北师大版九年级下册数学[解直角三角形及其应用--知识点整理及重点题型梳理]
北师大版九年级下册1.4解直角三角形课件

c?
15 ?
a
B
讲授新课
例1.在Rt△ABC中,∠C=90°,∠A,∠B,∠C所 对的边分别为a,b,c,且a= 15 ,b= 5 ,求这个三角 形的其他元素.
我们已知三角形的三边, 需要求角.直角三角形三边与 它的角有什么关系呢?它们通 过什么可以联系起来?
A
?
b5
C
c?
15 ?
a
B
讲授新课
例1.在Rt△ABC中,∠C=90°,∠A,∠B,∠C所 对的边分别为a,b,c,且a= 15 ,b= 5 ,求这个三角 形的其他元素.
解:在Rt△ABC中, ∠C=90°, A
∠B=25° ,∴ ∠A=65°.
?
sin B = b ,b = 30,
c
c
=
b sin B
=
sin3205°
71.
b 30 C
c?
25°
a? B
tan
B
=
b ,b a
=
30, a
=
b tan
Bபைடு நூலகம்
=
tan3025°
64.
讲授新课
思考4:例2中已知元素是一锐角与一直角边,如 果已知的是一锐角与斜边,能解直角三角形吗?
思考5:已知元素是两锐角,能解直角三角形吗? A
65°
c? b?
25°
C
a? B
小结:解直角三角形最少需除直角外的两个元 素,且这两个元素中至少有一条边.
巩固练习
➢ 随堂练习 在Rt△ABC中, ∠C=90°, ∠A,∠B,∠C所
对的边分别为a,b,c,根据下列条件求出直角三角形 的其他元素(结果精确到1°):
北师大版九年级下册数学《解直角三角形》直角三角形的边角关系教学说课课件

∵∠CAB=90°-∠DAC=50°,
BC
tan ∠CAB,
AB
∴BC=AB·
AB
cos 500
AC
AB
2000
AC
3111(米)
cos 500
cos 500
答:敌舰与A、B两炮台的距离分别约为3111米和2384米.
新课讲解
归纳
解直角三角形只有以下两种情况:
(1)已知道两边
段的长度为( C
)
(A )180 m
(B )260 3 m
(C )(260 3 - 80)m
(D )(260 2 -=45°,c=14;
(2)b=15,∠B=60°.
解:(1)∵∠B=45°,c=14,∠C=90°,
∴∠A=45°,
a b
14
2
7 2
解:过点 B 作 BM⊥FD 于点 M.
在 Rt△ACB 中,∠ACB=90°,∠A=45°,AC=12 2,
所以 BC=AC=12 2.
因为 AB∥CF,所以∠BCM=45°,
所以 CM=BM=BC·sin 45°=12 2 ×
2
=12.
2
在△EFD 中,∠F=90°,∠E=30°,所以∠EDF=60°,
在R
在R
所以AE+CF=9.3+11.85=21.15 cm.
答:此时杯子的最高处与桌面的距离为21.15 cm.
1.4 解直角三角形
第一章
知识要点基础练
综合能力提升练
3
5
12.如图,在R
(1)求AB的值;
(2)求
3
解:(1)在 Rt△ABC 中,sin B= = 5,AC=6,∴AB=10.
数学北师大版九年级下册——解直角三角形(知识点+练习)

解直角三角形1、了解直角三角形的概念,掌握解直角三角形的常见类型与解法;2、会将求非直角三角形中的边、角问题转化为解直角三角形问题。
1、解直角三角形的概念由直角三角形中已知的元素,求出所有未知元素的过程,叫作解直角三角形。
特别提醒:①解直角三角形要注意每个三角形都有6个元素,即3个角和3条边。
②在解直角三角形的问题中,除直角外,还需知道其他两个条件,而且至少有一个条件是关于边的。
这是由直角三角形的边角关系决定的。
2、解直角三角形的常见类型及解法解直角三角形的常见类型有两种:(1)已知两边(两条直角边或一条直角边和斜边)(2)已知一边和一角(角必须为两锐角之一)特别提醒:(1)在求解直角三角形的有关问题时,要画出图形帮助分析解决问题。
(2)在解直角三角形时,正确选择关系式是关键:①若求边:一般用未知边比已知边,去寻找已知角的某一个三角函数;②若求角:一般用已知边比未知边,去寻找未知角的某一个三角函数;③求某些未知量的途径往往不唯一。
选择关系式常遵循以下原则:一是选择可以直接应用原始数据的关系式;二是选择便于计算的关系式,若能用乘法计算就避免用除法计算。
(3)对于含有非基本量的直角三角形,比如有些条件中已知两边之和,中线、高线、角平分线的长,角之间的关系,锐角三角函数值,周长,面积等,解决这类问题,我们常用的解题方法是将非基本量转化为基本量,最终达到解直角三角形的目的。
考法1 非直角三角形问题的解法在非直角三角形的问题中,往往是通过作三角形的高,构造直角三角形来解决,而作高时,常从非特殊角的顶点作高,对于较复杂的图形,往往通过“补形”或“分割”的方法,构造出直角三角形。
(1)作高线可以把锐角三角形或钝角三角形转化为两个直角三角形(2)作高线可以把平行四边形、梯形转化为含直角三角形的(3)连接对角线,可以把矩形、菱形和正方形转化为含直三角形的图形考法2“双直角三角形”问题的解法双直角三角形是指一条直角边重合,另一条直角边共线的两个直角三角形。
北师大版数学九年级下册知识点总结及例题(不错!)

—-可编辑修改,可打印——别找了你想要的都有!精品教育资料——全册教案,,试卷,教学课件,教学设计等一站式服务——全力满足教学需求,真实规划教学环节最新全面教学资源,打造完美教学模式北师大版数学九年级下册知识点总结及例题第一章 直角三角形的边角关系1.正切:在Rt △ABC 中,锐角∠A 的对边与邻边的比叫做∠A 的正切..,记作tanA ,即的邻边的对边A A A ∠∠=tan ;①tanA 是一个完整的符号,它表示∠A 的正切,常省去角的符号“∠”; ②tanA 没有单位,它表示一个比值,即直角三角形中∠A 的对边与邻边的比; ③tanA 不表示“tan”乘以“A”;④tanA 的值越大,梯子越陡,∠A 越大; ∠A 越大,梯子越陡,tanA 的值越大。
例 在Rt △ABC 中,如果各边长度都扩大为原来的2倍,那么锐角A 的正弦值( ) A.扩大2倍 B.缩小2倍 C.扩大4倍 D.没有变化 2. 正弦..: 在Rt △ABC 中,锐角∠A 的对边与斜边的比叫做∠A 的正弦,记作sinA ,即斜边的对边A A ∠=sin ;例 在ABC ∆中,若90C ∠=︒,1sin 2A =,2AB =,则ABC ∆的周长为 3. 余弦:在Rt △ABC 中,锐角∠A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即斜边的邻边A A ∠=cos ;例 等腰三角形的底角为30°,底边长为23,则腰长为( ) A .4B .23C .2D .224. 一个锐角的正弦、余弦分别等于它的余角的余弦、正弦。
例 △ABC 中,∠A ,∠B 均为锐角,且有2|tan 3|2sin 30B A -+-=(),则△ABC是( )A .直角(不等腰)三角形B .等腰直角三角形C .等腰(不等边)三角形D .等边三角形5.当从低处观测高处的目标时,视线与水平线所成的锐角称为仰角.. 当从高处观测低处的目标时,视线与水平线所成的锐角称为俯角..6.在直角三角形中,除直角外,一共有五个元素,即三条边和二个锐角。
北师大版九年级(下)数学知识点归纳总结

第一章直角三角形的边角关系九年级下册第1节锐角三角函数一、锐角三角函数锐角A的正弦、余弦、正切都叫做∠A的锐角三角函数。
如图所示,在Rt△ABC中,∠C=90°【说明】①三角函数表示的是两边的比值,所以它只是一个数值,没有单位。
②当用一个大写字母表示角时,其三角函数中角的符号省略,如sin A,cos B,tan C;当用一个希腊字母表示角时,其三角函数中角的符号省略,如sinα,cosβ,tanθ;当用三个大写字母表示角时,其三角函数中角的符号不能省略,如sin∠ABC,cos∠DEF,tan∠GHI;当用一个阿拉伯数字表示角时,其三角函数中角的符号不能省略,如sin∠1,cos∠2,tan∠3。
③如果要表示三角函数的倍数与乘方,应分别表示为2 sin A,3cos B,4tan C,sin2A,cos3B,tan4C;2 sin30°,3cos30°,4tan30°,sin230°,cos330°,tan430°。
二、坡度1、坡度的概念如图所示,我们把坡面的铅直高度h和水平宽度l的比值叫做坡度(或坡比),通常用字母i表示。
【说明】坡面的坡度实际上就是坡角的正切值,即i=tanα=hl2、三角函数与坡面的陡峭程度(1)tan A的值越大,坡面越陡。
(2)sin A的值越大,坡面越陡。
(3)cos A的值越小,坡面越陡。
三、锐角三角函数的增减性(0°~90°)1、正弦值随着角度的增大(或减小)而增大(或减小);2、余弦值随着角度的增大(或减小)而减小(或增大);3、正切值随着角度的增大(或减小)而增大(或减小)。
四、同角三角函数的关系1、互余关系:sinA =cos(90°-A) cosA =sin(90°-A)2、平方关系:s in 2A +cos 2A =13、弦切关系:tan A =sin cos AA4、倒数关系:tan A ·tan(90°-A)=1第2节 30°,45°,60°角的三角函数值一、探索30°,45°,60°角的三角函数值求30°角的三角函数值,关键根据“直角三角形中30°的锐角所对的直角边等于斜边的一半”,可设30°的锐角的对边为a ,则斜边为2a ,由勾股定理可求得30°3a ,因此可以求出30°的锐角的各个三角函数值:sin30°=2a a =12 cos30°3a3 tan30°3a 33也可以求出60°的锐角的各个三角函数值:sin60°3a =3 cos60°=2a a =12tan60°3a 3求45°角的三角函数值,关键根据“有一个角是45°的直角三角形是等腰直角三角形”,可设一条直角边为a ,则另一条直角边也为a 2a ,因此可以求出45°的锐角的各个三角函数值:sin45°2a 22 cos45°2a 2 tan45°=aa =1二、熟记特殊角的三角函数值第3节三角函数的计算一、用计算器求任意锐角的三角函数值1、求整数度数的锐角的三角函数值首先使计算器的面板上出现DEG,然后再按sin cos tan这三个键之一,再从高位向低位按出表示度数的整数,再按键=,就可以在显示屏上得到答案。
北师大版九年级下册数学[解直角三角形及其应用--知识点整理及重点题型梳理]
![北师大版九年级下册数学[解直角三角形及其应用--知识点整理及重点题型梳理]](https://img.taocdn.com/s3/m/29e52bb8fe4733687f21aaf7.png)
北师大版九年级下册数学重难点突破知识点梳理及重点题型巩固练习解直角三角形及其应用一知识讲解【学习目标】1.了解解直角三角形的含义,会综合运用平面几何中有关直角三角形的知识和锐角三角函数的定义解直角三角形;2 .会运用有关解直角三角形的知识解决实际生活中存在的解直角三角形问题.【要点梳理】要点一、解直角三角形在直角三角形中,由已知元素(直角除外)求未知元素的过程,叫做解直角三角形.在直角三角形中,除直角外,一共有5个元素,即三条边和两个锐角.设在Rt△ ABC中,/C=90° ,匕A ZB、/ C所对的边分别为a、b、c,则有:①三边之间的关系:a2+b2=c2(勾股定理).②锐角之间的关系:/A+Z B=90° .③边角之间的关系:a I)asi n 4 二一,co$ 4 二一,讪刃二一,bc 匕b a b,-,、广,I -.c c a④一一白& ——ck , h为斜边上的[Wj .2 2要点诠释:(1)直角三角形中有一个元素为定值(直角为90° ),是已知值.(2)这里讲的直角三角形的边角关系指的是等式,没有包括其他关系(如不等关系).(3)对这些式子的理解和记忆要结合图形,可以更加清楚、直观地理解^要点诠释:1.在遇到解直角三角形的实际问题时,最好是先画出一个直角三角形的草图,按题意标明哪些元素是已知的,哪些元素是未知的,然后按先确定锐角、再确定它的对边和邻边的顺序进行计算^2.若题中无特殊说明,“解直角三角形”即要求出所有的未知元素,已知条件中至少有一个条件为边.要点三、解直角三角形的应用解直角三角形的知识应用很广泛,关键是把实际问题转化为数学模型,善于将某些实际问题中的数量关系化归为直角三角形中的边角关系是解决实际应用问题的关键^解这类问题的一般过程是:(1)弄清题中名词、术语的意义,如仰角、俯角、坡度、坡角、方向角等概念,然后根据题意画出几何图形,建立数学模型.(2)将已知条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形的问题.(3)根据直角三角形(或通过作垂线构造直角三角形)元素(边、角)之间的关系解有关的直角三角形.(4)得出数学问题的答案并检验答案是否符合实际意义,得出实际问题的解^拓展:在用直角三角形知识解决实际问题时,经常会用到以下概念:(1)坡角:坡面与水平面的夹角叫做坡角,用字母Q表示.. ,k 坡度(坡比):坡面的铅直高度h和水平距离J的比叫做坡度,用字母i表示,贝Ijz-y=tana,如图, 坡度通常写成i=h: J的形式.(2)仰角、俯角:视线与水平线所成的角中,视线中水平线上方的叫做仰角,在水平线下方的叫做俯角,如图.90°的水平角,叫做方向角,如图②中的 南偏东45° ,南偏西80° ,北偏西60° . 45° ,西南方向指的是南偏西45° ,西使其转化为直角三角形或矩形(3) 方位角:从某点的指北方向线按顺时针转到目标方向的水平角叫做方位角,如图①中,目标方 向PA PB, PC 的方位角分别为是 40° , 135° , 245° .(4)方向角:指北或指南方向线与目标方向线所成的小于目标方向线 OA OB, OC OD 的方向角分别表示北偏东 30° , 特别如:东南方向指的是南偏东 45 ,东北方向指的是北偏东 北方向指的是北偏西 45° . 要点诠释:1 .解直角三角形实际是用三角知识,通过数值计算,去求出图形中的某些边的长或角的大小,最 好画出它的示意图.2.非直接解直角三角形的问题,要观察图形特点,恰当引辅助线, 来解.3.解直角三角形的应用题时,首先弄清题意 (关键弄清其中名词术语的意义 ),然后正确画出示意 图,进而根据条件选择合适的方法求解.①【典型例题】类型一、解直角三角形C1.在Rt △ ABC中,ZB 90° , a、b、c分别是/ A Z 8 / C的对边,根据下列条件,解这个直角三角形.(1)Z B=60° , a = 4;(2)a = 1, b =焰.【答案与解析】(1)Z A= 90 ° —Z B= 90° —60 ° = 30° .b由tan B =一知,b = a|_tan B =4 Ktan60 = 4\/3., a 站 a 4由cos B =—知,c = -------= -------- 7 = 8 -c cosB cos60b(2)由tanB=—=龙得Z B= 60 , Z A= 90 -60 = 30 .aa2+b2=c2, •• c = Ja2 +b2 =V4 = 2.【总结升华】解直角三角形的两种类型是:(1)已知两边;(2)已知一锐角和一边.解题关键是正确选择边角关系.常用口诀:有弦(斜边)用弦(正弦、余弦),无弦(斜边)用切(正切).(1)首先用两锐角互余求锐角Z A,再利用/ B的正切、余弦求b、c的值;(2)首先用正切求出/ B 的值,再求/ A的值,然后由正弦或余弦或勾股定理求c的值.举一反三:【变式】(1)已知Z C=90° , a=2j? , b=2,求Z A、Z B和c; (2)已知sinA= - , c=6 ,求a 和b;3【答案】(1)c=4; Z A=60°、Z B=30° ;(2) a=4; b= 2^52. (2015?湖北)如图,AD 是^ ABC 的中线,tanB=』,cosC=^ , AC=J^.求:3 2(1)BC的长;(2)sin / ADC 的值.【答案与解析】解:过点A作AE ± BC于点E,cosC^^—,2... / C=45 °,在Rt△ ACE 中,CE=AC?cosC=1,AE=CE=1 ,在Rt△ ABE 中,tanB=Jl,即焚=1,3 BE 3••• BE=3AE=3 ,••• BC=BE+CE=4 ;(2) AD 是^ABC 的中线,••• CD=』BC=2 ,2••• DE=CD - CE=1 ,. AE±BC, DE=AE ,•••Z ADC=45 °,•••sin / ADC=也2【总结升华】正确作出辅助线构造直角三角形是解题的关键,注意锐角三角函数的概念的正确应用. 类型二、解直角三角形在解决几何图形计算问题中的应用3.(2016?盐城)已知△ ABC中,tanB=Z, BC=6 ,过点A作BC边上的高,垂足为点D,且满足3BD : CD=2 : 1,则^ ABC面积的所有可能值为 .【思路点拨】分两种情况,根据已知条件确定高AD的长,然后根据三角形面积公式即可求得. 【答案】8或24.【解析】解:如图1所示:图1. • BC=6 , BD : CD=2 : 1 ,BD=4 ,-■ AD ± BC , tanB=—,3.AD_2—=,则AD于E,如图,BD 39 只. . AD=^BD= 一 ,3 3. oIs — 1 8… --S AABC ==BC?AD= = X 6X k =8;223'= -BD 3—9 一 - AD= —BD=8 ,3••• S AABC =【BC?AD=【X 6x 8=24 ;2 2综上,△ ABC 面积的所有可能值为 8或24, 故答案为8或24.【总结升华】 本题考查了解直角三角形,以及三角函数的定义,三角形面积,分类讨论思想的运用是本 题的关键. 举一反三:【变式】(2015?河南模拟)如图,在等腰 RtAABC 中,/ C=90°,AC=6 ,D 是AC 上一点,若tanZ DBA=」,5•••/ C=90 °, AC=BC=6 ,ACB 为等腰直角三角形,AB^2AC=^2,•.•Z A=45 °,在Rt △ ADE 中,设AE=x,贝U DE=x , AD=姬乂,在Rt△ BED 中,tanZ DBE=^=±,BE 5BE=5x ,•••x+5x=6 如,解得x=J云. . AD=V^ >V2 =2.(2)在 Rt △ DEC 中,七却"=近=如,EC 3ZC类型三、解直角三角形在解决实际生活、生产问题中的应用 C 4 .某过街大桥的截面图为梯形,如图所示,其中大桥斜面CD 的坡度为i =1: J 3 (i = 1: J 3是指铅直高度DE 与水平宽度CE 的比),CD 的长为10 m,大桥另一斜面 AB 的坡角/ ABCC= 45° .(1) 写出过街大桥斜面 AB 的坡度; (2) 求DE 的长;(3) 若决定对该过街大桥进行改建,使 AB 斜面的坡度变缓,将其45°坡角改为30° ,方便过路群众,改建后斜面为 AF,试计算此改建需占路面的宽度 FB 的长(结果精确到.0.01 m ).【答案与解析】(1)作 A(^ BC 于 G Dd BC 于 E, 在 Rt △ AGB 中,Z AB 孚 45° , A8 BG........ AG••- AB 的坡度「=—兰=1 .BG=30 .又.. CD = 10 m . ... DE=1CD=5m 2 '(3) 由(1)知 A8 B8 5 m,在 Rt△ AFG 中,Z AF 孚 30° ,AG .35 -tan NAFG =常,即,解得 FB =5店—5 =3.66(m ).答:改建后需占路面的宽度 FB 的长约为3.66 m .【总结升华】(1)解梯形问题常作出它的两条高,构造直角三角形求解.(2)坡度是坡面的铅直高度与水平宽度的比,它等于坡角的正切值.e/ 5 .腾飞中学在教学楼前新建了一座“腾飞”雕塑.为了测量雕塑的高度,小明在二楼找到一点C,利用三角板测得雕塑顶端A点的仰角为30° ,底部B点的俯角为45°,小华在五楼找到一点D,利用三角板测得A点的俯角为60° (如图所示).若已知CD为10米,请求出雕塑AB的高度.(结果精确到0.1米,参考数据扼=1.73)精品文档用心整理资料来源于网络仅供免费交流使用【答案与解析】 过点C 作CN AB 于E./ 4 90° — 60° = 30° , / AC 孚 90° — 30° = 60° , Z CA 孚 180° - 30° - 60°=90° .. • CD = 10,AC = 1Ct> 5. 2在 Rt △ ACE 中, 5 AE= AC • sin Z ACE 5 x sin 30 =—, 2CA AC • cos Z ACE 5 x cos 30 ° = 5 构,2 在 Rt△ BCE 中,.• / BCE 45° ,AB = AE+BE=5+:X /3=5(V3 + 1)-6.8(米).雕塑AB 的高度约为6.8米.【总结升华】 此题将实际问题抽象成数学问题是解题关键,从实际操作(用三角形板测得仰角、俯角) 过程中,提供作辅助线的方法,同时对仰角、俯角等概念不能模糊.B。
北师大版初三数学解直角三角形重点讲解

北师大版初三数学解直角三角形重点讲解概念:在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素,求出所有未知元素的过程叫做解直角三角形。
解直角三角形的边角关系:在Rt△ABC中,ang;C=90deg;,ang;A,ang;B,ang;C 所对的边分别为a,b,c,(1)三边之间的关系:a2+b2=c2(勾股定理);(2)锐角之间的关系:ang;A+ang;B=90deg;;(3)边角之间的关系:解直角三角形的函数值:锐角三角函数:sinA=a/c,cosA=b/c,tanA=a/b,cotA=b/a(1)互余角的三角函数值之间的关系:若ang;A+ang;B=90deg;,那么sinA=cosB或sinB=cosA (2)同角的三角函数值之间的关系:①sin2A+cos2A=1②tanA=sinA/cosA③tanA=1/tanB④a/sinA=b/sinB=c/sinC(3)锐角三角函数随角度的变化规律:锐角ang;A的tan值和sin值随着角度的增大而增大,cos值随着角度的增大而减小。
解直角三角形的应用:一般步骤是:(1)将实际问题抽象为数学问题(画图,转化为直角三角形的问题);(2)根据题目的条件,适当选择锐角三角函数等去解三角形;(3)得到数学问题的答案;(4)还原为实际问题的答案。
练习题1、三角形ABC中,ang;C=90deg;,AB=8,则AC的长是()。
2、某人沿着有一定坡度的坡面前进了10米,此时他与水平地面的垂直距离为米,则这个破面的坡度为()。
3、锐角三角形ABC中,AB=AC=10,BC=16,则()。
4、正方形ABCD的边长为1,如果将线段BD绕着点B旋转后,点D落在BC的延长线上的Dprime;处,那么ang;BADprime;= ()。
答案1、63、1∶27、0.759、30度初三数学解直角三角形重点内容就是这些,不知道大家是否已经都掌握了呢?预祝大家以更好的学习,取得优异的成绩。
北师大版九年级下册数学(全册知识点考点梳理、重点题型分类巩固练习)(提高版)(家教、补习、复习用)

北师大版九年级下册数学全册知识点梳理及重点题型巩固练习锐角三角函数—知识讲解【学习目标】1.结合图形理解记忆锐角三角函数定义;2.会推算30°、45°、60°角的三角函数值,并熟练准确的记住特殊角的三角函数值; 3.理解并能熟练运用“同角三角函数的关系”及“锐角三角函数值随角度变化的规律”. 【要点梳理】要点一、锐角三角函数的概念如图所示,在Rt △ABC 中,∠C =90°,∠A 所对的边BC 记为a ,叫做∠A 的对边,也叫做∠B 的邻边,∠B 所对的边AC 记为b ,叫做∠B 的对边,也是∠A 的邻边,直角C 所对的边AB 记为c ,叫做斜边.锐角A 的对边与斜边的比叫做∠A 的正弦,记作sinA ,即sin A aA c∠==的对边斜边;锐角A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即cos A bA c ∠==的邻边斜边; 锐角A 的对边与邻边的比叫做∠A 的正切,记作tanA ,即tan A aA A b∠==∠的对边的邻边. 同理sin B b B c ∠==的对边斜边;cos B aB c∠==的邻边斜边;tan B b B B a ∠==∠的对边的邻边. 要点诠释:(1)正弦、余弦、正切函数是在直角三角形中定义的,反映了直角三角形边与角的关系,是两条线段的比值.角的度数确定时,其比值不变,角的度数变化时,比值也随之变化.(2)sinA ,cosA ,tanA 分别是一个完整的数学符号,是一个整体,不能写成,, ,不能理解成sin 与∠A ,cos 与∠A ,tan 与∠A 的乘积.书写时习惯上省略∠A 的角的记号“∠”,但对三个大写字母表示成的角(如∠AEF),其正切应写成“tan ∠AEF ”,不能写成“tanAEF ”;另外,、、常写成、、.(3)任何一个锐角都有相应的锐角三角函数值,不因这个角不在某个三角形中而不存在. (4)由锐角三角函数的定义知: 当角度在0°<∠A<90°间变化时,,,tanA >0. 要点二、特殊角的三角函数值利用三角函数的定义,可求出30°、45°、60°角的各三角函数值,归纳如下:锐角30°B C a b c45° 160°要点诠释:(1)通过该表可以方便地知道30°、45°、60°角的各三角函数值,它的另一个应用就是:如果知道了一个锐角的三角函数值,就可以求出这个锐角的度数,例如:若,则锐角.(2)仔细研究表中数值的规律会发现:、、的值依次为、、,而、、的值的顺序正好相反,、、的值依次增大,其变化规律可以总结为:①正弦、正切值随锐角度数的增大(或减小)而增大(或减小);②余弦值随锐角度数的增大(或减小)而减小(或增大).要点三、锐角三角函数之间的关系如图所示,在Rt△ABC中,∠C=90°.(1)互余关系:,;(2)平方关系:;(3)倒数关系:或;(4)商数关系:.要点诠释:锐角三角函数之间的关系式可由锐角三角函数的意义推导得出,常应用在三角函数的计算中,计算时巧用这些关系式可使运算简便.【典型例题】类型一、锐角三角函数值的求解策略1.(2016•安顺)如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是()A.2 B.C.D.【思路点拨】根据勾股定理,可得AC、AB的长,根据正切函数的定义,可得答案.【答案】D.【解析】解:如图:,由勾股定理,得AC=,AB=2,BC=,∴△ABC为直角三角形,∴tan∠B==,故选:D.【总结升华】本题考查了锐角三角函数的定义,先求出AC、AB的长,再求正切函数.举一反三:【变式】在RtΔABC中,∠C=90°,若a=3,b=4,则c =,sinA=,cosA=,sinB=,cosB=.【答案】c= 5 ,sinA=35,cosA=45,sinB=45,cosB=35.类型二、特殊角的三角函数值的计算2.求下列各式的值:(1)(2015•茂名校级一模)6tan230°﹣sin60°﹣2sin45°;(2)(2015•乐陵市模拟)sin60°﹣4cos230°+sin45°•tan60°;(3)(2015•宝山区一模)+tan60°﹣.【答案与解析】解:(1)原式==122-.(2) 原式=×﹣4×()2+×=﹣3+63;Ca bc(3) 原式=+﹣=2+﹣=3﹣2+2=322.【总结升华】熟记特殊角的三角函数值或借助两个三角板推算三角函数值,先代入特殊角的三角函数值,再进行化简.举一反三:【变式】在RtΔABC中,∠C=90°,若∠A=45°,则∠B=,sinA=,cosA=,sinB=,cosB=.【答案】∠B=45°,sinA=22,cosA=22,sinB=22,cosB=22.类型三、锐角三角函数之间的关系3.(2015•河北模拟)已知△ABC中的∠A与∠B满足(1﹣tanA)2+|sinB﹣|=0(1)试判断△ABC的形状.(2)求(1+sinA)2﹣2﹣(3+tanC)0的值.【答案与解析】解:(1)∵|1﹣tanA)2+|sinB﹣|=0,∴tanA=1,sinB=,∴∠A=45°,∠B=60°,∠C=180°﹣45°﹣60°=75°,∴△ABC是锐角三角形;(2)∵∠A=45°,∠B=60°,∠C=180°﹣45°﹣60°=75°,∴原式=(1+)2﹣2﹣1=.【总结升华】本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.类型四、锐角三角函数的拓展探究与应用4.如图所示,AB是⊙O的直径,且AB=10,CD是⊙O的弦,AD与BC相交于点P,若弦CD =6,试求cos ∠APC 的值.【答案与解析】连结AC ,∵ AB 是⊙O 的直径,∴ ∠ACP =90°, 又∵ ∠B =∠D ,∠PAB =∠PCD ,∴ △PCD ∽△PAB ,∴PC CDPA AB=. 又∵ CD =6,AB =10, ∴ 在Rt △PAC 中,63cos 105PC CD APC PA AB ∠====. 【总结升华】直角三角形中,锐角的三角函数等于两边的比值,当这个比值无法直接求解,可结合相似三角形的性质,利用对应线段成比例转换,间接地求出这个比值.锐角的三角函数是针对直角三角形而言的,故可连结AC ,由AB 是⊙O 的直径得∠ACB =90°,cos PC APC PA ∠=,PC 、PA 均为未知,而已知CD =6,AB =10,可考虑利用△PCD ∽△PAB 得PC CDPA AB=.5.通过学习三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.类似的,可以在等腰三角形中建立边角之间的联系.我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图1①,在△ABC 中,AB =AC ,顶角A 的正对记作sadA ,这时sadA BCAB==底边腰.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述角的正对定义,解下列问题:(1)sad60°=________.(2)对于0<A <180°,∠A 的正对值sadA 的取值范围是_______.(3)如图1②,已知sinA =35,其中∠A 为锐角,试求sadA 的值.【答案与解析】(1)1; (2)0<sadA <2;(3)如图2所示,延长AC 到D ,使AD =AB ,连接BD .设AD=AB=5a,由3sin5BCAAB==得BC=3a,∴22(5)(3)4AC a a a=-=,∴CD=5a-4a=a,22(3)10BD a a a=+=,∴10 sadA5BDAD==.【总结升华】(1)将60°角放在等腰三角形中,底边和腰相等,故sadA=1;(2)在图①中设想AB=AC的长固定,并固定AB让AC绕点A旋转,当∠A接近0°时,BC接近0,则sadA接近0但永远不会等于0,故sadA>0,当∠A接近180°时,BC接近2AB,则sadA接近2但小于2,故sadA <2;(3)将∠A放到等腰三角形中,如图2所示,根据定义可求解.北师大版九年级下册数学重难点突破知识点梳理及重点题型巩固练习锐角三角函数—巩固练习【巩固练习】一、选择题1. (2016•乐山)如图,在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,则下列结论不正确的是()A.B.C.D.2.(2015•山西)如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是()A.2 B.C.D.3. 已知锐角α满足sin25°=cosα,则α=( )A.25°B.55°C.65°D.75°4.如图所示,直径为10的⊙A经过点C(0,5)和点O(0,0),B是y轴右侧⊙A优弧上一点,则∠OBC 的余弦值为( )A.12B.34C3D.45第4题第5题5.如图,在△ABC中,∠A=120°,AB=4,AC=2,则sinB的值是( )A.5714B.35C.217D.21146.在Rt△ABC中,∠C=90°,若将各边长度都扩大为原来的2倍,则∠A的正弦值( ) A.扩大2倍B.缩小2倍C.扩大4倍D.不变7.如图所示是教学用具直角三角板,边AC=30cm,∠C=90°,tan∠BAC=33,则边BC的长为( )A.303cm B.203cm C.103cm D.53cm第7题第8题8. 如图所示,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,若AC=5,BC=2,则sin∠ACD 的值为( )A.53B.253C.52D.23二、填空题9.(2016•临夏州)如图,点A(3,t)在第一象限,OA与x轴所夹的锐角为α,tanα=,则t的值是.10. 用不等号连接下面的式子.(1)cos50°________cos20°(2)tan18°________tan21°11.在△ABC中,若223sin cos022A B⎛⎫+-=⎪⎪⎝⎭,∠A、∠B都是锐角,则∠C的度数为.12.如图所示,△ABC的顶点都在方格纸的格点上,则sinA=________.13.已知:正方形ABCD的边长为2,点P是直线CD上一点,若DP=1,则tan∠BPC的值是________.第12题第15题14.如果方程2430x x-+=的两个根分别是Rt△ABC的两条边,△ABC的最小角为A,那么tanA的值为________.15.如图所示,△ABC的内心在y轴上,点C的坐标为(2,0),点B的坐标是(0,2),直线AC的解析式为112y x=-,则tanA的值是________.16.(2014•高港区二模)若α为锐角,且,则m的取值范围是.三、解答题17.如图所示,△ABC中,D为AB的中点,DC⊥AC,且∠BCD=30°,求∠CDA的正弦值、余弦值和正切值.18. 计算下列各式的值.(1) (2015•普陀区一模);(2) (2015•常州模拟)sin45°+tan45°﹣2cos60°.(3) (2015•奉贤区一模)﹣cos60°.19.如图所示,在矩形ABCD中,E是BC边上的点,AE=BC,DF⊥AE,垂足为F,连接DE.(1)求证:AB=DF;(2)若AD=10,AB=6,求tan∠EDF的值.20. 如图所示,已知⊙O的半径为2,弦BC的长为23A为弦BC所对优弧上任意一点(B、C两点除外).(1)求∠BAC的度数;(2)求△ABC面积的最大值.(参考数据:3sin60=°,3cos30=°,3tan30=°.【答案与解析】 一、选择题 1.【答案】C.【解析】在Rt △ABC 中,∠BAC=90°,sinB=,∵AD ⊥BC , ∴sinB=,sinB=sin ∠DAC=,综上,只有C 不正确 故选:C . 2.【答案】D ;【解析】如图:由勾股定理得,AC=,AB=2,BC=,∴△ABC 为直角三角形,∴tan∠B==,故选:D .3. 【答案】C ;【解析】由互余角的三角函数关系,cos sin(90)αα=-°,∴ sin25°-sin(90°-α), 即90°-α=25°,∴ α=65°.4.【答案】C ;【解析】设⊙A 交x 轴于另一点D ,连接CD ,根据已知可以得到OC =5,CD =10,∴ 2210553OD =-=,∵ ∠OBC =∠ODC , ∴ 533cos OB cos 102OD C ODC CD ∠=∠===.5.【答案】D ;【解析】如图所示,过点C 作CD ⊥AB 于D ,∵ ∠BAC =120°,∴ ∠CAD =60°, 又∵ AC =2,∴ AD =1,CD =3, ∴ BD =BA+AD =5,在Rt △BCD 中,222827BC BD CD =+==,∴ 321sin 1427CD B BC ===.6.【答案】D ;【解析】根据锐角三角函数的定义,锐角三角函数值等于相应边的比,与边的长度无关,而只与边的比值或角的大小有关.7.【答案】C ;【解析】由3tan 3BC BAC AC ∠==,∴ 333010333BC AC ==⨯=8. 【答案】A ; 【解析】 ∵ 223AB AC BC =+=,∴ 5sin sin 3AC ACD B AB ∠=∠==二、填空题 9.【答案】.【解析】过点A 作AB ⊥x 轴于B , ∵点A (3,t )在第一象限, ∴AB=t ,OB=3, 又∵tanα===,∴t=. 故答案为:.10.【答案】(1)<; (2)<;【解析】当α为锐角时,其余弦值随角度的增大而减小,∴ cos50°<cos20°;当α为锐角时,其正切值随角度的增大而增大,∴ tan18°<tan21°.11.【答案】105°;【解析】∵ 223sin cos 022A B ⎛⎫-+-= ⎪ ⎪⎝⎭, ∴ 2sin 02A -=3cos 0B = 即2sin A =3cos B =.又∵ ∠A 、∠B 均为锐角,∴ ∠A =45°,∠B =30°,在△ABC 中,∠A+∠B+∠C =180°,∴ ∠C =105°. 12.5【解析】假设每一个小正方形的边长为1,利用网格,从C 点向AB 所在直线作垂线CH .垂足为H ,则∠A在直角△ACH中,利用勾股定理得224225AC +=,∴5sin 525CH A AC ===13.【答案】2或23【解析】此题为无图题,应根据题意画出图形,如图所示,由于点P 是直线CD 上一点,所以点P既可以在边CD 上,也可以在CD 的延长线上,当P 在边CD 上时,tan 2BC BPC PC ∠==;当P 在CD 延长线上时,2tan 3BC BPC PC ∠==.14.【答案】13或24; 【解析】由2430x x -+=得11x =,23x =,①当3为直角边时,最小角A 的正切值为1tan 3A =;②当3为斜边时,另一直角边为223122-=,∴ 最小角A 的正切值为12tan 422A ==. 故应填13或24.15.【答案】13;【解析】由△ABC 的内心在y 轴上可知OB 是∠ABC 的角平分线,则∠OBA =45°,易求AB 与x 轴的交点为(-2,0),所以直线AB 的解析式为:2y x =+,联立2112y x y x =+⎧⎪⎨=-⎪⎩可求A 点的坐标为(-6,-4), ∴ 2262AB AD BD =+=,又OC =OB =2,∴ BC =22.在Rt △ABC 中,221tan 362BC A AB ===.16.【答案】 ; 【解析】∵0<cosα<1,∴0<<1,解得.三、解答题17.【答案与解析】过D作DE∥AC,交BC于点E.∵AD=BD,∴CE=EB,∴AC=2DE.又∵DC⊥AC,DE∥AC,∴DC⊥DE,即∠CDE=90°.又∵∠BCD=30°,∴EC=2DE,DC=3DE.设DE=k,则CD=3k,AC=2k.在Rt△ACD中,227AD AC CD k=+=.∴227sin77AC kCDAAD k∠===,321cos77CD kCDAAD k∠===.223tan33AC kCDACD k∠===.18.【答案与解析】解:(1)原式=4×﹣×+×=1+3.(2) 原式=×+1﹣2×=1+1﹣1=1.(3) 原式=﹣×=﹣231-19.【答案与解析】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,AD=BC∴∠DAF=∠AEB又∵AE=BC,∴AE=AD又∵∠B=∠DFA=90°,∴△EAB≌△ADF.∴AB=DF.(2)解:在Rt△ABE中,22221068BE AE AB--=∵△EAB≌△ADF,∴DF=AB=6,AF=EB=8,∴EF=AE-AF=10-8=2.∴21 tan63EFEDFDF∠===.20.【答案与解析】(1)连接BO并延长,交⊙O于点D,连接CD.∵BD是直径,∴BD=4,∠DCB=90°.在Rt△DBC中,233 sin42BCBDCBD∠===,∴∠BDC=60°,∴∠BAC=∠BDC=60°.(2)因为△ABC的边BC的长不变,所以当BC边上的高最大时,△ABC的面积最大,此时点A应落在优弧BC的中点处.过O作OE⊥BC于点E,延长EO交⊙O于点A,则A为优孤BC的中点.连结AB,AC,则AB=AC,∠BAE12=∠BAC=30°.在Rt△ABE中,∵BE3=BAE=30°,∴33tan303BEAE===°,∴1233332ABCS=⨯=△答:△ABC面积的最大值是33北师大版九年级下册数学重难点突破知识点梳理及重点题型巩固练习解直角三角形及其应用—知识讲解【学习目标】1.了解解直角三角形的含义,会综合运用平面几何中有关直角三角形的知识和锐角三角函数的定义解直角三角形;2.会运用有关解直角三角形的知识解决实际生活中存在的解直角三角形问题.【要点梳理】要点一、解直角三角形在直角三角形中,由已知元素(直角除外)求未知元素的过程,叫做解直角三角形.在直角三角形中,除直角外,一共有5个元素,即三条边和两个锐角.设在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,则有:①三边之间的关系:a2+b2=c2(勾股定理).②锐角之间的关系:∠A+∠B=90°.③边角之间的关系:,,,,,.④,h为斜边上的高.要点诠释:(1)直角三角形中有一个元素为定值(直角为90°),是已知值.(2)这里讲的直角三角形的边角关系指的是等式,没有包括其他关系(如不等关系).(3)对这些式子的理解和记忆要结合图形,可以更加清楚、直观地理解.要点二、解直角三角形的常见类型及解法已知条件解法步骤Rt△ABC 两边两直角边(a,b)由求∠A,∠B=90°-∠A,斜边,一直角边(如c,a)由求∠A,∠B=90°-∠A,一边一角一直角边和一锐角锐角、邻边(如∠A,b)∠B=90°-∠A,,锐角、对边(如∠A,a)∠B=90°-∠A,,斜边、锐角(如c,∠A)∠B=90°-∠A,,1.在遇到解直角三角形的实际问题时,最好是先画出一个直角三角形的草图,按题意标明哪些元素是已知的,哪些元素是未知的,然后按先确定锐角、再确定它的对边和邻边的顺序进行计算.2.若题中无特殊说明,“解直角三角形”即要求出所有的未知元素,已知条件中至少有一个条件为边.要点三、解直角三角形的应用解直角三角形的知识应用很广泛,关键是把实际问题转化为数学模型,善于将某些实际问题中的数量关系化归为直角三角形中的边角关系是解决实际应用问题的关键.解这类问题的一般过程是:(1)弄清题中名词、术语的意义,如仰角、俯角、坡度、坡角、方向角等概念,然后根据题意画出几何图形,建立数学模型.(2)将已知条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形的问题.(3)根据直角三角形(或通过作垂线构造直角三角形)元素(边、角)之间的关系解有关的直角三角形.(4)得出数学问题的答案并检验答案是否符合实际意义,得出实际问题的解.拓展:在用直角三角形知识解决实际问题时,经常会用到以下概念:(1)坡角:坡面与水平面的夹角叫做坡角,用字母表示.坡度(坡比):坡面的铅直高度h和水平距离的比叫做坡度,用字母表示,则,如图,坡度通常写成=∶的形式.(2)仰角、俯角:视线与水平线所成的角中,视线中水平线上方的叫做仰角,在水平线下方的叫做俯角,如图.(3)方位角:从某点的指北方向线按顺时针转到目标方向的水平角叫做方位角,如图①中,目标方向PA,PB,PC的方位角分别为是40°,135°,245°.(4)方向角:指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角,如图②中的目标方向线OA,OB,OC,OD的方向角分别表示北偏东30°,南偏东45°,南偏西80°,北偏西60°.特别如:东南方向指的是南偏东45°,东北方向指的是北偏东45°,西南方向指的是南偏西45°,西北方向指的是北偏西45°.要点诠释:1.解直角三角形实际是用三角知识,通过数值计算,去求出图形中的某些边的长或角的大小,最好画出它的示意图.2.非直接解直角三角形的问题,要观察图形特点,恰当引辅助线,使其转化为直角三角形或矩形来解.3.解直角三角形的应用题时,首先弄清题意(关键弄清其中名词术语的意义),然后正确画出示意图,进而根据条件选择合适的方法求解. 【典型例题】 类型一、解直角三角形1.在Rt △ABC 中,∠C =90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,根据下列条件,解这个直角三角形.(1)∠B=60°,a =4; (2)a =1,3b =. 【答案与解析】(1)∠A =90°-∠B =90°-60°=30°.由tan bB a =知,tan 4tan6043b a B ==⨯=°. 由cos a B c =知,48cos cos 60a c B ===°. (2)由tan 3bB a==得∠B =60°,∴ ∠A =90°-60°=30°.∵ 222a b c +=,∴ 2242c a b =+==.【总结升华】解直角三角形的两种类型是:(1)已知两边;(2)已知一锐角和一边.解题关键是正确选择边角关系.常用口诀:有弦(斜边)用弦(正弦、余弦),无弦(斜边)用切(正切). (1)首先用两锐角互余求锐角∠A ,再利用∠B 的正切、余弦求b 、c 的值;(2)首先用正切求出∠B 的值,再求∠A 的值,然后由正弦或余弦或勾股定理求c 的值.举一反三:【变式】(1)已知∠C=90°,a=23,b=2 ,求∠A 、∠B 和c ;(2)已知sinA=23, c=6 ,求a 和b ; 【答案】(1)c=4;∠A=60°、∠B=30°; (2)a=4;b=252.(2015•湖北)如图,AD 是△ABC 的中线,tanB=,cosC=,AC=.求:(1)BC 的长;(2)sin∠ADC 的值.【答案与解析】解:过点A作AE⊥BC于点E,∵cosC=,∴∠C=45°,在Rt△ACE中,CE=AC•c osC=1,∴AE=CE=1,在Rt△ABE中,tanB=,即=,∴BE=3AE=3,∴BC=BE+CE=4;(2)∵AD是△A BC的中线,∴CD=BC=2,∴DE=CD﹣CE=1,∵AE⊥BC,DE=AE,∴∠ADC=45°,∴sin∠ADC=.【总结升华】正确作出辅助线构造直角三角形是解题的关键,注意锐角三角函数的概念的正确应用.类型二、解直角三角形在解决几何图形计算问题中的应用3.(2016•盐城)已知△ABC中,tanB=,BC=6,过点A作BC边上的高,垂足为点D,且满足BD:CD=2:1,则△ABC面积的所有可能值为.【思路点拨】分两种情况,根据已知条件确定高AD的长,然后根据三角形面积公式即可求得.【答案】8或24.【解析】解:如图1所示:∵BC=6,BD:CD=2:1,∴BD=4,∵AD⊥BC,tanB=,∴=,∴AD=BD=,∴S△ABC=BC•AD=×6×=8;如图2所示:∵BC=6,BD:CD=2:1,∴BD=12,∵AD⊥BC,tanB=,∴=,∴AD=BD=8,∴S△ABC=BC•A D=×6×8=24;综上,△ABC面积的所有可能值为8或24,故答案为8或24.【总结升华】本题考查了解直角三角形,以及三角函数的定义,三角形面积,分类讨论思想的运用是本题的关键.举一反三:【变式】(2015•河南模拟)如图,在等腰Rt△ABC中,∠C=90°,AC=6,D是AC上一点,若tan∠DBA=,则AD的长为多少?【答案与解析】解:作DE⊥AB于E,如图,∵∠C=90°,AC=BC=6,∴△ACB为等腰直角三角形,AB=AC=6,∴∠A=45°,在Rt△ADE中,设AE=x,则DE=x,AD=x,在Rt△BED中,tan∠DBE==,∴BE=5x,∴x+5x=6,解得x=,∴AD=×=2.类型三、解直角三角形在解决实际生活、生产问题中的应用4.某过街天桥的截面图为梯形,如图所示,其中天桥斜面CD 的坡度为1:3i =(i =1:3是指铅直高度DE 与水平宽度CE 的比),CD 的长为10 m ,天桥另一斜面AB 的坡角∠ABC =45°.(1)写出过街天桥斜面AB 的坡度; (2)求DE 的长;(3)若决定对该过街天桥进行改建,使AB 斜面的坡度变缓,将其45°坡角改为30°,方便过路群众,改建后斜面为AF ,试计算此改建需占路面的宽度FB 的长(结果精确到.0.01 m). 【答案与解析】(1)作AG ⊥BC 于G ,DE ⊥BC 于E ,在Rt △AGB 中,∠ABG =45°,AG =BG . ∴ AB 的坡度1AGi BG'==. (2)在Rt △DEC 中,∵ 3tan 3DE C EC ∠==,∴ ∠C =30°.又∵ CD =10 m .∴ 15m 2DE CD ==. (3)由(1)知AG =BG =5 m ,在Rt △AFG 中,∠AFG =30°,tan AG AFG FG ∠=,即3535FB =+,解得535 3.66(m)FB =-=. 答:改建后需占路面的宽度FB 的长约为3.66 m .【总结升华】(1)解梯形问题常作出它的两条高,构造直角三角形求解.(2)坡度是坡面的铅直高度与水平宽度的比,它等于坡角的正切值.5.腾飞中学在教学楼前新建了一座“腾飞”雕塑.为了测量雕塑的高度,小明在二楼找到一点C ,利用三角板测得雕塑顶端A 点的仰角为30°,底部B 点的俯角为45°,小华在五楼找到一点D ,利用三角板测得A 点的俯角为60°(如图所示).若已知CD 为10米,请求出雕塑AB 的高度.(结果精确到0.1米,参考数据3=1.73).【答案与解析】过点C作CE⊥AB于E.∵∠D=90°-60°=30°,∠ACD=90°-30°=60°,∴∠CAD=180°-30°-60°=90°.∵CD=10,∴AC=12CD=5.在Rt△ACE中,AE=AC·sin∠ACE=5×sin 30°=52,CE=AC·cos ∠ACE=5×cos 30°=53 2,在Rt△BCE中,∵∠BCE=45°,∴5553(31)222AB AE BE=+=+=+≈6.8(米).∴雕塑AB的高度约为6.8米.【总结升华】此题将实际问题抽象成数学问题是解题关键,从实际操作(用三角形板测得仰角、俯角)过程中,提供作辅助线的方法,同时对仰角、俯角等概念不能模糊.北师大版九年级下册数学重难点突破知识点梳理及重点题型巩固练习解直角三角形及其应用--巩固练习【巩固练习】一、选择题1.在△ABC中,∠C=90°,4sin5A=,则tan B=( ).A.43B.34C.35D.452.(2016•绍兴)如图,在Rt△ABC中,∠B=90°,∠A=30°,以点A为圆心,BC长为半径画弧交AB 于点D,分别以点A、D为圆心,AB长为半径画弧,两弧交于点E,连接AE,DE,则∠EAD的余弦值是()A .B .C .D .3.河堤、横断面如图所示,堤高BC =5米,迎水坡AB 的坡比是1:3(坡比是坡面的铅直高度BC 与水平宽度AC 之比),则AC 的长是( ). A .53米 B .10米 C .15米 D .103米4.如图所示,正方形ABCD 中,对角线AC 、BD 交于点O ,点M 、N 分别为OB 、OC 的中点, 则cos ∠OMN 的值为( ).A .12 B .22C .32D .1第3题 第4题 第5题5.如图所示,某游乐场一山顶滑梯的高为h ,滑梯的坡角为α,那么滑梯长l 为 ( )A .sin h α B .tan h α C .cos h αD .sin h α 6.如图所示,在△ABC 中,∠C =90°,AC =16 cm ,AB 的垂直平分线MN 交AC 于D ,连接BD , 若3cos 5BDC ∠=,则BD 的长是( ). A .4 cm B .6 cm C .8 cm D .10 cm7.如图所示,一艘轮船由海平面上A 地出发向南偏西40°的方向行驶40海里到达B 地,再由B 地向北偏西20°的方向行驶40海里到达C 地,则A 、C 两地相距( ). A .30海里 B .40海里 C .50海里 D .60海里第6题 第7题 第8题8.如图所示,为了测量河的宽度,王芳同学在河岸边相距200 m 的M 和N 两点分别测定对岸一棵树P 的位置,P 在M 的正北方向,在N 的北偏西30°的方向,则河的宽度是( ).A .2003mB .20033m C .1003m D .100m 二、填空题9.(2015•揭西县一模)在菱形ABCD 中,DE⊥AB,,BE=2,则tan∠DBE 的值是 .10.如图所示,等边三角形ABC中,D、E分别为AB、BC边上的点,AD=BE,AE与CD交于点F,AG⊥CD于点G,则AGAF的值为________.11.如图所示,一艘海轮位于灯塔P的东北方向,距离灯塔402海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则海轮行驶的路程AB为________海里(结果保留根号).12.如图所示,直角梯形ABCD中,AB⊥BC,AD∥BC,BC>AD,AD=2,AB=4,点E在AB上,将△CBE沿CE翻折,使B点与D点重合,则∠BCE的正切值是________.13.如图所示.线段AB、DC分别表示甲、乙两座建筑物的高.AB⊥BC,DC⊥BC,两建筑物间距离BC=30米,若甲建筑物高AB=28米,在A点测得D点的仰角α=45°,则乙建筑物高DC=__ __米.第12题第13题第14题14.在一次夏令营活动中,小明同学从营地A出发,要到A地的北偏东60°方向的C处,他先沿正东方向走了200m到达B地,再沿北偏东30°方向走,恰能到达目的地C(如图所示),那么,由此可知,B、C两地相距________m.三、解答题15.如图所示,某校综合实践活动小组的同学欲测量公园内一棵树DE的高度,他们在这棵树正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°.已知A点的高度AB为2米,台阶AC的坡度为3即AB:BC=3,且B、C、E三点在同一条直线上.请根据以上条件求出树DE的高度(测倾器的高度忽略不计).16. (2016•包头)如图,已知四边形ABCD中,∠ABC=90°,∠ADC=90°,AB=6,CD=4,BC的延长线与AD的延长线交于点E.(1)若∠A=60°,求BC的长;(2)若sinA=,求AD的长.(注意:本题中的计算过程和结果均保留根号)17.(2015•资阳)北京时间2015年04月25日14时11分,尼泊尔发生8.1级强烈地震,我国积极组织抢险队赴地震灾区参与抢险工作.如图,某探测队在地面A、B两处均探测出建筑物下方C处有生命迹象,已知探测线与地面的夹角分别是25°和60°,且AB=4米,求该生命迹象所在位置C的深度.(结果精确到1米.参考数据:sin25°≈0.4,cos25°≈0.9,tan25°≈0.5,≈1.7)【答案与解析】一、选择题1.【答案】B;【解析】如图,sin A=45BCAB=,设BC=4x.则AB=5x.根据勾股定理可得AC=223AC AB BC x=-=,∴33 tan44AC xBBC x===.2.【答案】B.【解析】如图所示:设BC=x,∵在Rt△ABC中,∠B=90°,∠A=30°,∴AC=2BC=2x,AB=BC=x,根据题意得:AD=BC=x,AE=DE=AB=x,作EM⊥AD于M,则AM=AD=x,在Rt △AEM 中,cos ∠EAD===;3.【答案】A ;【解析】由tan BCi A BC===1:3知,353AC BC ==(米). 4.【答案】B ;【解析】由题意知MN ∥BC ,∠OMN =∠OBC =45°,∴ 2cos 2OMN ∠=. 5.【答案】A ;【解析】由定义sin h l α=,∴ sin h l α=. 6.【答案】D ;【解析】∵ MN 是AB 的中垂线, ∴ BD =AD .又3cos 5DC BDC BD ∠==, 设DC =3k ,则BD =5k ,∴ AD =5k ,AC =8k .∴ 8k =16,k =2,BD =5×2=10.7.【答案】B ;【解析】 连接AC ,∵ AB =BC =40海里,∠ABC =40°+20°=60°, ∴ △ABC 为等边三角形,∴ AC =AB =40海里. 8.【答案】A【解析】依题意PM ⊥MN ,∠MPN =∠N =30°,tan30°200PM=,2003PM =. 二、填空题 9.【答案】2;【解析】设菱形ABCD 边长为t ,∵BE=2,∴AE=t﹣2,∵cosA=,∴,∴=,∴t=5,∴AE=5﹣2=3, ∴DE==4,∴tan∠DB E===2.故答案为:2.10.【答案】32; 【解析】由已知条件可证△ACE ≌△CBD .从而得出∠CAE =∠BCD .∴ ∠AFG =∠CAE+∠ACD =∠BCD+∠ACD =60°,在Rt △AFG 中,3sin 602AG AF ==°.11.【答案】40403+;【解析】在Rt△APC中,PC=AC=AP·sin∠APC=2 402402⨯=.在Rt△BPC中,∠BPC=90°-30°=60°,BC=PC·tan∠BPC=403,所以AB=AC+BC=40403+.12.【答案】12;【解析】如图,连接BD,作DF⊥BC于点F,则CE⊥BD,∠BCE=∠BDF,BF=AD=2,DF=AB=4,所以21 tan tan42BFBCE BDFDF∠=∠===.13.【答案】58;【解析】α=45°,∴DE=AE=BC=30,EC=AB=28,DE=DE+EC=58 14.【答案】200;【解析】由已知∠BAC=∠C=30°,∴BC=AB=200.三、解答题15.【答案与解析】过点A作AF⊥DE于F,则四边形ABEF为矩形,∴AF=BE,EF=AB=2.设DE=x,在Rt△CDE中,3tan tan603DE DECE xDCE===∠°.在Rt△ABC中,∵13ABBC=,AB=2,∴23BC=.在Rt△AFD中,DF=DE-EF=x-2.∴23(2) tan tan30DF xAF xDAF-===-∠°∵AF=BE=BC+CE.∴33(2)233x x-=+,解得6x=.答:树DE的高度为6米.16.【答案与解析】解:(1)∵∠A=60°,∠ABE=90°,AB=6,tanA=,∴∠E=30°,BE=tan60°•6=6,又∵∠CDE=90°,CD=4,sinE=,∠E=30°,∴CE==8,∴BC=BE﹣CE=6﹣8;(2))∵∠ABE=90°,AB=6,sinA==,∴设BE=4x,则AE=5x,得AB=3x,∴3x=6,得x=2,∴BE=8,AE=10,∴tanE====,解得,DE=,∴AD=AE﹣DE=10﹣=,即AD的长是.17.【答案与解析】解:作CD⊥AB交AB延长线于D,设CD=x 米.Rt△ADC中,∠DAC=25°,所以tan25°==0.5,所以AD==2x.Rt△BDC中,∠DBC=60°,由tan 60°==,解得:x≈3米.所以生命迹象所在位置C的深度约为3米.北师大版九年级下册数学重难点突破知识点梳理及重点题型巩固练习《锐角三角函数》全章复习与巩固--巩固练习(提高)【巩固练习】一、选择题1. 计算tan 60°+2sin 45°-2cos 30°的结果是( ).A.2 B3C2D.12.如图所示,△ABC中,AC=5,2cos B=,3sin5C=,则△ABC的面积是( )A.212B.12 C.14 D.213.如图所示,A、B、C三点在正方形网格线的交点处,若将△ACB绕着点A逆时针旋转得到△AC B'',则tan B'的值为( )A.12B.13C.14D.24第2题图第3题图第4题图4.如图所示,小明要测量河内小岛B到河边公路l的距离,在A点测得∠BAD=30°,在C点测得∠BCD=60°,又测得AC=50米,那么小岛B到公路l的距离为( ).A.25米B.253米C.10033米D.25253+米5.如图所示,将圆桶中的水倒入一个直径为40 cm,高为55 cm的圆口容器中,圆桶放置的角度与水平线的夹角为45°.要使容器中的水面与圆桶相接触,则容器中水的深度至少应为( ).A.10 cm B.20 cm C.30 cm D.35 cm6.如图所示,已知坡面的坡度13i=:,则坡角α为( ).A.15°B.20°C.30°D.45°第5题图第6题图第7题图7.如图所示,在高为2 m,坡角为30°的楼梯上铺地毯,则地毯的长度至少应为( ).A.4 m B.6 m C.42m D.(223)m+8.(2016•绵阳)如图,△ABC中AB=AC=4,∠C=72°,D是AB中点,点E在AC上,DE⊥AB,则cosA的值为()A.B.C.D.二、填空题9.如图,若AC、BD的延长线交于点E,5 11CD AB =,则cos CEB∠= ;tan CEB∠= .10.如图,AD⊥CD,AB=10,BC=20,∠A=∠C=30°,则AD的长为;CD的长为.A BCDEO第9题图 第10题图 第11题图11.如图所示,已知直线1l ∥2l ∥3l ∥4l ,相邻两条平行直线间的距离都是1,如果正方形ABCD 的四个顶点分别在四条直线上,则sin α=________.12.如果方程2430x x -+=的两个根分别是Rt △ABC 的两条边,△ABC 最小的角为A ,那么tanA 的值为__ ______.13.(2015•荆州)如图,小明在一块平地上测山高,先在B 处测得山顶A 的仰角为30°,然后向山脚直行100米到达C 处,再测得山顶A 的仰角为45°,那么山高AD 为 米(结果保留整数,测角仪忽略不计,≈1.414,,1.732)14. 在△ABC 中,AB =8,∠ABC =30°,AC =5,则BC =____ ____.15. 如图,直径为10的⊙A 经过点C (0,5)和点O (0,0),B 是y 轴右侧⊙A 优弧上一点,则∠OBC 的余弦值为 .第15题图16. (2016•临沂)一般地,当α、β为任意角时,sin (α+β)与sin (α﹣β)的值可以用下面的公式求得:sin (α+β)=sinα•cosβ+c osα•sinβ;sin (α﹣β)=sinα•cosβ﹣cosα•sinβ.例如sin90°=sin(60°+30°)=sin60°•cos30°+cos60°•sin30°=×+×=1.类似地,可以求得sin15°的值是 .三、解答题17.如图所示,以线段AB 为直径的⊙O 交线段AC 于点E ,点M 是AE 的中点,OM 交AC 于点D , ∠BOE =60°,cos C =12,BC =23 (1)求∠A 的度数;(2)求证:BC 是⊙O 的切线;(3)求MD 的长度.18. (2015•湖州模拟)如图,坡面CD的坡比为,坡顶的平地BC上有一棵小树AB,当太阳光线与水平线夹角成60°时,测得小树的在坡顶平地上的树影BC=3米,斜坡上的树影CD=米,则小树AB的高是多少米?19.如图所示,圆O的直径为5,在圆O上位于直径AB的异侧有定点C和动点P,已知BC:CA=4:3,点P在半圆弧AB上运动(不与A、B重合),过C作CP的垂线CD交PB的延长线于D点.(1)求证:AC·CD=PC·BC;(2)当点P运动到AB弧中点时,求CD的长;(3)当点P运动到什么位置时,△PCD的面积最大?并求这个最大面积S.20. 如图所示,在Rt△ABC中,∠A=90°,AB=6,AC=8,D,E分别是边AB,AC的中点,点P从点D出发沿DE方向运动,过点P作PQ⊥BC于Q,过点Q作QR∥BA交AC于R,当点Q与点C重合时,点P停止运动.设BQ=x,QR=y.(1)求点D到BC的距离DH的长;(2)求y关于x的函数关系式(不要求写出自变量的取值范围);(3)是否存在点P,使△PQR为等腰三角形?若存在,请求出所有满足要求的x的值;若不存在,请说明理由.。
九年级数学下册《解直角三角形》知识点整理

九年级数学下册《解直角三角形》知识点整
理
第九章解直角三角形
★重点★解直角三角形
☆内容提要☆
一、三角函数
.定义:在Rt△ABc中,∠c=Rt∠,则sinA=;cosA=;tanA=;
.特殊角的三角函数值:
0°
°
0°
sinαcosαtanα3.互余两角的三角函数关系:sin=cos α;…
.三角函数值随角度变化的关系
.查三角函数表
二、解直角三角形
.定义:已知边和角→所有未知的边和角。
.依据:①边的关系:初中数学复习提纲
②角的关系:A+B=90°
③边角关系:三角函数的定义。
注意:尽量避免使用中间数据和除法。
三、对实际问题的处理
.初中数学复习提纲俯、仰角:2.方位角、象限角:3.坡度:
.在两个直角三角形中,都缺解直角三角形的条件时,可用列方程的办法解决。
四、应用举例。
北师大版九年级数学下册第一章4解直角三角形

∴∠A=60°.故选D.
3.图1-4-2是教学用的直角三角板,边AC=30 cm,∠C=90°,tan∠BAC= 3 ,则 3
边BC的长为 ( )
A.30 3 cm
B.20 3 cm
易错点 考虑问题不全面,导致漏解 例 在△ABC中,AB=4,AC= 13,∠B=60°,求BC的长.
错解 如图1-4-4所示,过点A作AD⊥BC于点D. 在Rt△ABD中,∠B=60°,AB=4,
∴AD=ABsin B=4sin 60°=4× 3 =2 3, 2
BD=ABcos B=4cos 60°=4× 1 =2.
因为sin A= BC = 3 ,所以∠A=60°. AB 2
所以∠B=90°-∠A=90°-60°=30°.
1.如图1-4-4,△ABC在边长为1个单位长度的方格纸中,它的顶点在小正方
形的顶点上,如果△ABC的面积为10,且sin A= 5,那么点C的位置可以在 5
()
图1-4-4
A.点C1处 C.点C3处
c 10
题型二 已知直角三角形的一边和一锐角解直角三角形 例2 如图1-4-2,在Rt△ABC中,∠C=90°,∠A=50°,a=6,解这个直角三角形. (边长精确到0.1)
图1-4-2 分析 先根据“直角三角形的两锐角互余”求出∠B,然后分别利用∠A的
正切值与正弦值求出b、c. 解析 在Rt△ABC中,∠C=90°,∠A=50°,
图1-4-2 C.10 3 cm
D.5 3 cm
答案 C ∵tan∠BAC= BC ,∴BC=AC·tan∠BAC=30× 3 =10 3 (cm),故选
(完整版)北师大版九年级数学下册知识点归纳复习提纲

图1 新北师大版九年级数学下册知识点总结第一章 直角三角形边的关系一.锐角三角函数 1.正切:定义:在Rt△ABC 中,锐角∠A 的对边与邻边的比叫做∠A 的正切..,记作tanA , 即的邻边的对边A A A ∠∠=tan ;①tanA 是一个完整的符号,它表示∠A 的正切,记号里习惯省去角的符号“∠”; ②tanA 没有单位,它表示一个比值,即直角三角形中∠A 的对边与邻边的比; ③tanA 不表示“tan”乘以“A”;④初中阶段,我们只学习直角三角形中,∠A 是锐角的正切;⑤tanA 的值越大,梯子越陡,∠A 越大;∠A 越大,梯子越陡,tanA 的值越大。
2.正弦..: 定义:在Rt△ABC 中,锐角∠A 的对边与斜边的比叫做∠A 的正弦,记作sinA ,即斜边的对边A A ∠=sin ;3.余弦:定义:在Rt△ABC 中,锐角∠A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即斜边的邻边A A ∠=cos ; 锐角A 的正弦、余弦和正切都是∠A 的三角函数当锐角A 变化时,相应的正弦、余弦和正切之也随之变化。
二.特殊角的三角函数值30 º45 º 60 º sin α21 22 23 h i=h:lBC三.三角函数的计算1. 仰角:当从低处观测高处的目标时,视线与水平线所成的锐角称为仰角..2. 俯角:当从高处观测低处的目标时,视线与水平线所成的锐角称为俯角..3.规律:利用特殊角的三角函数值表,可以看出,(1)当角度在0°~90°间变化时,正弦值、正切值随着角度的增大(或减小)而增大(或减小);余弦值随着角度的增大(或减小)而减小(或增大)。
(2)0≤sin α≤1,0≤cos α≤1。
4.坡度:如图2,坡面与水平面的夹角叫做坡角坡角的正切称为坡度........... (或坡比..)。
用字母i 表示,即A lhi tan ==5.方位角:从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角...。
九年级数学北师大版初三下册--第一单元1.4 解直角三角形 课件

∵AB=1,sin B=
2, 42
2
∴AD=AB·sin B=1×
=
4
. 4
∴BD=
AB2 AD2
12
2 2 4
14 , 4
CD= AC 2 AD2
2 2 2
30
2
4
. 4
∴BC= CD BD
30
14
30 14 .
44
4
总结
知3-讲
通过作垂线(高),将斜三角形分割成两个直角三角 形,然后利用解直角三角形来解决边或角的问题,这种 “化斜为直”的思想很常见.在作垂线时,要结合已知 条件,充分利用已知条件,如本题若过B点作AC的垂线, 则∠B的正弦值就无法利用.
A.2 3
B.2 2
C. 11
4
D. 5 5
4
(来自《典中点》 )
知2-导
知识点 2 已知一边及一锐角解直角三角形
已知直角三角形的一边和一锐角,解直角三角
形时,若已知一直角边a和一锐角A: ① ∠B=90 °-
∠
A;②c=
a ;③b sin A
a tan
. A
若已知斜边c和一个锐角A: ① ∠ B=90°- ∠ A;
则∠A的度数为( D )
A.90°
B.60°
C.45°
D.30°
(来自《典中点》 )
知1-练
2 在△ABC中,∠C=90°,AB=4,AC=3,欲求 ∠A的值,最适宜的做法是( C ) A.计算tan A的值求出 B.计算sin A的值求出 C.计算cos A的值求出 D.先根据sin B求出∠B,再利用90°-∠B求出
解:在Rt△ABC中,∠B=90°,
北师大版九下数学1.4解直角三角形知识点精讲

知识点总结3.解直角三角形★★★解直角三角形在直角三角形中,由已知元素求出所有未知元素的过程,叫做解直角三角形.水平线与水平面平行的直线.铅垂线与水平面垂直的直线.视线由观测点为端点引出的,通过观测目标的射线.视角从观测点发出的两条视线的夹角.方位角以正北方向为始边,按顺时针方向旋转到观测目标的方向线的角.它的数值在0º与360º之间,如图,A点的方位角为30º,B点的方位角为250º.方向角★★以正北或正南方向为始边,旋转到观测目标的方向线的锐角称为方向角(或象限角).如图,目标方向线OA、OB、OC、OD的方向角分别为北偏东60º、北偏西30º、南偏西45º、南偏东15º.仰角★★在视线与水平线所成的角中,视线在水平线上方的角叫做仰角,俯角★★在视线与水平线所成的角中,视线在水平线下方的角叫做俯角.坡度★★坡面的铅垂高度h和水平宽度l的比叫做坡面的坡度(或坡比),记作i,即i=h/l.坡度通常写成的形式,如.坡角★★坡面与水平面的夹角叫做坡角.坡度i与坡角α之间的关系:i=h/l=tanα.要点解析1.直角三角形中的边角关系①三边之间的关系:a 2+b2=c2②锐角之间的关系:∠A+∠B=90º.③边角之间的关系:重难点及基本题型>>>>1、什么是解直角三角形一个直角三角形中,若已知五个元素中的两个元素(其中必须有一个元素是边),则这样的直角三角形可解。
1、在一个直角三角形中,已知一条边和一锐角,或者已知两条边两个元素,才能求出其他元素。
2、解直角三角形:在直角三角形中,由已知元素求未知元素的过程,叫做解直角三角形.>>>>2、解直角三角形的依据:在直角三角形中,我们把两个锐角、三条边称为直角三角形的五个元素. 图中∠A,∠B,a,b,c即为直角三角形的五个元素.解直角三角形时,要注意适当选用恰含一个未知数的关系式。
北师大版九年级数学下册 第18讲 解直角三角形 知识点梳理

30°
45°
60°
sinA
cosA
tanA
1
知识点二:解直角三角形
3.解直角三角形的概念
在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形.
科学选择解直角三角形的方法口诀:
已知斜边求直边,正弦、余弦很方便;
已知直边求直边,理所当然用正切;
第18讲解直角三角形
一、知识清单梳理
知识点一:锐角三角函数的定义
关键点拨与对应举例
1.锐角三角函数
正弦:sinA= =
余弦:cosA= =
正切:tanA= = .
根据定义求三角函数值时,一定根据题目图形来理解,严格按照三角函数的定义求解,有时需要通过辅助线来构造直角三角形.
2.特殊角的三角函数值
度数
(3)边角之间的关系:sinA==cosB= ,cosA=sinB= ,
tanA= .
知识点三:解直角三角形的应用
5.仰角、俯角、坡度、坡角和方向角
(1)仰、俯角:视线在水平线上方的角叫做仰角.视线在水平线下方的角叫做俯角.(如图①)
(2)坡度:坡面的铅直高度和水平宽度的比叫做坡度(或者叫做坡比),用字母i表示.坡角:坡面与水平面的夹角叫做坡角,用α表示,则有i=tanα.(如图②)
6.解直角三角形实际应用的一般步骤
(1)弄清题中名词、术语,根据题意画出图形,建立数学模型;
(2)将条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形问题;
(3)选择合适的边角关系式,使运算简便、准确;
(4)得出数学问题的答案并检验答案是否符合实际意义,从而得到问题的解.
北师大版九年级数学下册1.4解直角三角形课件

c
b
C
a
(锐角三角函数)
b
cos A sin B ,
c
a
tan A ,
b
b
tan B ,
a
B
考点 三 解直角三角形
* 匹配例题
B
5.如图,Rt△ABC中,∠C=90°,
(1)若AB=2 , ∠ A=30°,则 AC= 3 ;
(2)若AB=4,AC=3,则BC=
7
sinA=
7
4 ;
即: x
2+10
x -50=0
x1 5 5 3, x2 5 5 3 (舍去)
∴sin ∠CAE=
CE 5 5 3
AC
10 2
∴∠CAE≈15°
∴灯塔C处在视察站A的北偏西15°
的方向
45°
A
考点
*
四 解直角三角形知识的应用问题
2.方位角:
常见模型
匹配例题
解:过点C作CD ⊥AB,垂足为D
米,路基高是4米,则路基的下底宽是
.
15
3
4
6
3
6
考点
四 解直角三角形知识的应用问题——模型总结
A
D
C
翻折
一个
Rt△
平移一个Rt△
B
C
D
小结
辨认
数形结合
熟记
实际问题
数学问题
应用
答
模型求解
直角三角形
构造直角三角
特殊角的三角函数值
谢
谢
方位角
h
α
l
考点 一
1. 定义:
锐角三角函数
新北师大版九年级数学下册第一章直角三角形的边角关系知识点整理复习

直角三角形的边角关系知识点复习考点一、锐角三角函数的概念如图,在△ABC 中,∠C=90°正弦:_____sin =∠=斜边的对边A A 余弦:____cos =∠=斜边的邻边A A 正切:_____tan =∠∠=的邻边的对边A A A考点二、一些特殊角的三角函数值三角函数 30°45°60°sin α cos α tan α考点三、各锐角三角函数之间的关系(1)互余关系:sinA=cos(90°—A),cosA=sin(90°—A) ; (2)平方关系:1cos sin 22=+A A (3)倒数关系:tanA ∙tan(90°—A)=1 (4)商的关系:tanA=AAcos sin 考点四、锐角三角函数的增减性当角度在0°~90°之间变化时,(1) 正弦值随着角度的增大而_______;(2) 余弦值随着角度的增大而_______;(3) 正切值随着角度的增大而___________; 考点五、解直角三角形 1、解直角三角形的概念在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形。
2、解直角三角形的理论依据在Rt △ABC 中,∠C=90°,∠A ,∠B ,∠C 所对的边分别为a ,b ,c (1)三边之间的关系:______________________(勾股定理) (2)锐角之间的关系:______________________(3)边角之间的关系:正弦sinA=___________,余弦cosA=____________,正切tanA=______________ (4) 面积公式:c ch ab s 2121==(h c 为c 边上的高) 考点六、解直角三角形应用1、将实际问题转化到直角三角形中,用锐角三角函数、代数和几何知识综合求解2、仰角、俯角、坡面 知识点及应用举例:(1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。
北师版数学九年级 解直角三角形复习攻略

北师版数学九年级解直角三角形复习攻略解直角三角形是初中数学重要内容之一,勾股定理与勾股定理的逆定理,锐角三角形函数的概念,特殊角的函数值,锐角三角函数的计算,解直角三角形就成为各地中考考查的重点.同学们在复习解直角三角形这部分知识时,重点注意五个方面:一是勾股定理与逆定理,主要用于三角形边长的计算,三角形形状的判定;二是锐角三角形函数的概念,主要是利用定义进行有关计算;利用特殊角的函数值进行有关计算;三是锐角三角函数的计算,主要是涉及与信息技术的整合,即计算器的用法;四是解直角三角形,主要是借助生活背景提出问题,有学生自主选择相应知识加以灵活解决问题,这是本章的重中之重的考点,也是中考逢考必有的常青考点;五是注重各种探究方法的运用.下面我们具体梳理如下:考点精讲一:勾股定理与勾股定理的逆定理考点1:勾股定理[1]直角三角形两条直角边的斜边的 .[2]设直角三角形两条直角边的长分别为a,b,斜边长为c,则 .[3]勾股定理证明的代表图形,证明要点:[1]外部正方形的边长为,面积为;[2]内部白色正方形的边长为,面积为;[3]四个角上的四个直角三角形是三角形,且三角形的面积都是;[4]根据整体图形的面积等于分割图形的面积和,得等式,借助公式展开,整理就得到了定理.例1如图1,在正方形ABCD中,△ABE和△CDF为直角三角形,∠AEB=∠CFD=90°,AE=CF=5,BE=DF=12,则EF的长是()A.7 B.8 C.7D.7解析:根据条件:正方形ABCD,△ABE和△CDF为直角三角形,∠AEB=∠CFD=90°,AE=CF=5,BE=DF=12,可以判定正方形四个角上的四个直角三角形是全等直角三角形,这样就证明这个图形与勾股定理证明图形一致,从而确定内部正方形的边长为12-5=7,根据勾股定理求得=7,所以选择C.评注:勾股定理是初中数学中应用性定理之一,是一种工具型定理,它既可以单独应用,也可以渗透到其它知识中考查,通常以与其它知识联手应用居多.沙场点兵1:1. 七巧板是我们祖先的一项卓越创造,被誉为“东方魔板”,小明利用七巧板如图2所示中各板块的边长之间的关系拼成一个凸六边形,如图3所示,则该凸六边形的周长是cm .2. 如图4,正方形ABCD 的边长为10,AG=CH=8,BG=DH=6,连接GH ,则线段GH 的长为 ( )C. 1451.32+16;2.B考点2:勾股定理的逆定理[1]如果三角形中 , 那么这个三角形是 .[2]设三角形三条边的长分别为a,b ,c ,且222c b a +=,则这个三角形是 且 .例2 如图5,在5×5的正方形网格中,从在格点上的点A ,B ,C ,D 中任取三点,所构成的三角形恰好是直角三角形的概率为 ( )A .13B .12C .23D .34.解析:从点A ,B ,C ,D 中任取三点能组成的三角形有:△ABD ,△ADC ,△ABC ,△ABC △BDC一共有4种可能,根据勾股定理求得2BD =2212+=5, 2BA =2212+=5,2AD =2213+=10,2AC =2224+=20,2BC =25=25,2DC = 2213+=10,因为2BD +2BA =5+5=10=2AD ,所以△ABD 是直角三角形;因为2AC +2BA =20+5=25=2BC ,所以△ABC 是直角三角形;因为2AD +2DC =10+10=20=2AC ,所以△ADC 是直角三角形;所构成的三角形恰好是直角三角形的概率为 34,所以选择D. 评注:当三角形三边可求后,可以利用勾股定理的逆定理判定三角形的形状,然后把问题转化直角三角形问题加以求解,特别是计算图形的面积时更显的重要.沙场点兵2:1. 下列长度的三条线段能组成钝角三角形的是 ( )A .3,4,4 B. 3,4,5 C. 3,4,6 D. 3,4,7.2. 如图6, 已知AC=4,BC=3,∠C=90°,AD=12,BD=13,则四边形ABCD 的面积为 .1. C ;2.36考点精讲二:锐角三角函数的基本概念考点1 锐角三角函数的定义在直角三角形ABC 中,AC=b,BC=a,AB=c,∠C=90°,则[1] sinA = ,cosA = , tanA = 分别叫做锐角∠A 的正弦、余弦、正切,统称为锐角∠A 的三角函数.[2].锐角三角函数的特点:锐角三角函数值都是 .∠A是锐角,则sinA 的范围是 ,cosA 的范围是 .∠A是锐角,则A A 22cos sin += .例1 如图7,在平面直角坐标系中,点A 坐标为(4,3),那么cos α的值是( ) A.34 B.43 C.35 D.45.解析:过点A 作AB 垂直x 轴垂足为B ,因为点A 坐标为(4,3),所以AB =3,OB =4,由勾股定理,得OA =5,所以4cos 5OB OA α==,所以选D. 评注:解答此类考题,把握以下几个关键点:1.利用构造垂线段的方法,把点的坐标转化成三角形边的长度;2.借助勾股定理,把直角三角形的各边精准求出;3.利用锐角三角函数的定义,正确选择函数,正确选择边,正确计算,最后作出正确的选择.沙场点兵1:1. 在Rt△ABC 中,∠C=90°,sinA=35,BC=6,则AB 的长为 ( )A .4B .6C .8D .10.2.如图,以圆O 为圆心,半径为1的弧交坐标轴于A ,B 两点,P 是上一点(不与A ,B 重合),连接OP ,设∠POB=α,则点P 的坐标是 ( )A .(sin α,sin α)B .(cos α,cos α)C .(cos α,sin α)D .(sin α,cos α)1. D2.C考点2 特殊角的函数值[1]特殊角主要是指 , , 这三种角.[2]完成下表内容的填充:例2 sin60°的值等于 ( )A .12B .C .D ..解析:根据特殊角的函数值知道,sin60°,所以选C. 评注:对于特殊角的函数值,我们有两个层面的要求,一是要独立准确地记住每个特殊角的三个锐角函数值;二是熟记锐角三角函数的定义,借助边长为特殊值的直角三角形计算记忆,图形有两个,分别是30°,45°角的直角三角形,图示信息建立如下:沙场点兵2:1. sin30°= ( )A .B .12C .D ..2. -2016(1)--3tan 60°+0(2016)-= . 1.C 2. 0 考点精讲三:锐角三角函数的计算考点 锐角三角函数的计算[1]利用科学计算器可以计算 的三角函数值.[2]在使用科学计算器求三角函数值时,按键的基本顺序是函数名称键,数字键, ,最后按下的键是 .[3]根据函数值求角时,需要用到键的第二功能 , , ,使用时首先要按下 键.例 1 如图8,是我们数学课本上采用的科学计算器面板,利用该型号计算器计算cos55°,按键顺序正确的是 ( )A.B.C.D..解析:利用该型号计算器计算cos55°,按键顺序正确的是.所以选:C.评注:熟练掌握计算器上的各个功能键,不仅会按键计算,而且也要会根据按键顺序列出所要计算的式子,这也许会成为新年的考点沙场点兵:1.计算sin25°35′45″,计算调试结束,计算时,按键顺序中,第四个按下的键是()2. 计算sin30°,计算调试结束,计算到最后,只需按下这个键,屏幕显示0.5 ()1.A.2.D.考点精讲四:解直角三角形考点1 直角三角形中完成解直角三角形直角三角形ABC中,AC=b,BC=a, AB=c,∠C=90°,完成下面的知识卡填充:[1]在直角三角形中,由已知的一些边,角,求出另一些边,角的过程,叫做 .[2]三边满足重要的,表达式为;[3]三角满足互余定理即;[4]边,角满足锐角三角函数关系,以∠A为例,写出其对应的三个锐角三角函数分别为,, .[5]解直角三角形必须要包含这个元素.例1 在Rt△ABC中,∠C=90°,sinA=45,AC=6cm则BC的长度为()A .6cmB .7cmC .8cmD .9cm.解析:因为sinA=BC AB =45,不妨设BC=4x ,AB=5x ,根据勾股定理,得AC=3x, 所以3x=6,所以x=2,所以4x=8,所以选C.评注:直接型解直角三角形,解答时,注意以下知识点的灵活运用:一是勾股定理,主要用于求边长;二是互余定理,主要用于求角;三是锐角三角函数,既可以求角,也可以求边,要灵活选择.沙场点兵1:1. 如图1,厂房屋顶人字形(等腰三角形)钢架的跨度BC=10米,∠B=36°,则中柱AD (D 为底边中点)的长是 ( )A .5sin36°米B .5cos36°米C .5tan36°米D .10tan36°米.2. 如图2,小雅家(图中点O 处)门前有一条东西走向的公路,经测得有一水塔(图中点A 处)在距她家北偏东60°方向的500米处,那么水塔所在的位置到公路的距离AB 是 ( )A .250米B .250C .5003米D .500米.1.C2.A.考点2 坡比型解直角三角形[1].坡比,即坡面的 和 的比,即坡角的 ,坡比有时也叫做坡度.[2] 坡角,坡面与 的夹角.[3] 设坡面AB 的坡角为α,坡面的垂直高度为h ,水平宽度为l ,坡比为i ,则i = = .[4]坡度不是角的 ,是一个比值,且坡度越大,坡角越 ,坡面越 .例2 一个公共房门前的台阶高出地面1.2米,台阶拆除后,换成供轮椅行走的斜坡,数据如图9所示,则下列关系或说法正确的是 ( )A .斜坡AB 的坡度是10° B.斜坡AB 的坡度是tan10°C .AC=1.2tan10°米D .AB=01.210COS 米.解析:这里坡面是AB ,坡面的垂直距离为BC ,坡面的水平宽度为AC ,坡角为∠A ,所以AB 的坡度(坡比)=tanA= tan10°=BC AC,这样就确定了答案,所以选B.评注:解坡比(坡度)问题时,要处理好如下要领:1.看清坡面;2.定准垂直距离和水平宽度;3.定准坡角;4.学会两个转化: 一是把坡比转化成线段的比;二是把坡比转化成坡角的正切值.沙场点兵2:1. 某人沿着有一定坡度的坡面前进了10米,此时他与水平地面的垂直距离为52米,则这个坡面的坡比为 ,2. 如图,某公园入口处原有三级台阶,每级台阶高为18cm ,深为30cm ,为方便残疾人 士,拟将台阶改为斜坡,设台阶的起点为A ,斜坡的起始点为C ,现设计斜坡BC 的坡度i =1:5,则AC 的长度是 cm.1. 122. 210cm . 考点3 方位角型解直角三角形[1]方位角:起始的方向线与目标 构成的小于 的角叫做方位角.[2]方位角的描述方式,起始方向偏目标方向+ ,若北偏东30°,西偏南30°.[3]特殊方式:东北方向就是北偏东 度或东偏北 度,西南方向就是西偏南 度或南偏西 度.例3 如图10,轮船沿正南方向以30海里/时的速度匀速航行,在M 处观测到灯塔P 在西偏南68°方向上,航行2小时后到达N 处,观测灯塔P 在西偏南46°方向上,若该船继续向南航行至离灯塔最近位置,则此时轮船离灯塔的距离约为(由科学计算器得到sin68°=0.9272,sin46°=0.7193,sin22°=0.3746,sin44°=0.6947) ( )A .22.48B .41.68C .43.16D .55.63.解析:如图10,过点P作PA⊥MN于点A,MN=30×2=60(海里),因为∠MNC=90°,∠CPN=46°,所以∠MNP=∠MNC+∠CPN=136°,因为∠BMP=68°,所以∠PMN=90°﹣∠BMP=22°,所以∠MPN=180°﹣∠PMN﹣∠PNM=22°,所以∠PMN=∠MPN,所以MN=PN=60(海里),因为∠CNP=46°,所以∠PNA=44°,所以PA=PN•sin∠PNA=60×0.6947≈41.68(海里),所以选:B.评注:解答本类型问题时,要抓住以下几点:1.准确确定文字型方位角对应的图形方式下的具体角,这是解直角三角形一个角的要素;2、利用路程=速度×时间,确定线段的长度,这是解直角三角形一个边的要素;3.熟练应用锐角三角函数关系,实现边与边,边与三角函数之间的相互转化,从而实现解题的目标.沙场点兵3:1. 如图1,我渔政310船在南海海面上沿正东方向匀速航行,在A地观测到我渔船C在东北方向上的我国某传统渔场.若渔政310船航向不变,航行半小时后到达B处,此时观测到我渔船C在北偏东30°方向上.问渔政310船再航行多久,离我渔船C的距离最近?(假设我渔船C捕鱼时移动距离忽略不计,结果不取近似值.2. 海中有一个小岛P,它的周围18海里内有暗礁,渔船跟踪鱼群由西向东航行,在点A测得小岛P在北偏东60°方向上,航行12海里到达B点,这时测得小岛P在北偏东45°方向上.如果渔船不改变航线继续向东航行,有没有触礁危险?请说明理由.1.解: 作CD ⊥AB ,交AB的延长线于D ,则船航行到点D处时,距离渔船C最近. 设船的航行速度为2x,则AB=⨯212x=x.设BD=y,因为∠BCD=30°,所以CD=3y.因为∠CAD=45°,所以AD=CD=3y.所以AB=AD-BD= 3y-y=(3-1)y,所以(3-1)y=x,所以=-=131x y 213+. 所以航行BD所用的时间为:x BD 2=⨯21x y =⨯21213+=413+.所以在航行413+小时,离渔船C 的距离最近.2.解:有触礁危险. 理由: 如图所示,过点P 作PD ⊥AC 于D .设PD 为x ,在Rt △PBD 中,∠PBD=90°-45°=45°.所以,BD =PD =x . 在Rt △PAD 中, 因为∠PAD =90°-60°=30°,所以x .x AD 330tan =︒=因为BD ,AB AD += 所以x .x +=123所以)13(61312+=-=x .因为,<18)13(6+所以,渔船不改变航线继续向东航行,有触礁危险.考点4 仰角,俯角型解直角三角形[1]在视线与水平线形成的角中,当视线在水平线的 时,夹角叫做仰角.[2] 在视线与水平线形成的角中,当视线在水平线的 时,夹角叫做俯角.[3]仰角,俯角示意图例4如图11,热气球的探测器显示,从热气球A处看一栋楼顶部B处的仰角为30°,看这栋楼底部C处的俯角为60°,热气球A处与楼的水平距离为120m,则这栋楼的高度为()A.160.120.300m D.160m.解析:过点A作AD⊥BC于点D,则∠BAD=30°,∠CAD=60°,AD=120m,在Rt△ABD中,BD=AD•tan30°=120×=40m),在Rt△ACD中,CD=AD•tan60°=120×=120(m),所以BC=BD+CD=160m).所以选A.评注:把角准确的界定,准确构造直角三角形是解此类题的关键.沙场点兵4:1. 某数学兴趣小组同学进行测量大树CD高度的综合实践活动,如图,在点A 处测得直立于地面的大树顶端C的仰角为36°,然后沿在同一剖面的斜坡AB 行走13米至坡顶B处,然后再沿水平方向行走6米至大树脚底点D处,斜面AB的坡度(或坡比)i=1:2.4,那么大树CD的高度约为(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)()A.8.1米B.17.2米C.19.7米D.25.5米.2. 如图所示,某办公大楼正前方有一根高度是15米的旗杆ED,从办公楼顶端A测得旗杆顶端E的俯角α是45°,旗杆底端D到大楼前梯坎底边的距离DC是20米,梯坎坡长BC是12米,梯坎坡度i=1:,则大楼AB的高度约为()(精确到0.1米,参考数据:≈1.41,≈1.73,≈2.45)A.30.6 B.32.1 C.37.9 D.39.4.1.A2. D命题预测纵观近几年的中考题,勾股定理及其逆定理通常以选择题,填空题,解答题的形式呈现,有时独立呈现,大多数是与其它知识结合呈现,特别是与折叠,对称,旋转,坐标系等知识联合的机会最多,分值在3-10分之间,难度相对不大,但是有时其难度也不小,需要认知分析,全面综合,其分值约占3%--10%,是中考必考的重要考点之一;锐角三角函数常以选择题的形式出现,以在正方形网格中求角的锐角三角函数为重要代表形式,分数约占3分,难度比较小,其分值约占3%,是中考的重要考点之一;特殊角的函数值在中考舞台也有不俗的表现,可以独立以选择题的形式呈现,可以与实数的基本计算联手出现,也可以放置到较综合的计算题中,独立呈现时,分数约占3分,难度比较小,其分值约占3%,是中考的考点之一;锐角三角函数的计算,主要是体现现代教学与计算机辅助教学的关系,体现学生使用现代化工具的技能,分数约占3分,难度比较小,其分值约占3%,是中考的一个考点;解直角三角形是本章的一个重点,也是初中数学学习的一个重点,它的呈现方式也是比较灵活的,可以是选择题,填空题,也可以是独当一面的计算题,分值从4分---8分之间,难度适中,其分值约占3%--10%,是中考的重要考点之一.面对2017年的中考,勾股定理依然是考点之一,与图形变换结合呈现可能还是重要题型之一,独立考查的可能性较小,所以在复习时,一是要注意夯实基础,保证会用知识,二是自我强化综合,特别是与折叠变换的综合,切实提高用知识解决问题的数学能力,她最亲近的图形有矩形,菱形,正方形,三角形,复习时要多加渗透勾股定理与这些图形变换的综合题;锐角三角函数一章,考点的设置可能依然遵循这样的思路:直角三角形中求锐角三角函数或变形,正方形网格中求锐角三角函数,坐标系中求锐角三角函数,题型为选题,因此在复习时,要跟上这三种背景下求三角函数的题目,以期熟练掌握求解思路和方法,确实提高复习的针对性,有效性;对于特殊角的函数值和锐角三角函数的计算,熟记函数值,熟练操作计算机的按键流程是复习的最高目标,确保这个考点的3分或4分稳稳入账;解直角三角形是本章的重头戏,也是明年中考考点的热门考点之一,学会通过构造垂线的方式,化非直角三角形为直角三角形,利用勾股定理,锐角三角函数等知识加以求解,以方位角为主角的航行问题,以仰角,俯角为主角的物高测量问题,以坡比为主角的破面建修问题,可能仍是题型的主流,只是问题背景的设计可能会更新颖,更贴近生活,所以在复习时,要以上述类型的问题为重点,强化练习,巩固已有学习成果,并主动创新题型,自我提高试题的难度,以提高解题能力,确保中考不丢分或稍丢分,以期中考取得最优考绩.沙场点兵答案:考点精讲一:勾股定理与勾股定理的逆定理沙场点兵1:1.32+16;2.B沙场点兵2:1. C ;2.36考点精讲二:锐角三角函数的基本概念沙场点兵1:1. D2.C沙场点兵2:1.C2. 0考点精讲三:锐角三角函数的计算沙场点兵:1.A.2.D.考点精讲四:解直角三角形沙场点兵1:1.C2.A.沙场点兵2: 1. 122. 210cm . 沙场点兵3:1.解: 作CD ⊥AB ,交AB的延长线于D ,则船航行到点D处时,距离渔船C最近. 设船的航行速度为2x,则AB=⨯212x=x.设BD=y,因为∠BCD=30°,所以CD=3y.因为∠CAD=45°,所以AD=CD=3y.所以AB=AD-BD= 3y-y=(3-1)y,所以(3-1)y=x,所以=-=131x y 213+. 所以航行BD所用的时间为:x BD 2=⨯21x y =⨯21213+=413+.所以在航行413+小时,离渔船C 的距离最近.2.解:有触礁危险.理由: 如图所示,过点P 作PD ⊥AC 于D .设PD 为x ,在Rt △PBD 中,∠PBD=90°-45°=45°.所以,BD =PD =x . 在Rt △PAD 中, 因为∠PAD =90°-60°=30°,所以x .x AD 330tan =︒=因为BD ,AB AD += 所以x .x +=123所以)13(61312+=-=x .因为,<18)13(6+所以,渔船不改变航线继续向东航行,有触礁危险.沙场点兵4:1.A2. D。
北师大版九年级下册《解直角三角形》题型解读:三角函数应用题型梳理

《三角函数》题型解读3 三角函数应用题型介绍【知识梳理】一.总体解题思路不管是勾股定理的运用、还是三角函数的运用,都离不开直角三角形,所以当把题目条件落实到图上去后,此类应用题一个最大的解题关键是:寻找已知条件与所求条件存在的直角三角形,如果没有,作辅助线构造。
二.题型1.坡度坡角问题(即坡角的正切值)①我们通常把坡面的铅直高度h 和水平宽度l 的比叫做坡度(或坡比),且常用字母i 来表示.实质是坡角的正切值关系,如图,i =h l =tanα ②坡度一般与成1:m 的形式;③坡度越大,则a 角越大,坡面越陡;2.测量物体高度(即仰角俯角问题)(1).仰角:当从低处观测高处的目标时,视线与水平线所成的锐角称为仰角;俯角:当从高处观测低处的目标时,视线与水平线所成的锐角称为仰角;(2).测量类题型①底部可以到达时②底部不可以到达时③底部不可以到达时,也可利用建筑物进行测量3. 方位角问题方位角是以观察点为中心(方向角的顶点),以正北或正南为始边,旋转到观察目标所形成的锐角,方向角也称L αh象限角。
如图,目标方向线0A、0B、0C的方向角分别为北偏东15°、南偏东20°、北偏西60°.其中南偏东45°习惯上又叫东南方向,同样北偏西45°又叫西北方向。
如OE的方向角为南偏东45°,OG的方向角为南偏西45°,那么,G、E可以说在O的哪个方向呢?由方向角的定义可知,G在O的西南方向,E在O的东南方向.【典型例题】例1.如图,一座钢结构桥梁的框架是△ABC,水平横梁BC长18米,中柱AD高6米,其中D是BC的中点,且AD⊥BC.(1)求sinB的值;(2)现需要加装支架DE、EF,其中点E在AB上,BE=2AE,且EF⊥BC,垂足为点F,求支架DE的长.解:(1)在Rt△ABD中,∵BD=DC=9,AD=6,∴AB=√BD2+AD2=3√13,∴sinB=ADAB =3√13=2√1313.(2)∵EF∥AD,BE=2AE,∴EFAD=BFBD=BEBA=23,∴EF6=BF9=23,∴EF=4,BF=6,∴DF=3,在Rt△DEF中,DE=√EF2+DF2=√42+32=5.例2.如图,为测量一座山峰CF的高度,将此山的某侧山坡划分为AB和BC两段,每一段山坡近似是“直”的,测得坡长AB=800米,BC=200米,坡角∠BAF=30°,∠CBE=45°.(1)求AB段山坡的高度EF;(2)求山峰的高度CF.(√2≈1.414,CF结果精确到米)解:(1)作BH⊥AF于H,如图,在Rt△ABF中,∵sin∠BAH=BHAB,∴BH=800•sin30°=400,∴EF=BH=400m;(2)在Rt△CBE中,∵sin∠CBE=CEBC,∴CE=200•sin45°=100√2≈141.4,∴CF=CE+EF=141.4+400≈541(m).答:AB段山坡高度为400米,山CF的高度约为541米.CABFED例3.如图,某日,正在我国南海海域作业的一艘大型渔船突然发生险情,相关部门接到求救信号后,立即调遣一架直升飞机和一艘正在南海巡航的渔政船前往救援,当飞机到达海面3000m的高空C处时,测得A处渔政船的俯角为45°,测得B处发生险情渔船的俯角为30°,此时渔政船和渔船的距离AB是多少m?解:如图,由题意可知CE∥BD,∴∠CBA=30°,∠CAD=45°,且CD=3000m,在Rt△ACD中,AD=CD=3000m,在Rt△BCD中,BD=CDtan∠CBA =3000√33=3000√3m,∴AB=BD﹣AD=3000√3﹣3000=3000(√3﹣1)(m),例4.如图,大楼AB右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上),已知AB=80m,DE=10m,求障碍物B,C两点间的距离(结果精确到0.1m)(参考数据:√2≈1.414,√3≈1.732)解:如图,过点D作DF⊥AB于点F,过点C作CH⊥DF于点H.则DE=BF=CH=10m,在直角△ADF中,∵AF=80m﹣10m=70m,∠ADF=45°,∴DF=AF=70m.在直角△CDE中,∵DE=10m,∠DCE=30°,∴CE=DEtan30°=10√33=10√3(m),∴BC=BE﹣CE=70﹣10√3≈70﹣17.32≈52.7(m).答:障碍物B,C两点间的距离约为52.7m.例5.如图8,禁渔期间,我渔政船在A处发现正北方向B处有一艘可疑船只,测得A,B两处距离为200海里,可疑船只正沿南偏东45°方向航行.我渔政船迅速沿北偏东30°方向前去拦截,经历4小时刚好在C处将可疑船只拦截.求该可疑船只航行的平均速度(结果保留根号).解:如图,过点C 作CH ⊥AB 于H ,则△BCH 是等腰直角三角形.设CH =x ,则BH =x ,AH =CH÷tan 30°=√3x . ∵AB =200,∴x +√3x =200.∴x =√3+=100(√3-1). ∴BC =√2x =100(√6-√2).∵两船行驶4小时相遇,∴可疑船只航行的平均速度=100(√6-√2)÷4=45(√6-√2). 北 C A B 30° 45° 答案图H。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大版九年级下册数学重难点突破知识点梳理及重点题型巩固练习解直角三角形及其应用—知识讲解【学习目标】1.了解解直角三角形的含义,会综合运用平面几何中有关直角三角形的知识和锐角三角函数的定义解直角三角形;2.会运用有关解直角三角形的知识解决实际生活中存在的解直角三角形问题.【要点梳理】要点一、解直角三角形在直角三角形中,由已知元素(直角除外)求未知元素的过程,叫做解直角三角形.在直角三角形中,除直角外,一共有5个元素,即三条边和两个锐角.设在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,则有:①三边之间的关系:a2+b2=c2(勾股定理).②锐角之间的关系:∠A+∠B=90°.③边角之间的关系:,,,,,.④,h为斜边上的高.要点诠释:(1)直角三角形中有一个元素为定值(直角为90°),是已知值.(2)这里讲的直角三角形的边角关系指的是等式,没有包括其他关系(如不等关系).(3)对这些式子的理解和记忆要结合图形,可以更加清楚、直观地理解.要点二、解直角三角形的常见类型及解法已知条件解法步骤Rt△ABC两边两直角边(a,b)由求∠A,∠B=90°-∠A,斜边,一直角边(如c,a) 由求∠A,∠B=90°-∠A,一边一角一直角边和一锐角锐角、邻边(如∠A,b)∠B=90°-∠A,,锐角、对边(如∠A,a)∠B=90°-∠A,,斜边、锐角(如c,∠A)∠B=90°-∠A,,要点诠释:1.在遇到解直角三角形的实际问题时,最好是先画出一个直角三角形的草图,按题意标明哪些元素是已知的,哪些元素是未知的,然后按先确定锐角、再确定它的对边和邻边的顺序进行计算.2.若题中无特殊说明,“解直角三角形”即要求出所有的未知元素,已知条件中至少有一个条件为边.要点三、解直角三角形的应用解直角三角形的知识应用很广泛,关键是把实际问题转化为数学模型,善于将某些实际问题中的数量关系化归为直角三角形中的边角关系是解决实际应用问题的关键.解这类问题的一般过程是:(1)弄清题中名词、术语的意义,如仰角、俯角、坡度、坡角、方向角等概念,然后根据题意画出几何图形,建立数学模型.(2)将已知条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形的问题.(3)根据直角三角形(或通过作垂线构造直角三角形)元素(边、角)之间的关系解有关的直角三角形.(4)得出数学问题的答案并检验答案是否符合实际意义,得出实际问题的解.拓展:在用直角三角形知识解决实际问题时,经常会用到以下概念:(1)坡角:坡面与水平面的夹角叫做坡角,用字母表示.坡度(坡比):坡面的铅直高度h和水平距离的比叫做坡度,用字母表示,则,如图,坡度通常写成=∶的形式.(2)仰角、俯角:视线与水平线所成的角中,视线中水平线上方的叫做仰角,在水平线下方的叫做俯角,如图.(3)方位角:从某点的指北方向线按顺时针转到目标方向的水平角叫做方位角,如图①中,目标方向PA,PB,PC的方位角分别为是40°,135°,245°.(4)方向角:指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角,如图②中的目标方向线OA,OB,OC,OD的方向角分别表示北偏东30°,南偏东45°,南偏西80°,北偏西60°.特别如:东南方向指的是南偏东45°,东北方向指的是北偏东45°,西南方向指的是南偏西45°,西北方向指的是北偏西45°.要点诠释:1.解直角三角形实际是用三角知识,通过数值计算,去求出图形中的某些边的长或角的大小,最好画出它的示意图.2.非直接解直角三角形的问题,要观察图形特点,恰当引辅助线,使其转化为直角三角形或矩形来解.3.解直角三角形的应用题时,首先弄清题意(关键弄清其中名词术语的意义),然后正确画出示意图,进而根据条件选择合适的方法求解.【典型例题】 类型一、解直角三角形1.在Rt △ABC 中,∠C =90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,根据下列条件,解这个直角三角形.(1)∠B=60°,a =4; (2)a =1,3b =.【答案与解析】(1)∠A =90°-∠B =90°-60°=30°.由tan bB a =知,tan 4tan 6043b a B ==⨯=°. 由cos a B c =知,48cos cos 60a c B ===°.(2)由tan 3bB a==得∠B =60°,∴ ∠A =90°-60°=30°.∵ 222a b c +=,∴ 2242c a b =+==.【总结升华】解直角三角形的两种类型是:(1)已知两边;(2)已知一锐角和一边.解题关键是正确选择边角关系.常用口诀:有弦(斜边)用弦(正弦、余弦),无弦(斜边)用切(正切). (1)首先用两锐角互余求锐角∠A ,再利用∠B 的正切、余弦求b 、c 的值;(2)首先用正切求出∠B 的值,再求∠A 的值,然后由正弦或余弦或勾股定理求c 的值. 举一反三:【变式】(1)已知∠C=90°,a=23,b=2 ,求∠A 、∠B 和c ;(2)已知sinA=23, c=6 ,求a 和b ; 【答案】(1)c=4;∠A=60°、∠B=30°; (2)a=4;b=252.(2015•湖北)如图,AD 是△ABC 的中线,tanB=,cosC=,AC=.求:(1)BC 的长;(2)sin ∠ADC 的值.【答案与解析】解:过点A 作AE ⊥BC 于点E , ∵cosC=,∴∠C=45°,在Rt △ACE 中,CE=AC •cosC=1, ∴AE=CE=1,在Rt△ABE中,tanB=,即=,∴BE=3AE=3,∴BC=BE+CE=4;(2)∵AD是△ABC的中线,∴CD=BC=2,∴DE=CD﹣CE=1,∵AE⊥BC,DE=AE,∴∠ADC=45°,∴sin∠ADC=.【总结升华】正确作出辅助线构造直角三角形是解题的关键,注意锐角三角函数的概念的正确应用.类型二、解直角三角形在解决几何图形计算问题中的应用3.(2016•盐城)已知△ABC中,tanB=,BC=6,过点A作BC边上的高,垂足为点D,且满足BD:CD=2:1,则△ABC面积的所有可能值为.【思路点拨】分两种情况,根据已知条件确定高AD的长,然后根据三角形面积公式即可求得.【答案】8或24.【解析】解:如图1所示:∵BC=6,BD:CD=2:1,∴BD=4,∵AD⊥BC,tanB=,∴=,∴AD=BD=,∴S△ABC=BC•AD=×6×=8;如图2所示:∵BC=6,BD:CD=2:1,∴BD=12,∵AD⊥BC,tanB=,∴=,∴AD=BD=8,∴S△ABC=BC•AD=×6×8=24;综上,△ABC面积的所有可能值为8或24,故答案为8或24.【总结升华】本题考查了解直角三角形,以及三角函数的定义,三角形面积,分类讨论思想的运用是本题的关键.举一反三:【变式】(2015•河南模拟)如图,在等腰Rt△ABC中,∠C=90°,AC=6,D是AC上一点,若tan∠DBA=,则AD的长为多少?【答案与解析】解:作DE⊥AB于E,如图,∵∠C=90°,AC=BC=6,∴△ACB为等腰直角三角形,AB=AC=6,∴∠A=45°,在Rt△ADE中,设AE=x,则DE=x,AD=x,在Rt△BED中,tan∠DBE==,∴BE=5x,∴x+5x=6,解得x=,∴AD=×=2.类型三、解直角三角形在解决实际生活、生产问题中的应用4.某过街天桥的截面图为梯形,如图所示,其中天桥斜面CD 的坡度为1:3i =(i =1:3是指铅直高度DE 与水平宽度CE 的比),CD 的长为10 m ,天桥另一斜面AB 的坡角∠ABC =45°.(1)写出过街天桥斜面AB 的坡度; (2)求DE 的长;(3)若决定对该过街天桥进行改建,使AB 斜面的坡度变缓,将其45°坡角改为30°,方便过路群众,改建后斜面为AF ,试计算此改建需占路面的宽度FB 的长(结果精确到.0.01 m). 【答案与解析】(1)作AG ⊥BC 于G ,DE ⊥BC 于E ,在Rt △AGB 中,∠ABG =45°,AG =BG . ∴ AB 的坡度1AGi BG'==. (2)在Rt △DEC 中,∵ 3tan 3DE C EC ∠==,∴ ∠C =30°. 又∵ CD =10 m .∴ 15m 2DE CD ==. (3)由(1)知AG =BG =5 m ,在Rt △AFG 中,∠AFG =30°,tan AGAFG FG∠=,即3535FB =+,解得535 3.66(m)FB =-=. 答:改建后需占路面的宽度FB 的长约为3.66 m .【总结升华】(1)解梯形问题常作出它的两条高,构造直角三角形求解.(2)坡度是坡面的铅直高度与水平宽度的比,它等于坡角的正切值.5.腾飞中学在教学楼前新建了一座“腾飞”雕塑.为了测量雕塑的高度,小明在二楼找到一点C ,利用三角板测得雕塑顶端A 点的仰角为30°,底部B 点的俯角为45°,小华在五楼找到一点D ,利用三角板测得A 点的俯角为60°(如图所示).若已知CD 为10米,请求出雕塑AB 的高度.(结果精确到0.1米,参考数据3=1.73).【答案与解析】过点C作CE⊥AB于E.∵∠D=90°-60°=30°,∠ACD=90°-30°=60°,∴∠CAD=180°-30°-60°=90°.∵ CD=10,∴ AC=12CD=5.在Rt△ACE中,AE=AC·sin∠ACE=5×sin 30°=52,CE=AC·cos ∠ACE=5×cos 30°=53 2,在Rt△BCE中,∵∠BCE=45°,∴5553(31)222AB AE BE=+=+=+≈6.8(米).∴雕塑AB的高度约为6.8米.【总结升华】此题将实际问题抽象成数学问题是解题关键,从实际操作(用三角形板测得仰角、俯角)过程中,提供作辅助线的方法,同时对仰角、俯角等概念不能模糊.。