新型绿色生物可降解高分子材料——聚乳酸
聚乳酸简介
单个的乳酸分子中有一个羟基和一个羧基,多个乳酸分子在一起,-OH与别的分子的-COOH脱水缩合,-COOH与别的分子的-OH脱水缩合,就这样,它们手拉手形成了聚合物,叫做聚乳酸. 聚乳酸也称为聚丙交酯,属于聚酯家族。
聚乳酸是以乳酸为主要原料聚合得到的聚合物,原料来源充分而且可以再生。
聚乳酸的生产过程无污染,而且产品可以生物降解,实现在自然界中的循环,因此是理想的绿色高分子材料。
聚乳酸的热稳定性好,加工温度170~230℃,有好的抗溶剂性,可用多种方式进行加工,如挤压、纺丝、双轴拉伸,注射吹塑。
由聚乳酸制成的产品除能生物降解外,生物相容性、光泽度、透明性、手感和耐热性好,还具有一定的耐菌性、阻燃性和抗紫外性,因此用途十分广泛,可用作包装材料、纤维和非织造物等,目前主要用于服装(内衣、外衣)、产业(建筑、农业、林业、造纸)和医疗卫生等领域。
聚乳酸的优点主要有以下几方面:(1)聚乳酸(PLA)是一种新型的生物降解材料,使用可再生的植物资源(如玉米)所提出的淀粉原料制成。
淀粉原料经由发酵过程制成乳酸,再通过化学合成转换成聚乳酸。
其具有良好的生物可降解性,使用后能被自然界中微生物完全降解,最终生成二氧化碳和水,不污染环境,这对保护环境非常有利,是公认的环境友好材料。
关爱地球,你我有责。
世界二氧化碳排放量据新闻报道在2030年全球温度将升至60℃,普通塑料的处理方法依然是焚烧火化,造成大量温室气体排入空气中,而聚乳酸塑料则是掩埋在土壤里降解,产生的二氧化碳直接进入土壤有机质或被植物吸收,不会排入空气中,不会造成温室效应。
(2)机械性能及物理性能良好。
聚乳酸适用于吹塑、热塑等各种加工方法,加工方便,应用十分广泛。
可用于加工从工业到民用的各种塑料制品、包装食品、快餐饭盒、无纺布、工业及民用布。
进而加工成农用织物、保健织物、抹布、卫生用品、室外防紫外线织物、帐篷布、地垫面等等,市场前景十分看好。
(3)相容性与可降解性良好。
pla材料是什么材料
pla材料是什么材料PLA材料是什么材料?PLA材料,全称聚乳酸,是一种生物降解塑料,由植物淀粉为原料制成。
它是一种环保材料,具有良好的生物降解性能,对环境友好,因此在各个领域得到了广泛的应用。
接下来,我们将详细介绍PLA材料的特点、用途以及优势。
首先,PLA材料具有良好的生物降解性能。
由于其主要原料来自植物淀粉,PLA材料在自然环境中易于降解,不会对环境造成污染。
与传统塑料相比,PLA材料的生物降解速度更快,对土壤和水质的影响更小,因此被广泛应用于一次性餐具、包装材料等领域。
其次,PLA材料具有良好的加工性能。
由于其具有良好的流动性和成型性,PLA材料可以通过吹塑、注塑、挤出等多种加工工艺进行加工,可以制成各种形状的制品,满足不同领域的需求。
同时,PLA材料的加工温度较低,节能环保,符合现代工业的可持续发展理念。
此外,PLA材料具有良好的物理性能。
虽然PLA材料是一种生物降解塑料,但其物理性能却不逊色于传统塑料。
PLA制品具有良好的韧性和耐热性,可以承受一定的拉伸和压缩力,同时在一定温度范围内保持稳定的性能,因此在工程塑料、医用材料等领域也有广泛的应用。
最后,PLA材料具有广泛的应用前景。
随着人们对环保意识的提高,PLA材料在包装材料、医疗器械、3D打印等领域得到了越来越多的应用。
特别是在一次性餐具领域,PLA材料因其生物降解性能和良好的加工性能,成为了取代传统塑料的理想选择。
综上所述,PLA材料是一种环保、可持续发展的塑料材料,具有良好的生物降解性能、加工性能和物理性能,有着广泛的应用前景。
我们相信,在未来的发展中,PLA材料将会得到更广泛的应用,为环境保护和可持续发展做出更大的贡献。
生物降解材料
生物降解材料聚乳酸及其共聚物的降解研究塑料、橡胶和合成纤维虽然与人类的生活密切相关,但大多数不能自然分解,其废弃物会造成大量的白色污染。
随着非降解塑料所引起的白色污染问题变得越来越严重,寻找可降解的替代材料已经成为必然的趋势。
自20世纪60年代以来,人们开始研究与开发生物可降解聚合物及其制品,以保护环境,实现资源的可循环利用。
20世纪90年代末,生物降解性材料的研究日渐活跃,已经涉及到食品包装、农用薄膜和医用材料等领域。
刚刚工业化的聚乳酸(PLA)就是其中最有发展前景的一种材料,它是新型绿色高分子材料,也是目前综合性能最出色的环保材料之一。
PLA以谷物发酵得到的乳酸(LA)为原料聚合而得,废弃后它能在自然界的微生物、酸、水、碱等介质的作用下完全分解,最终产物是CO2和H2O,不会对环境产生污染。
它具有良好的生物相容性、力学性能和耐水性。
因此,在已经开发的生物材料中,PLA由于来源于天然,完全生物降解,对环境无污染等优点,成为最具有前途的可生物降解高分子材料。
相信随着合成技术的不断提高及应用范围的逐渐扩大,价格问题将不再是阻碍PLA使用的主要因素。
当前对PLA的合成研究较为广泛,而对其降解的探讨则相对较少。
为此,笔者对PLA的降解进行了系统讨论。
对于拓展PLA类高分子材料在工业、药物、农业等方面的应用具有指导意义。
1 PLA的基本性质与降解性能1.1 PLA的基本性质由于乳酸分子中具有一个手性碳原子,根据其光学活性不同可将其分为L-乳酸和D-乳酸,因此乳酸二聚体丙交酯以及其聚合物也存在不同的立体构型。
由它得到的PLA也就具有三种基本立体异构体:聚右旋乳酸(PDLA)、聚左旋乳酸(PLLA)、聚消旋乳酸(PDLLA)。
由于PLA的光学活性不同,使其在聚集态的微观结构上业存在显著的差异,从而导致其力学强度、降解速率、加工性能、硬度等方面存在着很大的差异。
其中,PDLA与PLLA具有结晶性,PDLA为结晶结构,PLLA为半结晶性结构,熔点可高达170~180℃,因此其力学强度好且降解吸收时间也比较长,是制作内植骨固定装置的理想材料。
聚乳酸
聚乳酸单个的乳酸分子中有一个羟基和一个羧基,多个乳酸分子在一起,-OH与别的分子的-COOH脱水缩合,-COOH与别的分子的-OH脱水缩合,就这样,它们手拉手形成了聚合物,叫做聚乳酸.聚乳酸也称为聚丙交酯,属于聚酯家族。
聚乳酸是以乳酸为主要原料聚合得到的聚合物,原料来源充分而且可以再生。
聚乳酸的生产过程无污染,而且产品可以生物降解,实现在自然界中的循环,因此是理想的绿色高分子材料。
聚乳酸的热稳定性好,加工温度170~230℃,有好的抗溶剂性,可用多种方式进行加工,如挤压、纺丝、双轴拉伸,注射吹塑。
由聚乳酸制成的产品除能生物降解外,生物相容性、光泽度、透明性、手感和耐热性好,还具有一定的耐菌性、阻燃性和抗紫外性,因此用途十分广泛,可用作包装材料、纤维和非织造物等,目前主要用于服装(内衣、外衣)、产业(建筑、农业、林业、造纸)和医疗卫生等领域。
一、聚乳酸的优点聚乳酸的优点主要有以下几方面:(1)聚乳酸(PLA)是一种新型的生物降解材料,使用可再生的植物资源(如玉米)所提出的淀粉原料制成。
淀粉原料经由发酵过程制成乳酸,再通过化学合成转换成聚乳酸。
其具有良好的生物可降解性,使用后能被自然界中微生物完全降解,最终生成二氧化碳和水,不污染环境,这对保护环境非常有利,是公认的环境友好材料。
关爱地球,你我有责。
世界二氧化碳排放量据新闻报道在2030年全球温度将升至60℃,普通塑料的处理方法依然是焚烧火化,造成大量温室气体排入空气中,而聚乳酸塑料则是掩埋在土壤里降解,产生的二氧化碳直接进入土壤有机质或被植物吸收,不会排入空气中,不会造成温室效应。
(2)机械性能及物理性能良好。
聚乳酸适用于吹塑、热塑等各种加工方法,加工方便,应用十分广泛。
可用于加工从工业到民用的各种塑料制品、包装食品、快餐饭盒、无纺布、工业及民用布。
进而加工成农用织物、保健织物、抹布、卫生用品、室外防紫外线织物、帐篷布、地垫面等等,市场前景十分看好。
聚乳酸降解
聚乳酸降解
聚乳酸降解是一种生物降解的过程,它是指聚乳酸分子在自然环境中被微生物分解为二氧化碳和水的过程。
聚乳酸是一种生物可降解的高分子材料,它可以被微生物分解为二氧化碳和水,从而实现环境友好型的降解。
聚乳酸降解的过程是一个复杂的生物化学反应过程,需要微生物的参与。
在自然环境中,微生物会利用聚乳酸作为能源和营养物质,通过代谢反应将聚乳酸分解为二氧化碳和水。
这个过程需要一定的时间,通常需要几个月到几年的时间才能完成。
聚乳酸降解的速度受到多种因素的影响,包括温度、湿度、微生物种类和数量等。
在适宜的条件下,聚乳酸可以在几个月内完全降解,而在不适宜的条件下,聚乳酸的降解速度会大大降低。
聚乳酸降解的优点在于它可以实现环境友好型的降解,不会对环境造成污染。
与传统的塑料材料相比,聚乳酸具有更好的生物降解性能,可以有效地减少塑料垃圾对环境的影响。
聚乳酸降解的应用范围非常广泛,包括食品包装、医疗器械、农业用品等领域。
在食品包装领域,聚乳酸可以用于制作一次性餐具、饮料杯等产品,可以有效地减少塑料垃圾的产生。
在医疗器械领域,聚乳酸可以用于制作缝合线、骨钉等产品,可以有效地减少对人体的影响。
聚乳酸降解是一种环保型的降解方式,可以有效地减少塑料垃圾对环境的影响。
随着人们环保意识的提高,聚乳酸降解技术将会得到更广泛的应用。
聚乳酸(PLA)生物可降解材料资料
6
DDaayy234120346837791
聚乳酸降解概述
❖ 由于乳酸具有旋光性,因此对应的聚乳酸有三种:PDLA、 PLLA、PDLLA(消旋) 。
聚乳酸降解因素
(4)立构规整性的影响:
在碱性条件下, 降解速率为PDLA (PLLA)<P (LDL)A<PDLLA PDLLA 由于甲基处于间同立构或无规立构状态, 对水的吸收
速度较快, 因此降解较快; 而对PLLA及PDLA来说水解分为2个阶 段:第一阶段,水分子扩散进入无定型区,然后发生水解;第二阶段 是晶区的水解,相对来说较为缓慢。 (5)酶
LOGO
聚乳酸生物可降解材料
目录
1 2 3 4 5 6
2
2021/4/21
1 生物可降解材料概况
2021/4/21
生物降解材料是20世纪80年代后随着环境、能源等矛盾的凸 显而发展起来的新型材料,作为一种可自然降解的材料,在环 保方面起到了独特的作用,其研究和开发已得到迅速发展,作 为解决“白色污染”最为有效的途径,已引起环境专家、材料 学家及更多领域人士的关注。
聚乳酸的端羧基(由聚合引入及降解产生)对其水解起催化作用, 随着降解的进行, 端羧基量增加, 降解速率加快, 从而产生自 催化现象 。
内部降解快于表面降解, 这归因于具端羧基的降解产物滞留于 样品内,产生自加速效应 。
9
PLA的体内降解
❖ 随着降解进行,材料内部会有越来越多的羧基加速内部材 料的降解,进一步增大内外差异。当内部材料完全转变成 可溶性齐聚物并溶解在水性介质中时,就会形成表面由没 有完全降解的高聚物组成的中空结构。进一步降解才使低 聚物水解为小分子,最后溶解在水性介质中。整个溶蚀过 程是由不溶于水的固体变成水溶性物质。
生物降解高分子材料——聚乳酸
生物降解高分子材料——聚乳酸生物降解高分子材料——聚乳酸摘要:生物降解材料聚乳酸的性质及其制备方法的研究进程,其中主要介绍了通过开环聚合反映制取聚乳酸的方法以及聚乳酸易降解的特性,此外还讲了我国在聚乳酸方面的研究,最后介绍了聚乳酸在医药等方面的重大应用以及聚乳酸的发展前景。
关键词:环境材料生物降解聚乳酸前景正文:人类经济和社会的发展常常以扩大开发自然资源和无偿利用环境作为发展模式,这一方改造了空前巨大的物质财富和前所未有的社会文明,另一方面也造成了全球性自然环境的破坏。
资源与能源是制造材料和推动材料发展的两大支柱。
同时,材料的生产和使用过程也会带来众多的环境问题。
因而,传统材料的生态化和开发新型生态材料以缓解日益恶化的环境问题,即材料与环境如何协调发展的问题日益受到人们重视,出现了“环境材料(ecomaterial)”的概念和环境材料学这一新兴的交叉学科,要求材料在满足使用性能要求的同时具有良好的全寿命过程的环境协调性,赋予材料及材料产业以环境协调功能。
环境材料是未来新材料的重要方面之一。
开发既有良好的使用性能,又具有较高的资源利用率,且对生态一步发展,能够更有效地利用有限的资源和能源,尽可能地减少环境负荷,实现材料产业和人类社会的可持续发展。
随着人类驾驭自然的本领按几何级数增长,向自然环境摄取的物质和抛弃的废弃物就越多。
人类对自然环境的影响和干预越大,自然环境对人类的反作用就越大[1]。
当自然环境达到无法承受的程度时,在漫漫岁月里建立起来的生态平衡,就会遭到严重的破坏。
材料的性能在很大程度上决定于环境的影响,环境包括“社会环境”和自然环境。
其中人所组成的社会因素的总体称为社会环境。
自然因素的总体称为自然环境,目前认为是以大气、水、土壤、地形、地质、矿产等一次要素为基础,以植物、动物、微生物等作为二次要素的系统的总体。
为了得到更好的环境,开始从不同的环境材料开始研究.。
一、聚乳酸的合成与制备方法乳酸的直接缩合是作为早期制备PLA的简单方法,但一般只能得到低聚物(数均分子量小于5000,分子量分布约2.0),而且聚合温度高于180℃时,通常导致产物带色。
聚乳酸的性能、合成方法及应用
聚乳酸的性能、合成方法及应用一、本文概述聚乳酸(Polylactic Acid,简称PLA)是一种由可再生植物资源(例如玉米)提取淀粉原料制成的生物降解材料,具有良好的生物相容性和生物降解性。
随着全球环保意识的日益增强和可持续发展理念的深入人心,聚乳酸作为一种环保型高分子材料,其研究和应用受到了广泛的关注。
本文将全面介绍聚乳酸的性能特点、合成方法以及在实际应用中的广泛用途,旨在为读者提供关于聚乳酸的深入理解,推动其在各个领域的应用和发展。
本文首先将对聚乳酸的基本性能进行概述,包括其物理性能、化学性能以及生物相容性和降解性等方面的特点。
接着,将详细介绍聚乳酸的合成方法,包括开环聚合和缩聚法等,并分析不同合成方法的优缺点。
在此基础上,文章还将深入探讨聚乳酸在各个领域的应用情况,如包装材料、医疗领域、汽车制造、农业等。
文章还将对聚乳酸的未来发展趋势进行展望,以期为读者提供全面的聚乳酸知识,并为其在实际应用中的创新和发展提供参考。
二、聚乳酸的性能聚乳酸(PLA)作为一种生物降解塑料,具有一系列独特的性能,使其在众多领域中具有广泛的应用前景。
聚乳酸具有良好的生物相容性和生物降解性。
由于其来源于可再生生物质,聚乳酸在自然界中能够被微生物分解为二氧化碳和水,不会对环境造成污染。
这使得聚乳酸在医疗、包装、农业等领域具有广阔的应用空间。
聚乳酸具有较高的机械性能。
通过调整合成方法和工艺条件,可以得到具有优异拉伸强度、模量和断裂伸长率的聚乳酸材料。
这些特性使得聚乳酸在制造包装材料、纤维、薄膜等方面具有显著优势。
聚乳酸还具有良好的加工性能。
它可以在熔融状态下进行热塑性加工,如挤出、注塑、吹塑等,从而制成各种形状和尺寸的制品。
同时,聚乳酸的表面光泽度高,易于印刷和染色,为其在装饰、包装等领域的应用提供了便利。
另外,聚乳酸还具有较好的阻隔性能。
它可以有效地阻止氧气、水分和其他气体的渗透,从而保护包装物品免受外界环境的影响。
医药用高分子材料——聚乳酸
医药用高分子材料——聚乳酸聚乳酸(PAL)也称为聚丙交酯,属于聚酯家族。
它是以乳酸为主要原料聚合得到的聚合物,原料来源充分而且可以再生。
聚乳酸的生产过程无污染,而且产品可以生物降解,实现在自然界中的循环,因此是理想的绿色高分子材料。
聚乳酸作为一种新型的高分子聚合材料有良好的生物相容性和生物降解性,是FDA认可的一类生物降解材料,最终降解产物是二氧化碳和水,对人体无毒、无刺激,因此聚乳酸及其共聚物已经成为生物医用材料中最受重视的材料之一。
20世纪50年代,由丙交酯(LA)开环聚合制得了高分子量的聚乳酸,但由于这类脂肪族聚酯对热和水比较敏感,长时间未引起人们的足够重视。
直到20世纪60年代,科学工作者重新研究PAL对水敏感这一特征时,发现聚乳酸适合作为可降解手术缝合线材料。
1966年,Kulkami等提出低分子量的PAL能够在体内降解,最终的代谢产物是CO2和H2O,中间产物乳酸也是体内正常代谢的产物,不会在体内积累,因此PAL在生物体内降解后不会对生物产生不良影响。
随后报道了高分子量的PAL也能在人体内降解,由此引发了以这类材料作为生物医用材料的开端。
1 聚乳酸及其共聚物在缓释药物中的作用缓释、控释制剂又称为缓释控释给药系统(sustained and controlled release drug delivery system),不需要频繁给药,能够在较长时间内维持体内有效的药物浓度,从而可以大大提高药效和降低毒副作用[4]。
聚乳酸及其共聚物被用作一些半衰期短、稳定性差、易降解及毒副作用大的药物控释制剂的载体,有效的拓宽了给药的途径,减少了给药的次数和给药量,提高了药物的生物利用度,最大限度的减少药物对全身特别是肝、肾的毒副作用。
高相对分子量聚乳酸用作缓释药物制剂的载体可分为两种:一是使用聚乳酸制作药物胶囊,可有效抑制吞噬细菌的作用,让药物定量持续释放以保持血药相当平稳;另一种是作为-囊膜材料用于药物酶制剂、生物制品微粒及微球的微型包覆膜,更有效控制药物剂量的平稳释放。
聚乳酸生物降解的研究进展
聚乳酸生物降解的研究进展一、本文概述随着全球环境问题的日益严峻,特别是塑料废弃物对环境的污染问题,生物降解材料的研究与应用越来越受到人们的关注。
聚乳酸(PLA)作为一种重要的生物降解材料,因其良好的生物相容性、可加工性和环保性,在包装、医疗、农业等领域具有广泛的应用前景。
本文旨在综述聚乳酸生物降解的研究进展,包括其生物降解机制、影响因素、改性方法以及应用现状,以期为聚乳酸的进一步研究和应用提供参考。
本文首先介绍了聚乳酸的基本性质,包括其分子结构、合成方法以及主要性能。
接着,重点分析了聚乳酸的生物降解机制,包括酶解、微生物降解和动物体降解等过程,并探讨了影响聚乳酸生物降解的主要因素,如结晶度、分子量、添加剂等。
在此基础上,本文综述了聚乳酸的改性方法,包括共聚、共混、填充和表面改性等,以提高其生物降解性能和机械性能。
本文总结了聚乳酸在包装、医疗、农业等领域的应用现状,并展望了其未来的发展趋势。
通过本文的综述,旨在为聚乳酸生物降解的研究与应用提供有益的参考,同时为推动生物降解材料的发展贡献一份力量。
二、聚乳酸的生物降解机理聚乳酸(PLA)的生物降解主要依赖于微生物的作用,这些微生物包括细菌和真菌,它们能够分泌特定的酶来降解PLA。
生物降解过程通常包括两个主要步骤:首先是微生物对PLA表面的附着和酶的产生,然后是酶对PLA的催化水解。
在降解过程中,微生物首先通过其细胞壁上的特定受体识别并附着在PLA表面。
随后,微生物开始分泌能够降解PLA的酶,这些酶主要包括聚乳酸解聚酶和酯酶。
聚乳酸解聚酶能够直接作用于PLA的酯键,将其水解为乳酸单体;而酯酶则能够水解PLA链末端的乳酸单体。
水解产生的乳酸单体可以被微生物进一步利用,通过三羧酸循环等途径转化为二氧化碳和水,或者用于微生物自身的生长和代谢。
这个过程中,微生物扮演了关键的角色,它们不仅能够降解PLA,还能够将降解产生的乳酸完全矿化为无害的物质。
值得注意的是,PLA的生物降解速率受到多种因素的影响,包括PLA的分子量、结晶度、形态、微生物的种类和活性、环境温度和湿度等。
新型环保生物可降解材料PLA纤维发展情况
新型环保生物可降解材料PLA纤维发展情况聚乳酸(PolylacticAcid,PLA)纤维,是由碳水化合物富集的物质(如长米、甜菜、木薯等农作物及有机废料)与一定菌种发酵成乳酸,再经单体乳酸环化二聚或乳酸的直接聚合制得高性能乳酸聚合物,最后采取一定纺丝方式制成PLA纤维。
由于多用玉米等谷物为原料,所以又称为“玉米纤维”。
PLA纤维原料来源于自然,制品废弃物可被完全降解为自然所需的H2O 和CO2,实现了完全自然循环,是21世纪极其发展前景的纤维材料。
一、聚乳酸纤维国内外的发展1.国内的PLA纤维国内主要的聚乳酸(PLA)树脂生产企业为浙江海正生物材料股份及同杰良生物材料。
海正生物现有PLA切片产能5000t/a,同杰良生物的万吨级PLA项目于2014年通过验收。
此外,安徽丰原生物化学股份正在筹建10万t/a的聚乳酸生产线。
PLA纤维生产方面,恒天长江生物材料从2007年开始建设万吨级PLA熔体直纺项目,目前已基本建成。
浙江嘉兴普利莱新材料于2008年建成1000t/a的PLA长丝生产线;后与河南南乐县政府合作成立了河南龙都生物科技,其2万t/aPLA纤维(8000t/a长丝和12000t/a短纤)项目于2014年7月试车成功,主要使用进口PLA切片。
此外,安徽马鞍山同杰良生物材料年产千吨级纺丝生产线于2014年建成、安徽丰原生化2000t/a纺丝生产线于2018年建成。
整体而言,我国PLA纤维产业正进入蓬勃发展时期,但当前存在规模不大,应用尚未完全开发等问题。
2.国外的PLA纤维国外PLA纤维研发起步较早。
1962年美国Cyanamid公司纺制出了可生物吸收的PLA医用缝合线,但由于当时PLA的合成方法还相当落后,难以进行批量生产。
1991年,美国Cargill公司开展了以玉米为原料制备乳酸(LA)及PLA的合成技术研究,并进行了PLA纤维中试生产技术的研发,随后PLA纤维工业才逐渐发展起来。
1997年Cargill公司与美国DowChemical公司合资组建了聚焦PLA开发的NatureWorks公司。
绿色可降解新材料聚乳酸的关键技术研发及其产业化发展
绿色可降解新材料聚乳酸的关键技术研发及其产业化发展聚乳酸(PLA)是一种创新型生物基绿色塑料,可以在诸多领域中得到较为广泛的应用,在解决环境污染以及石油依赖性强等问题过程中,可以提供一定材料支持。
笔者依据实际工作经验和相关文献资料的记载,详细分析PLA生产环节中应当使用到的技术措施,并介绍其实际应用情况,希望能够在日后相关工作人员对这个问题进行分析的时候,起到一定借鉴性作用,最终在我国社会经济发展进程向前推进的过程中,做出一定贡献。
标签:绿色可降解材料;聚乳酸;关键技术1.问题研究背景及意义生物降解塑料指代的是在应用之后可以在自然环境当中逐渐降解,最终以小分子形式进入到白然界当中,PLA是脂肪族当中最为典型的一种生物降解塑料,具备完全可降解性,在自然界微生物的作用下能够彻底分解成二氧化碳和水,不會对生态环境造成任何负面影响,也克服化工塑料领域中最为严重的问题。
除去上文中所说的问题之外,因为PLA实际上是来源于可再生资源当中,所以可以降低不可再生石化产品的消耗量,在此基础上白然能够让人类资源危机逐渐缓和下来。
PLA是以淀粉作为主要材料,经过微生物发酵之后得到乳酸,乳酸再通过缩聚反应得到高分子化合物,具备非常强的生物降解性、生物相容性以及生物可吸收性。
应用之后的固体废弃物可以在土壤和水体当中被微生物降解成水和二氧化碳,并不会对人体健康造成任何负面影响,也不会引发任何生态环境污染问题。
PLA作为一种完全可降解的高分子材料被称为是”绿色塑料”,是创新型环保材料研究领域中的一个热点性问题。
现阶段PLC在药物控制释放材料、免拆卸手术缝合线以及微胶囊等领域中得到的应用比较广泛。
2.PLA关键合成技术研究分析2.1 间接合成二步法间接合成法实际上是最早实现工业化的一种方法,这一种方法是将乳酸或者乳酸酯作为原材料,在经过二次聚合之后形成丙交酯,丙交酯开环聚合两步之后就可以制备出来PLA。
这种工艺比较成熟,容易得到有效地控制,可以得到相对分子质量上百万的PLA,但是这种方法的缺陷是,反应提丙交酯一定需要使用有机溶剂反复接近提纯、干燥,因此工艺流程会显得比较长,操作也会比较复杂,生产成本非常高。
可降解材料聚乳酸PLA的合成方法
可降解材料聚乳酸PLA的合成方法聚乳酸全名为 Poly Lactic Acid (PLA),又名聚丙交酯(Polylactide),PLA 具有良好的生物相容性、可降解性和来源于生物原材料等特点,因此研究者认为 PLA 是应用前景最好的一种新型生物可降解高分子材料,聚乳酸的合成一般有两种方法,直接缩合聚合法和丙交酯开环聚合法。
一、乳酸聚乳酸的合成需得从乳酸合成讲起,因乳酸的品质直接影响PLA 的合成。
乳酸是自然界中最小的手性分子,以两种立体异构体形式存在于自然界中,即为左旋型L-乳酸和右旋型D-乳酸。
将这两种乳酸等比例混合即为消旋的DL-乳酸。
L-乳酸、D乳酸及DL-乳酸在聚乳酸上及与生物化学有关的食品、医药和农药等领域中的应用是存在区别的。
PLA通常要求L-乳酸含量较高,其光学纯度大于96%~99%(即D-乳酸小于1%~4%)。
乳酸的光学及化学纯度将直接影响聚乳酸生产过程中的产品收率、稳定性及产品品质。
二、乳酸的合成方法乳酸可以由化学法或者微生物发酵法来生产。
1、化学法化学法是以石油基化学品为原料合成,通常只能合成消旋的DL-乳酸。
由于D-乳酸在人体代谢的问题,其在食品饮用方面受限制,同时化学法的消旋乳酸也不符合一般聚乳酸材料的使用要求,因此市场非常小。
纯D-乳酸全球市场需求量仅为2000吨,主要应用在生产农药杀虫剂和除草剂等。
2、微生物发酵法发酵法的主要原料一般是玉米、甘蔗、甘薯等淀粉质原料,发酵法的主要途径是糖在乳酸菌作用下,调节PH值5左右,发酵2~3天得到粗乳酸,一般商业化乳酸浓度为80%~88%(含12%-20%的水),浓缩乳酸达到92%~93%的浓度即可用于聚合应用。
乳酸主要以玉米淀粉发酵制备,玉米淀粉主要由玉米深加工得到,每吨乳酸约消耗1.5吨玉米。
而每吨PLA大约消耗1.5吨乳酸(92%浓度),即每吨PLA需要2.25吨玉米。
以目前PLA全球产能33万吨计算需求的玉米最大消耗量为74.25万吨,2019年全球玉米产量达到11.1亿吨,占比不足0.1%。
绿色可降解材料——聚乳酸
绿色可降解材料——聚乳酸摘要】聚乳酸作为一种环境友好型合成高分子材料越来越多被应用到各个领域,本文对聚乳酸的基本性质、合成以及应用作简要介绍。
【关键词】聚乳酸;基本性质;合成;应用【中图分类号】R319 【文献标识码】A 【文章编号】2095-1752(2016)27-0341-021.前言随着人口的急剧增长,资源的掠夺性开发,高分子制品的大量生产、消费、遗弃等引起的环保问题日趋严重,为了解决合成树脂和纤维不易被环境分解的问题,人们开发出可生物降解的合成树脂和纤维,聚乳酸(PLA)就是其中研究较多和性能较好的一种高分子材料。
聚乳酸制品废弃在土壤或水中,会在微生物的作用下分解成二氧化碳和水,在太阳光合作用下,又会成为淀粉的起始原料,不会污染环境,因而是一种完全自然循环型的可生物降解材料。
2.PLA的基本性质2.1 物理性能乳酸有两种旋光异构体即左旋(LLA)和右旋(DLA)乳酸,由此有3种基本主体构型:PDLA、PLLA、PDLLA,常用易得的是聚消旋乳酸(PDLLA)和聚左旋乳酸(PLLA)。
PLLA是具有光学活性的聚合物,熔融、溶液状态均可结晶,结晶度60%左右,Tg和Tm分别为58℃、215℃。
PDLLA是无定形非晶态,Tg为58℃,无熔融温度。
PLA的物理性能介于聚酯和聚酰胺之间,PLLA具有较高的抗张强度,而且耐热性和热稳定性较好,易染色。
2.2 生物降解性聚乳酸及其共聚物具有良好的生物相溶性和生物降解性,在人体内可逐渐降解为二氧化碳和水。
聚乳酸及其共聚物降解的早期阶段是化学水解,降解速率与分子结构有关。
PDLLA的甲基处于间同立构或无规立构状态,水解非常快,主要是无定形区域增加了水的吸收。
而PLLA的甲基处于全同立构状态,可以结晶,结晶度取决于许多因素,如分子质量、温度以及热处理时间。
在自然条件下PLLA显示出相当慢的降解速率,通过对PLLA的改造可以控制其降解速度,如加入一些亲水性成分或降低PLLA的结晶度可以加速PLLA的降解。
探究新型绿色包装材料—聚乳酸
探究新型绿色包装材料—聚乳酸摘要:本文主要阐述绿色包装材料聚乳酸的基本特性,同时综述了生物可降解材料聚乳酸的间接合成法、直接合成法等工艺取方法及其研究进展,并总结了聚乳酸类生物材料在纺织、包装、医疗卫生和农业方面等领域的主要应用和研究进展,最后对聚乳酸生物材料未来的研究方向提出展望,并阐述了聚乳酸的发展前景与在各个领域中的应用方向和主导作用。
关键词:聚乳酸、化学特性、提取、材料、应用、发展一.聚乳酸(PLA)的发展简史生物降解塑料的生物降解,是指生物降解塑料在微生物作用下发生降解、同化的过程。
发挥生物降解作用的微生物主要包括真菌、霉菌或藻类。
乳酸可通过对含淀粉的农作物(玉米、小麦、土豆、薯类等)进行发酵而大量生产,其中尤其以玉米淀粉产量和用量最大,所以PLA又被称为“玉米塑料”。
1932年Dupont 公司科学家Wallace Carothers在真空中将乳酸进行聚合产生低分子量聚合物;1987年美国食品公司Cargill投资研发新的PLA聚合工艺;2001年Cargill与Dow合资,开始大规模生产Nature Works品牌的PLA商品二.聚乳酸的简介及特性聚乳酸(Polylactic acid,PLA)是20世纪90年代迅速发展起来的新一代可完全降解高分子材料,它是以微生物发酵产物L-乳酸为单体,用化学合成方法聚合而成的,是热塑性脂肪族树脂的一种。
PLA具有优良的生物相容性和可吸收性,无毒、无刺激性,它在自然界中的微生物、水、酸、碱等作用下能完全分解,最终产物是 CO2 和H2O ,对环境无污染,可作为环保材料代替传统的聚合物材料,受到了世界各国的广泛关注和深入研究。
同时,它在人体内的中间产物乳酸对人体无毒性,经美国食品和药品管理局(FDA) 批准广泛用作药物控释载体、医用手术缝合线及骨折内固定材料等生物医用高分子材料,因此,PLA作为一种新型的可生物降解高分子材料逐步得到研究者的重视,其应用范围已从最初用于手术缝合线、接骨材料、生理卫生用品、药物载体等医用领域向各类包装材料等通用高分子材料领域迅速扩展,展现了诱人的发展活力。
聚乳酸---可降解理想绿色高分子材料
聚乳酸---可降解理想绿色高分子材料
单个的乳酸分子中有一个羟基和一个羧基,多个乳酸分子在一起,-OH与别的分子的-COOH脱水缩合,-COOH与别的分酸.
聚乳酸也称为聚丙交酯,属于聚酯家族。聚乳酸是以乳酸为主要原料聚合得到的聚合物,原料来源充分而且可以再生。聚乳酸的生产过程无污染,而且产品可以生物降解,实现在自然界中的循环,因此是理想的绿色高分子材料。
生物可降解材料聚乳酸的制备及应用
生物可降解材料聚乳酸的制备及应用聚乳酸是由微生物发酵所产生乳酸单体聚合而成的高分子聚合物,它的特点是无毒、无刺激气味、可降解、生物相容性良好,所以广泛应用到了医学、食品包装和汽车电子等领域。
聚乳酸在自然界中通过土壤、水或微生物的作用下都能实现无污染的分解,可降解的特性既推动了各个领域的发展,也满足了我国构建绿色环保型社会的要求。
因此,对于聚乳酸的研究规模随之扩大,通过对聚乳酸合成、改性以及应用,促进聚乳酸的价值发挥,进而为社会进步奠定坚实基础。
1 聚乳酸具备的生物性质1.1 生物可降解性乳酸主要由植物发酵而来,主要成分包括玉米、小麦等可再生资源,所以聚乳酸有着良好的可降解性质。
废弃的聚乳酸产物在土壤中微生物或水的作用下会完全分解成水和二氧化碳,对空气和土壤都没有任何污染,同时还有利于促进植物的光合作用。
1.2 生物相容性据相关研究显示,聚乳酸可以在人体中实现完全无害的分解,分解后的主要产物即是二氧化碳和水,并且在人体新陈代谢的过程中即可完成分解,所以其生物相容性良好。
在不断实践应用的过程中,证实了聚乳酸和人体的相容性,如将其作为植入人体的生物材料,后续没有任何的不良反应发生,逐渐取代了金属材料的地位。
1.3 优越的物理性质聚乳酸优越的物理性质主要体现在柔韧性良好、透明度充足、机械强度足够和良好的热稳定性,这些物理性质无疑满足了各行各业的具体要求,相较于不可降解材料和其他可讲解材料的优势都较为明显。
1.4 可加工性聚乳酸本身的可加工性良好,实际加工起来只需要充分结合其热塑性即可,能够以各种不同的方式进行热塑成型,满足了各种形态的要求,赋予了其良好的加工性能。
2 聚乳酸的合成制备方式2.1 间接聚合制备间接聚合法指的是开环聚合。
首先,将乳酸作为原材料,并通过缩聚和解聚的方式得到环形丙交酯。
其次,将丙交酯进行开环聚合从而得到聚乳酸。
开环聚合的方式主要通过对反应时间、反应温度和选择不同催化剂种类来实现对聚乳酸分子量合成的过程,这一方法的优势在于反应原理简单、反应过程可控,缺点是聚乳酸的后续提纯过程较为复杂且需要的成本偏高。
聚乳酸
新型包装材料——聚乳酸一、简介聚乳酸(polylactic acid, 简称PLA)是以乳酸为单体化学合成的,也称聚丙交酯,是具有可生物降解的高分子聚酯材料,其分子式为(C3H4O2)n。
聚乳酸是以乳酸为主要原料聚合得到的聚合物,原料来源充分而且可以再生。
聚乳酸的生产过程无污染,而且产品可以生物降解,实现在自然界中的循环,因此是理想的绿色高分子材料。
聚乳酸的热稳定性好,加工温度170~230℃,有好的抗溶剂性,可用多种方式进行加工,如挤压、纺丝、双轴拉伸,注射吹塑。
由聚乳酸制成的产品除能生物降解外,生物相容性、光泽度、透明性、手感和耐热性好,还具有一定的耐菌性、阻燃性和抗紫外性,还具有聚苯乙烯(PS)相似的光泽度和加工性能,因此具有广阔的市场前景,用途十分广泛,可用作包装材料、纤维和非织造物等,目前主要用于服装(内衣、外衣)、产业(建筑、农业、林业、造纸)和医疗卫生等领域。
美国和日本已开始工业化生产PLA。
意大利一公司使用美国生产的天然聚交酯(PLA)设计和制造新鲜农产品包装材料,这种新的包装材料将在欧洲的零售商店使用。
天然的PLA 是一种生物基的聚合物,由100%来自玉米淀粉的细菌发酵而成。
PLA不仅具有较高的强度和透明度,而且为零售商提供了包装天然产品使用天然基包装材料的机会。
二、PLA材料性能聚乳酸的优点主要有以下几方面:(1)聚乳酸(PLA)使用可再生的植物资源(如玉米)所提出的淀粉原料制成。
淀粉原料经由发酵过程制成乳酸,再通过化学合成转换成聚乳酸。
其具有良好的生物可降解性,使用后能被自然界中微生物完全降解,最终生成二氧化碳和水,不污染环境,是公认的环境友好材料。
(2)机械性能及物理性能良好。
聚乳酸(PLA)含有有序排列的光学活性中心,其结晶性和刚性较高,制成的薄膜抗张强度是聚乙烯薄膜的数倍。
PLA还具有最良好的抗拉强度及延展度,适用于吹塑、热塑等各种加工方法,加工方便。
也可以采用各种普通加工方式生产,与目前广泛所使用的聚合物有类似的成形条件,此外它也具有与传统薄膜相同的印刷性能。
pla什么材料
pla什么材料PLA是一种常见的塑料材料,全称为聚乳酸(Polylactic Acid)。
它是一种由可再生资源生产的生物降解塑料,因其环保性和可塑性而在各种领域得到广泛应用。
PLA材料是由玉米淀粉等植物资源制成的,因此具有可再生、可降解的特点,对环境友好。
首先,PLA材料在生活用品领域有着广泛的应用。
比如一次性餐具、食品包装、塑料袋等常见的日常用品都可以采用PLA材料制成。
这些制品在使用后可以通过自然降解的方式,减少了对环境的污染,符合现代人对环保的追求。
其次,PLA材料在医疗领域也有着重要的应用价值。
由于其生物相容性好、可降解性强的特点,PLA材料可以用于制作缝合线、骨科支架、药物缓释系统等医疗器械。
这些器械在使用后可以被人体代谢分解,不需要二次手术取出,减少了对患者的伤害,同时也降低了医疗废物对环境的影响。
此外,PLA材料还在工业制造领域有着广泛的应用。
例如,3D打印技术中常用的打印材料之一就是PLA。
由于PLA材料易于加工,具有良好的成型性和可塑性,因此成为了3D打印领域的热门选择。
而且,PLA材料的生物降解特性也使得废弃的3D打印制品可以通过自然降解的方式减少对环境的污染。
总的来说,PLA材料作为一种生物降解塑料,在各个领域都有着重要的应用价值。
它不仅可以减少对地球的资源消耗,还可以降低对环境的污染,符合现代社会对可持续发展的追求。
随着人们对环保意识的提高,相信PLA材料的应用领域会越来越广泛,对于推动绿色环保产业的发展起到积极的促进作用。
希望未来能够有更多的研究和创新,使得PLA材料在各个领域都能发挥更大的作用,为建设美丽家园贡献自己的力量。
生物可降解高分子材料——聚乳酸
生物可降解高分子材料——聚乳酸摘要:论述了聚乳酸的基本性质、性能、应用及展望,指出了聚乳酸是一种新型绿色环保可生物降解的高分子材料.关键词:绿色高分子;聚乳酸;生物可降解高分子材料人类在21世纪的最大课题之一是保护环境。
橡胶、塑料和合成纤维虽然与人类的生活密切相关,但大多不能自然分解,其废弃物会造成白色污染。
20世纪90年代末刚刚实现工业化的聚乳酸(Poly Lactic Acid,PLA)是其中最有发展前景的一种,它是一种真正的新型绿色高分子材料,也是目前综合性能最出色的环保材料【1】。
1聚乳酸的基本性质聚乳酸(PLA)是以微生物的发酵产物L—乳酸为单体聚合成的一类聚合物,具体性能【2】见表1.由于具有独特的可生物降解性能、生物相容性能和降解后不会遗留任何环保问题等特点,将成为未来应用发展前景广阔的生态环保材料。
聚乳酸的分子量对降解性能有重要的影响.在相同降解时间和降解环境下,分子量高的降解速率比分子量低的慢.这是因为随着聚合物分子量的提高,聚合物分子间的作用力增大、结晶度增高,且分子量低的聚合物末端羧基的数目较多,更容易发生水解.PDLLA的降解速率比PLLA的快.就是由于PLLA为结晶性聚合物,而PDLLA为无定型聚合物.无定型聚合物的结构疏松,水的渗透快,可以由外到里同时水解【3】。
表1聚乳酸的基本性能2聚乳酸的合成方法目前合成聚乳酸(PLA)的方法主要分为直接缩聚法和间接法(即丙交酯开环聚合、扩链反应等)【2】。
2.1直接缩聚乳酸的直接缩聚由于存在着乳酸、水、聚酯及丙交酯的平衡,不易得到高分子量的聚合物。
但是乳酸的来源充足,价格便宜,所以直接法合成聚乳酸比较经济合算。
研究表明,延长聚合时间,适当提高反应温度,采用高真空度可以有效降低体系水分含量,从而提高聚合物分子量,在脱水剂的存在下,乳酸分子中的羟基和羧基受热脱水,直接缩聚合成低聚物,加人催化剂,继续升温,低相对分子质量的聚乳酸聚合成更高相对分子量的聚乳酸.它主要有溶液缩聚法、熔融缩聚(本体聚合)法、熔融一固相缩聚法和反应挤出聚合法等.2.1.1溶液缩聚法采用一种高沸点的溶剂和乳酸、水进行共沸,高沸点溶剂脱水后再回流到溶液中,将反应中的水带出反应体系,促进反应正向进行,合成聚乳酸.该方法虽然可以合成高分子量的聚乳酸,但是高沸点溶剂的引人使产物的最后纯化比较困难,成本仍然较高.2.1.2熔融缩聚法该方法工艺路线简单,操作简单,要求高真空或者氮气保护.但是产物的分子量不高,主要是因为反应后期体系的粘度较大,小分子水难以除去,因此有待于进一步完善.2000年日本学者合成M。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新型绿色生物可降解高分子材料——聚乳酸
作者:杨秀英, 封禄田, 王晓波, 张德庆, 高志博, YANG Xiu-ying, FENG Lu-tian,
WANG Xiao-bo, ZHANG De-qing, GAO Zhi-bo
作者单位:杨秀英,张德庆,YANG Xiu-ying,ZHANG De-qing(齐齐哈尔大学,化学与化学工程学院,黑龙江,齐齐哈尔,161006), 封禄田,王晓波,高志博,FENG Lu-tian,WANG Xiao-bo,GAO Zhi-bo(沈
阳化工学院,应用化学学院,辽宁,沈阳,110142)
刊名:
高师理科学刊
英文刊名:JOURNAL OF SCIENCE OF TEACHERS' COLLEGE AND UNIVERSITY
年,卷(期):2009,29(2)
被引用次数:5次
1.Hideto Tsuji;Kimika Sumida PolylactideⅤEffects of storage in swelling solvent physical properties and structure of poly-lactide 2001(79)
2.史铁钧;董智贤聚乳酸的性能、合成方法及应用[期刊论文]-化工新型材料 2000(05)
3.杨帆;陈一岳;林茵聚乳酸的降解性能及其微球剂的研究[期刊论文]-实验研究 2002(05)
4.马强;杨青芳;姚军燕聚乳酸的合成研究[期刊论文]-高分子材料科学与工程 2004(03)
5.汪朝阳;赵耀明熔融-固相缩聚法中固相聚合对聚乳酸合成的影响[期刊论文]-材料科学与工程 2002(03)
6.S Keki I;Bodnar J;Borda Fast Microwave-Mediated BulkPolycondensation of D,L-Lactic
Acid.Macromolecular Rapid Communication 2001(22)
7.Stevels W M Block copolymers of poly (lactide)and poly (caprolactone)or poly (ethylene
glycol)prepared by reactive ext rusion 1996(08)
8.周晓军聚乳酸的合成研究[学位论文] 2007
9.李永振;贺继东;李阳聚乳酸的化学合成与应用[期刊论文]-化学推进剂与高分子材料 2007(05)
10.魏军聚L-乳酸的合成研究 2005
11.王俊凤;张军;张学龙聚乳酸合成的研究进展[期刊论文]-化工时刊 2007(06)
12.米小娟;刘东方聚乳酸的合成方法[期刊论文]-科技动态 2006(10)
13.郝国庆可降解高分子材料聚乳酸综述[期刊论文]-太原科技 2006(10)
14.陈景华绿色环保型材料聚乳酸的应用研究[期刊论文]-印刷工业 2005(01)
1.孙启坡.苗园绿色高分子材料--聚乳酸[期刊论文]-化工时刊2004,18(5)
2.翟美玉.彭茜.ZHAI Mei-yu.PENG Qian生物可降解高分子材料[期刊论文]-化学与黏合2008,30(5)
1.陈佳佳.瞿金平.刘环裕.刘伟峰.陈惠灼.翟术风.黄锦涛叶片挤出机制备TPU增韧PLA复合材料的性能与形态[期刊论文]-塑料 2013(2)
2.许文殊.罗祥林聚乳酸降解材料的绿色化学合成[期刊论文]-中国组织工程研究与临床康复 2011(3)
3.钟荣.王华昆.那兵增塑聚乳酸结晶形态与机理研究[期刊论文]-昆明理工大学学报(理工版) 2010(5)
4.孙电电.陆荣绿色包装材料的研究进展[期刊论文]-科技信息 2010(36)
5.吴慧昊乳酸及其衍生物国内外发展现状及应用研究[期刊论文]-西北民族大学学报(自然科学版) 2010(2)
引用本文格式:杨秀英.封禄田.王晓波.张德庆.高志博.YANG Xiu-ying.FENG Lu-tian.WANG Xiao-bo.ZHANG De-qing.GAO Zhi-bo新型绿色生物可降解高分子材料——聚乳酸[期刊论文]-高师理科学刊 2009(2)。