(同旁内角互补,两直线平行).所以∠3=∠1=50°(两直线平行,同位角相等).又因为∠4=50°(已知),所以∠3=∠4(等量代换).所以d∥e(同位角相等,两直线平行).因为∠5+∠6=180°(平角定义),∠6=130°(已知),所以∠5=50°(等式的性质).所以∠4=∠5(等量代换).所以b∥c(内错角相等,两直线平行).因为a∥b,b∥c(已知),所以a∥c(平行于同一直线的两直线平行).20.【解析】解:如图所示,(1)①直线PD即为所求;②直线PE、PF即为所求.(2)∠EPF=∠B,理由:因为PE∥BC(已知),所以∠AEP=∠B(两直线平行,同位角相等).又因为PF∥AB(已知),所以∠EPF=∠AEP(两直线平行,内错角相等),∠EPF =∠B(等量代换).。

数学章节知识网络图

数学章节知识网络图

七年级数学(上)知识点第一章有理数第二章整式的加减第三章一元一次方程1、一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0)。

第四章图形的认识初步七年级数学(下)知识点第五章相交线与平行线第六章平面直角坐标系第七章三角形第八章二元一次方程组1.二元一次方程:含有两个未知数,并且未知数的指数都是1,像这样的方程叫做二元一次。

方程,一般形式是ax+by=c(a≠0,b≠0)。

第九章不等式与不等式组第十章数据的收集、整理与描述1.总体:要考察的全体对象称为总体。

2.个体:组成总体的每一个考察对象称为个体。

3.样本:被抽取的所有个体组成一个样本。

4.样本容量:样本中个体的数目称为样本容量。

5.频数:一般地,我们称落在不同小组中的数据个数为该组的频数。

6.频率:频数与数据总数的比为频率。

7.组数和组距:在统计数据时,把数据按照一定的围分成若干各组,分成组的个数称为组数,每一组两个端点的差叫做组距。

八年级数学(上)知识点第十一章全等三角形全面调查抽样调查收集数据描述数据整理数据分析数据得出结论)(无限不循环小数负有理数正有理数无理数⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧--⎩⎨⎧---)()32,21()32,21()()3,2,1()3,2,1,0(无限循环小数有限小数整数负分数正分数小数分数负整数自然数整数有理数、、 ⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧实数1.全等三角形的性质: 全等三角形的对应角相等、对应边相等。

2..三角形全等的判定公理及推论有: (1)“边角边”简称“SAS ” (2)“角边角”简称“ASA ” (3)“边边边”简称“SSS ” (4)“角角边”简称“AAS ”(5)斜边和直角边相等的两直角三角形(HL )。

第十二章 轴对称第十三章 实数 第十四章 一次函数第十五章 整式的乘除与分解因式八年级数学(下)知识点第十六章 分式第十七章 反比例函数1.反比例函数:形如y =xk(k 为常数,k ≠0)的函数称为反比例函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档