聚酰亚胺

合集下载

聚酰亚胺

聚酰亚胺

聚酰亚胺( PI)聚酰亚胺是综合性能最佳的有机高分子材料之一,耐高温达 400℃以上,长期使用温度范围-200~300℃,无明显熔点,高绝缘性能,103 赫下介电常数4.0,介电损耗仅0.004~0.007,属F至H 级绝缘材料。

聚酰亚胺是指主链上含有酰亚胺环(-CO-NH-CO-)的一类聚合物,其中以含有酞酰亚胺结构的聚合物最为重要。

性能:1.外观淡黄色粉末2.弯曲强度(20℃) ≥170MPa3.密度 1.38~1.43g/cm34.冲击强度(无缺口) ≥28kJ/m25.拉伸强度≥100 MPa6.维卡软化点 >270℃7.吸水性(25℃,24h)8.伸长率 >120%钛酸钡分子式:BaTiO3 分子量:233.1922性状白色粉末熔点1625℃相对密度 6.017溶解性:溶于浓硫酸、盐酸及氢氟酸,不溶于热的稀硝酸、水和碱。

熔点:1625℃钛酸钡是一致性熔融化合物,其熔点为1618℃。

在此温度以下,1460℃以上结晶出来的钛酸钡属于非铁电的六方晶系6/mmm点群。

此时,六方晶系是稳定的。

在1460~130℃之间钛酸钡转变为立方钙钛矿型结构。

在此结构中Ti4+(钛离子)居于O2-(氧离子)构成的氧八面体中央,Ba2+(钡离子)则处于八个氧八面体围成的空隙中(见右图)。

此时的钛酸钡晶体结构对称性极高,因此无偶极矩产生,晶体无铁电性,也无压电性。

随着温度下降,晶体的对称性下降。

当温度下降到130℃时,钛酸钡发生顺电-铁电相变。

在130~5℃的温区内,钛酸钡为四方晶系4mm点群,具有显著地铁电性,其自发极化强度沿c轴方向,即[001]方向。

钛酸钡从立方晶系转变为四方晶系时,结构变化较小。

从晶胞来看,只是晶胞沿原立方晶系的一轴(c轴)拉长,而沿另两轴缩短。

当温度下降到5℃以下,在5~-90℃温区内,钛酸钡晶体转变成正交晶系mm2点群,此时晶体仍具有铁电性,其自发极化强度沿原立方晶胞的面对角线[011]方向。

聚酰亚胺

聚酰亚胺

一、聚酰亚胺材料及其应用(一)、聚酰亚胺材料概述聚酰亚胺是指分子主链中含有酰亚胺环的一类聚合物,刚性酰亚胺结构赋予了聚酰亚胺独特的性能,使他具有了很好的耐热性及优异的力学、电学等性能,且耐辐照、耐溶剂。

在高温下具备的卓越性能够与某些金属相媲美。

此外,它还具有优良的化学稳定性、坚韧性、耐磨性、阻燃性、电绝缘性以及其他机械性能。

(二、)聚酰亚胺材料的重要性聚酰亚胺(简称PI)是综合性能最佳的有机高分子材料之一,已被广泛应用在航空、航天、微电子、纳米、液晶、分离膜、激光等领域。

今年来,各国都将聚酰亚胺列为21世纪最有希望的工程塑料之一。

聚酰亚胺,因其在合成和性能方面的突出特点,不论是作为结构材料或是作为功能性材料,其巨大的应用前景已经得到了充分的认可,并认为没有聚酰亚胺就不会有今天的微电子技术。

(三)、聚酰亚胺材料的性能简介(1)、对于全芳聚酰亚胺,其分解温度一般都在500℃左右。

由联苯二酐和对笨二胺合成的聚酰亚胺,其热分解度达到600℃,是迄今聚合物中热稳定性最高的品种之一。

(2)、聚酰亚胺可耐极低温,如在—269℃液态氮中仍不会脆裂。

(3)、聚酰亚胺还具有很好的机械性能,抗张度均在100MPa以上,均苯型聚酰亚胺薄膜的抗张力强度为170MPa,而联苯型聚酰亚胺薄膜的抗张力度达到400MPa。

作为工程塑料,其弹性模量通常为3~4GMPa,而纤维的可达200GMPa。

(4)、一些聚酰亚胺品种不溶于有机溶剂,对烯酸稳定,一般的品种也不大耐水解,但可以利用碱性水解回收原料二酐和二胺。

(5)、聚酰亚胺的热膨胀系数非常高。

(6)、聚酰亚胺具有很高的耐辐照性能。

(7)、聚酰亚胺具有很好的介电性能。

(8)、聚酰亚胺为自熄性聚合物,发烟率低。

(9)、聚酰亚胺无毒。

一些聚酰亚胺还具有很好的生物相容性。

二、聚酰亚胺纤维芳香族聚酰亚胺(PI)纤维主要指由聚酰胺酸(PAA)或PI溶液纺制而成的高性能纤维。

PI纤维与PPTA纤维相比有更高的热稳定性、更高的弹性模量、低的吸水性、耐低温性能和辐射性能等。

聚酰亚胺是什么材料

聚酰亚胺是什么材料

聚酰亚胺是什么材料
聚酰亚胺是一种高性能工程塑料,具有优异的物理和化学性能,被广泛应用于
航空航天、汽车、电子、化工等领域。

聚酰亚胺具有高温稳定性、耐腐蚀性、机械强度高等特点,因此备受工程师和设计师的青睐。

首先,聚酰亚胺的化学结构决定了其优异的性能。

聚酰亚胺分子中含有酰亚胺
基团,这种特殊的结构使得聚酰亚胺具有优异的热稳定性和耐化学腐蚀性。

在高温下,聚酰亚胺仍然能够保持其原有的性能,不会发生软化或变形,因此被广泛应用于高温环境下的零部件制造。

此外,聚酰亚胺还具有优异的电性能,因此在电子领域也有着重要的应用价值。

其次,聚酰亚胺的机械性能也非常优异。

聚酰亚胺具有高强度和刚性,同时又
具有较高的韧性和抗疲劳性,因此在航空航天和汽车领域被广泛应用于制造结构件和功能件。

与此同时,聚酰亚胺还具有较低的摩擦系数和良好的自润滑性能,使得其在摩擦磨损领域也有着重要的应用。

此外,聚酰亚胺还具有良好的耐化学腐蚀性和耐老化性。

在化工领域,聚酰亚
胺被广泛应用于制造耐腐蚀设备和管道,能够有效地抵抗酸碱等腐蚀介质的侵蚀,保证设备的长期稳定运行。

同时,聚酰亚胺还具有良好的耐紫外线性能和耐气候老化性能,能够在恶劣的户外环境下长期使用。

总的来说,聚酰亚胺作为一种高性能工程塑料,具有优异的物理和化学性能,
被广泛应用于航空航天、汽车、电子、化工等领域。

其优异的热稳定性、机械性能、耐化学腐蚀性和耐老化性能,使得其在各个领域都有着重要的应用价值。

随着科技的不断进步,相信聚酰亚胺在更多领域将会有着更广泛的应用。

聚酰亚胺

聚酰亚胺
Text
A Group
B Group
Product_50%
Product_76%
Text
Text
Product_38% Product_24%
C Group
Text
D Group
LOGO
Diagram
Text
Text
Text
Add Your Text
Add Your Text
Add Your Text
37%
16%
Description of the contents
Text in here
Description of the contents
Text in here
Description of the contents
3-D Pie Chart
Add your text
Your Slogan here
LOGO
Diagram
01.Title • Add your text in here • Add your text in here • Add your text in here
ThemeGallery is a Design Digital Content & Contents mall developed by Guild Design Inc.
65.3
80 70 60 50 40 30 20 10 0 1st Qtr 25.4 50 66
75
Chart Title in here
LOGO
Diagram
Products
Description of the company’s products
Market

聚酰亚胺+定义

聚酰亚胺+定义

聚酰亚胺+定义摘要:I.聚酰亚胺简介- 聚酰亚胺的定义- 聚酰亚胺的特点- 聚酰亚胺的分类II.聚酰亚胺的应用领域- 电子行业- 航空航天领域- 汽车工业- 医疗领域III.聚酰亚胺的发展趋势- 聚酰亚胺研究的进展- 聚酰亚胺市场前景- 聚酰亚胺的可持续发展IV.聚酰亚胺的制备方法- 聚酰亚胺的合成方法- 聚酰亚胺的生产工艺- 聚酰亚胺的改性方法V.聚酰亚胺的性能测试- 聚酰亚胺的物理性能测试- 聚酰亚胺的化学性能测试- 聚酰亚胺的力学性能测试正文:聚酰亚胺(Polyimide,简称PI)是一种具有优异性能的有机高分子材料,其主链上含有酰亚胺基团(-CO-N-CO-)的一类聚合物。

聚酰亚胺具有高强度、高模量、耐高温、耐低温、耐腐蚀、耐辐射、低介电常数、低吸水性、高抗氧化性等优异性能,被广泛应用于各个领域。

一、聚酰亚胺简介1.定义聚酰亚胺是一类具有特殊结构的高分子材料,其主链上含有酰亚胺基团(-CO-N-CO-),是通过酰亚胺化反应合成的。

2.特点聚酰亚胺具有以下特点:高强度、高模量、耐高温、耐低温、耐腐蚀、耐辐射、低介电常数、低吸水性、高抗氧化性等。

3.分类聚酰亚胺可以根据其分子结构、原料类型和应用领域进行分类。

根据分子结构,聚酰亚胺可分为脂肪族聚酰亚胺、芳香族聚酰亚胺和杂环聚酰亚胺等;根据原料类型,聚酰亚胺可分为二元酐型聚酰亚胺、二元酸型聚酰亚胺和混合型聚酰亚胺等;根据应用领域,聚酰亚胺可分为电子聚酰亚胺、航空航天聚酰亚胺、汽车工业聚酰亚胺和医疗聚酰亚胺等。

二、聚酰亚胺的应用领域1.电子行业聚酰亚胺在电子行业中具有广泛的应用,如用于制造柔性电路板、柔性显示器、绝缘材料、封装材料等。

2.航空航天领域聚酰亚胺在航空航天领域中具有重要的应用,如用于制造飞机、火箭、卫星等部件,以及航空发动机、导弹等。

3.汽车工业聚酰亚胺在汽车工业中具有广泛的应用,如用于制造汽车发动机、制动系统、传动系统等部件。

4.医疗领域聚酰亚胺在医疗领域中具有重要的应用,如用于制造医疗器械、人工器官等。

聚酰亚胺 PI MSDS

聚酰亚胺 PI MSDS

聚酰亚胺 PI MSDS聚酰亚胺 (PI) MSDS1. 概述聚酰亚胺(Polyimide,简称PI)是一种高分子聚合物,具有优异的耐热性、耐化学性、机械性能和电绝缘性能。

本材料安全数据表(MSDS)提供了关于聚酰亚胺的安全信息和处理指南。

2. 成分/化学名聚酰亚胺(PI)的化学组成可能因生产工艺和具体品种而异。

一般而言,聚酰亚胺由二元酸和二元胺或其衍生物通过缩聚反应制得。

3. 物理/化学性质聚酰亚胺具有以下物理/化学性质:- 高热稳定性:聚酰亚胺能够在高温环境下保持稳定,其玻璃化转变温度(Tg)通常在200°C以上。

- 良好的化学稳定性:聚酰亚胺对大多数溶剂和化学品具有很好的抵抗力。

- 优秀的机械性能:聚酰亚胺具有较高的强度和模量,同时具有优异的柔韧性和耐磨性。

- 良好的电绝缘性能:聚酰亚胺具有极低的介电常数和介电损耗,适用于电子电气领域。

4. 健康风险聚酰亚胺本身通常不被认为是危险物质。

然而,在加工过程中,可能会产生有害物质,如单体、溶剂和副产物。

操作人员应采取适当的安全措施,以防止吸入、接触或摄入这些物质。

5. 安全措施在使用聚酰亚胺时,应遵循以下安全措施:- 避免吸入:操作时佩戴防尘口罩或空气呼吸器。

- 防止接触皮肤和眼睛:佩戴防护眼镜和手套。

- 避免摄入:工作期间勿进食、喝水或吸烟。

- 确保良好的通风:在封闭空间内操作时,确保空气流通。

6. 处理和存储聚酰亚胺粉末或颗粒应在干燥、通风的环境中储存,避免潮湿和高温。

在加工过程中,应确保充分通风,以防止吸入有害物质。

7. 应急处理如接触聚酰亚胺或其加工过程中产生的有害物质,请立即用大量清水冲洗受影响区域,并寻求医疗建议。

8. 法规遵从性本MSDS符合中华人民共和国相关法律法规要求。

9. 制造商信息制造商名称:[制造商名称]地址:[制造商地址]联系电话:[制造商联系电话]---以上为关于聚酰亚胺(PI)的MSDS文档,供您参考。

如需进一步修改或补充,请告知。

聚亚酰胺

聚亚酰胺

聚亚酰胺聚酰亚胺聚酰亚胺是综合性能最佳的有机高分子材料之一,耐高温达400℃以上,长期使用温度范围-200~300℃,无明显熔点,高绝缘性能,103 赫下介电常数4.0,介电损耗仅0.004~0.007,属F至H级绝缘材料概述聚酰亚胺:英文名Polyimide (简称PI)聚酰亚胺作为一种特种工程材料,已广泛应用在航空、航天、微电子、纳米、液晶、分离膜、激光等领域。

近来,各国都在将聚酰亚胺的研究、开发及利用列入21世纪最有希望的工程塑料之一。

聚酰亚胺,因其在性能和合成方面的突出特点,不论是作为结构材料或是作为功能性材料,其巨大的应用前景已经得到充分的认识,被称为是"解决问题的能手"(protion solver),并认为"没有聚酰亚胺就不会有今天的微电子技术"。

分类聚酰亚胺可分成缩聚型和加聚型两种。

(1)缩聚型聚酰亚胺缩聚型芳香族聚酰亚胺是由芳香族二元胺和芳香族二酐、芳香族四羧酸或芳香族四羧酸二烷酯反应而制得的。

由于缩聚型聚酰亚胺的合成反应是在诸如二甲基甲酰胺、N-甲基吡咯烷酮等高沸点质子惰性的溶剂中进行的,而聚酰亚胺复合材料通常是采用预浸料成型工艺,这些高沸点质子惰性的溶剂在预浸料制备过程中很难挥发干净,同时在聚酰胺酸环化(亚胺化)期间亦有挥发物放出,这就容易在复合材料制品中产生孔隙,难以得到高质量、没有孔隙的复合材料。

因此缩聚型聚酰亚胺已较少用作复合材料的基体树脂,主要用来制造聚酰亚胺薄膜和涂料。

(2)加聚型聚酰亚胺由于缩聚型聚酰亚胺具有如上所述的缺点,为克服这些缺点,相继开发出了加聚型聚酰亚胺。

目前获得广泛应用的主要有聚双马来酰亚胺和降冰片烯基封端聚酰亚胺。

通常这些树脂都是端部带有不饱和基团的低相对分子质量聚酰亚胺,应用时再通过不饱和端基进行聚合。

①聚双马来酰亚胺聚双马来酰亚胺是由顺丁烯二酸酐和芳香族二胺缩聚而成的。

它与聚酰亚胺相比,性能不差上下,但合成工艺简单,后加工容易,成本低,可以方便地制成各种复合材料制品。

聚酰亚胺制备_实验报告

聚酰亚胺制备_实验报告

一、实验目的1. 了解聚酰亚胺的制备原理及工艺流程。

2. 掌握聚酰亚胺的合成方法,并学会操作相关实验设备。

3. 分析聚酰亚胺的性能,验证实验结果。

二、实验原理聚酰亚胺(Polyimide,PI)是一种具有优异性能的有机高分子材料,具有高力学强度、低介电常数、耐高温、耐腐蚀、耐磨、耐辐射等特性。

其分子结构中含有酰亚胺环,通过酰亚胺环的共轭作用,使其具有独特的性能。

聚酰亚胺的制备方法主要有以下几种:1. 预聚法:先将二酐与二胺在强极性溶剂中预聚,形成聚酰胺酸,再通过加热或催化剂的作用,使聚酰胺酸分子内脱水闭环,形成聚酰亚胺。

2. 缩聚法:直接将二酐与二胺在无溶剂或弱溶剂中进行缩聚反应,生成聚酰亚胺。

3. 分子内脱水闭环法:在聚酰胺酸分子链上引入具有反应活性的基团,如羧基、亚胺基等,通过加热或催化剂的作用,使分子内脱水闭环,形成聚酰亚胺。

本实验采用预聚法进行聚酰亚胺的制备。

三、实验仪器与试剂1. 仪器:反应釜、磁力搅拌器、温度计、过滤器、烘箱、电子天平、取样器等。

2. 试剂:均苯四甲酸酐(PMDA)、对苯二胺(ODA)、N'N-二甲基甲酰胺(DMF)、催化剂、去离子水等。

四、实验步骤1. 准备反应釜,加入一定量的DMF作为溶剂。

2. 称取一定量的PMDA和ODA,分别加入反应釜中。

3. 开启磁力搅拌器,在室温下搅拌一定时间,使PMDA和ODA充分混合。

4. 将反应釜加热至一定温度,保持搅拌,使PMDA和ODA发生预聚反应,形成聚酰胺酸。

5. 加入催化剂,继续搅拌,使聚酰胺酸分子内脱水闭环,形成聚酰亚胺。

6. 将反应液过滤,除去未反应的PMDA和ODA。

7. 将聚酰亚胺溶液在烘箱中干燥,得到聚酰亚胺薄膜。

五、实验结果与分析1. 实验结果:通过实验,成功制备出聚酰亚胺薄膜。

2. 性能分析:(1)力学性能:聚酰亚胺薄膜具有优异的力学性能,如拉伸强度、弯曲强度等。

(2)介电性能:聚酰亚胺薄膜具有低介电常数和介电损耗,适用于高频、高压等场合。

聚酰亚胺的概念

聚酰亚胺的概念

聚酰亚胺的概念聚酰亚胺(Polyimide,简称PI)是一种具有优良综合性能和广泛应用前景的高性能聚合物材料。

它具有良好的高温稳定性、耐化学腐蚀性、良好的机械性能,是一种重要的高分子工程材料。

聚酰亚胺材料在化学结构上是以嵌段共聚物的形式存在,它由两种或多种不同的单体通过缩聚反应合成。

聚酰亚胺的主要链是由酰亚胺结构(Imide)组成的,这种结构具有高度的稳定性和热性能。

同时,聚酰亚胺的结构中还存在其他的官能团,如酰氨基(Amide)、酮基(Ketone)等,这些官能团赋予了聚酰亚胺良好的溶解性和加工性能。

由于聚酰亚胺材料具有出色的性能和广泛的应用前景,它已经被广泛应用于航空航天、电子、光学、生物医学、汽车等领域。

例如,在航空航天领域中,聚酰亚胺材料具有低比重、高机械强度、耐高温、耐腐蚀等特点,被广泛应用于飞机零件、导弹外壳、卫星结构等;在电子领域中,聚酰亚胺材料因具有优异的电气性能和低介电常数而被广泛应用于电子器件、印刷电路板等;在光学领域中,聚酰亚胺材料因具有低透射损失、低折射率等特点而被广泛应用于光学镜片、相机镜头等。

此外,聚酰亚胺材料还具有良好的耐化学腐蚀性和耐热性能,因此在化工设备、石油勘探等领域也有广泛应用。

聚酰亚胺材料的制备方法可以分为两种:一种是通过两种或多种不同的单体通过缩聚反应合成,这种方法适用于制备嵌段共聚物的聚酰亚胺材料;另一种是通过聚酰亚胺前驱体经热处理或化学改性等方法制备聚酰亚胺材料,这种方法适用于制备交联型聚酰亚胺材料。

两种方法各有优缺点,具体应根据需要选择合适的方法。

聚酰亚胺材料的性能受到多种因素的影响,如原料单体的选择、反应条件、聚合度等。

为了提高聚酰亚胺材料的性能,可以通过以下方法进行改性:一是通过引入不同的官能团对聚酰亚胺进行共聚或接枝改性;二是通过引入纳米颗粒等纳米填料对聚酰亚胺进行填充改性;三是通过交联等方法对聚酰亚胺进行固化改性。

这些方法可以改善聚酰亚胺材料的机械性能、热性能、耐化学腐蚀性等。

聚酰亚胺高温产生的氨

聚酰亚胺高温产生的氨

聚酰亚胺高温产生的氨
聚酰亚胺在高温条件下可能会分解产生氨气。

聚酰亚胺是一种高性能的聚合物材料,具有较高的热稳定性,但在极端高温条件下,如超过其热分解温度,可能会发生分解反应,导致产生氨气。

这种分解现象可能会对环境和健康产生负面影响。

聚酰亚胺的热分解温度取决于其具体结构和材料特性,不同种类的聚酰亚胺具有不同的热分解温度。

一般来说,聚酰亚胺的热分解温度在350摄氏度以上。

如果在高温条件下使用或加工聚酰亚胺材料,需要采取适当的预防措施,以减少氨气的产生和排放:
•环境通风:确保在操作区域有足够的通风系统,将产生的氨气迅速排出,减少对工作人员和环境的影响。

•防护措施:员工应佩戴适当的防护设备,如呼吸器、护目镜和防护服等,以减少接触和吸入氨气的风险。

•控制温度:在制备或使用聚酰亚胺材料时,控制温度,避免超过其热分解温度范围,减少氨气的产生。

•废气处理:对排放的废气进行适当的处理,如使用废气处理系统或化学吸附剂,减少氨气的排放。

为了确保人员安全和环境保护,建议在使用聚酰亚胺材料时,遵循相关的化学品安全操作规程,并根据实际情况采取相应的防护措施和控制措施。

聚酰亚胺

聚酰亚胺

(2)醚酐型聚酰亚胺
醚酐型聚酰亚胺由二苯醚四羧酸二酐(OPDA)与有机芳香二胺反应得到。由 醚酐和二胺基二苯醚制备的聚酰亚胺在270℃软化, 在300-400℃范围内成为粘 流态,可以热模压成型。在390℃于模中保持1h,并不失去其工艺性,可以模塑 多次。薄膜材料在250℃空气中保持500h,其拉伸强度和伸长率的损失都不大 10%。在210℃的空气中恒温热处理300h 的重量损失低于0.05%; 在沸水中24h 煮沸后,吸水率仅为0. 5%~0. 8%。这类聚合物具有优异的介电性能,室温下 的介电常数为3. 1- 3. 5, 损耗因数为l×10- 3- 3×10- 3。体积电阻率为 1014-l015 欧姆·米;表面电阻为1015- 1016 欧姆,200℃的体积电阻率为 2×1012 欧姆·米,电气强度100- 200MV/ m。
双马来酰亚胺(BMI)
5-降冰片烯-2,3-二甲酰亚胺
加聚型聚酰亚胺 双马来聚酰亚胺 BMI为例
由顺丁烯二酐与二元胺反应
O O CH 2 CH C O O HC HC C N C O R N C O CH O C CH C O + H 2N R NH2 HC C HC NH R NHC HOOC CH CH 2H 2O COOH O
BTDA结构式
加聚型聚酰亚胺(一般均为热固性聚合物) 加聚型聚酰亚胺: 由于缩聚型聚酰亚胺具有如上所述的缺点, 为克服这些缺点,相继开发出了加聚型聚酰亚胺。目前获得 广泛应用的主要有聚双马来酰亚胺和降冰片烯基封端聚酰亚 胺。通常这些树脂都是端部带有不饱和基团的低相对分子质 量聚酰亚胺,应用时再通过不饱和端基进行聚合 。
聚酰亚胺的发展史
追溯聚酰亚胺的发展史可以看到它是一类大有发展前途的高分子。早在 1908年,Bogert和Renshaw 就以4-氨基邻苯二甲酸酐或4-氨基邻苯二甲酸 二甲酯进行分子内缩聚反应制得了芳香族聚酰亚胺,但那时聚合物的本质 还未被充分认识,所以没有受到重视,直到20世纪40年代中期才有了一些 关于聚酰亚胺的专利出现。 20 世纪50 年代末期制得高分子量的芳族聚酰 亚胺。1961 年杜邦公司采用芳香族二胺和芳香族二配的缩合反应,用二步 法工艺合成了聚均苯四甲酰亚胺薄膜(Kapton),并于1961年正式实现了PI 的工业化。1964 年开发生产聚均苯四甲酰 亚胺模塑料(Vespel)。1965 年公开报道该聚合物的薄膜和塑料。继而,它 的粘合剂、涂料、泡沫和纤维相继出现。1964 年,Amoco 公司开发聚酰 胺-亚胺电器绝缘用清漆(AI) ,1972 年, 该公司开发了模制材料(Torlon), 1976 年Torlon 实现商品化。1969 年法国罗纳- 普朗克公司首先开发成功 双马来酰亚胺预聚体(Kerimid601),该聚合物在固化时不产生副产物气体, 容易成形加工,制品无气孔。

聚酰亚胺

聚酰亚胺

聚酰亚胺( PI)聚酰亚胺就是综合性能最佳的有机高分子材料之一,耐高温达 400℃以上 ,长期使用温度范围-200~300℃,无明显熔点,高绝缘性能,103 赫下介电常数4、0,介电损耗仅0、004~0、007,属F至H级绝缘材料。

聚酰亚胺就是指主链上含有酰亚胺环(-CO-NH-CO-)的一类聚合物,其中以含有酞酰亚胺结构的聚合物最为重要。

性能:1.外观淡黄色粉末2.弯曲强度(20℃) ≥170MPa3.密度 1、38~1、43g/cm34.冲击强度(无缺口) ≥28kJ/m25.拉伸强度≥100 MPa6.维卡软化点 >270℃7.吸水性(25℃,24h)8.伸长率 >120%钛酸钡分子式:BaTiO3 分子量:233、1922性状白色粉末熔点1625℃相对密度 6、017溶解性: 溶于浓硫酸、盐酸及氢氟酸,不溶于热的稀硝酸、水与碱。

熔点:1625℃钛酸钡就是一致性熔融化合物,其熔点为1618℃。

在此温度以下,1460℃以上结晶出来的钛酸钡属于非铁电的六方晶系6/mmm点群。

此时,六方晶系就是稳定的。

在1460~130℃之间钛酸钡转变为立方钙钛矿型结构。

在此结构中Ti4+(钛离子)居于O2-(氧离子)构成的氧八面体中央,Ba2+(钡离子)则处于八个氧八面体围成的空隙中(见右图)。

此时的钛酸钡晶体结构对称性极高,因此无偶极矩产生,晶体无铁电性,也无压电性。

随着温度下降,晶体的对称性下降。

当温度下降到130℃时,钛酸钡发生顺电-铁电相变。

在130~5℃的温区内,钛酸钡为四方晶系4mm 点群,具有显著地铁电性,其自发极化强度沿c轴方向,即[001]方向。

钛酸钡从立方晶系转变为四方晶系时,结构变化较小。

从晶胞来瞧,只就是晶胞沿原立方晶系的一轴(c轴)拉长,而沿另两轴缩短。

当温度下降到5℃以下,在5~-90℃温区内,钛酸钡晶体转变成正交晶系mm2点群,此时晶体仍具有铁电性,其自发极化强度沿原立方晶胞的面对角线[011]方向。

聚酰亚胺分子结构

聚酰亚胺分子结构

聚酰亚胺:高性能分子材料的应用探索聚酰亚胺是一种高分子聚合物,具有优异的物理和化学性质,在高温、高压、强酸碱等极端环境下具有很好的稳定性和可靠性,因此被广泛用于航空航天、电子电气、新能源等领域。

本文将从聚酰亚胺的分子结构、合成方法、性质以及应用等方面进行详细介绍。

一、聚酰亚胺的分子结构聚酰亚胺的分子结构由酰亚胺单元和芳香环组成。

其中,酰亚胺单元是一种含有羰基和氮原子构成的环状结构,是聚酰亚胺的基本单元。

而芳香环则主要是由苯环和其他杂环组成,如萘、芴等,它们通过聚合反应连接在一起,形成了聚酰亚胺的大分子结构。

聚酰亚胺的分子结构还具有以下特点:1.高度的共轭性:聚酰亚胺中的酰亚胺单元和芳香环都具有高度的共轭性,使得聚酰亚胺具有较高的电子密度和电导率。

2.刚性和稳定性:聚酰亚胺具有很高的刚性和稳定性,能够在高温、高压、强酸碱等极端环境下保持稳定。

3.化学活性低:聚酰亚胺具有较低的化学活性,不易与其他物质发生反应,具有很好的化学稳定性和耐腐蚀性。

二、聚酰亚胺的合成方法聚酰亚胺的合成方法主要有以下几种:1.二酐法:这种方法采用二酐作为原料,在有机溶剂中加热至高温,然后加入胺类化合物进行缩合反应,制得聚酰亚胺。

2.酰胺酸法:这种方法采用酰胺酸作为原料,在有机溶剂中加热至高温,然后加入胺类化合物进行缩合反应,制得聚酰亚胺。

3.界面聚合法:这种方法采用均酐和二胺类化合物作为原料,在有机溶剂中进行界面聚合反应,制得聚酰亚胺。

不同的合成方法得到的聚酰亚胺分子结构和性能也有所不同。

目前,二酐法和酰胺酸法是聚酰亚胺的主要合成方法。

三、聚酰亚胺的性质聚酰亚胺具有优异的物理和化学性质,以下是其主要性质:1.高温稳定性:聚酰亚胺具有很高的耐高温性能,能够在高温环境下保持稳定。

2.机械强度:聚酰亚胺具有很高的机械强度和抗蠕变性,能够在高应力环境下保持稳定。

3.化学稳定性:聚酰亚胺具有很好的化学稳定性和耐腐蚀性,不易与其他物质发生反应。

聚酰亚胺概述

聚酰亚胺概述

聚酰亚胺概述聚酰亚胺(Polyimide,PI),是分子结构中含有酰亚胺环的一类高分子化合物,是目前工程塑料中耐热性最好的品种之一。

聚酰亚胺作为一种特种工程材料,已广泛应用在航空、航天、微电子、纳米、液晶、分离膜、激光等领域。

近年来各国都将聚酰亚胺作为最有希望的工程塑料之一进行研究、开发及利用。

聚酰亚胺最早出现是在1908年,Bogert和Renshaw以4-氨基邻苯二甲酸酐或4-氨基邻苯二甲酸二甲酯进行分子内缩聚反应制得了芳香族聚酰亚胺,但那时聚合物的本质还未被充分认识,所以没有受到重视,直到20世纪40年代中期才有了一些关于聚酰亚胺的专利出现。

20世纪50年代末期制得高分子量的芳族聚酰亚胺。

1955年,美国DuPont公司Edwards与Robison申请了世界上第一项有关聚酰亚胺在材料应用方面的专利。

1961年,DuPont公司采用芳香族二胺和芳香族二酐的缩合反应,用二步法工艺合成了聚均苯四甲酰亚胺薄膜(Kapton),并于1961年正式实现了聚酰亚胺的工业化。

1964年,开发生产聚均苯四甲酰亚胺模塑料(Vespel)。

1965年,公开报道该聚合物的薄膜和塑料。

继而,它的黏合剂、涂料、泡沫和纤维相继出现。

1969年,法国罗纳-普朗克公司(Rhone-Poulene)首先开发成功双马来酰亚胺预聚体(Kerimid 601),它是先进复合材料的理想基体树脂,该聚合物在固化时不产生副产物挥发性气体,容易成型加工,制品内部致密无气孔,但聚酰亚胺真正作为一种材料而实现商品化则是在20世纪60年代。

1.聚酰亚胺的分子结构与性能(1)聚酰亚胺的分子结构聚酰亚胺由含二胺和二酐的化合物经逐步聚合制备,二胺和二酐的结构不同,可制备一系列不同结构和性能的聚酰亚胺。

结构简式如下:聚酰亚胺的主链重复结构单元中含酰亚胺基团,芳环中的碳和氧以双键相连,芳杂环产生共轭效应,这些都增强了主键键能和分子间作用力。

聚酰亚胺分子由于具有十分稳定的芳杂环结构,分子规整、对称性强,有利于结晶,且分子堆积密度高,分子间距离小,分子链刚性大,因此体现出其他高分子材料所无法比拟的优异性能。

聚酰亚胺 PI MSDS

聚酰亚胺 PI MSDS

聚酰亚胺 PI MSDS聚酰亚胺 (PI) MSDS1. 概述聚酰亚胺(Polyimide,简称PI)是一种高分子聚合物,主要由二酐和二胺通过缩合反应制得。

它具有优良的耐热性、耐化学性、机械性能和电绝缘性能,广泛应用于航空航天、电子电器、精密仪器、汽车制造等领域。

2. 理化性质- 外观:聚酰亚胺通常为固体,颜色为黄色或棕色。

- 熔点:聚酰亚胺的熔点较高,一般在300℃左右。

- 密度:约为1.4-1.6 g/cm³。

- 热稳定性:聚酰亚胺具有很好的热稳定性,耐高温,通常在空气中加热至400℃仍保持稳定。

- 电绝缘性:聚酰亚胺具有极佳的电绝缘性能,介电常数低,介电损耗小。

3. 安全数据表以下是聚酰亚胺的安全数据表:4. 危害识别聚酰亚胺在正常使用和加工条件下,不会对人体和环境造成危害。

但请注意以下事项:- 皮肤接触:若不慎接触皮肤,立即用清水冲洗,如有疼痛或过敏反应,请及时就医。

- 眼睛接触:若不慎接触到眼睛,立即用大量清水冲洗,如有疼痛或视力模糊,请及时就医。

- 吸入:避免吸入蒸汽或粉尘,长时间吸入可能对人体造成伤害。

- 摄入:避免误食,若不慎摄入,请立即就医。

5. 应急处理遇到紧急情况,请参照以下步骤进行处理:- 皮肤接触:立即用清水冲洗,如有疼痛或过敏反应,请及时就医。

- 眼睛接触:立即用大量清水冲洗,如有疼痛或视力模糊,请及时就医。

- 吸入:迅速离开现场,保持通风,如有呼吸困难,请及时就医。

- 摄入:立即催吐,并前往医院就医。

6. 存储和运输- 存储:存放在阴凉干燥处,避免阳光直射,注意防火。

- 运输:遵守相关法规,注意包装完好,避免与易燃、腐蚀性物质混装。

7. 法规信息请遵守当地法律法规,确保合法使用和处理聚酰亚胺。

8. 附加信息本MSDS旨在提供有关聚酰亚胺的安全信息,但并不代表使用过程中可能出现的所有风险。

在使用聚酰亚胺时,请务必遵守安全操作规程,确保人身和设备安全。

如有疑问,请咨询专业人士。

聚酰亚胺紫外光谱

聚酰亚胺紫外光谱

聚酰亚胺(PI)是一种主链上含有酰亚胺环(-CO-N-CO-)的一类聚合物,其中以含有酞酰亚胺结构的聚合物最为重要,是综合性能最佳的有机高分子材料之一。

聚酰亚胺的紫外光谱是指聚酰亚胺在紫外光下的吸收情况。

由于聚酰亚胺分子结构中含有大量的芳香环和共轭体系,因此其紫外光谱表现出较强的吸收特性。

一般来说,聚酰亚胺的紫外光谱范围为200-400纳米之间,最大吸收波长通常在300纳米左右。

此外,聚酰亚胺的紫外光谱还受到其分子量、取代基、溶剂等因素的影响。

聚酰亚胺的紫外光谱在实际应用中具有重要的意义。

例如,通过测量聚酰亚胺薄膜的紫外光谱可以评估其质量和纯度;在有机电子器件中,聚酰亚胺作为绝缘层或保护层时,其紫外光谱特性也会影响器件的性能和稳定性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

热固性聚酰亚胺研究进展摘要:热固性聚酰亚胺作为一类先进的基体树脂,在航空航天、印制电路板、高温绝缘材料等领域的应用不断扩大。

相对于热塑性聚酰亚胺来说,热固性聚酰亚胺具有更好的可加工性能。

而且,其加工窗口温度可通过变换不同反应性端基来实现。

若选用合适的反应性端基,其在固化时无小分子挥发物放出。

对热固性聚酰亚胺的研究现状分类作了综述,对降冰片烯、烯丙基降冰片烯、乙炔基、苯乙炔基、马来酰亚胺、苯基马来酰亚胺、苯并环丁烯等封端型热固性聚酰亚胺的研究进展进行了重点阐述。

【1】。

关键字:聚酰亚胺热固性封端剂发展概述当世界上对芳环和杂环结构的高温聚合物的研究仍然相当活跃,尤其在高技术材料领域离不开高温聚合物的开发,如聚苯硫醚、聚醚矾、聚苯并咪哇、聚苯并唾哇、聚苯并哇、聚唾握琳和聚酰亚胺等,其中最为成功的材料数聚酸亚胺。

聚酰亚胺原料易得价廉,机械性能、电学性能和摩擦性能等优异,被广泛应用于各个领域,其形式可以是纤维、薄膜和塑料等,其中用作复合材料的树脂基体成为重要的一部分。

聚酰亚胺的复合工艺通常是把聚酞胺酸溶于极性溶剂如N一甲基毗咯烷酮、二甲基甲酞胺,用其浸渍纤维,最后亚胺化并压制成品。

由于溶剂存在(亲和性好,极难除尽)会引起增塑,环化产生的水易导致形成多孔材料,影响最终材料的高温性能,因此,热固性聚酰亚胺引起研究者极大兴趣。

热固性聚酰亚胺是一种含有亚胺环和反应活性端基的低分子量物质或齐聚物,在热或光引发下发生交联而无小分子化合物放出。

按其结构可分为:降冰片烯封端的聚酰亚胺、乙炔封端的聚酰亚胺、苯并环丁烷封端的聚酰亚胺和马来酸醉封端的聚酸亚胺。

众所周知,环氧树脂加工性能优良,但温/湿性能差,而热固性聚酰亚胺兼有优异的耐热性能和加工性能,近几年来发展迅速。

人们预言热固性聚酰亚胺将替代环氧树脂,把材料的性能等级提高一步。

以下就热固性聚酰亚胺发展、应用和前景作些讨论【23】。

聚酰亚胺的研究进展含乙炔基封端的聚酰亚胺乙炔基封端的聚酰亚胺含乙炔基封端剂主要是含乙炔基的芳香单胺和单酐。

根据乙炔在封端剂中的位置不同,又可以分为乙炔基在链端的乙炔封端型和乙炔基在链中的以苯乙炔苯酐为代表的苯乙炔封端型。

华东理工大学国防工程材料研究所的黄发荣等用均苯四甲酸二酐 (PMDA )和 4,4'- 二氨基二苯醚用 3- 乙炔基苯胺(EA)封端,得到固体聚酰亚胺[1]。

同样,以 4,4'- 氨基二苯醚和 4,4'- 氧双邻苯二甲酸酐(ODPA)和 4,4'- 二氨基二苯醚和双酚 A 醚双邻苯二甲酸酐(BEA)为原料分别合成乙炔基封端的聚酰亚胺。

还分别合成了异酰亚胺,比较了两类物质的相关性能。

以 ODPA 和 BEA 为二酐合成了新颖结构的乙炔基封端的聚酰亚胺,所合成的乙炔基封端的聚酰亚胺树脂在 230℃以上发生固化交联反应,具有流动性好、加工窗宽的特点。

异酰亚胺的溶解性和在熔融状态下的流动性比聚酰亚胺好。

苯乙炔基封端的聚酰亚胺使用4-苯乙炔基苯胺(4-PEA)作为反应性封端剂,和3,3c,4,4c-二苯醚四酸二酐(ODPA),3,3c,4,4c-联苯四酸二酐(BPDA),1,4-双(4c-氨基-2c-三氟甲基苯氧基)苯(BTPB)和3,4c-二氨基二苯醚(3,4c-ODA)反应合成了系列4-苯乙炔基苯基封端的聚酰亚胺低聚物,对低聚物的化学结构、热性能和熔体粘度以及固化后树脂的热性能等进行了研究.实验结果表明,低聚物均具有一定的结晶性,含有ODPA的聚酰亚胺低聚物较之含有BPDA的低聚物具有更低的熔体粘度,且出现最低熔体粘度的温度更低;固化后的树脂表现出良好的热性能,含有BPDA的树脂具有更高的玻璃化转变温度;系列低聚物中二胺单体的比例对于低聚物的熔体粘度和固化后树脂的热稳定性有一定影响[19]降冰片烯酸酐封端剂降冰片烯酸酐作为封端剂在高温下发生固化交联反应,交联结构比较复杂,不同的反应条件( 升高反应温度,延长反应时间) 也可能导致不同的固化产物的生成。

meador等研究发现,主反应是降冰片烯基团在高温高压条件下发生自由基反应,生成共聚网状结构。

由于降冰片烯酸酐作为封端剂,在固化过程中释放出环戊二烯,影响树脂的加工性能,因此降冰片烯酸酐主要用作聚酰亚胺的封端剂[20]。

降冰片烯封端的聚酰亚胺是在结构上以降冰片烯二甲酰亚胺为端基的齐聚物或预聚体,其在250~270摄氏度范围内能发生逆Diels-Alder反应,开环释放出环戊二烯后,随即与马来酰亚胺发生聚合反应,生成高相对分子质量的聚酰亚胺。

此类物质最初是用经典的聚酰亚胺/二步法0来合成:在极性的非质子溶剂中,二酐与芳香二胺以降冰片烯二酸酐为封端剂进行缩聚反应得到聚酰胺酸,再用化学脱水法得到齐聚物。

Lubowitz等最先报道了此法合成的聚酰亚胺。

烯丙基降冰片烯此类树脂的突出特点是因二种不同活性反应基的存在,可在不同温度区间分阶段交联固化。

1987年,M . A. Chaudhar等最先报道了此类齐聚物RD86的合成。

随后,A. Mathur等合成了典型的烯丙基降冰片烯封端的聚酰亚胺,并就其结构对性能的影响作了探讨。

齐聚物在300e固化1h后,相对于降冰片烯封端型体系来说,固化树脂耐热氧化稳定性有所改善[3]。

马来酰亚胺以马来酰亚胺封端合成的一系列聚酰亚胺,是一类特殊的内扩链改性双马来酰亚胺结构齐聚物,它综合了聚酰亚胺树脂和传统双马来酰亚胺树脂的优点,在耐热性能不受影响的情况下,提高了其固化树脂的韧性、成膜性及其它综合性能,因而拓宽了其应用范围和领域。

马来酰亚胺封端的聚酰亚胺分子结构中的叔丁基二胺,可使其固化树脂保持良好的耐热性能的同时,柔韧性得到很大的改善[16]。

马来酰亚胺封端的聚酰亚胺分子结构中的醚键,可使其固化树脂保持良好的耐热性能的同时,其柔韧性得到一定改善。

并合成了分子链中含醚键、具有不同分子量的新型马来酰亚胺封端的聚醚酰亚胺树脂,通过对其结构与性能进行了表征,对影响合成的相关因素作了分析和研究[22]。

3苯并环丁烯张英强[4]等人用旋转流变仪研究了苯并环丁烯封端的聚酰亚胺树脂体系固化过程中的化学流变行为,用动态和静态两种方法分析了其固化过程,发现存在三个固化阶段,用Arrhenius方程确定了固化前的表观物理粘流活化能为195. 9kJ /mol。

并用Roller法确定固化反应过程中表观化学粘流活化能和表观固化反应活化能,分别为148. 2kJ /mol和161. 2 kJ /mol。

结果表明,在整个固化成型工艺温度范围内,苯并环丁烯封端的聚酰亚胺树脂的粘度特性符合Roller模型方程,通过该模型可较好地预测该树脂在固化过程中的粘度特性。

国内外研究进展热固性聚酰亚胺复合材料虽然具有优异的耐热性、力学和介电性能等,但是也存在着一些不足,制约了其更大的发展。

为此国内外开展了大量的树脂改进研究,主要集中在以下几个方面:(1)提高抗热氧化稳定性,耐温和工艺性能具佳的含异构联苯酐的聚酰亚胺苯乙炔基封端的聚酰亚胺及其复合材料成为新的研究热点; (2)改进成型工艺性能,发展RTM专用聚酰亚胺树脂及其复合材料;(3)增加树脂及其复合材料的韧性;(4)改善树脂的毒性出现了低毒系列联苯型有机无机杂化聚酰亚胺树脂基及其复合材料。

将硅烷或硅硼烷等无机结构引入聚酰亚胺主链中,提高树脂的耐热性能!如P2SI-900HT树脂等,Tg可达489℃以上[5]。

国内研究进展我国在长期的研究开发过程中,各单位形成了自己的研究特色。

长春应用化学研究所以聚联苯四甲酰亚胺的研究为主;中科院化学所的杨士勇研究员以 PMR 聚酰亚胺树脂系列的研究开发为主;四川大学研究双马来酰亚胺树脂及制品;西北工业大学王汝敏教授以双马来酰亚胺树脂的增韧改性为主;苏州大学梁国振教授在RTM成型工艺用双马来酰亚胺树脂方面成果显著;上海市合成树脂研究所以研究开发聚均苯四甲酰亚胺聚醚酰亚胺及其制品为主;桂林电器科学研究所以研究开发聚酰亚胺薄膜的流延装置为主[6]。

中国科学院化学研究所专门从事聚酰亚胺的研究开发,中国科学院化学研究所研制的短纤维和颗粒增强聚酰亚胺复合材料是以PMR型304-KH热固型聚酰亚胺为基体的树脂,其具有优良的力学性能、耐腐蚀性能、抗辐射性能、自润滑性能、耐磨耗性能、耐高温氧化性能、加工性。

张春华等人合成了新的复合光敏聚酰胺酸季铵盐,结果表明,以3,3,4,4,)联苯四酸二酐与间苯二胺为主链的聚酰胺酸合成的光敏聚酰胺酸季铵盐有较高的感光度,它在较低的温度200e以下可完全酰亚胺化,但接近550e才达到理论失重量。

2006年孙自淑采用均苯四酸二酐分别与4,4,)二氨基二苯醚和3,3,)二甲基联苯胺进行三元共聚,通过改变两种二胺单体的摩尔比,合成出一系列光敏聚酰亚胺材料,当4,4,一二氨基二苯醚与均苯四酸二酐具有一定的摩尔比时,所得光敏聚酰亚胺均可溶于强极性溶剂,特性粘数在0.675~1.08 dL/ g 之间。

中国科学院化学研究所高技术材料实验室杨士勇研究员的课题组,在科技部/863计划0的支持下,研制成功体积收缩率小、固化温度低、树脂贮存稳定性好的光敏型BTPA -1000和标准型BTDA -1000聚酰亚胺专用树脂,其中光敏型BTPA-1000聚酰亚胺树脂具有特殊的光交联机理,无需添加其他光敏助剂即可进行光刻得到精细的图形,制图工艺简单,可在最大程度上避免外来杂质对IC芯片表面的污染,是一类有着广泛应用前景的负性光致抗蚀剂,自1969年由法国Rhone -Poulene公司双马来酰亚胺树脂研制成功以来,美国、英国、德国、日本和中国等国家都相继进行了研究开发,当时我国商品化的双马来酰亚胺只有二氨基二苯甲烷型,现在经过改性的双马来酰亚胺树脂品种已经非常丰富。

例如郝建军等[12 ]研究了一系列含硅双马来酰亚胺的合成和性能,概括起来,这些化合物可分为以下3类:1二元胺扩链含硅双马来酰亚胺2含聚硅氧烷链双马来酰亚胺;3Diets-Aider反应制备的含硅双马来酰亚胺。

国外研究状况聚酰亚胺作为一类材料发展己有四五十年的历史,聚酰亚胺因为它在性能和合成上的突出特点,不论作为结构材料还是功能材料己被充分认识,研究应用比较广泛。

1908年Bogert和Rebshaw就通过4 -基邻苯二甲酸酐的熔融自缩聚反应于实验室首次制备了聚酰亚胺。

1955年美国DuPont公司Edwards与Robison 申请了世界上第一篇有关聚酰亚胺在材料应用方面的专利。

1969年法国罗纳-普朗克公司(Rhone -Poulene)首先开发成功双马来酰亚胺预聚体(Kerimid 601),它是先进复合材料的理想基体树脂。

该聚合物在固化时不产生副产物挥发性气体,容易成型加工,制品内部致密无气孔,但聚酰亚胺真正作为一种材料而实现商品化则是在20世纪60年代。

相关文档
最新文档