《现代控制理论》.
《现代控制理论》课程教案
《现代控制理论》课程教案一、教学目标1. 了解自动控制系统的概念,理解自动控制的基本原理和特点。
2. 掌握线性系统的状态空间表示,熟悉状态空间方程的求解方法。
3. 学习控制器的分析和设计方法,包括PID控制、状态反馈控制和观测器设计。
4. 学会运用现代控制理论解决实际工程问题,提高系统的稳定性和性能。
二、教学内容1. 自动控制系统的基本概念和原理自动控制系统的定义、分类和性能指标开环控制系统和闭环控制系统的区别与联系2. 状态空间表示及其应用状态空间方程的定义和求解方法状态转移矩阵和初始状态对系统行为的影响状态空间图的绘制和分析3. 控制器的分析和设计PID控制原理及其参数调整方法状态反馈控制和观测器的设计方法控制器设计实例和仿真分析4. 系统的稳定性和性能分析线性时不变系统的稳定判据系统的瞬时响应、稳态响应和频率响应分析系统性能指标的优化方法三、教学方法1. 讲授法:讲解基本概念、原理和方法,阐述重点难点。
2. 案例分析法:分析实际工程案例,让学生学会运用现代控制理论解决问题。
3. 实验法:安排实验课程,让学生动手实践,加深对理论知识的理解。
4. 讨论法:组织课堂讨论,培养学生独立思考和团队协作的能力。
四、教学资源1. 教材:《现代控制理论》,作者:吴启迪、何观强。
2. 课件:PowerPoint 或其他演示软件制作的课件。
3. 实验设备:控制系统实验平台。
4. 仿真软件:MATLAB/Simulink。
五、教学评价1. 平时成绩:课堂表现、作业完成情况和实验报告。
2. 考试成绩:期末考试,包括选择题、填空题、计算题和论述题。
3. 实践能力:实验报告和实际工程问题的解决方案。
六、教学安排1. 课时:共计32课时,其中包括16次课堂讲授,8次实验操作,8次课堂讨论。
2. 授课方式:课堂讲授结合实验操作和课堂讨论。
3. 进度安排:第1-8课时:讲授自动控制系统的基本概念和原理。
第9-16课时:讲解状态空间表示及其应用。
《现代控制理论》课件
目录
• 引言 • 线性系统理论 • 非线性系统理论 • 最优控制理论 • 自适应控制理论 • 鲁棒控制理论
01
引言
什么是现代控制理论
现代控制理论是一门研究动态系统控制的学科,它利用数学模型和优化方法来分析 和设计控制系统的性能。
它涵盖了线性系统、非线性系统、多变量系统、分布参数系统等多种复杂系统的控 制问题。
20世纪60年代
线性系统理论和最优控制理论得到发展,为现代控制理论的建立奠定 了基础。
20世纪70年代
非线性系统理论和自适应控制理论逐渐发展起来,进一步丰富了现代 控制理论的应用范围。
20世纪80年代至今
现代控制理论在智能控制、鲁棒控制、预测控制等领域取得了重要进 展,为解决复杂系统的控制问题提供了更有效的工具。
01
利用深度学习算法对系统进行建模和学习,实现更高
效和智能的自适应控制。
多变量自适应控制
02 研究多变量系统的自适应控制方法,以提高系统的全
局性能。
非线性自适应控制
03
发展非线性系统的自适应控制方法,以处理更复杂的
控制系统。
06
鲁棒控制理论
鲁棒控制的基本概念
鲁棒控制是一种设计方法,旨在 提高系统的稳定性和性能,使其 在存在不确定性和扰动的情况下
自适应逆控制
一种基于系统逆动态特性的自适应控制方法,通过对系统 逆动态特性的学习和控制,实现系统的自适应控制。
自适应控制系统设计
系统建模
建立被控对象的数学模型,包括线性系统和非线性系统。
控制器设计
根据系统模型和性能指标,设计自适应控制器,包括线性自适应控制器和 非线性自适应控制器。
参数调整
根据系统运行状态和环境变化,调整控制器参数,以实现最优的控制效果 。
自动化专业06级《现代控制理论》试卷答案精选全文完整版
自动化专业06级《现代控制理论》试卷答案一、(10分,每小题1分)试判断以下结论的正确性,若结论是正确的,则在其左边的括号里打√,反之打×。
( √ )1. 相比于经典控制理论,现代控制理论的一个显著优点是可以用时域法直接进行系统的分析和设计。
( √ )2. 传递函数的状态空间实现不唯一的一个主要原因是状态变量选取不唯一。
( × )3. 状态变量是用于完全描述系统动态行为的一组变量,因此都是具有物理意义。
( × )4. 输出变量是状态变量的部分信息,因此一个系统状态能控意味着系统输出能控。
( √ )5. 等价的状态空间模型具有相同的传递函数。
( × )6. 互为对偶的状态空间模型具有相同的能控性。
( × )7. 一个系统的平衡状态可能有多个,因此系统的李雅普诺夫稳定性与系统受扰前所处的平衡位置无关。
( √ )8. 若一线性定常系统的平衡状态是渐近稳定的,则从系统的任意一个状态出发的状态轨迹随着时间的推移都将收敛到该平衡状态。
( × )9. 反馈控制可改变系统的稳定性、动态性能,但不改变系统的能控性和能观性。
( × )10. 如果一个系统的李雅普诺夫函数确实不存在,那么我们就可以断定该系统是不稳定的。
二、(15分)建立一个合理的系统模型是进行系统分析和设计的基础。
已知一单输入单输出线性定常系统的微分方程为:)(8)(6)()(3)(4)(t u t u t u t y t y t y++=++&&&&&& (1)采用串联分解方式,给出其状态空间模型,并画出对应的状态变量图;(7分+3分) (2)归纳总结上述的实现过程,试简述由一个系统的n 阶微分方程建立系统状态空间模型的思路。
(5分) 解:(1)方法一:由微分方程可得345213486)(222++++=++++=s s s s s s s s G令352113452)(21++⋅+=+++=s s s s s s s G 每一个环节的状态空间模型分别为:⎩⎨⎧=+−=1111x y u x x & 和 ⎩⎨⎧+−=+−=1212223u x y u x x&又因为11y u =, 所以⎩⎨⎧−=+−=212113x x x u x x&&, 212x x y −= 因此,采用串联分解方式可得系统的状态空间模型为:u x x x x⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡−−=⎥⎦⎤⎢⎣⎡0131012121&& []u x x y +⎥⎦⎤⎢⎣⎡−=2112对应的状态变量图为:方法二: 由微分方程可得32143486)(22++⋅++=++++=s s s s s s s s s G 每一个环节的状态空间模型分别为:⎩⎨⎧+=+−=u x y u x x 11113& 和 ⎩⎨⎧+−=+−=121223u x y u x x&又因为11y u =, 所以⎩⎨⎧+−=+−=ux x x u x x2121133&&, u x x y +−=213 因此,采用串联分解方式可得系统的状态空间模型为:u x x x x⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡−−=⎥⎦⎤⎢⎣⎡1133012121&& []u x x y +⎥⎦⎤⎢⎣⎡−=2113对应的状态变量图为(2)单输入单输出线性时不变系统传递函数的一般形式是1110111)(a s a sa sb s b s b s b s G n n nn n n n +++++++=−−−−L L若,则通过长除法,传递函数总可以转化成0≠n b )(s G d s a s c d a s a s a s c s c s c s G n n n n n +=++++++++=−−−−)()()(01110111L L 将传递函数c (s )/a (s )分解成若干低阶(1阶)传递函数的乘积,然后根据能控标准型或能观标准型写出这些低阶传递函数的状态空间实现,最后利用串联关系,写出原来系统的状态空间模型。
《现代控制理论》课后习题全部答案(最完整打印版)
第一章习题答案1-1试求图1-27系统的模拟结构图,并建立其状态空间表达式。
解:系统的模拟结构图如下:系统的状态方程如下:阿令,则所以,系统的状态空间表达式及输出方程表达式为状态变量的状态方程,和以电阻上的电压作为输出量的输出方程。
解:由图,令,输出量有电路原理可知:既得写成矢量矩阵形式为:1-3参考例子1-3(P19).1-4两输入,,两输出,的系统,其模拟结构图如图1-30所示,试求其状态空间表达式和传递函数阵。
解:系统的状态空间表达式如下所示:1-5系统的动态特性由下列微分方程描述列写其相应的状态空间表达式,并画出相应的模拟结构图。
解:令,则有相应的模拟结构图如下:1-6(2)已知系统传递函数,试求出系统的约旦标准型的实现,并画出相应的模拟结构图解:1-7给定下列状态空间表达式(1)画出其模拟结构图(2)求系统的传递函数解:(2)1-8求下列矩阵的特征矢量(3)解:A的特征方程解之得:当时,解得:令得(或令,得)当时,解得:令得(或令,得)当时,解得:令得1-9将下列状态空间表达式化成约旦标准型(并联分解)(2)解:A的特征方程当时,解之得令得当时,解之得令得当时,解之得令得约旦标准型1-10已知两系统的传递函数分别为W1(s)和W2(s)试求两子系统串联联结和并联连接时,系统的传递函数阵,并讨论所得结果解:(1)串联联结(2)并联联结1-11(第3版教材)已知如图1-22所示的系统,其中子系统1、2的传递函数阵分别为求系统的闭环传递函数解:1-11(第2版教材)已知如图1-22所示的系统,其中子系统1、2的传递函数阵分别为求系统的闭环传递函数解:1-12已知差分方程为试将其用离散状态空间表达式表示,并使驱动函数u的系数b(即控制列阵)为(1)解法1:解法2:求T,使得得所以所以,状态空间表达式为第二章习题答案2-4用三种方法计算以下矩阵指数函数。
(2)A=解:第一种方法:令则,即。
求解得到,当时,特征矢量由,得即,可令当时,特征矢量由,得即,可令则,第二种方法,即拉氏反变换法:第三种方法,即凯莱—哈密顿定理由第一种方法可知,2-5下列矩阵是否满足状态转移矩阵的条件,如果满足,试求与之对应的A阵。
《现代控制理论》 教案大纲
一、教案概述1.1 课程背景《现代控制理论》是自动化、电气工程及其相关专业的一门重要专业课程。
通过本课程的学习,使学生掌握自动控制系统的基本概念、基本原理和基本方法,培养学生分析和解决自动控制问题的能力。
1.2 教学目标(1)理解自动控制系统的数学模型,包括连续系统和离散系统;(2)掌握线性系统的时域分析法、频域分析法;(3)熟悉系统的稳定性、线性度、精确度等性能指标;(4)学会设计PID控制器、状态反馈控制器等;(5)培养学生运用现代控制理论分析和解决实际问题的能力。
二、教学内容2.1 自动控制系统的基本概念(1)自动控制系统的定义;(2)自动控制系统的类型;(3)自动控制系统的性能指标。
2.2 自动控制系统的数学模型(1)连续系统的数学模型;(2)离散系统的数学模型。
2.3 线性系统的时域分析法(1)系统的稳定性;(2)系统的线性度;(3)系统的精确度。
2.4 线性系统的频域分析法(1)系统的幅频特性;(2)系统的相频特性;(3)系统的裕度。
2.5 控制器的设计方法(1)PID控制器的设计;(2)状态反馈控制器的设计。
三、教学方法3.1 课堂讲授通过讲解、案例分析等方式,使学生掌握自动控制系统的相关理论知识。
3.2 实验教学通过自动控制实验,使学生了解和掌握自动控制系统的实际运行情况,提高学生分析和解决实际问题的能力。
3.3 讨论与交流组织学生进行小组讨论,分享学习心得,互相答疑解惑。
四、教学评价4.1 平时成绩包括课堂表现、作业完成情况、实验报告等。
4.2 期末考试包括选择题、填空题、计算题、简答题等,全面测试学生对课程知识的掌握程度。
五、教学资源5.1 教材《现代控制理论》,作者:张发展战略、李翠莲。
5.2 辅助教材《现代控制理论教程》,作者:王庆伟。
5.3 实验设备自动控制实验装置、示波器、信号发生器等。
5.4 网络资源相关在线课程、学术文章、论坛讨论等。
六、教学安排6.1 课时安排本课程共计32课时,包括16次课堂讲授,8次实验教学,8次讨论与交流。
《现代控制理论》第三版_.习题答案
1 0 0 3 1 0 5 2 1 52 7 1 5 2 70 125 3 5 7 5 0 0 1 1 B 2 ; 2 5 5
1 0 a1 0 0 1 0 1 0 0 1 a2 3 7 5
0 B 0 1
C (b0 a0bn ) (bn1 an1bn ) 2 1 0
3 1 a 或者 2 2 1 a1 0 a0
e At I At 1 22 1 33 A t A t 2! 3! t2 t4 t6 t3 t5 1 4 16 64 , 4 16 t 2! 4! 6! 3! 5! 3 5 2 4 6 t t t t t t 4 16 64 , 1 4 16 64 3! 5! 2! 4! 6!
0 0 1 B M 1 0 0 0 0 1 M2
1 0 B 1 M1 B1 M2
1 B1 M1 B1 B2 M2
0
0 0 1 0 C 0 0 0 1
1-5. 根据微分方程, 写状态方程, 画模 拟结构图。
1 a2 a2 2 a1 3 2 a a a 1 2 2 a0
1 a2 a1
1 a2
12 b1 b0
b3 b 2 b1 1 b0
凯莱哈密顿法: 1,2 2 j
0 (t ) 1 1 e1t 1 2(e 2 jt e 2 jt ) (t ) 1 2t 4 2 jt 2 jt e j ( e e ) 2 1
《现代控制理论》课后习题答案
=
3 2
, c2
=
2s + 5 lim s→−3 s + 1
=
1 2
。
从输入通道直接到输出通道上的放大系数 d = 1,由此可得:
⎡ x1
⎢ ⎣
x 2
⎤ ⎥ ⎦
=
⎡− 1
⎢ ⎣
0
0⎤ − 3⎥⎦
⎡ ⎢ ⎣
x1 x2
⎤ ⎥ ⎦
+
⎡1⎤ ⎢⎣1⎥⎦u
y
=
⎡ ⎢⎣
3 2
1 2
⎤ ⎥⎦
⎡ ⎢ ⎣
x1 x2
u
d
d
b2
dt
dt
d
b1
m
dt
b0
因此,两个环节调换后的系统状态变量图为
u
d
d
b2
dt
dt
d
b1
dt
b0
m
−∫
−∫
y −∫
a0
a1
a2
进一步简化,可得系统状态变量图为 u
b0
b1
b2
− ∫ x1
− ∫ x2
− ∫ x3 y
a0
a1
a2
3
取 y = x3 , y = x2 , y = x1 ,可以得到两个环节调换后的系统的状态空间模型为
a(s)
1 a(s)
=
s3
+
1 a2s2 +
a1s
+
a0
, b(s)
=
b2 s 2
+ b1s
+ b0
。
2
由于 s−3 y 相当于对 y 作 3 次积分,故 y = 1 可用如下的状态变量图表示: m a(s)
《现代控制理论》课程教学大纲
《现代控制理论》课程教学大纲课程名称:现代控制理论课程类别:任意选修课适用专业:电子信息工程考核方式:考查总学时、学分:24学时1.5学分一、课程性质、教学目标《现代控制理论》是在“古典控制理论”的基础上,基于“线性代数”理论发展起来的一种自动控制系统性能分析与设计的新方法。
它由“古典控制理论”中的对单输入单输出系统的描述过渡到对多输入多输出系统的描述、由“古典控制理论”中对系统的外部性能分析过渡到内部性能分析、由“古典控制理论”中便于手工求解的数学模型过渡到便于计算机求解的数学模型。
为学生后续深造的课程《线性系统理论及应用》、《智能控制系统及应用》的学习打下必要的理论知识和实践基础。
其具体的课程教学目标为:课程教学目标1:掌握控制系统数学模型含义,系统数学模型的类型及相互关系,并能够建立常用线性系统的数学模型。
课程教学目标2:掌握线性控制系统状态方程的求解方法。
课程教学目标3:掌握控制系统的能控性和能观测性判据,并利用判据判断系统的能控性和能观测性。
通过本课程的学习,使学生掌握有关运用状态空间分析法定量和定性分析及综合控制系统的基本理论、基本方法,为学习后续课程打下基础。
三、先修课程高等数学、大学物理、电路分析、模拟电路、数字电路、高频电路、信号与系统、线性代数、自动控制原理。
四、课程教学重、难点教学重点:控制系统数学模型的建立,线性控制系统的运动能控性与能观测性和稳定性分析,线性定常系统的综合;教学难点:线性定常系统的综合。
五、课程教学方法与教学手段教学方法:讲授式教学方法、讨论式教学方法、导学式教学方法;教学手段:多媒体辅助教学。
六、课程教学内容绪论(1学时)1.教学内容(1) 自动控制与控制理论;(2) 控制理论发展简况;(3) 现代控制理论的基本内容;(4) 本课程的基本任务。
2.重、难点提示(1) 重点是控制理论的基本内容、本课程的基本任务;(2) 难点是控制理论的基本内容。
第一章控制系统的数学模型(5学时)1.教学内容(1) 状态空间表达式;(2) 由微分方程求状态空间表达式;(3) 传递函数矩阵;(4) 离散系统的数学描述;(5) 线性变换;(6) 组合系统的数学描述;(7) 利用MATLAB进行模型的转换。
《现代控制理论》 教案大纲
《现代控制理论》教案大纲第一章:绪论1.1 课程背景与意义1.2 控制系统的基本概念1.3 控制理论的发展历程1.4 教学内容与目标第二章:线性控制系统的基本理论2.1 数学基础2.1.1 向量与矩阵2.1.2 复数与复矩阵2.1.3 拉普拉斯变换与Z变换2.2 线性微分方程2.3 线性差分方程2.4 线性系统的状态空间描述2.5 线性系统的传递函数2.6 小结第三章:线性控制系统的稳定性分析3.1 系统稳定性的概念3.2 劳斯-赫尔维茨稳定性判据3.3 奈奎斯特稳定性判据3.4 李雅普诺夫稳定性理论3.5 小结第四章:线性控制系统的性能分析与设计4.1 性能指标4.1.1 稳态性能4.1.2 动态性能4.2 控制器设计方法4.2.1 比例积分微分(PID)控制器4.2.2 状态反馈控制器4.2.3 观测器设计4.3 小结第五章:非线性控制系统理论5.1 非线性系统的基本概念5.2 非线性方程与非线性微分方程5.3 非线性系统的状态空间描述5.4 非线性系统的稳定性分析5.5 小结第六章:非线性控制系统的性能分析与设计6.1 非线性性能指标6.2 非线性控制器设计方法6.2.1 反馈线性化方法6.2.2 滑模控制方法6.2.3 神经网络控制方法6.3 小结第七章:鲁棒控制理论7.1 鲁棒控制的概念与意义7.2 鲁棒控制的设计方法7.2.1 定义1-范数方法7.2.2 H∞控制方法7.2.3 μ-综合方法7.3 小结第八章:自适应控制理论8.1 自适应控制的概念与意义8.2 自适应控制的设计方法8.2.1 模型参考自适应控制8.2.2 适应律与自适应律8.2.3 自适应控制器的设计步骤8.3 小结第九章:现代控制理论在工程应用中的案例分析9.1 工业过程控制中的应用9.2 控制中的应用9.3 航空航天领域的应用9.4 小结第十章:总结与展望10.1 现代控制理论的主要成果与贡献10.2 现代控制理论的发展趋势10.3 面向未来的控制挑战与机遇10.4 小结重点和难点解析重点环节一:第二章中向量与矩阵、复数与复矩阵、拉普拉斯变换与Z变换的数学基础。
《现代控制理论》 教案大纲
《现代控制理论》教案大纲第一章:绪论1.1 课程背景与意义1.2 控制系统的基本概念1.3 控制理论的发展历程1.4 控制理论的应用领域第二章:控制系统数学模型2.1 连续控制系统数学模型2.2 离散控制系统数学模型2.3 状态空间描述2.4 系统矩阵的性质与运算第三章:线性系统的时域分析3.1 系统的稳定性3.2 系统的瞬时性3.3 系统的稳态性能3.4 系统的动态性能第四章:线性系统的频域分析4.1 频率响应的概念4.2 频率响应的性质4.3 系统频率响应的求取方法4.4 系统频域性能指标第五章:线性系统的校正与设计5.1 系统校正的基本概念5.2 常用校正器及其特性5.3 系统校正的方法5.4 系统校正实例分析第六章:非线性控制系统分析6.1 非线性系统的基本概念6.2 非线性系统的数学模型6.3 非线性系统的稳定性分析6.4 非线性系统的控制策略第七章:状态反馈与观测器设计7.1 状态反馈控制的基本原理7.2 状态反馈控制器的设计方法7.3 观测器的设计与分析7.4 状态反馈控制系统应用实例第八章:先进控制策略8.1 鲁棒控制8.2 自适应控制8.3 最优控制8.4 智能控制第九章:最优控制理论9.1 最优控制的基本概念9.2 线性二次调节器(LQR)9.3 离散时间最优控制9.4 最优控制的应用第十章:现代控制理论在工程应用10.1 现代控制理论在自动化领域的应用10.2 现代控制理论在控制中的应用10.3 现代控制理论在航空航天领域的应用10.4 现代控制理论在其他领域的应用第十一章:鲁棒控制理论11.1 鲁棒控制的基本概念11.2 鲁棒控制的设计方法11.3 鲁棒控制的应用实例11.4 鲁棒控制在实际系统中的性能评估第十二章:自适应控制理论12.1 自适应控制的基本概念12.2 自适应控制的设计方法12.3 自适应控制的应用实例12.4 自适应控制在复杂系统中的应用与挑战第十三章:数字控制系统设计13.1 数字控制系统的概述13.2 数字控制器的设计方法13.3 数字控制系统的仿真与实验13.4 数字控制系统在实际应用中的案例分析第十四章:控制系统中的计算机辅助设计14.1 计算机辅助设计的基本概念14.2 控制系统CAD工具与方法14.3 基于软件的控制系统设计与仿真14.4 控制系统CAD在现代工程中的应用案例第十五章:现代控制理论的前沿与发展15.1 现代控制理论的最新研究动态15.2 控制理论与其他领域的交叉融合15.3 未来控制理论的发展趋势15.4 控制理论在解决现实世界问题中的潜力与挑战重点和难点解析本《现代控制理论》教案大纲涵盖了现代控制理论的基本概念、方法与应用,分为十五个章节。
《现代控制理论》课程教案
《现代控制理论》课程教案第一章:绪论1.1 课程简介介绍《现代控制理论》的课程背景、意义和目的。
解释控制理论在工程、科学和工业领域中的应用。
1.2 控制系统的基本概念定义控制系统的基本术语,如系统、输入、输出、反馈等。
解释开环系统和闭环系统的区别。
1.3 控制理论的发展历程概述控制理论的发展历程,包括经典控制理论和现代控制理论。
介绍一些重要的控制理论家和他们的贡献。
第二章:数学基础2.1 线性代数基础复习向量、矩阵和行列式的基本运算。
介绍矩阵的特殊类型,如单位矩阵、对角矩阵和反对称矩阵。
2.2 微积分基础复习微积分的基本概念,如极限、导数和积分。
介绍微分方程和微分方程的解法。
2.3 复数基础介绍复数的基本概念,如复数代数表示、几何表示和复数运算。
解释复数的极坐标表示和欧拉公式。
第三章:控制系统的基本性质3.1 系统的稳定性定义系统的稳定性,并介绍判断稳定性的方法。
解释李雅普诺夫理论在判断系统稳定性中的应用。
3.2 系统的可控性定义系统的可控性,并介绍判断可控性的方法。
解释可达集和可观集的概念。
3.3 系统的可观性定义系统的可观性,并介绍判断可观性的方法。
解释观测器和状态估计的概念。
第四章:线性系统的控制设计4.1 状态反馈控制介绍状态反馈控制的基本概念和设计方法。
解释状态观测器和状态估计在控制中的应用。
4.2 输出反馈控制介绍输出反馈控制的基本概念和设计方法。
解释输出反馈控制对系统稳定性和性能的影响。
4.3 比例积分微分控制介绍比例积分微分控制的基本概念和设计方法。
解释PID控制在工业控制系统中的应用。
第五章:非线性控制理论简介5.1 非线性系统的特点解释非线性系统的定义和特点。
介绍非线性系统的常见类型和特点。
5.2 非线性控制理论的方法介绍非线性控制理论的基本方法,如反馈线性化和滑模控制。
解释非线性控制理论在实际应用中的挑战和限制。
5.3 案例研究:倒立摆控制介绍倒立摆控制系统的特点和挑战。
解释如何应用非线性控制理论设计倒立摆控制策略。
《现代控制理论》课程教案
《现代控制理论》课程教案一、教学目标1. 了解自动控制的基本概念、原理和方法。
2. 掌握线性系统的状态空间分析、传递函数分析和频率响应分析。
3. 熟悉现代控制理论的主要内容,包括最优控制、鲁棒控制和自适应控制等。
4. 学会运用现代控制理论解决实际工程问题。
二、教学内容1. 自动控制的基本概念:开环控制与闭环控制、稳定性、稳态误差、性能指标等。
2. 线性系统的数学模型:差分方程、微分方程、状态空间方程。
3. 状态空间分析:系统的可控性、可观测性、稳定性和性能分析。
4. 传递函数分析:劳斯-赫尔维茨准则、奈奎斯特准则、频率响应分析。
5. 最优控制:线性二次调节器、庞特里亚金最小原理、动态规划。
三、教学方法1. 讲授:讲解基本概念、原理和方法,结合实际案例进行分析。
2. 互动:提问、回答问题,引导学生思考和讨论。
3. 练习:课后作业、小测验,巩固所学知识。
4. 项目:分组完成控制系统设计项目,提高实际应用能力。
四、教学资源1. 教材:《现代控制理论》,作者:宋志坚。
2. 课件:PowerPoint演示文稿。
3. 辅助软件:MATLAB,用于分析和设计控制系统。
五、教学评价1. 平时成绩:课堂表现、作业、小测验(30%)。
2. 项目成绩:分组完成的项目(30%)。
3. 期末考试成绩:闭卷考试(40%)。
六、教学安排1. 课时:总共32课时,每课时45分钟。
2. 授课方式:课堂讲授与实践相结合。
3. 授课进度安排:自动控制的基本概念(2课时)线性系统的数学模型(3课时)状态空间分析(5课时)传递函数分析(4课时)最优控制(5课时)鲁棒控制与自适应控制(5课时)控制系统应用案例分析(2课时)七、教学案例1. 案例一:温度控制系统描述:某实验室需要保持恒定的温度,当温度超过设定值时,启动空调降温;当温度低于设定值时,启动暖气升温。
教学目的:分析系统的稳定性、可控性和可观测性,设计合适的控制器。
2. 案例二:无人驾驶汽车控制系统描述:无人驾驶汽车需要实现路径跟踪、速度控制和避障等功能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《现代控制理论》实验指导书
俞立徐建明编
浙江工业大学信息工程学院
2007年4月
实验1 利用MATLAB 进行传递函数和状态空间模型间的转换
1.1 实验设备
PC 计算机1台(要求P4-1.8G 以上),MATLAB6.X 或MATLAB7.X 软件1套。
1.2 实验目的
1、学习系统状态空间模型的建立方法、了解状态空间模型与传递函数相互转换的方法;
2、通过编程、上机调试,掌握系统状态空间模型与传递函数相互转换的方法。
1.3 实验原理说明
设系统的状态空间模型是
x
Ax Bu y Cx Du
=+⎧⎨
=+⎩& (1.1) p y R ∈其中:n x R ∈是系统的状态向量,是控制输入,m u R ∈是测量输出,A 是维状态矩阵、是维输入矩阵、是n n ×m n ×n p ×B D C 维输出矩阵、是直接转移矩阵。
系统传递函数和状态空间模型之间的关系如式(1.2)所示。
1()()G s C sI A B D −=−+ (1.2) 表示状态空间模型和传递函数的MATLAB 函数。
函数ss (state space 的首字母)给出了状态空间模型,其一般形式是 SYS = ss(A,B,C,D)
函数tf (transfer function 的首字母)给出了传递函数,其一般形式是 G=tf(num,den)
其中的num 表示传递函数中分子多项式的系数向量(单输入单输出系统),den 表示传递函数中分母多项式的系数向量。
函数tf2ss 给出了传递函数的一个状态空间实现,其一般形式是 [A,B,C,D]=tf2ss(num,den)
函数ss2tf 给出了状态空间模型所描述系统的传递函数,其一般形式是
[num,den]=ss2tf(A,B,C,D,iu) 其中对多输入系统,必须确定iu 的值。
例如,若系统有三个输入和,则iu 必须是1、2或3,其中1表示,2表示,3表示。
该函数的结果是第iu 个输入到所有输出的传递函数。
21,u u 3u 1u 2u 3u 1.4 实验步骤
1、根据所给系统的传递函数或(A 、B 、C 、D ),依据系统的传递函数阵和状态空间模型之间的关系(1.2),采用MATLAB 的相关函数编写m-文件。
2、在MATLAB 界面下调试程序。
例1.1 求由以下状态空间模型所表示系统的传递函数,
⎥⎥
⎥
⎦
⎤
⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢
⎢⎢⎣⎡−+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−−=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321321321]001[1202505255100010x x x y u x x x x x x
&&&
编写并执行以下的m-文件:
A=[0 1 0;0 0 1;-5 –25 –5]; B=[0;25;-120]; C=[1 0 0]; D=[0];
[num,den]=ss2tf(A,B,C,D)
得到:
num=
0 -0.0000 25.0000 5.0000 den=
1.0000 5.0000 25.0000 5.0000
因此,所求系统的传递函数是
5
2555
25)(23++++=
s s s s s G
例1.2 考虑由以下状态空间模型描述的系统:
⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣
⎡−−=⎥⎦⎤⎢⎣⎡21212121211001101142510x x y y u u x x x x
&&
求其传递函数矩阵。
解 这是一个2输入2输出系统。
描述该系统的传递函数是一个22×维矩阵,它包括4个传递函数:
⎥⎦
⎤
⎢⎣⎡)()()()()()()()(22122111s U s Y s U s Y s U s Y s U s Y
当考虑输入时,可设为零,反之亦然。
执行以下的m-文件: 1u 2u
A=[0 1;-25 –4]; B=[1 1;0 1]; C=[1 0;0 1]; D=[0 0;0 0];
[num1,den1]=ss2tf(A,B,C,D,1) [num2,den2]=ss2tf(A,B,C,D,2)
得到:
num1=
0 1 4
0 0 -25
den1=
1 4 25
num2=
0 1.0000 5.0000 0 1.0000 -25.0000
den2=
1 4 25
因此,所求的4个传递函数是
25
425
)()(,2545
)()(25425
)()(,2544
)()(2
222212
12211++−=+++=++−=+++=s s s s U s Y s s s s U s Y s s s U s Y s s s s U s Y
例1.3 试给出以下传递函数的状态空间实现
10
5610
10)(23
++++=s s s s s G 解 执行以下的m-文件:
num=[0 0 10 10]; den=[1 6 5 10];
[A,B,C,D]=tf2ss(num,den) 得到
A=
-6 -5 -10
1 0 0 0 1 0 B=
1 0 0 C=
0 10 10 D=
因此,所考虑传递函数的一个状态空间实现是
[]⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−−=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321321321101000010100011056x x x y u x x x x x x
&&&
1.5 实验要求
在运行以上例程序的基础上,应用MATLAB 求下面传递函数阵的状态空间实现
4
32352)(232+++⎥
⎦⎤⎢⎣
⎡+++=s s s s s s s G
提示:num =[0 0 1 2;0 1 5 3]。