城市综合管廊案例分析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
城市综合管廊案例分析以吉首市高铁片区金坪路综合管廊设计为例,介绍了入廊管线种类、跨河段管廊处理方案、管廊分支引出方式、交叉口形式、管廊施工工艺、支吊架和管廊锚固连接方式等设计要点,以期为综合管廊在我国山地城市推广建设提供参考。
1、工程概况
金坪路位于吉首市高铁片区,规划为城市主干道。高铁片区位于吉首市乾州东南部,主要功能定位为“经济新区、产业基地、生态片区”。道路通行区属于构造剥蚀溶蚀丘陵区,主要为寒武系碳酸盐岩构成的丘陵地貌工程,相对高差较大,道路最高设计标高274.7 m,最低设计标高200.7 m;地形相对复杂,依次通过万溶江、跳岩河、焦柳铁路、X047县道、联合村深沟。工程设计主要内容包括道路、桥梁、综合管廊、道路排水、道路照明等。其中综合管廊设计主要包括管廊工艺、结构及附属工程(消防、供电及照明、监控、通风、排水)等。
2、设计问题探讨
2.1入廊管线种类
根据吉首市各管线专项规划,设计道路下主要管线有电力电缆、通信管线、给水管、再生水管、燃气管、污水管、雨水管等,就上述管线进行入廊分析。
(1)电力、通信、给水、再生水管道。电力、通信、给水、再生水管道维修次数多,将其纳入综合管廊经济合理,目前国内外相应技术比较成熟,本次设计均收纳至廊内。
(2)燃气管道。目前我国《城市综合管廊工程技术规范》(GB 50838-2015)是允许燃气管道进入综合管廊的,但应在独立舱室内敷设,并采取多种措施,确保管线的安全可靠运营。
(3)排水管道。对排水管道是否入廊,主要基于以下考虑:一是排水管道为重力流,若排水管道坡度与道路坡度不一致,会导致综合管廊埋设深度加大,增加工程投资;二是排水管道口径较大,将增大综合管廊断面尺寸,同样增加工程投资;三是由于污水管自身会产生有毒有害气体的特点,管廊内相应增加硫化氢、甲烷、氧气等气体的环境监测,增加了造价、运行成本,增大了管理复杂程度。
(4)方案比选。根据入廊管线种类,提出两种方案:方案一只考虑电力、通信、给水、再生水管线入廊;方案二所有管线均入廊,见图1,图2。主体结构造价:方案一为24 200元/m,方案二为49 600元/m。
在遵循当地综合管廊规划的基础上,设计综合管廊收纳管线种类为电力、通信、给水、再生水管线。
2.2管廊平面、纵断面、横断面设计
(1)管廊平面。本工程道路有4.0 m中分带,将综合管廊布置在中分带下,由于中央分隔带较宽,有灌木遮挡,通风口等节点设置不影响道路美观,同时通风口等节点设于管道正上方,综合管廊构造较简单,节点造价较低。
(2)管廊纵断面。一般综合管廊应尽量减少覆土高度,以降低造价和施工难度。本次设计管廊考虑到各市政工程过路管线的敷设要求,管廊覆土一般按照 2.0~2.5 m控制,局部按照实际加深或减少覆土厚度。设计坡度力求同道路坡度一致,最小坡度0.5%,最大坡度5.6%。
(3)管廊横断面。综合管廊横断面尺寸的确定主要考虑以下几个因素:管道的种类和数量、管道的安全距离、管道敷设维护操作空间、人员通行空间、工程经济性等。设计将10 kV电力管、DN500给水管置于一侧,通信管、DN300再生水管置于另一侧,断面尺寸2.7 m×2.8 m,见图1。
2.3相关节点处理方案
2.3.1过河穿越方案
本工程道路依次穿越万溶江、跳岩河、焦柳铁路、X047县道、联合村深沟,均通过桥梁的形式穿越,桥梁段道路纵坡如图3~图5所示。可以看出,山地城市与平原城市相比,河道底或深沟底同道路设计标高差较大,最深处达25 m以上。
根据《城市综合管廊工程技术规范》4.2.5条,道路与铁路或河流的交叉处,宜采用综合管廊。本工程综合管廊穿越河道提出下穿河道方案、上跨河道方案和管线直埋方案。以穿越万溶江为例,各方案优缺点见表1。
表1通过对比,管廊下穿河道、上跨河道施工难度较大,造价较高,不一定适合山地城市。而管线直埋的方式随桥敷设,优势明显。通过桥梁两侧端井,可方便管线在廊内、外转换及人员检修进入。随桥直埋管线检修维护只需局部打开桥梁人行道板即可实现。
2.3.2管廊分支引出方式
分支引出原则
经同业主及相关市政管线单位充分沟通后确定本次设计支管引出原则。给水管:每隔≤120 m的距离,设置DN150市政消火栓引出管,每隔≤300 m的距离,设置DN300给水支管;再生水管:每隔200 m左右的距离,预留再生水支管;电力、通信管线:每隔200 m左右的距离,引出电力、通信支管。
分支引出方式
对于管廊分支引出,目前通常有支廊引出和管线直埋引出两种方式。
支廊引出:支廊与主廊形成立体十字交叉口。为满足支廊和直埋排水管道交叉问题,支廊道一般位于下层,主廊道位于上层。支廊需同步考虑通风问题,一般在支
廊的端头设置自然进风口。
管线直埋引出:管廊分支引出口处局部加宽、加高,管线从管廊双侧侧墙出廊,与预埋的过路套管衔接,并接至各类管线预留支井内,供道路两侧地块需求。
两种方式特点见表2。管线直埋引出方式在不更换、不增加套管的情况下,无需开挖路面,埋设深度较小,具有石方开挖量小、工程投资少、施工周期短的优点。在多次征求业主及专家意见后,本工程采取管线直埋的方式分支引出。需要注意的是,分支引出管线规模需预留充分,避免日后翻挖道路;分支引出管线定位及标识应清晰明确,以避免误挖。
2.3.3交叉口形式
综合管廊交叉口的设置主要需要考虑两条道路综合管廊交叉的问题,包括管廊和管廊交叉的结构形式以及管线与管线交叉的交汇方式。
交叉口形式、大小、高度由相交管廊内管线数量、尺寸、交互方式决定。一般遵循以下规则:①节点处市政管线多做上跨下穿处理,并保证管线敷设安装及人员维护操作空间;②规模较大的管廊优先考虑直接通行;③不同形式的舱室之间不联通,并设置夹层,夹层设置应保证不同舱室各防火分区的完整性。
十字交叉口平面交叉方式如图6所示。交叉口采用加宽加高断面的方式为管线提供通道。管线通过分层敷设的方式来满足管线交错、跨越的安装要求。所有缆线在节点顶板下敷设,给水管线采用倒虹形式敷设于节点地面以下管道夹层内。交叉口处下层管廊最低点应设置集水坑。
十字交叉口立体交叉方式如图7所示。上层管廊采用直线形式,下层管廊采用倒虹形式下穿直线管廊。管廊交叉处通过爬梯及自动液压井盖相连,以便于维护人员上下穿越。相交处管廊板面根据需要预留孔洞,满足管道上下穿越、连接的要