数据仓库系统建设方案详细

合集下载

智慧水利数据仓库系统建设方案

智慧水利数据仓库系统建设方案
实现数 据的清洗、转换和 加载,为数据仓库 的建设提供基础数 据支持。
数据存储方式: 采用分布式存储 架构,确保数据 的安全性和可扩 展性
数据处理能力: 具备强大的数据 处理能力,支持 实时分析和数据 挖掘
数据备份与恢复: 提供完善的数据 备份和恢复机制, 确保数据安全可 靠
,A CLICK TO UNLIMITED POSSIBILITES
汇报人:
目录
CONTENTS
智慧水利成为发展趋势,以提高水资源利用效率和应对气候变化挑战 水利数据仓库系统建设是智慧水利的重要组成部分,为决策提供科学依据 水利行业面临数据整合、存储和管理方面的挑战,需要建立统一的数据仓库系统 水利数据仓库系统的建设将促进水利行业的数字化转型,提高管理效率和决策水平
综合管理模块: 实现水利设施的 统一管理和调度, 提高水利设施的 运行效率和管理 水平。
数据存储优化:采用分布式存储和缓存技术,提高数据读写速度 系统架构优化:采用微服务架构,实现高可用性和可扩展性 查询性能优化:使用索引和查询优化技术,提高查询效率 系统安全优化:加强数据加密和安全防护措施,确保系统安全可靠
数据采集:支持多种数据采集方式,如手动输入、传感器数据等。
数据存储:具备数据存储、备份和恢复功能,保证数据的安全性和完整性。
数据查询:支持多种查询方式,如关键字查询、条件查询等,方便用户快速找到所需数 据。
数据安全性:确 保数据不被非法 获取或篡改
系统稳定性:保 证系统的正常运 行和数据的准确 性
数据备份与恢复:定期备份 数据,确保数据安全
防火墙配置:确保系统不受 外部攻击
访问控制:限制用户访问权 限,防止数据泄露
安全审计:对系统进行安全 审计,及时发现和修复安全

数据仓库建设规划图文

数据仓库建设规划图文

数据仓库建设规划图文前言数据仓库是企业决策的基础,能够帮助企业把分散的数据整合到一起,降低数据的冗余度和不一致度,并保证决策者及时准确地获取到有关于企业业务运营的信息。

而数据仓库建设规划是实现数据仓库建设的前提和保障。

本文将会介绍数据仓库建设规划的概述,及其在数据仓库建设过程中的具体应用。

数据仓库建设规划概述数据仓库建设规划是指基于业务战略、IT战略和企业治理要求,论证和分析数据仓库建设的目标、范围、基础设施、资源和人员安排,并制定全面和长期的数据仓库建设计划。

其目的是为了实现数据资产的价值最大化和企业业务分析的高效率开展。

具体来说,数据仓库建设规划包括以下几个方面的内容:1.数据仓库技术路线:在数据仓库建设过程中,需要选择哪些技术工具和平台,以及如何实现数据仓库的集成、存储、处理、管理和交互。

2.数据仓库的目标和范围:需要明确数据仓库的主要业务需求、数据需求以及数据质量标准,以便为数据仓库的整体架构和实施过程提供全面规划。

3.数据仓库基础设施:包括硬件基础设施、数据库应用软件、网络等设备和工具及相应的安全机制。

4.数据仓库资源和人员安排:需要评估数据仓库建设所需的人员和资源并计划并安排相应的人力、物力和财务方面的资源。

数据仓库建设规划的应用数据仓库建设规划对数据仓库的建设和运营都具有重要的作用。

在数据仓库建设过程中,数据仓库建设规划可以帮助企业在设计、实施和维护数据仓库过程中,更加全面、科学、系统地规划和部署数据仓库,从而提高数据仓库的建设效率,提高数据质量,提升企业的运营效率及决策水平。

具体来说,数据仓库建设规划可以体现在以下几个方面:1.业务需求分析:对不同类型的业务需求进行分析,确立数据仓库构建的业务模型和应用领域范畴。

借助业务分析工具和方法,对业务流程进行挖掘、建模和优化,设计出符合企业需要且便于数据获取和分析的数据模型。

2.技术实现:结合现有的IT设施和企业计算机软件系统,根据不同业务和应用领域制定数据仓库架构,并选择合适的技术工具和开发平台,如Hadoop、Hive、Spark等,以及各种开发框架、编程语言和库。

数据仓库指标体系建设

数据仓库指标体系建设

数据仓库指标体系建设
数据仓库指标体系建设是指为了满足企业特定的业务目标和需求,从数据仓库中提取有意义的数据指标,并对这些指标进行管理、分析与运用的一套体系建设过程。

具体步骤如下:
1. 确定业务目标和需求:企业需要确定自身的业务目标和需求,以此为目标,设计出符合自身业务需求的数据仓库指标体系。

2. 确定数据来源:确定数据来源,包括内部各系统的数据和外部数据,如市场、竞争对手、用户等数据。

3. 确定指标分类:根据企业业务目标和需求,将数据指标分类,可以根据时间、区域、产品、客户等因素进行分类。

4. 定义指标:根据指标分类,设计出指标定义和计算公式,确保指标的准确性和可比性。

5. 确定指标权重:根据指标的重要性,确定指标的权重,以此来评估企业的绩效表现。

6. 建立数据模型:建立数据模型,用于支持指标计算和分析,以及提供数据报表和数据可视化等服务。

7. 设计指标评估体系:设计指标评估体系,用于评估企业整体绩效和各个业务部门的表现,以此来指导企业的决策。

8. 运用指标:利用指标体系中的指标,通过数据分析、数据挖掘等手段,对企业的业务进行分析和优化。

数仓建设方案

数仓建设方案

数仓建设方案1. 引言在数据驱动的时代,数据仓库(Data Warehouse)作为一种重要的数据存储和分析解决方案,扮演着至关重要的角色。

本文将详细介绍一个有效的数仓建设方案,旨在提供清晰准确的数据存储和高效灵活的数据分析能力。

2. 概述数仓建设方案数仓建设方案的目标是构建一个可靠、高效、可扩展和易于维护的数据仓库。

下面将介绍数仓建设方案的主要步骤和关键要素。

2.1 数据采集与清洗数仓建设的第一步是收集源系统中的数据,并进行清洗。

数据采集可以通过批处理或实时流处理进行,以确保数据的及时性和完整性。

数据清洗包括处理重复值、空值、异常值等,确保数据的一致性和可靠性。

2.2 数据存储与管理在数仓建设中,数据存储和管理是关键环节。

常见的数据存储方案包括关系型数据库、分布式文件系统等。

为了提高性能和扩展性,可以采用分布式数据库或数据湖等方案。

同时,数据管理方面需要考虑数据分区、索引和备份等措施,确保数据的高效访问和安全性。

2.3 数据集成与转换在数仓建设中,常常需要将来自不同源系统的数据进行集成和转换。

数据集成可以通过ETL(Extract, Transform, Load)工具实现,将多源数据整合到统一的数仓中。

在数据转换过程中,可以进行数据清洗、格式转换、关联分析等操作,以满足后续的分析需求。

2.4 数据分析与应用数仓建设的最终目的是实现数据的分析和应用。

在数仓中,可以采用OLAP(Online Analytical Processing)和数据挖掘等技术,对大数据进行多维分析和模式挖掘,从而为企业决策提供有效支持。

同时,可以构建报表、仪表盘和数据可视化等工具,帮助用户更直观地理解和利用数据。

3. 数仓建设方案的优势和挑战数仓建设方案带来了许多优势,但同时也面临一些挑战。

3.1 优势- 数据集中存储:将来自不同系统的数据整合到一个统一的数据仓库中,方便管理和分析。

- 数据一致性:通过数据清洗和转换,确保数据的一致性和准确性。

数仓建设方案

数仓建设方案

数仓建设方案一、引言随着大数据时代的到来,数据成为企业发展的重要资源。

而在处理和管理大数据方面,数据仓库(Data Warehouse)起到了关键的作用。

本文将介绍一个适用于数仓建设的方案,旨在提高数据管理和分析的效率。

二、背景数据仓库是一个以主题为导向、集成、稳定、相对历史的数据集合,可用于支持企业的决策制定。

在设计和构建一个完善的数据仓库之前,我们首先要明确背景和目标。

1. 背景说明说明数据仓库建设的原因和必要性。

例如,业务发展迅速,数据量激增,传统的数据存储和管理方式无法满足需求。

2. 目标设定明确数仓建设的目标,包括但不限于数据集成、数据质量提高、数据分析支持等。

三、建设方案本节将详细介绍数据仓库建设的方案,包括数据采集、数据存储和数据分析三个方面。

1. 数据采集数据采集是数据仓库建设的第一步,也是最关键的一步。

数据在采集过程中需要经过清洗、抽取、转换和加载等多个阶段。

清洗:处理数据中的无效、重复或错误的信息,确保数据的质量。

抽取:从各个业务系统中抽取所需数据,可使用ETL工具进行自动化操作。

转换:将抽取的数据进行转换,使其符合数据仓库的标准格式和结构。

加载:将转换后的数据加载至数据仓库中,储存为独立的数据表。

2. 数据存储数据存储是指将采集到的数据以结构化的方式存放,以便后续的查询和分析。

常见的数据存储方式有关系型数据库和大数据存储技术。

关系型数据库:适用于小规模和结构化数据的存储,例如使用MySQL或Oracle等。

大数据存储技术:适用于海量数据的存储和处理,例如使用Hadoop、Spark和Hive等。

3. 数据分析数据分析是数据仓库建设的最终目标,通过分析数据可以获取有价值的信息和洞察力,为企业的决策提供支持。

数据挖掘:利用统计学和机器学习等技术挖掘数据中隐藏的模式和规律。

报表和可视化:将数据以图表、表格等形式展现,便于决策者理解和分析。

四、实施计划在明确建设方案后,需要制定一个详细的实施计划,包括各阶段的时间安排和资源投入。

数据仓库建设方案

数据仓库建设方案

数据仓库建设方案数据仓库建设方案数据仓库建设方案是指根据组织的数据需求和业务目标,经过系统性的分析和设计,建立一个统一、集成、可靠、灵活的数据存储和管理系统。

通过数据仓库建设方案,组织可以更好地利用数据资源,支持决策和业务流程,提高组织的运营效率和竞争力。

首先,数据仓库建设方案需要进行需求分析。

通过与组织各个部门的沟通和了解,明确业务需求和数据需求,确定数据仓库的目标和范围。

同时,也需要考虑数据的来源和格式,以及数据的质量和安全性等方面的需求。

其次,数据仓库建设方案需要进行数据模型设计。

根据需求分析的结果,设计数据仓库的结构和组织方式,确定数据的存储和关联关系。

同时,也需要考虑数据的处理和转换方式,以及数据的更新和维护策略等方面的设计。

然后,数据仓库建设方案需要进行技术选型。

根据数据仓库的规模和复杂程度,选择适合的数据库管理系统和硬件设备,以及相应的数据集成和分析工具。

同时,也需要考虑数据仓库的架构和性能等方面的技术选型。

接着,数据仓库建设方案需要进行系统实施和测试。

根据设计和选型的结果,进行数据仓库的搭建和配置,导入和清洗数据。

同时,也需要进行系统的功能和性能测试,确保数据仓库的正常运行和满足业务需求。

最后,数据仓库建设方案需要进行系统运维和优化。

定期进行数据的更新和维护,监控和管理数据仓库的性能和安全。

同时,也需要根据业务需求和技术发展,对数据仓库进行优化和改进,提升数据仓库的效率和可用性。

总之,数据仓库建设方案是一个综合性的工程,需要从需求分析到系统实施再到运维优化,进行全面的规划和设计。

通过数据仓库建设方案,组织可以更好地管理和利用数据资源,提高业务的决策能力和竞争力,实现可持续的发展。

大数据建设方案

大数据建设方案
5.系统部署:将系统部署到生产环境,进行实际运行。
6.运维保障:建立运维团队,负责系统日常运维和优化。
六、项目效益
1.提升企业竞争力:通过大数据分析,为企业提供有针对性的决策支持。
2.促进政府治理能力现代化:利用大数据技术,提升政府决策科学化水平。
3.降低运营成本:通过自动化、智能化的数据处理和分析,降低人力成本。
2.技术选型:根据业务需求,选择合适的技术框架和工具。
3.系统开发:遵循软件工程规范,分阶段进行系统开发。
4.系统测试:开展全面、深入的系统测试,确保系统稳定可靠。
5.系统部署:将系统部署到生产环境,实现业务运行。
6.运维保障:建立健全运维体系,确保系统持续优化和稳定运行。
六、预期效益
1.提升决策效率:通过大数据分析,为企业及政府部门提供精准、实时的决策依据。
大数据作为新时代的战略资源,对于促进经济社会发展具有重要作用。本方案旨在构建一套全面、高效、安全的大数据平台,为各领域提供深度数据服务。以下内容将详细阐述大数据建设的整体规划、技术路线、实施策略及预期效益。
二、建设目标
1.数据整合:实现多源异构数据的统一采集、处理和存储。
2.数据分析:运用先进的数据分析技术,挖掘数据价值,支撑决策。
4.数据应用层:提供数据查询、报表、可视化等多样化服务。
四、详细方案
1.数据采集与处理
-制定统一的数据采集规范,确保数据质量。
-采用分布式爬虫技术,自动采集互联网数据。
-通过数据交换接口,实现企业内部数据对接。
-运用大数据处理框架(如Hadoop、Spark)进行数据预处理。
2.数据存储与管理
-构建分布式存储系统,提高数据读写性能。
-实施数据备份与恢复策略,确保数据安全。

数据仓库-系统设计说明书

数据仓库-系统设计说明书

数据仓库-系统设计说明书数据仓库-系统设计说明书1、引言1.1 目的本文档旨在详细描述数据仓库系统的设计方案,包括系统的架构、数据模型、数据抽取、转换和加载(ETL)流程、安全性、可用性等方面的内容。

1.2 范围本文档适用于数据仓库系统的设计过程,涵盖了系统的各个方面,以确保系统的正常运行和可扩展性。

2、系统架构2.1 总体架构本节描述数据仓库系统的总体架构,包括各个组件之间的关系和数据流。

2.2 数据仓库层次结构本节详细描述数据仓库系统的层次结构,包括数据仓库、数据集市、数据源等各个层次的定义和关系。

3、数据模型3.1 维度模型本节描述数据仓库系统所采用的维度模型,包括事实表和维度表的定义和关系。

3.2 元数据管理本节描述数据仓库系统中元数据的定义、管理和使用方式,包括元数据的存储、检索和更新机制。

4、数据抽取、转换和加载(ETL)流程4.1 数据抽取本节描述数据仓库系统中数据抽取的方式和流程,包括抽取数据的来源、频率和目标。

4.2 数据转换本节描述数据仓库系统中数据转换的方式和流程,包括数据清洗、数据集成、数据转换和数据加载的过程。

4.3 数据加载本节描述数据仓库系统中数据加载的方式和流程,包括数据加载的频率、目标和验证机制。

5、安全性5.1 用户权限管理本节描述数据仓库系统中用户权限的管理方式和机制,包括用户的注册、认证和授权过程。

5.2 数据访问控制本节描述数据仓库系统中数据访问控制的方式和机制,包括数据的保护、加密和审计功能。

6、可用性6.1 高可用性架构本节描述数据仓库系统中实现高可用性的架构设计,包括负载均衡、冗余备份和自动故障恢复机制。

6.2 容灾备份方案本节描述数据仓库系统中实现容灾备份的方案,包括数据的备份、复制和恢复策略。

7、本文档涉及附件本文档涉及的附件包括数据仓库系统的系统架构图、数据模型图、ETL流程图等相关文档。

8、本文所涉及的法律名词及注释本文所涉及的法律名词及注释包括但不限于《数据保护法》、《网络安全法》等相关法律和条款。

数据仓库概要设计

数据仓库概要设计

数据仓库概要设计数据仓库(Data Warehouse)是指把企业分散在不同数据库中的数据统一整合到一个数据库中进行存储和管理,并对这些数据进行分析和管理的一种数据库应用系统。

数据仓库的建设是企业信息化建设的重要组成部分,是企业对内部外部信息资源进行整合、挖掘和利用最有效的平台之一。

因此,进行数据仓库的概要设计是非常重要的一步。

1.数据仓库概述数据仓库,是一个能够存储大量历史数据的集合体,使得企业能够快速地进行数据分析、查询和决策。

数据仓库通常包括存储、管理和查询技术。

数据仓库的设计是基于自底向上的过程,通过收集各种应用中的数据来建立。

数据仓库的需求分析是设计的第一个步骤,通过需求分析可以把握到数据的来源、数据的主要特征、数据的处理方法、数据的处理效果等。

2.数据仓库的工作过程a.数据的收集数据收集的目的是获取各个分散在企业内部外部的数据源,并把这些数据源整合成数据集。

数据收集包括了跟踪源数据、数据的标准化、数据的清洗、数据的转换等。

b.数据的整合数据整合意味着将不同的数据源集成到一起,通常是通过ETL工具来实现。

ETL(Extract, Transform, Load)工具的主要功能是提取、转换和加载。

c.数据的存储数据仓库的存储方式一般有两种:关系型数据库和非关系型数据库。

d.数据的查询与分析数据仓库的用户可以通过BI工具(Business Intelligence)来进行数据的查询、分析和报表生成。

3.数据仓库的概要设计步骤a.数据仓库设计的第一步是需求分析,需求分析的目的是明确数据仓库的目标、范围和需求。

需求分析应该包括数据仓库的使用者、数据仓库所需数据的类型、数据的来源、数据的质量要求等。

b.数据仓库的概念设计是在需求分析的基础上,开始进行数据仓库的抽象模型的设计。

概念设计包括了数据仓库的模型设计、元数据的设计等。

c.数据仓库的逻辑设计是在概念设计的基础上,开始进行数据仓库的逻辑结构的设计。

数据中心建设项目数据库设计开发方案及实施方案

数据中心建设项目数据库设计开发方案及实施方案

数据中心建设项目数据库设计开发方案及实施方案本项目中, 数据库设计与建设包括用于数据中心进行数据存储、交换、应用的数据中心数据库, 和用于数据统计、分析、挖掘的数据仓库的设计与建设。

本数据中心数据库的建设要满足金信工程的相关设计要求, 满足上级工商、质监、知识产权等市场监管部门的工作要求。

数据中心顾名思义, 是专注于数据处理和服务的中心, 旨在建立数据采集、更新、管理、使用机制, 加快系统内部信息交流与反馈, 为公众服务和相关政府部门数据交换建立基础, 为工商、质监、知识产权部门各级管理人员提供决策支持服务。

1.1.数据中心应用功能与业务处理功能的不同之处在于数据中心是以数据为管理对象, 而业务应用系统以业务为管理对象。

数据中心将从业务应用系统采集到的数据进行清洗和统一存放, 根据不同的需求进行加工, 生成不同的数据产品供各系统使用。

数据中心独立于应用系统之外, 又与应用系统有密切的联系。

1.2.数据中心是存储市场监督管理局经过筛选、去重、整理后的核心业务、人员数据等信息, 整合了全市各类主体信息资源和市场主体、人员相关的信息资源, 并进行统一管理和维护;数据中心通过深入挖掘数据价值, 开发实现灵活、高效的数据查询、业务报表、数据共享和数据交换等功能, 为政务公开、业务协同、绩效考核、决策支持、公共服务等提供数据保障。

1.3.数据中心建设原则金信工程数据中心建设遵循如下原则:1.总体规划, 建立科学、完整的信息资源管理体系整体规划, 将以往分散的数据资源进行整合, 建立科学、完整的信息资源体系结构, 确保业务人员、技术开发人员等使用和维护信息资源的用户从整体上把握数据资源的情况, 方便、准确的利用信息资源和有效的维护、管理信息资源。

科学、完整的信息资源管控体系不但包括信息资源自身的完整性, 科学性, 也应包括信息采集、管理、共享、利用方式的规划, 以及数据模型、数据指标等规范化、标准化的考虑。

2.统一规划、集中管理各类信息资源统一规划数据资源, 不只是要对各类信息资源进行物理集中存储管理, 还要在对业务数据分析的基础上, 一体化规划并设计系统数据模型, 统一制定业务数据指标体系, 以管理服务对象为核心, 组织相关联的业务数据, 实现对内业务使用、对外服务应用的统一视图。

智慧粮仓数据库建设方案

智慧粮仓数据库建设方案

智慧粮仓数据库建设方案一、项目概况智慧粮仓数据库建设意在建立一个包含粮食存储、检测、运输和销售等方面信息的数据库,实现信息共享和优化管理。

具体包括建立粮食入库、出库、储存、检测、维护、销售等方面的数据库,并实现各个模块的数据实时更新和统一管理。

同时,也需要考虑数据的安全和可靠性,打造一个高效、智能的智慧粮仓数据库。

二、需求分析1. 数据资源的全面收集。

智慧粮仓数据库的建设需要收集各方面的数据资源,包括粮食的成分分析、入库来源渠道、粮仓实时温湿度、货车实时位置等,通过对这些数据的收集和分析,可以帮助粮企科学管理、提高运营效率。

2. 实时更新和统一管理。

建立粮食入库、出库、储存、检测、维护、销售等方面的数据库,并实现各个模块的数据实时更新和统一管理,确保数据的准确性和可靠性,为决策提供有力支持。

3. 数据的安全性和保密性。

粮仓数据库中涉及到大量的敏感信息,如粮食来源、质量检测结果、销售价格等,它们的保密性需要得到高度重视。

需要通过加强身份认证、权限管理等多种手段来确保数据的安全。

4. 数据的智能分析和预测。

通过对数据库中的数据进行数字化分析,预测有关粮食的未来趋势,优化粮食的储存和销售管理模式,为企业提供科学决策支持。

三、建设方案1. 建立标准化的数据格式和采集标准。

建设过程中需遵循行业标准和相关法律法规,制定企业内部的数据采集流程。

为此需要建立标准化的数据格式,并通过信息化手段实现数据自动采集,实时更新。

2. 建立大数据平台和数据仓库。

将数据库搭建在大数据平台上,方便数据分析和处理。

同时,根据数据的特点建立对应的数据仓库,分别存储历史数据和实时数据,并建立数据模型,便于日后的数据挖掘和使用。

3. 数据系统的安全保障。

对数据库进行数据备份、加密和存储,以保证数据的安全性。

同时,建立权限设定机制,实现角色权限分类,保证用户访问数据的合法性和安全性。

4. 数据分析和应用程序开发。

建立对应的数据分析工具和模型,通过对数据的分析和挖掘,实现对粮仓各个环节的优化和提升,比如实现大数据处理、机器学习、数据挖掘等技术,为企业的决策提供精准、及时的数据支持。

数据仓库建设步骤

数据仓库建设步骤

数据仓库建设步骤1.系统分析,确定主题确定一下几个因素:操作出现的频率,即业务部门每隔多长时间做一次查询分析。

在系统中需要保存多久的数据,是一年、两年还是五年、十年。

用户查询数据的主要方式,如在时间维度上是按照自然年,还是财政年。

用户所能接受的响应时间是多长、是几秒钟,还是几小时。

2.选择满足数据仓库系统要求的软件平台选择合适的软件平台,包括数据库、建模工具、分析工具等。

有许多因素要考虑,如系统对数据量、响应时间、分析功能的要求等,以下是一些公认的选择标准:厂商的背景和支持能力,能否提供全方位的技术支持和咨询服务。

数据库对大数据量(TB级)的支持能力。

数据库是否支持并行操作。

能否提供数据仓库的建模工具,是否支持对元数据的管理。

能否提供支持大数据量的数据加载、转换、传输工具(ETT)。

能否提供完整的决策支持工具集,满足数据仓库中各类用户的需要。

3.建立数据仓库的逻辑模型具体步骤如下:(1)确定建立数据仓库逻辑模型的基本方法。

(2)基于主题视图,把主题视图中的数据定义转到逻辑数据模型中。

(3)识别主题之间的关系。

(4)分解多对多的关系。

(5)用范式理论检验逻辑数据模型。

(6)由用户审核逻辑数据模型。

4.逻辑数据模型转化为数据仓库数据模型具体步骤如下:(1)删除非战略性数据:数据仓库模型中不需要包含逻辑数据模型中的全部数据项,某些用于操作处理的数据项要删除。

(2)增加时间主键:数据仓库中的数据一定是时间的快照,因此必须增加时间主键。

(3)增加派生数据:对于用户经常需要分析的数据,或者为了提高性能,可以增加派生数据。

(4)加入不同级别粒度的汇总数据:数据粒度代表数据细化程度,粒度越大,数据的汇总程度越高。

粒度是数据仓库设计的一个重要因素,它直接影响到驻留在数据仓库中的数据量和可以执行的查询类型。

显然,粒度级别越低,则支持的查询越多;反之,能支持的查询就有限。

5.数据仓库数据模型优化数据仓库设计时,性能是一项主要考虑因素。

数据仓库建设思路整理

数据仓库建设思路整理

数据仓库建设思路整理1.建设背景:目前我行数据缺失、历史数据查询困难、各部门数据提取依赖SQL 脚本实时查询而效率低下、正确性不高等问题。

在这种背景下我行数据仓库建设显得尤为重要。

2.数仓系统功能模型:当前同业主流数据仓库系统功能模型大体如图1.0所示:图1.0主要分以下几个模块:源数据:主要是下发的核心业务、ECIF、信贷系统、财务系统,支付系统等数据以及第三方提供并为我行使用的数据。

FTP服务器:主要负责接下发数据或通过调用接口等形式获取第三方源数据文件。

文件卸载区:负责从FTP服务器获取当前需要更新到数据仓库的数据。

文件备份区:负责将进入数据仓库的数据文件进行备份管理。

ODS(Operational Data Store):操作型数据存储,仅对源数据增加源系统和数据日期作为区分存储起来。

可以用于明细和流水等原始记录查询。

FDS(Fundational Data Strore):基础数据存储,按客户、存款、贷款、公共、银行卡、总账、中间业务、渠道八个主题对数据进行汇总和计算。

IDS(Integrated Data Store):集成数据存储,对数据按客户维、账户维、时间维、机构维、产品维等维度对数据进行集成。

应用系统:主要负责展示、分析和使用数据仓库数据。

数据仓库管理平台:主要负责作业调度,元数据管理,系统监控等功能。

3.数据仓库技术模型:根据数据仓库个模块的不同特性总结各层级所用到的技术或者软件如下图2.0所示:图3.0上图每层实现技术区分商业和开源实现方案,其中商业软件性能好、服务支持好,但是因为都是国外大型公司产品,产品价格高;而开源方案在性能方面不如商业软件,同时需要投入较多较多时间,人力进行整合。

建设过程中可以结合数据规模,数据储存时间,实际访问需求量等方面综合考虑,采用不同的技术实现方案。

医疗数据仓库建设方案

医疗数据仓库建设方案

综合医疗系统中的数据仓库解决方案在医疗服务系统中建立数据仓库是一个不小的挑战,综合大型医疗系统的焦点正从糟糕的医疗配套问题转向立体交叉的医疗管理之中,在提高医疗服务质量的同时又要削减成本,这就需要在医疗程序中消除不必要的环节。

这里我们介绍一下在医疗项目业务开发过程中总结的一些宝贵经验,主要包括建立数据仓库需求,理解医疗系统中的数据仓库,明确开发数据仓库的成本,建立开发小组,以及设计各阶段的任务目标。

1、简介2.1 建立数据仓库需求2.2 确定核心业务问题20多个主要业务经理参与了需求调查,主要是关于决策支持所需的高层信息。

在此次调查过程中确立了几个关键性的领域,它们是业务实际利益、数据获取、企业文化、领导及无效的进程。

然而,调查小组很快发现,将数据仓库认为是能解决上述所有领域的问题的灵丹妙药等于冒一个天大的风险。

数据仓库仅对数据的获取与保持数据的连续性方面有本质的突破,而再出色的数据入口对改变领导模式、企业文化或医疗基础都无济于事。

调查小组调查的问题集中如下:1.列出3个你最需要作出的决策,是什么?2.作出这些决策你需要哪些报表和工具?3.目前这些报表和工具的优缺点是什么?4.基于当前的信息,时间、质量或资金对作出一个好的/坏的决策有何影响?5.什么样的信息/计算/聚合可能提高你制定决策的水平?6.你运用联机系统进行信息分析的可能性有多大?7.如果你借助于专门的数据查询,决策制定过程有何变化?8.为了充分利用信息优势,需要改进哪些日常工作?9.获取新系统信息的最关键的益处在哪里?2.3 数据源清单和数据源分析与对管理人员调研同时进行的是定义数据目录,数据目录用于确定哪些参选数据适合进入数据仓库。

目录包括用于IDS之中的312个专用例程的内容及结构的详细信息。

数据清单的主要目的是进行当前数据源与预期信息需求的对比。

数据源清单和管理调研显示了如下主要问题:● 在多个应用中使用同一个主题的数据● 一些应用包括空的数据结构● 系统没有集成,无法自动进行数据的更新、转移和载入,产生数据碎片和数据不一致的现象● 多种多样的和不兼容的数据结构使相似的数据结合起来很困难,有时甚至不可能● 数据从一个系统中出出进进,与数据不一致的问题纠缠在一起2.4 定义侯选主题领域基于如下条例,可以开发并优化一组潜在主题领域:● 期望利润——通过实施一个主题领域,在患者满意度、出诊收益和运营效率方面,健康系统取得的定量的和定性的利润● 数据裂缝——实施一个主题领域所需数据与可支配数据之间的差异● 复杂程度——为一个特定的主题创建一个有效的设计方案所需的努力● 实施风险——当组织准备充分并具备运营能力,而且所需的系统界面齐全,时间安排得当,广度和深度比例适当时,实施一个特定的主题领域会相对容易一些2.5 选择主题领域通常,一个具有最大潜在利润,同时风险因素又最少的主题是最好的选择。

公司数据仓库建设方案

公司数据仓库建设方案

公司数据仓库建设方案模板随着公司业务的快速发展,数据量呈现爆炸性增长,同时业务对数据的需求也日益增加。

为了更好地管理、分析和应用这些数据,提高决策效率和精细化程度,我们计划建设一个高效、稳定、安全的数据仓库系统。

本方案将详细阐述数据仓库建设的目标、原则、架构设计、实施计划等方面,为公司提供一套完整的数据仓库建设方案。

一、建设目标1.数据集成和一致性。

数据仓库的首要任务是将来自不同业务系统和部门的数据进行整合,消除数据的割裂和不一致,实现数据集成和一致性。

这样,公司就可以基于一致、准确的数据进行决策和分析,避免因数据不一致导致的错误决策。

2.高性能和高可用性。

数据仓库需要能够快速处理大量的数据,并能够支持多个用户同时进行查询和分析。

因此,数据仓库需要具备高性能的计算和存储能力,同时还需要具备高可用性,以便在遇到故障或意外情况时能够快速恢复并保证系统的正常运行。

3.数据质量和标准化。

通过改善数据统计口径的不一致性,减少数据计算的错误的可能性,实现数据的标准化,从而提高数据质量。

4.数据安全性。

数据仓库需要确保数据的机密性和完整性,避免未经授权的访问和数据泄露。

5.可扩展性和灵活性。

随着业务的发展,数据仓库需要能够轻松地扩展其存储和处理能力,以满足不断增长的数据需求。

6.降低成本。

通过优化数据存储和处理方式,公司可以更高效地利用其存储和计算资源,降低运营成本。

二、建设原则1.业务需求导向:数据仓库的建设应以业务需求为导向,明确数据仓库是为业务决策提供支持的。

在数据仓库的设计和开发过程中,需要紧密结合公司的业务需求,确保数据仓库能够满足业务部门对数据分析和决策的需求。

2.统一规划:数据仓库的建设应进行统一规划,避免数据冗余和不完整的情况出现。

要建立统一的数据模型和规范,确保数据的准确性和一致性,同时还需要制定统一的数据管理制度和维护机制,保证数据的完整性和可靠性。

3.可扩展性设计:数据仓库的建设应考虑可扩展性,以适应不断变化的数据环境和业务需求。

数据仓库建设项目实施方案建议书范本(doc 39页)

数据仓库建设项目实施方案建议书范本(doc 39页)

株洲南车时代电气股份有限公司数据仓库建设规划项目方案建议书XX软件系统股份有限公司2015年03月目录第1章南车电气数据仓库建设项目介绍............. 错误!未定义书签。

1.1.南车电气数据仓库建设项目的背景 .............................................................................. 错误!未定义书签。

1.2.南车电气环境现状及需求分析 ...................................................................................... 错误!未定义书签。

1.2.1.项目目标.................................................................................................................. 错误!未定义书签。

第2章南车电气数据仓库建设解决方案详述......... 错误!未定义书签。

2.1.南车电气数据仓库建设整体方案说明 .......................................................................... 错误!未定义书签。

2.1.1.方案概述.................................................................................................................. 错误!未定义书签。

2.1.2.系统逻辑架构.......................................................................................................... 错误!未定义书签。

数据仓库构建实施方法及步骤

数据仓库构建实施方法及步骤

数据仓库构建实施方法及步骤数据仓库是面向主题的、集成的、不可更新的、随时间的变化而不断变化的,这些特点决定了数据仓库的系统设计不能采用同开发传统的OLTP数据库一样的设计方法。

数据仓库系统的原始需求不明确,且不断变化与增加,开发者最初不能确切了解到用户的明确而详细的需求,用户所能提供的无非是需求的大的方向以及部分需求,更不能较准确地预见到以后的需求。

因此,采用原型法来进行数据仓库的开发是比较合适的,因为原型法的思想是从构建系统的简单的基本框架着手,不断丰富与完善整个系统。

但是,数据仓库的设计开发又不同于一般意义上的原型法,数据仓库的设计是数据驱动的。

这是因为数据仓库是在现存数据库系统基础上进行开发,它着眼于有效地抽取、综合、集成和挖掘已有数据库的数据资源,服务于企业高层领导管理决策分析的需要。

但需要说明的是,数据仓库系统开发是一个经过不断循环、反馈而使系统不断增长与完善的过程,这也是原型法区别于系统生命周期法的主要特点。

因此,在数据仓库的开发的整个过程中,自始至终要求决策人员和开发者的共同参与和密切协作,要求保持灵活的头脑,不做或尽量少做无效工作或重复工作。

数据仓库的设计大体上可以分为以下几个步骤:概念模型设计;技术准备工作;逻辑模型设计;物理模型设计;数据仓库生成;数据仓库运行与维护。

下面我们六个主要设计步骤为主线,介绍在各个设计步骤中设计的基本内容。

第一节概念模型设计进行概念模型设计所要完成的工作是:<1>界定系统边界<2>确定主要的主题域及其内容概念模型设计的成果是,在原有的数据库的基础上建立了一个较为稳固的概念模型。

因为数据仓库是对原有数据库系统中的数据进行集成和重组而形成的数据集合,所以数据仓库的概念模型设计,首先要对原有数据库系统加以分析理解,看在原有的数据库系统中“有什么”、“怎样组织的”和“如何分布的”等,然后再来考虑应当如何建立数据仓库系统的概念模型。

一方面,通过原有的数据库的设计文档以及在数据字典中的数据库关系模式,可以对企业现有的数据库中的内容有一个完整而清晰的认识;另一方面,数据仓库的概念模型是面向企业全局建立的,它为集成来自各个面向应用的数据库的数据提供了统一的概念视图。

数据仓库建设方案详细

数据仓库建设方案详细

第1章数据仓库建设1.1数据仓库总体架构专家系统接收增购项目车辆TCMS或其他子系统通过车地通信传输的实时或离线数据,经过一系列综合诊断分析,以各种报表图形或信息推送的形式向用户展示分析结果。

针对诊断出的车辆故障将给出专家建议处理措施,为车辆的故障根因修复提供必要的支持。

根据专家系统数据仓库建设目标,结合系统数据业务规,包括数据采集频率、数据采集量等相关因素,设计专家系统数据仓库架构如下:数据仓库架构从层次结构上分为数据采集、数据存、数据分析、数据服务等几个方面的容:数据采集:负责从各业务自系统中汇集信息数据,系统支撑Kafka、Storm、Flume及传统的ETL采集工具。

数据存储:本系统提供Hdfs、Hbase及RDBMS相结合的存储模式,支持海量数据的分布式存储。

数据分析:数据仓库体系支持传统的OLAP分析及基于Spark常规机器学习算法。

数据服务总线:数据系统提供数据服务总线服务,实现对数据资源的统一管理和调度,并对外提供数据服务。

1.2数据采集专家系统数据仓库数据采集包括两个部分容:外部数据汇集、部各层数据的提取与加载。

外部数据汇集是指从TCMS、车载子系统等外部信息系统汇集数据到专家数据仓库的操作型存储层(ODS);部各层数据的提取与加载是指数据仓库各存储层间的数据提取、转换与加载。

1.2.1外部数据汇集专家数据仓库数据源包括列车监控与检测系统(TCMS)、车载子系统等相关子系统,数据采集的容分为实时数据采集和定时数据采集两大类,实时数据采集主要对于各项检测指标数据;非实时采集包括日检修数据等。

根据项目信息汇集要求,列车指标信息采集具有采集数据量大,采集频率高的特点,考虑到系统后期的扩展,因此在数据数据采集方面,要求采集体系支持高吞吐量、高频率、海量数据采集,同时系统应该灵活可配置,可根据业务的需要进行灵活配置横向扩展。

本方案在数据采集架构采用Flume+Kafka+Storm的组合架构,采用Flume和ETL工具作为Kafka的Producer,采用Storm作为Kafka的Consumer,Storm可实现对海量数据的实时处理,及时对问题指标进行预警。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河北省工商银行数据仓库系统建设方案建议书北京世纪明日网络科技有限公司二零零零年三月河北省工商银行数据仓库系统建设方案目录第一章前言1.1数据仓库发展史1.2竞争日趋激烈的金融市场1.3中国专业银行面临的挑战1.4中国专业银行实施数据仓库的意义1.5中国专业银行实施数据仓库已具备的条件第二章数据仓库总体概述2.1 数据仓库基础2.2 数据仓库技术概述2.3 一个可扩展数据仓库的基本框架2.4 一个数据仓库实施流程第三章系统体系结构设计3.1系统设计指导思想3.2 方案总体框架图3.3 系统体系结构设计3.4 系统方案的组成第四章银行数据仓库的建设4.1 面向应用的OLTP系统和面向主题的OLAP系统4.2 个性化服务的定义4.3 业务探索/业务发掘4.4 建立市场客户信息基础4.5 利用数据仓库实现的基本模块4.6 更高层次的开发应用4.7 综合信息发布第五章方案实施建议5.1 开发模式5.2 组织机构5.3 项目实施进程5.4 项目进度计划第六章产品报价6.1 软件产品报价6.2 硬件产品报价6.3 项目开发实施费用第一章前言1.1 数据仓库发展史相对于许多行业而言,信息处理技术还是一门新兴的技术,但是其发展速度却几乎是最快的。

随着计算机硬件技术的飞速发展,软件技术也是日新月异。

许多企业和机构已经建立了相对完善的OLTP(联机事物处理)系统。

随着时间的推移,这些系统中积累了大量的历史数据,其中蕴含了许多重要的信息。

通过对这些历史数据的分析和综合处理,可以找到那些对企业发展至关重要的业务信息,从而帮助有关主管和业务部门作出更加合理的决策。

70年代中期出现的MIS(管理信息系统)实际上就是在这种背景下产生的。

但MIS具有极大的局限性。

首先,它是按预先定义好的流程对数据作相应的处理,因此只能对预先描述好的业务问题进行回答。

其次由于开发工具的限制,对它的修改也不大方便,特别是业务流程发生变化,模型需要调整,这种修改更加困难。

最后数据的不断积累和数据量迅速增加,普通的商用数据库(即OLTP数据库)难以处理,系统的扩展存在很大限制。

在这种情况下MIS逐步发展到了数据仓库。

世界上最早的数据仓库是NCR公司为全美、也是全世界最大的连锁超市集团Wal*Mart 在1981年建立的,经过二十年的发展,该系统已经非常完善,数据量扩展到27TB,成为迄今为止世界上最大的数据仓库。

1.2 竞争日趋激烈的金融市场根据Tower Group公司1998年10月的研究,1999年全球金融机构将投资54亿美金实施数据仓库系统,其中欧美地区占八成的市场份额,其次为亚太地区,在美国实施数据仓库的单位以大型银行为主,基础上启动的资金为五百万美金以上;1998年在全球前500家银行中已经有近九十家的数据仓库数据量超过500GB,预测在1999年将有150家,2000年有260家;数据仓库是金融机构实现客户关系管理(Customer Relationship Management)的核心技术,也是金融业竞争优势的来源,主要的应用业务部门为信用卡部、信贷部、市场部和零售业务部等,应用领域是以客户为中心的分销渠道管理、客户利润分析、客户关系优化和风险控管。

造成欧美地区金融机构采用数据仓库技术,提供以客户为中心的个性化服务(One to One Marketing)的背景原因如下:1)金融服务市场的开放竞争。

如AT&T电话公司的电话卡可以透支打电话、福特汽车公司的购车信用分期付款、零售业的透支分会员卡和贵宾卡、信用卡公司发行信用卡、ESD建立ATM网、GE公司的贷款服务,保险公司的储蓄型保险单和保单贷款等,允许银行业的并购,影响银行的业务收入和利润。

2)上述的开放市场,业者会推出多样化的产品和服务,让顾客有更多的比较和选择的机会。

造成顾客购买的因素,除了价格以外,还应考虑方便性、可用性等,形成个性化服务的需求。

银行需要更进一步了解客户,才能满足客户需求,进而留住客户,增加利润。

3)信息技术(如海量并行处理的技术)的突飞猛进,使得快速地分析客户详细的历史交易数据成为可能,从而可以更好地了解、模拟和预测客户的消费行为、偏好等。

另外移动通信技术的进步,让客户访问信息服务的方式不受时空的限制。

这些技术让银行业务用户可以及时响应各种突发的复杂的经营问题。

4)银行现有的管理制度和业务流程,都是以产品(Product)为中心来进行客户服务,不同的帐号信息分散在不同的计算机系统内,缺乏对客户统一的全面了解。

现有的生产系统是银行营运和客户的基础设施,无法提供多用户对大量历史数据同时进行突发的复杂的决策分析,所以建立另外一套以客户为中心的数据仓库决策支持系统是实现个性化服务的必要手段。

1.3 中国专业银行面临的挑战1984年人民银行成为中央银行的角色,成立了四家国有专业银行:工商银行、农业银行、中国银行和建设银行。

后来又成立交通银行、中信实业银行、光大银行等十一家股份制商业银行。

1996年改组城市信用合用社建立股份制城市商业银行。

国有专业银行长期在计划体制下运转,其经营行为和经营意识带有很强的行政色彩,正向商业银行化进行过渡。

随着经济的增长和国民生活水平的提高,社会保障制度的改革,政府扩大内需的政策等,国有专业银行和股份制商业银行的零售业务,如住房贷款、退休养老金、消费贷款和信用卡业务等,将成为银行业务和利润的增长点。

如何争取零售业务的市场机会,发掘信用好风险低的客户已成为银行关注的焦点。

在未来零售业务的迅猛发展,改善银行的获利能力,将加速国有专业银行转型成为商业银行的进程。

在现阶段,主要是国有专业银行和股份制商业银行、邮政银行之间的竞争,其他服务业和外资银行尚未构成全面性的威胁。

虽然,国有专业银行具有覆盖全国营业网点的优势,但受历史包袱的影响,期待扩大零售业务,以提高获利能力;股份制商业银行规模相对小,只能提供地区性的服务,零售业务是主要的收入来源,从国有专业银行和邮政银行中争取更多的新客户,将是主要的经营策略;邮政银行的优势在营业网点、客户基础和更多的增值服务,竞争的策略是留住有利润的客户和争取新客户,所以邮政银行也将是现阶段国有专业银行和股份制商业银行的重要竞争对手。

1999年11月15日,中国与美国签署加入世界贸易组织的双边协议,中国将自加入世界贸易组织起,逐步开放金融市场,入世两年后开放外资银行经营对公业务,五年后开放对私业务和设立营业网点。

在可预见的未来,国内的金融机构将同世界级的外资银行发生面对面的激烈竞争。

届时,客户有更多的选择,竞争会更加的激烈。

世界级的外资银行为加速取得和扩大在中国的市场份额,将引进其在国外实施多年的以客户为中心的数据仓库决策支持系统,推出更多样化的金融产品和服务来争取高利润的客户。

因此,了解客户需求和客户对银行的利润贡献度、提供有竞争性的产品或服务、经由客户喜好的渠道、在适当的时机对客户进行销售或服务,这种个性化服务的策略将是国内商业银行在目前竞争优势的来源,同时也是未来与外资银行竞争必备的武器。

如何建立个性化服务的数据仓库系统,已经成为国内银行现阶段最重要的课题。

1.4 中国专业银行实施数据仓库的意义从现在和将来专业银行所面临的市场环境来看,实施以客户为中心的数据仓库决策支持系统,将对国内银行业现在和未来的发展产生深远的影响,且具有重大的战略意义。

首先是增强国内银行的竞争力,在激烈的竞争中维持获利。

无论现在或是未来,银行将面临着一个激烈竞争的态势,必须对市场多变的需求作出及时响应,才能持续生存和发展。

根据国外商业银行的经验,在金融市场开放环境中,银行竞争优势的来源是对每一位客户提供个性化服务。

然而银行有数以千百万计的客户,如何将客户细分到以客户为中心的客户单一市场呢?也就是如何设计大量个性化的产品或服务。

银行只有通过以客户为中心(Customer Centric)的决策支持系统,才能使用科学的方法实现个性化服务。

数据仓库系统存放每一位客户同银行往来的详细的历史交易明细数据,对客户有统一的视图,能帮助银行业务用户以科学的手段快速地分析、模拟和预测客户的个性化需求,进而设计符合客户需求的产品或服务。

通过客户喜好的渠道完成交易,是增强专业银行竞争能力最有效的手段。

其次是提高专业银行整体运作与管理水平。

数据仓库决策支持系统是专业银行管理模式发展的结果。

随着各个历史时期经济金融环境的变化,专业银行的经营管理模式在演变,最初强调资产管理,是因为来源比较狭窄,主要是活期存款,而工商企业的资金需求也较简单,采用会计记帐设备提高生产力;到了六十年代,产生负债管理理论,强调要通过负债管理保持银行的流动性,主动从市场、银行业来调剂资金余缺,开始引进会计系统计算机化;七十年代末期,出现了资产负债综合管理理论,重点在资产负债风险管理、信贷风险管理、投资风险管理和外汇交易风险管理,MIS和分行自动化成为核心系统;九十年代,金融市场的开放,低利率和信用扩张刺激消费,零售业务成为银行的主要业务和收入,客户对金融产品和服务的要求越来越高,银行业务部门和管理层首要关心的问题在于如何降低风险和增加利润,以客户为中心的数据仓库决策支持系统可以快速地了解每一项交易、每一个帐号、每一个分销渠道、每一位客户的风险和利润,让银行作出正确的业务决策,及时响应每一位客户的现在和未来需要,提高整体运作和管理水平。

最后是增强专业银行应变能力。

订立金融市场开放时间表,让国内银行有充分的时间准备来提高自己的竞争实力,以应付外资银行在将来的竞争。

人民银行会逐步放松管制政策和增加国内银行可以经营的业务范围,让国内银行熟悉市场经济的运作规则。

当外资银行可以在国内经营零售业务时,如果国内银行已经完全掌握客户的行为和需求,了解各种金融产品的的操作和管理,那么对国内银行的冲击就比较小。

问题在于,国内银行如何在这么短的时间内完成这么多的事情。

如果没有足够的企业和客户信息,国内银行如何了解人民银行推出的新政策对银行的影响呢?又如何向人民银行建议新业务和服务呢?或是对付外资银行的竞争呢?企业级的数据仓库系统,存放银行各种主题,如客户、帐号、部门、金融产品、商业活动、位置、渠道和交易事件等,可以快速地分析、模拟和预测新业务和新政策对银行整体的影响,让银行的领导及时制定策略和战术,应变突发的复杂的经营问题。

1.5 中国专业银行实施数据仓库已具备的条件近年来,中国专业银行在管理上已逐步形成了一套快速适应市场变化、满足用户需求的内部运行机制。

概括来讲,中国专业银行实施个性化服务数据仓库系统具备了以下条件:1)企业有一支较高素质的管理人才和技术队伍,具备参与信息建设的丰富经验,为基础上实施提供了人才的保证。

2)完善的信息技术基础设施,如ATM网络、电话银行、传真服务、呼叫中心、网上服务、POS系统、企业内部网、人行的电子清算系统等,确保交易信息源能及时的获得,数据仓库建成后使用方便。

相关文档
最新文档