铸钢件冒口设计
完整版铸钢件冒口的设计与计算
§4铸钢件冒口设计设计步骤:1〕确定冒口的安放位置2〕初步确定冒口数量3〕划分每个冒口的补缩区域,选择冒口类型4〕计算冒口的具体尺寸冒口计算方法:模数法+比例法+补缩液量法〔参考资料〕一模数法1计算原理要保证冒口晚于铸件凝固,需冒口的模数大于铸件被补缩部位的模数.即 廿件对于铸钢件,冒口、冒口颈、铸件的模数应满足以下比例关系:明】页冒口1M 产〔1.1-L2〕 M 什 暗侧冒口;〞伸:M M 也产1:1.1:1.2 钢液通过胃口浇注:M 鼠M.电:〔1-L03〕:L2 式中 M 虾M 件一分别为冒口、冒口颈和铸件被补缩处的模数0为了保证冒口中有足够的金属液补充铸件的收缩,还应该满足以下条件3W V 〔旷件+「皆〕忘%平式中央——冒口所能补缩的铸件体积;% 一 -冒口体积:0 --- 合金的体收缩率,具体数值,参见表4.3;斗——冒口的补缩效率.各种冒口的补缩效率值,见表4~4.表4.3确定铸钢体收缩率⑶的国袤 合金锅的体收缩率 口 二—普通碳制相同,UJ 由左图中查卅各合金先蜜体收编量相总跳枸为邑=工尢卬式中:中 合金铜中各含金无素狗含里.电分别表示出、g …E 霁合金元素对体收缩率的除正累鞋,由卜一栏中直出r 各元素分别为t1、缸、h …划:EX =以ML** Ml +&g 十品阴- ,合金兀素W Ni Mn Cr Si Al 修正系数人0.53 ■ 0.0354 +0.05 S5 M12 +1.03 -1.70 普通城飒体收埒率fi-fr总结:M冒=1.2M件P127式4-5,左边为总收缩量,右边为由冒口补充量2计算步骤1〕计算铸件模数根据铸件需补缩部位,划分补缩区,分别计算铸件的模数.计算方法:公式计算+图表计算—表4-5 〔p128-130〕.2〕计算冒口及胃口颈模数.根据热节的位置,确定胃口的类型,再根据式〔4-2〕或式〔4-3〕、式〔4-4〕. 即可计算出国口及冒口颈模数计算举例;铸钢件在下部法上处放置暗冒口补缩. 如图4-3三所示.求吩和利用表4・5中上形体计算公式,法兰处o=200mm, b—lOOnun*非散热面可得:“*0x20 …M 社=—j ---- ——cm = 3.636cm件2〔10 + 20〕-5因浇口通过冒口,故:1.05Mr = 374 cm 加冒=L2A/件=436 cmS 中左边的冒口颈…W R=〔22X 10X2〔22+10〕]四4一箝补缩铸钢件法兰的目口颈cm- 3.43cm,小于3.74cm,不能满足补缩要求,在铸件热节处将出现缩松口采用右边的冒口颈,必=Q0X 12V[2QO+I2〕]crti=3.75cm,满足了要求.计算M件用L形体计算公式,为什么不用法兰体公式去套呢?〔法兰体高度b无法确定〕图4-33B-B剖面图中200应改为220,因计算M B时用的数值是220;另外, 冒口直径为〔|〕220,其冒口颈宽也应为220.〔A-A剖面图中200改否.〕采用右边的A-A剖面冒口颈满足了要求,A-A剖面冒口颈尺寸怎么得来的呢?不要瞎懵,可列式M仝^=3.74=20X/[2 〔20+X〕],求出X=12.生产中可根据M冒数值查出标准侧冒口,得冒口尺寸〔直径、高等〕,冒口颈尺寸,冒口体积、重量,能补缩的铸件体积及重量〔 M冒结合一查〕.3〕确定铸钢件体收缩率由表4-3求出.例如,ZG270-500的平均W C=0.35%,假设浇注温度为1560℃,可从表4-3 查出=4.7%〔碳钢e V= e C〕.£V如何查出的呢?浇注温度为1560 C; W C=0.40%, ev=5%; W C=0.20%,&V=3.8%;据此列式〔5-3.8〕 / 〔0.4-0.2〕 = 〔5-X〕 / 〔0.4-0.35〕,解出X=4.7 〔插入法,比例法〕4〕确定冒口形状和尺寸查相关表格.5〕确定冒口数目6〕校核冒口的最大补缩水平.二比例法〔热节圆法〕使冒口根部直径大于铸件被补缩处热节圆直径或壁厚, 再以冒口根部直径来确定其他尺寸.D=cd式中D ……冒口根部直径;c ••…比例系数,参见表4-6;〔查表步骤〕d ……铸件被补缩热节处内切圆直径.可用作图法画出图4-34热节圆直件a 〕壁厚均匀b 〕壁面和交查表步骤:1〕选取比例系数c 〔先按铸件结构选择冒口类型,再选比例系数〕2〕确定冒口高度〔根据直径 D 确定〕;3〕确定每个冒口长度或冒口个数〔根据冒口延伸度确定〕.三铸件工艺出品率的校核表4-7说明校核方法.采用普通冒口时,冒口尺寸 可根据表中数值进行验算 和调整,即将冒口重量代入 计算后,假设工艺出品率低于 表中数值,那么冒口尺寸偏 大,可适当减小冒口高度; 假设高于表中数值,那么应加大 冒口尺寸或增加冒口个数.四冒口计算举例 见p133例题.图535 ZG35SiMn 铸钢齿轮铸件1模数法工艺出品率= 铸件重量铸件重量+浇铸系统重 量+冒口重量轮缘与轮辐的交接处为热节,其直径d按作图法得50〔大于轮缘厚40〕;按作图法且考虑热节增大,见P126图4-31,dy=d+〔10~30〕,取d=60 〔见P134比例法〕.轮缘热节处按表4-5应为板与杆的相交体,由图4-35可得a=d=60mm, b=180mm,c=24mm.2比例法〔热节圆法〕作业:如下列图铸钢齿圈坯件ZG25,为一圆环,中径〔|〕920,厚80,高240, 有三种补缩方案:3个6190冒口, 3个6190冒口和3个冷铁,尺寸为:宽100X厚50X高240, 6个6190冒口.按有效补缩距离检验,冒口数目是否足够?。
可锻铸铁件冒口设计
可锻铸铁件冒口设计铸铁是一种常用的材料,广泛应用于制造行业。
在铸铁制品的生产中,冒口设计是至关重要的,它直接影响到产品质量和加工成本。
正确的冒口设计可以有效地避免缺陷的产生,提高产品的成形质量,同时也可以降低后续加工的难度和成本。
本文将介绍可锻铸铁件冒口设计的相关知识,并提出一种合理的冒口设计方案。
一、可锻铸铁件的特点可锻铸铁是一种含碳量较高的铸铁材料,其强度和硬度较高,具有较好的可锻性,适用于锻造和精密加工。
可锻铸铁件通常用于制造汽车零部件、机械零件等需要高强度和耐磨性的工件。
由于可锻铸铁的成分和性能特点,其在铸造过程中对冒口设计有着特殊的要求。
二、冒口设计原则1.冒口位置:冒口应设置在可锻铸铁件的最高点,以便将浮渣和气泡排除。
通常情况下,冒口位置应位于铸件的上部,离毛口处一定距离。
2.冒口形状:冒口应设计成易于开启和清理的形状,避免产生断口和裂纹。
常见的冒口形状有圆形、方形和椭圆形等,根据铸件的形状和结构来选择合适的冒口形状。
3.冒口尺寸:冒口的尺寸应根据铸件的大小和结构来确定,通常情况下,冒口的面积越大,排气和排渣效果越好。
但是也要避免过大的冒口导致浪费材料和增加加工成本。
4.冒口数量:根据可锻铸铁件的结构和复杂程度,确定冒口的数量和位置。
通常情况下,大型和复杂结构的铸件需要设置多个冒口,以确保浇注材料充分进入铸型腔。
5.冒口连接:冒口应与铸件的毛口连接,以确保铸注产物的完整性和一致性。
冒口的连接处应设计成光滑和密封的结构,避免产生漏料和漏底等问题。
三、可锻铸铁件冒口设计方案针对可锻铸铁件的特点和冒口设计原则,提出一种合理的冒口设计方案:1. 冒口位置:冒口设置在铸件的最高点,离毛口处约5-10mm,以便排气和排渣。
冒口位置应经过精确计算和模拟,确保冒口的位置准确无误。
2.冒口形状:冒口设计为圆形或椭圆形,便于开启和清理。
冒口的形状应光滑和密封,减少产生断口和裂纹的可能性。
3.冒口尺寸:根据铸件的大小和结构确定冒口的尺寸,通常情况下,冒口的直径或长宽比应为1:3-1:5、冒口尺寸的选择应考虑到浇注材料的流动性和铸件的充实度。
铸铁件冒口设计手册
铸铁件冒口设计手册诸葛胜福士科铸造材料(中国)有限公司铸铁冒口设计手册一、概述冒口是一个个储存金属液的空腔。
其主要作用是在铸件成形过程中提供由于体积变化所需要补偿的金属液,以防止在铸件中出现的收缩类型缺陷(如图1和图2所示),而这些需要补偿的体积变化可能有:图1 各种缩孔图2 缩孔生产图a)和冒口的补缩图b)1—一次缩孔 2—二次缩孔 3—缩松 1—缩孔 2—型腔胀大 3—铸件(虚线以内) 4—显微缩松 5—缩陷(缩凹,外缩孔)(1)铸型的胀大(2)金属的液态收缩(3)金属的凝固收缩补偿这些体积变化所需要的金属液量随着铸型和金属种类的不同而异。
此外,冒口还有排气及浮渣和非金属夹杂物的作用。
铸件制成后,冒口部分(残留在铸件上的凸块)将从铸件上除去。
由此,在保证铸件质量要求的前提下,冒口应尽可能的小些,以节省金属液,提高铸件成品率。
由此冒口的补缩效率越高,冒口将越小,铸件成品率越高、越经济。
FOSECO公司的发热保温冒口具有高达35%的补缩效率;因而,具有极高的成品率和极其优越的经济性。
在金属炉料价格飞涨的情况下,其优越性显得尤其突出。
另外,高品质发热保温冒口,及其稳定可靠的产品质量是获得高品质铸件的重要手段和可靠的质量保证。
二、铸铁的特点铸钢和铸铁都是铁碳合金,它们在凝固收缩过程中有共同之处)如凝固前期均析出初生奥氏体树枝晶,都存在着液态、凝固态和固态下的收缩),但也有不同的特点。
其根本不同之处是铸铁在凝固后期有“奥氏体+石墨”的共晶转变,析出石墨而发生体积膨胀,从而可部分地或全部抵消凝固前期所发生的体积收缩,即,具备有“自补缩的能力”。
因此在铸型刚性足够大时,铸铁件可以不设冒口或采用较小的冒口进行补缩。
灰铸铁在共晶转变过程中析出石墨,并在与枝晶间的液体直接接触的尖端优先长大,其石墨长大时所产生的体积膨胀直接作用在晶间液体上,进行“自补缩”。
对于一般低牌号的灰铁铸件,因碳硅含量高,石墨化比较完全,其体积膨胀量足以补偿凝固时的体收缩,故不需要设置冒口,只放排气口。
铸铁件冒口定量设计课件
(4)横浇道模数 Mh
Mh=f横.f2.Mc
f横=0.75~0.85 f2 ——收缩模数系数 Mc ——铸件模数 根据横浇道模数Mh,求出横浇道尺寸
10 浇注系统充填与补缩一体化设计
(1)充填设计(保证浇注时间,大流量,平稳 洁净,有合理的流态,可控的流动路径)
(2)补缩设计(足够的补缩时间和补缩量) (3)取二者较大者,再核算 (4)给出二者都满足的尺寸
(5)内浇道模数Mn
Mn=f内f2.f4Mc f内=0.35~0.40 f2 ——收缩模数系数 f4 ——冒口颈长度系数 f4=0.8~1.0 Mc ——铸件模数 根据内浇道模数Mn,求出内浇道尺寸
11 铸铁件冒口系列
12 结论
(1)冒口位置不要放在铸件的几何热节上; (2)冒口颈 短、 厚、 宽。 (3)铸铁件收缩时间分数,流通效应系数对
提高中国铸件在国际市场上 的竞争力
谢谢
Qm= G Mc3
3 铸铁件均衡凝固冒口设计方法
(1)收缩模数计算法(3f法) (2)查表法 (3)分段比例查表法
4 收缩模数计算法(3 f法)
(1)冒口体模数MR MR=f1f2f3Mc
f1 ——冒口平衡系数 f2 ——收缩模数系数 f3 ——冒口压力系数 Mc ——铸件模数
取f1=1.2 f2=√P f3=1.1~1.3
冒口,冒口颈大小的影响显著。 (4)无冒口铸造的本质是浇注系统当冒口。
均衡凝固技术1988年获 国家科技进步二等奖
1989年国家科委成都均衡凝固推广班
谢谢
联系方式 地址:710048 西安理工大学608信箱
《铸造技术》杂志 电话/传真: 即时联系: Email:
附件
提高铸造企业工艺水平和 铸件品质
铸铁件冒口设计手册
铸铁件冒口设计手册诸葛胜福士科铸造材料(中国)有限公司铸铁冒口设计手册一、概述冒口是一个个储存金属液的空腔。
其主要作用是在铸件成形过程中提供由于体积变化所需要补偿的金属液,以防止在铸件中出现的收缩类型缺陷(如图1和图2所示),而这些需要补偿的体积变化可能有:图1 各种缩孔图2 缩孔生产图a)和冒口的补缩图b)1—一次缩孔 2—二次缩孔 3—缩松 1—缩孔 2—型腔胀大 3—铸件(虚线以内) 4—显微缩松 5—缩陷(缩凹,外缩孔)(1)铸型的胀大(2)金属的液态收缩(3)金属的凝固收缩补偿这些体积变化所需要的金属液量随着铸型和金属种类的不同而异。
此外,冒口还有排气及浮渣和非金属夹杂物的作用。
铸件制成后,冒口部分(残留在铸件上的凸块)将从铸件上除去。
由此,在保证铸件质量要求的前提下,冒口应尽可能的小些,以节省金属液,提高铸件成品率。
由此冒口的补缩效率越高,冒口将越小,铸件成品率越高、越经济。
FOSECO公司的发热保温冒口具有高达35%的补缩效率;因而,具有极高的成品率和极其优越的经济性。
在金属炉料价格飞涨的情况下,其优越性显得尤其突出。
另外,高品质发热保温冒口,及其稳定可靠的产品质量是获得高品质铸件的重要手段和可靠的质量保证。
二、铸铁的特点铸钢和铸铁都是铁碳合金,它们在凝固收缩过程中有共同之处)如凝固前期均析出初生奥氏体树枝晶,都存在着液态、凝固态和固态下的收缩),但也有不同的特点。
其根本不同之处是铸铁在凝固后期有“奥氏体+石墨”的共晶转变,析出石墨而发生体积膨胀,从而可部分地或全部抵消凝固前期所发生的体积收缩,即,具备有“自补缩的能力”。
因此在铸型刚性足够大时,铸铁件可以不设冒口或采用较小的冒口进行补缩。
灰铸铁在共晶转变过程中析出石墨,并在与枝晶间的液体直接接触的尖端优先长大,其石墨长大时所产生的体积膨胀直接作用在晶间液体上,进行“自补缩”。
对于一般低牌号的灰铁铸件,因碳硅含量高,石墨化比较完全,其体积膨胀量足以补偿凝固时的体收缩,故不需要设置冒口,只放排气口。
基于距离场的铸钢件冒口设计方法及应用
基于距离场的铸钢件冒口设计方法及应用铸钢件的冒口设计是铸造工艺中十分重要的一环,直接关系到铸件的质量和性能。
传统的冒口设计方法主要是基于经验和试验,但存在设计效率低、设计周期长等问题。
近年来,基于距离场的冒口设计方法逐渐受到关注,并在铸造行业得到了广泛应用。
基于距离场的冒口设计方法是利用距离场理论来描述熔融金属的流动情况,从而优化冒口的形状和位置。
距离场是指根据几何图形中每个点到最近边界的距离来构造的场。
在铸造过程中,熔融金属会从冒口流入铸模中,通过距离场的分析,可以确定熔融金属流动的路径和速度,从而指导冒口的设计。
基于距离场的冒口设计方法主要包括以下几个步骤:1. 几何建模:首先对待铸件进行几何建模,包括铸件本体和冒口的几何形状。
可以使用CAD软件进行建模,并将模型导入到铸造仿真软件中进行后续分析。
2. 网格划分:将几何模型划分成离散的网格,即有限元网格。
网格的划分需要考虑到铸件的复杂形状和冒口的位置,以确保仿真结果的准确性。
3. 材料参数设定:设置铸件和熔融金属的材料参数,包括密度、热导率、热膨胀系数等。
这些参数对于模拟熔融金属的流动和凝固过程至关重要。
4. 边界条件设定:设定仿真过程中的边界条件,包括冒口的入口流速、温度等。
这些条件会影响熔融金属的流动和凝固过程,需要根据实际情况进行合理设定。
5. 距离场计算:通过计算每个网格点到几何模型边界的距离,构建距离场。
距离场可以用来表示熔融金属的流动路径和速度,是优化冒口设计的关键。
6. 仿真分析:利用铸造仿真软件进行熔融金属的流动和凝固过程模拟。
通过分析仿真结果,可以评估不同冒口设计方案的可行性和效果。
7. 冒口优化:根据仿真结果,对冒口进行优化。
优化的目标是使熔融金属能够顺利流入铸模,避免产生缺陷,同时尽量减少冒口的体积和对铸件的影响。
基于距离场的冒口设计方法相比传统的经验设计方法具有以下优势:1. 设计效率高:基于距离场的冒口设计方法可以通过计算和仿真快速得到冒口的优化方案,大大缩短了设计周期。
铸钢件冒口的设计与计算-推荐下载
§4 铸钢件冒口设计设计步骤:1)确定冒口的安放位置2)初步确定冒口数量3)划分每个冒口的补缩区域,选择冒口类型4)计算冒口的具体尺寸冒口计算方法:模数法+比例法+补缩液量法(参考资料)一模数法1 计算原理要保证冒口晚于铸件凝固,需冒口的模数大于铸件被补缩部位的模数。
总结:M冒=1.2M件P127式4-5,左边为总收缩量,右边为由冒口补充量。
2 计算步骤1)计算铸件模数根据铸件需补缩部位,划分补缩区,分别计算铸件的模数。
计算方法:公式计算+图表计算-表4-5(p128-130)。
计算M件用L形体计算公式,为什么不用法兰体公式去套呢?(法兰体高度b无法确定)图4-33B-B剖面图中200应改为220,因计算M B时用的数值是220;另外,冒口直径为φ220,其冒口颈宽也应为220。
(A-A剖面图中200改否.)采用右边的A-A剖面冒口颈满足了要求,A-A剖面冒口颈尺寸怎么得来的呢?不要瞎懵,可列式M颈=3.74=20X/[2(20+X)],求出X=12.生产中可根据M冒数值查出标准侧冒口,得冒口尺寸(直径、高等),冒口颈尺寸,冒口体积、重量,能补缩的铸件体积及重量(M冒结合εV查)。
3)确定铸钢件体收缩率由表4-3求出。
例如,已知ZG270-500的平均W C=0.35%,若浇注温度为1560°C,可从表4-3查出εV=4.7%(碳钢εV=εC)。
如何查出的呢?浇注温度为1560°C;W C=0.40%,εV=5%;W C=0.20%,εV=3.8%;据此列式(5-3.8)/(0.4-0.2)=(5-X)/(0.4-0.35),解出X=4.7(插入法,比例法)4)确定冒口形状和尺寸查相关表格。
5)确定冒口数目6)校核冒口的最大补缩能力。
二比例法(热节圆法)见p133例题。
1 模数法轮缘与轮辐的交接处为热节,其直径d按作图法得50(大于轮缘厚40);按作图法且考虑热节增大,见P126图4-31,dy=d+(10~30),取d=60(见P134比例法)。
铸造工艺学冒口设计方案
保温作用:冒口可 以减缓铸件凝固速 度,提高铸件质量
冒口的设计原则
保证补缩量:根据铸件的结 构、尺寸、壁厚等确定冒口 的补缩量
便于操作:冒口的位置应便 于操作,以便于浇注和清理
减少金属消耗:在保证补缩 量的前提下,尽量减少冒口 的金属消耗
避免形成热节:冒口的设计 应避免形成热节,以防止铸 件产生缩孔和缩松等缺陷
计算法
冒口体积计算 冒口直径计算 冒口高度计算 冒口材料选择
实验法
实验目的:确定最 佳冒口尺寸和位置
实验步骤:设计多 种方案,进行实际 铸造实验
实验结果:观察铸 件质量,分析实验 数据
结论:根据实验结 果,确定最佳冒口 设计方案
05 冒口的设计优化
减小冒口体积
优化冒口结构: 采用合理的冒 口结构,如分 片式、组合式 等,以减
冒口的设计原则: 根据铸件的结构、 尺寸、材质等因 素进行设计
冒口的设计方法: 根据铸造工艺学 原理,采用合适 的冒口尺寸、形 状和位置
冒口设计的实际 应用:在铸铁件 生产中,根据实 际情况选择合适 的冒口设计方案, 提高铸件质量和 生产效率
铝合金铸件的冒口设计
口体积
降低冒口高度: 通过减小冒口 高度,减少冒 口体积,同时 保证补缩效果
减小冒口直径: 采用较小的冒 口直径,以减 小冒口体积, 同时保证补缩
效果
改进冒口材料: 采用轻质、高 强度、低热膨 胀系数的材料 制作冒口,以 减小冒口体积
提高冒口补缩效率
确定冒口的位置和数量 选择合适的冒口类型 优化冒口尺寸和形状 控制冒口补缩时间
铸造工艺学冒口设计 方案
,a click to unlimited possibilities
汇报人:
铸造工艺学冒口设计方案
铸造工艺学冒口设计方案引言铸造作为一种重要的制造工艺,在工业领域中得到广泛应用。
冒口设计是决定铸件质量的关键要素之一。
合理的冒口设计可以提高铸件的质量,减少缺陷率,提高生产效率。
本文将介绍铸造工艺学中的冒口设计方案。
冒口设计的基本原则冒口设计的基本原则是确保铸液顺利进入铸型腔体,并使气体和杂质得以排出,同时避免冒口产生不良缺陷。
以下是冒口设计的基本原则:1.冒口应位于铸件最后凝固的部位,以避免冒口残留在最终铸件中。
2.冒口位置应选择在铸件上部,以利于铸液的顺利流入铸型腔体。
3.冒口的形状应考虑冷却过程中的热传递和凝固规律,以避免冷挤缩并保证铸件的凝固完整性。
4.冒口尺寸应根据铸件的大小和冷却速率进行合理的选择。
冒口设计的步骤进行冒口设计时,需要按照以下步骤进行:1.确定铸件的凝固模式:根据铸件的形状和材料特性,确定铸件的凝固模式,例如自上而下凝固、自下而上凝固等。
2.确定冒口位置:根据铸件的凝固模式和形状,选择冒口位置,使冒口尽量位于铸件的上部,以利于铸液的顺利流入铸型腔体。
3.确定冒口形状:根据铸件的形状和凝固规律,选择合适的冒口形状,例如斗形冒口、圆形冒口等。
4.确定冒口尺寸:根据铸件的大小和冷却速率,选择合理的冒口尺寸,以确保铸液足够流动,并使冷却过程中的缩孔最小化。
冒口设计的优化方法为了进一步提高冒口设计的准确性和效果,可以采用以下优化方法:1.模拟计算:利用铸造工艺学软件进行模拟计算,通过模拟铸造过程,预测冒口设计的效果,以减少试验次数和成本。
2.经验参数法:根据类似铸件的经验参数,选择合适的冒口尺寸和形状。
3.图形化分析法:通过绘制铸件的凝固曲线和冷却曲线,分析冒口设计的合理性,并进行必要的调整和优化。
结论冒口设计是铸造工艺学中的重要环节,对铸件的质量和生产效率具有直接的影响。
合理的冒口设计可以提高铸件的质量,减少缺陷率。
在冒口设计过程中,需要根据铸件的凝固模式、形状和材料特性,选择合适的冒口位置、形状和尺寸。
铸造工艺学-冒口设计
2 冒口位置的选择原则
① 在热节的上方或侧旁;
② 尽量在铸件最高、最厚部位, 低处热结设补贴或冷铁;
③不应设在铸件最重要、受力 大的部位;
④ 不要选在铸造应力集中处, 应减轻对铸件的收缩阻碍,避免 裂纹;
⑤ 尽量用一个冒口同时补缩几 个热节或铸件;
⑥ 冒口布置在加工面上,可节 约铸件精整工时,外观好;
可锻铸铁:补缩距离为4-4.5T。
3)有色合金的冒口补缩距离 铜合金见表。
锡青铜、磷青铜:糊状凝固,有效补缩距离短,易出现 分散缩松。
无锡青铜和黄铜:凝固范围窄,补缩距离大。黄铜5-9T。 铝、锰青铜5-8T。
共晶型铝合金:4.5T。 非共晶型的铝合金:2T。
4)外冷铁对补缩距 离的影响
在两个冒口间放冷铁, 形成两个末端区,显著 增加有效补缩距离。 端 部放冷铁延长末端区。
冒口是铸型内用以储存金属液的空腔,在金属冷却和 凝固过程中,补给金属液,从而防止缩孔、缩松的形成, 同时还有集渣和排气的作用。
习惯上 ,把冒口所铸成的金属实体也称为冒口。
8.1.1 冒口的种类和形状
顶冒口
1 按工艺冒口分为
依位置分
侧(边)冒口
普通冒口
明冒口
依顶部覆盖
暗冒口
通用冒口
大气压力冒口
依加压方式
ε=5% m补=548kg 1)计算模数M件铸件体积
V=[π(63²-33²)ˣ43/(4ˣ2)]=48607.2cm² 铸件的表面积=两个平面+两个侧面+上下端面 A=[(63-33)ˣ43+ π(63+33)ˣ43/2+ π(63²-33²)]/4=10031.76 M件=V/A=48607.2/10031.76=4.85 ≈5cm (2)计算冒口模数
铸钢件冒口设计的最优化方法
铸钢件冒口设计的最优化方法铸钢件冒口设计的最优化方法铸钢件冒口设计是铸造工艺中的重要环节,它直接影响到铸件的质量和成型结果。
冒口的设计应考虑到铸造过程中的各种因素,并寻求最佳的设计方案。
为了达到这一目标,可以采用以下的最优化方法。
首先,需要对铸钢件的几何形状、尺寸和材料特性进行分析。
通过对铸件的结构进行全面的了解,可以确定所需的冒口形式和位置。
同时,还需评估铸件的材料特性,如熔化温度、流动性等参数,以确保冒口设计的可行性。
其次,可以使用数值模拟软件进行铸造过程的数值模拟。
数值模拟可以模拟铸造过程中的各个阶段,包括铸液的充型、凝固和冷却等过程。
通过模拟,可以分析不同冒口设计方案对铸件的影响,如温度分布、凝固缩孔等缺陷的形成情况。
根据模拟结果,可以选择最佳的冒口设计方案。
此外,还可以考虑使用优化算法进行冒口设计的最优化。
优化算法可以通过多次迭代,不断调整冒口的位置和形式,以寻求最佳的设计方案。
常用的优化算法包括遗传算法、粒子群算法和模拟退火算法等。
通过优化算法的应用,可以找到冒口设计中的最优解,使铸钢件的质量得到最大程度的提高。
最后,还需考虑到实际生产的可行性和经济性。
冒口设计不仅需要满足铸件的质量要求,还需考虑到实际生产中的可操作性和成本控制。
因此,在优化冒口设计时,还需综合考虑生产工艺、设备条件和成本等因素,以确保最终的设计方案能够实际应用于生产中。
综上所述,铸钢件冒口设计的最优化方法包括对铸件几何形状和材料特性的分析、数值模拟的应用、优化算法的使用以及考虑实际生产条件的综合考虑。
通过这些方法的应用,可以寻求最佳的冒口设计方案,提高铸钢件的质量和生产效率。
知识篇——铸件的冒口设计计算
知识篇——铸件的冒口设计计算1.冒口设计的基本原理铸件冒口主要是在铸钢件上使用。
铸铁件只用于个别的厚大件的灰铸铁件和球铁件上。
金属液在液态降温和凝固过程中,体积要收缩。
铸件的体收缩大约为线收缩的3倍。
因此,铸钢的体收缩通常按3---6%考虑,灰铸铁按2---3%,不过由于灰铸铁和球墨铸铁凝固时的石墨化膨胀,可以抵消部分体积收缩,所以如果壁厚均匀,铸型紧实度高,通常不需要设计冒口。
铸件的体收缩如果得不到补充,就会在铸件上或者内部形成缩孔、缩陷或者缩松。
严重时常常造成铸件报废。
冒口尺寸计算原则是,首先计算需要补缩的金属液需要多少。
通常把这一部分金属液假设成球体,并求出直径(设为d0)用于冒口计算。
冒口补缩铸件是有一定的范围------叫有效补缩距离,设为L,对厚度为h的板状零件通常L=3~5h 。
对棒状零件L=(25~30)√h 式子中,h------铸件厚度2.冒口尺寸的基本计算方法冒口计算的公式、图线、表格等有很多。
介绍如下。
最常用的方法是,冒口直径 D=d0+h理由是假定冒口和铸件以相同的速度凝固,凝固过程是从铸件的两个表面向内层进行,当铸件完全凝固终了,正好冒口凝固了同样的厚度,这时还剩下中间的空心的缩孔,体积正好等于补缩球的体积,这部分金属液在凝固过程中正好补缩进了铸件。
当铸件存在热节时,可以把h换成热节的直径T即可。
即D=do+T 。
另外设计冒口,还有个重要的部位,就是冒口颈,所谓冒口颈就是冒口和铸件的连接通道,冒口里的金属液都是经由冒口颈补缩到铸件里的。
所以对冒口颈的截面是有要求的,通常取冒口颈的直径dj=(0.6~0.8)T 。
冒口高度 H=(1.5~2.5)D 。
H的高度还应该考虑要高于需要补缩部位的高度,否则就成了反补缩了,铸件补缩了冒口,这是要避免的。
3.其它计算方法常用的经验计算方法还有不计算需要估算补缩的金属液,直接将热节园的直径乘个系数得出冒口直径。
例如简单铸件 D=(1.05~1.15)T 外形简单,热节比较集中。
铸钢件冒口系统设计的基本原理
冒口系统设计的目的,是补偿铸钢件在凝固过程中的体积变化,是消除缩孔、缩松等收缩缺陷,从而获得组织精密的优质铸钢件。
长城铸钢()认为影响收缩缺陷产生的因素主要是铸造合金凝固和冷却过程中的体积变化特性及合金的凝固方式。
铸钢从液态转变为固态,体积要显著缩小,即有很大的体收缩。
因体积的缩小而得不到钢液的补缩时,则凝固后在铸件内部那些模数较大的部位会产生缩孔或缩松。
为了获得致密的铸钢件,基本的条件是定向凝固。
这就必须在补缩通道上设置模数比补缩通道的模数大和储存有足够多的钢液的冒口,使铸件在凝固过程中,能不断地从冒口获得钢液进行补缩,以消除铸钢件的缩孔和缩松,使缩孔移入冒口之中。
从得到优良铸钢件和降低非生产性消耗两方面看,铸钢件冒口设计极为重要。
它在工艺方案制定中起主导作用。
冒口设计主要应正确解决以下三个问题:
1. 在铸钢件上正确布置冒口,并使冒口同浇注系统、内外冷铁等工艺措施相互配合,实现正确地控制铸钢件凝固。
根据铸件几何形状及截面大小,冒口补缩只限于在一定距离之内有效,所以相领两个冒口间的距离必须合适,才能保证铸件补缩良好。
2. 正确地确定冒口的种类、形状和尺寸。
冒口要有恰当的直径及容积,才能较铸件晚凝固以及满足补缩铸件凝固的需要。
3. 提高冒口的补缩效率并使冒口便于去除,以利于铸钢件清理操作。
冒口在铸钢件上的布置就是决定在铸钢件哪些部位上安放冒口。
冒口在铸钢件上的位置正确与否对获得良好铸钢件和提高工艺出品率有重要意义。
3.4.3及3.4.4 铸钢及铸铁件冒口设计
3.4.3 铸钢件冒口设计与计算
四、铸件模数的计算
1. 正立方体
2. 圆柱体
3. 具有“无限大”尺寸的物
体 4. 圆筒壁 5. 交接立方体
3.4.3 铸钢件冒口设计与计算
四、铸件模数的计算
4. 圆筒壁
5. 交接立方体
6. 冒口颈的模数(riser neck)
铸钢件:Mn>Mc 铸铁件:Mn<Mc
选择圆柱形冒口,由标准冒口表查得冒口尺寸:
D=160mm,H=24mm 校核冒口个数: 估计冒口个数1000/(D+4.5a×2)≈1.6 ≈2 按两个冒口校核长度方向 4.5×50+4×50+4.5×50+2×160=970<1000
增加一个冒口,按三个冒口校核 970+160+4×50=1330>1000 宽度方向校核
4.5×50×2+160=610 >600
校核冒口最大补缩能力:
εv(Vr+Vc)=5%(100×60×5+π(16/2)2 ×24×3)
=2223(cm3)
Vrη=15 %π(16/2)2 ×24×3=2170 (cm3)
增大冒口尺寸,D=180mm
εv(Vr+Vc) = 2415 cm3 <Vrη=2746 cm3
有先有后,相互交错重叠,而铁水是相通的,这时膨胀、 收缩就可以叠加相抵,铸件表现出来的收缩实质上是胀缩 相抵的剩余量。然而就某一点而言,是收缩在前,膨胀在 后,二者是不能相抵的。
3.4.4 铸铁件实用冒口设计
图3-3-24 铸铁件凝固时收缩和膨胀的叠加 曲边三角形ABC—铸件的总收缩 曲边三角形ADC —铸件总膨胀 曲边三角形AB‘P—铸件的表观收缩 AC—铸件凝固时间 AP—铸件表观收缩时间 (冒口作用时间) P—均衡点(收缩量等于膨胀量的时间)
铸钢件冒口的设计规范.
铸钢件冒口的设计规范钢水从液态冷却到常温的过程中,体积发生收缩。
在液态和凝固状态下,钢水的体积收缩可导致铸件产生缩孔、缩松。
冒口的作用就是补缩铸件,消除缩孔、缩松缺陷。
另外,冒口还具有出气和集渣的作用。
1、冒口设计的原则和位置1.1冒口设计的原则1.1.1、冒口的凝固时间要大于或等于铸件(或铸件被补缩部分)的凝固时间。
1.1.2、冒口所提供的补缩液量应大于铸件(或铸件被补缩部分)的液态收缩、凝固收缩和型腔扩大量之和。
1.1.3、冒口和铸件需要补缩部分在整个补缩的过程中应存在通道。
1.1.4、冒口体内要有足够的补缩压力,使补缩金属液能够定向流动到补缩对象区域,以克服流动阻力,保证铸件在凝固的过程中一直处于正压状态,既补缩过程终止时,冒口中还有一定的残余金属液高度。
1.1.5、在放置冒口时,尽量不要增大铸件的接触热节。
1.2、冒口位置的设置1.2.1、冒口一般应设置在铸件的最厚、最高部位。
1.2.2、冒口不可设置在阻碍收缩以及铸造应力集中的地方。
1.2.3、要尽量把冒口设置在铸件的加工面或容易清除的部位。
1.2.4、对于厚大件一般采用大冒口集中补缩,对于薄壁件一般采用小冒口分散补缩。
1.2.5、应根据铸件的技术要求、结构和使用情况,合理的设置冒口。
1.2.6、对于清理冒口困难的钢种,如高锰钢、耐热钢铸件的冒口,要少放或不放,非放不可的,也尽量采用易割冒口或缩脖型冒口。
2、设置冒口的步骤与方法冒口的大小、位置及数量对于铸钢件的质量至关重要。
对于大型铸钢件来说,必须把握技术标准及使用情况,充分了解设计意图,分清主次部位,集中解决关键部位的补缩。
以模数法为例,冒口设计的步骤如下:2.1、对于大、中型铸钢件,分型面确定之后,首先要根据铸件的结构划分补缩范围,并计算铸件的模数(或铸件被补缩部分的模数)M铸。
2.2、根据铸件(或铸件被补缩部分)的模数M铸,确定冒口模数M冒。
2.3、计算铸件的体收缩ε。
2.4、确定冒口的具体形状和尺寸。
负压实型铸造技术中的铸钢件冒口设计
负压实型铸造( 又称消失模铸造, 简称 EPC 法) , 是一项新技术。两年多来, 我厂应用 EPC 法生产了 大量铸钢件, 由于有同时进行普通砂型铸造生产的对 比条件, 因而在应用 EP C 法中对制模工艺、原料应 用、浇冒口设计及真空负压浇注等项技术已日趋成 熟, 本文主要介绍 EPC 法的冒口设计。 1 冒口设计依据的探讨
设置补贴会更好。
2 5 根据冒口散热应最慢的原则, EP C 法冒口形状
应以球形为最好, 但综合考虑通用化标准化及手工制
模难易程度, 生产中一般选圆柱形或椭圆形冒口, 如
图 2 所示。这种形状更易于在砂型铸造方法的基础 上来设计。冒口最好放在铸件的最高位置, 以使其既
能补缩铸件又可起到集渣集气的作用。
图 2 冒口示图 F ig. 2 T he drawing of r iser
3 两个与冒口设计有关的措施 3 1 EPC 法的型腔是由泡沫模形成的, 填充砂是松 散的, 在抽真空形成负压条件下才被紧实。因而对铸 件厚大区采用内冷铁时安放不大方便, 实际操作常采 用干净圆钉插入泡沫模作为激冷内冷铁, 但对大面积 厚大部位效果甚微。另一个方法是采用外冷铁, 由于 放置简单, 放安灵活, 泡沫模型又上了涂料, 因而对外 冷铁表面锈蚀情况也不需作严格要求, 只要与铸件贴 合处形状相同即可, 与普通砂型铸造方法不同的是泡
铸钢件冒口的设计规范
铸钢件冒口的设计规范冒口是钢铸件的重要部分,它起到保证铸件质量的作用。
冒口的设计需要考虑到以下几个方面的因素:冷却塑性因素、浇筑工艺性因素、铸件缺陷因素和经济因素。
首先,冷却塑性因素是决定冒口尺寸和形状的重要因素之一、冒口的尺寸和形状需满足以下要求:1)在钢液凝固过程中保持适当的冷却速率,避免过快或过慢导致的铸件内部缺陷;2)冷却速率不宜太大,以免引起应力过大,导致铸件变形或开裂;3)冷却速率应相对均匀,以避免冷却速率不一致引起铸件组织不均匀。
其次,浇筑工艺性因素也是冒口设计的重要考虑因素。
浇筑工艺条件包括浇注温度、冒口位置、浇注速度等。
冒口位置应选择在钢液最后凝固的位置上,这样能保证整个铸件在冷却时钢液能从冒口处逆向凝固,确保铸件的内部质量。
浇注温度需要根据具体情况来确定,一般要保持较高的浇注温度,避免冷却过快导致液流不畅或气体夹杂。
同时,浇注速度也要适当,控制在钢液在凝固过程中能充分填充整个型腔,并能排除气体等杂质。
第三,铸件缺陷因素也需要考虑在冒口设计中。
冒口应避免引入气孔、夹杂和收缩孔等缺陷。
冒口应设置在铸件上部或侧部,以确保铸件内部的气体和杂质能够顺利排出,并避免在冒口处形成气孔和夹杂。
同时,冒口还要满足杂质排除和液流畅通的要求,以避免收缩缺陷的生成。
最后,经济因素也是冒口设计必须考虑的因素之一、冒口设计要考虑到冒口的材料成本、制造成本、施工方便性以及可回收利用性。
同时,还要综合考虑冒口数量、形状和尺寸的合理性,以降低冒口制造的成本,并提高冒口的使用寿命。
总结起来,铸钢件冒口的设计规范应满足冷却塑性因素、浇筑工艺性因素、铸件缺陷因素和经济因素的要求。
冒口设计的合理与否直接影响到铸件的质量和成本,因此在实际工程中需要根据具体情况综合考虑以上各方面因素,合理设计冒口。
铸铁件冒口设计
Qm=
G Mc3
(2)球铁件收缩时间分数
Pc=
1.0 e
(0.65Mc+0.01Qm)
3 冒口体模数MR MR=f1f2f3Mc
f1 ——冒口平衡系数 取f1=1.2
f2 ——收缩模数系数 f2=√Pc f3 ——冒口压力系数 f3=1.1~1.3
4 冒口颈模数MN
MN=fp.f2.f4 Mc
(3)直浇道模数 MZ MZ=f直.f1f2f3Mc
f1 ——冒口平衡系数 取f1=1.2
f2 ——收缩模数系数 f3 ——冒口压力系数 f3=1.1-1.3 f直浇道流通效应系数=0.70-0.80
(4)横浇道模数 Mh
Mh=f横.f2.Mc
f2 ——收缩模数系数 f横浇道流通效应系数=0.75~0.85
⑸冒口的压力使铸件凝固过程处于正压 状态; ⑹冒口颈 短、 薄、 宽。
可见,铸铁件均衡凝固有限补缩 设计的冒口位置、冒口大小、冒口补缩 时间等与顺序凝固有显著不同。
2 铸铁件收缩时间分数
(1)灰铸铁件收缩时间分数 PC=
PC=
AP AC
1.0
e (0.5Mc+0.01Qm)
e=2.7
Mc ——铸件模数 Qm ——质量周界商
fp ——流通效应系数 fp=0.45-0.55 f4 ——冒口颈长度系数 f4=0.8~1.0
5 冒口个数(均衡段的个数)
均衡段 冒口位置
均衡段
6 无冒口铸造工艺
无冒口铸造的本质是浇口当冒口
7 浇口当冒口补缩工艺
(1)补缩模型
(2)浇注系统流通效应:金属液流
过、通过直浇道、横浇道、内浇道 时,周围的型砂被加热,凝固时间 延长的热效应。为此,小的浇注系 统模数可以有长的凝固时间。流通 效应系数推荐为: f直浇道流通效应系数=0.70~0.80 f横浇道流通效应系数=0.75~0.85 f内浇道流通效应系数=0.35~0.40
铸钢件冒口的设计与计算
铸钢件冒口的设计与计算一、设计原则1.冒口尺寸:冒口尺寸应根据铸件的形状、尺寸和质量要求来确定。
一般情况下,冒口的尺寸应为铸件尺寸的1-3倍。
不同形状的铸件,冒口尺寸也不同,一般来说,大件应配置大冒口,小件应配置小冒口。
2.冒口形式:根据铸件的形状,常见的冒口形式有楔形冒口、透镜形冒口、阶梯形冒口等。
选择合适的冒口形式可以保证铸件在凝固过程中得到充分供应的熔体,并且从冒口处排出熔体中的气体和杂质。
3.冒口位置:一般情况下,应将冒口位置选择在铸件最高点或最容易凝固的部分。
同时,冒口位置还应考虑到工艺操作的方便性,以及排气和填充模具的情况。
二、冒口形式1.楔形冒口:楔形冒口即将铸料与铸件连接的冒口,其形状呈楔形,冒口与铸件之间的连接处称为冒口头。
楔形冒口适用于形状简单的铸件,如块状、盘状等。
楔形冒口的计算公式为:冒口高度H=λ(64Q/πλ)^(1/3);冒口底面积A=Q/H,其中Q为凝固收缩前后铸件的体积差,λ为凝固收缩系数。
2.透镜形冒口:透镜形冒口的形状呈透明透镜的样子,适用于中小型的铸件,其优点是能够提供均匀的供熔体,避免大量的气体和杂质混入。
透镜形冒口的计算公式为:冒口高度H=λ(256Q/πλ^2)^(1/4);冒口底面积A=Q/H;3.阶梯形冒口:阶梯形冒口由多个楔形冒口组成,适用于尺寸较大、结构复杂的铸件。
阶梯形冒口的计算较为复杂,首先需要计算整个冒口的总高度和底面积,然后根据冒口内各个楔形冒口的高度和底面积之和来确定每个楔形冒口的尺寸。
三、计算方法在进行铸钢件冒口的设计与计算时,一般需要考虑以下几个参数:1.铸件尺寸:包括最大尺寸、最小尺寸、平均尺寸等。
2.凝固收缩率:铸钢件在凝固过程中会产生一定的收缩,该值一般根据实验数据来确定。
3.冒口高度与底面积:根据冒口形式选择相应的计算公式进行计算。
4.填充时间:铸钢件的填充时间一般根据模型铸造实验的经验确定。
以上是关于铸钢件冒口的设计与计算的详细介绍。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§4 铸钢件冒口设计
设计步骤:
1)确定冒口的安放位置
2)初步确定冒口数量
3)划分每个冒口的补缩区域,选择冒口类型
4)计算冒口的具体尺寸
冒口计算方法:模数法+比例法+补缩液量法(参考资料)
一模数法
1 计算原理
要保证冒口晚于铸件凝固,需冒口的模数大于铸件被补缩部位的模数。
总结:M
冒=1.2M
件
P127式4-5,左边为总收缩量,右边为由冒口补充量。
2 计算步骤
1)计算铸件模数
根据铸件需补缩部位,划分补缩区,分别计算铸件的模数。
计算方法:公式计算+图表计算-表4-5(p128-130)。
计算M件用L形体计算公式,为什么不用法兰体公式去套呢?(法兰体
高度b无法确定)
图4-33B-B剖面图中200应改为220,因计算M B时用的数值是220;另外,冒口直径为φ220,其冒口颈宽也应为220。
(A-A剖面图中200改否.)
采用右边的A-A剖面冒口颈满足了要求,A-A剖面冒口颈尺寸怎么得来的呢?不要瞎懵,可列式M颈=3.74=20X/[2(20+X)],求出X=12.
生产中可根据M冒数值查出标准侧冒口,得冒口尺寸(直径、高等),冒口颈尺寸,冒口体积、重量,能补缩的铸件体积及重量(M冒结合εV查)。
3)确定铸钢件体收缩率
由表4-3求出。
例如,已知ZG270-500的平均W C=0.35%,若浇注温度为1560°C,可从表4-3查出εV=4.7%(碳钢εV=εC)。
如何查出的呢?浇注温度为1560°C;W C=0.40%,εV=5%;W C=0.20%,
εV=3.8%;据此列式(5-3.8)/(0.4-0.2)=(5-X)/(0.4-0.35),解出
X=4.7(插入法,比例法)
4)确定冒口形状和尺寸查相关表格。
5)确定冒口数目
6)校核冒口的最大补缩能力。
二比例法(热节圆法)
使冒口根部直径大于铸件被补缩处热节圆直径或壁厚,再以冒口根部直径来确定其他尺寸。
D=cd
式中D……冒口根部直径;
c……比例系数,参见表4-6;(查表步骤)
d……铸件被补缩热节处内切圆直径。
可用作图法画出。
查表步骤:
1)选取比例系数c(先按铸件结构选择冒口类型,再选比例系数);
2)确定冒口高度(根据直径D确定);
3)确定每个冒口长度或冒口个数(根据冒口延伸度确定)。
三铸件工艺出品率的校核
铸件重量
工艺出品率=
铸件重量+浇铸系统重
量+冒口重量
表4-7 说明校核方法。
采用普通冒口时,冒口尺寸可根据表中数值进行验算和调整,即将冒口重量代入计算后,若工艺出品率低于表中数值,则冒口尺寸偏大,可适当减小冒口高度;若高于表中数值,则应加大冒口尺寸或增加冒口个数。