大学物理(第五版)下册

合集下载

大学-物理学-第五版-马文蔚-答案上下册第十一章

大学-物理学-第五版-马文蔚-答案上下册第十一章

第十一章光学1、在双缝干涉实验中,两缝间距为mm 30.0,用单色光垂直照射双缝,在离缝m 20.1的屏上测得中央明纹一侧第5条暗纹与另一侧第5条暗纹间的距离为mm 78.22,问所用光的波长为多少?解:双缝干涉暗纹条件'(21)2d x k d λ=±+ (0,1,2,)k =⋅⋅⋅中央明纹一侧第5条暗纹对应于4=k ,由于条纹对称,该暗纹到中央明纹中心的距离为mm 39.11278.22==x 那么由暗纹公式即可求得 337'2211.39100.3010 6.32810m 632.8nm (21) 1.20(241)xd d k λ---⨯⨯⨯⨯===⨯=+⨯⨯+2、用白光垂直入射到间距为mm 25.0=d的双缝上,距离缝m 0.1处放置屏幕,求零级明纹同侧第二级干涉条纹中紫光和红光中心的间距(白光的波长范围是nm 760~400)。

解:第k 级明纹位置应满足'd x k dλ= ),2,1,0(⋅⋅⋅±±=k 对紫光和红光分别取nm 4001=λ,nm 7602=λ;则同侧第二级条纹的间距'3621 1.010()2(760400)10 2.88mm 0.25d x k d λλ-⨯∆=-=⨯⨯-⨯=3、用58.1=n 的透明云母片覆盖杨氏双缝干涉装置的一条缝,若此时屏中心为第五级亮条纹中心,设光源波长为μm 55.0,(1)求云母片厚度。

(2)若双缝相距mm 60.0,屏与狭缝的距离为m 5.2,求0级亮纹中心所在的位置。

解:(1)由于云母片覆盖一缝,使得屏中心处的光程差变为λ5=∆,一条光路中插入厚度为e 的透明介质片光程变化e n )1(-。

所以λ5)1(=-=∆e n解得云母片厚度μm 74.4158.155.0515=-⨯=-=n e λ(2)因为mm 29.260.055.05.2=⨯==∆d D x λ, 又由于中心位置为5级明纹中心,故级条纹距中心为5倍条纹宽度,所以m m 45.1129.2555=⨯=∆=x x4、如图所示,在折射率为50.1的平板玻璃表面有一层厚度为nm 300,折射率为22.1的厚度均匀透明油膜,用白光垂直射向油膜,问:(1)哪些波长的可见光在反射光中干涉加强?(2)若要使透射光中nm 550=λ的光干涉加强,油膜的最小厚度为多少?由上式可得:k dn 22=λ , 1=k 时: nm 732130022.121=⨯⨯=λ 红光 2=k 时: nm 366230022.122=⨯⨯=λ 紫外, 故反射中波长为nm 732的红光产生干涉加强。

大学物理 马文蔚 第五版 下册 第十四章 课后答案

大学物理 马文蔚 第五版 下册 第十四章 课后答案

大学物理马文蔚第五版下册第十四章课后答案第十四章相对论14 -1 下列说法中(1) 两个相互作用的粒子系统对某一惯性系满足动量守恒,对另一个惯性系来说,其动量不一定守恒;(2) 在真空中,光的速度与光的频率、光源的运动状态无关; (3) 在任何惯性系中,光在真空中沿任何方向的传播速率都相同. 其中哪些说法是正确的?( )(A) 只有(1)、(2)是正确的 (B) 只有(1)、(3)是正确的 (C) 只有(2)、(3)是正确的 (D) 三种说法都是正确的分析与解物理相对性原理和光速不变原理是相对论的基础.前者是理论基础,后者是实验基础.按照这两个原理,任何物理规律(含题述动量守恒定律)对某一惯性系成立,对另一惯性系也同样成立.而光在真空中的速度与光源频率和运动状态无关,从任何惯性系(相对光源静止还是运动)测得光速均为3×108 m·s-1 .迄今为止,还没有实验能推翻这一事实.由此可见,(2)(3)说法是正确的,故选(C).14 -2 按照相对论的时空观,判断下列叙述中正确的是( ) (A) 在一个惯性系中两个同时的事件,在另一惯性系中一定是同时事件 (B) 在一个惯性系中两个同时的事件,在另一惯性系中一定是不同时事件(C) 在一个惯性系中两个同时又同地的事件,在另一惯性系中一定是同时同地事件 (D) 在一个惯性系中两个同时不同地的事件,在另一惯性系中只可能同时不同地 (E) 在一个惯性系中两个同时不同地事件,在另一惯性系中只可能同地不同时分析与解设在惯性系S中发生两个事件,其时间和空间间隔分别为Δt 和Δx,按照洛伦兹坐标变换,在S′系中测得两事件时间和空间间隔分别为Δt?Δt??vΔxΔx?vΔtc2 和Δx??221?β1?β讨论上述两式,可对题述几种说法的正确性予以判断:说法(A)(B)是不正确的,这是因为在一个惯性系(如S系)发生的同时(Δt=0)事件,在另一个惯性系(如S′系)中是否同时有两种可能,这取决于那两个事件在S系中发生的地点是同地(Δx=0)还是不同地(Δx≠0).说法(D)(E)也是不正确的,由上述两式可知:在S系发生两个同时(Δt=0)不同地(Δx≠0)事件,在S′系中一定是既不同时(Δt′≠0)也不同地(Δx′≠0),但是在S系中的两个同时同地事件,在S′系中一定是同时同地的,故只有说法(C)正确.有兴趣的读者,可对上述两式详加讨论,以增加对相对论时空观的深入理解.14 -3 有一细棒固定在S′系中,它与Ox′轴的夹角θ′=60°,如果S′系以速度u 沿Ox 方向相对于S系运动,S系中观察者测得细棒与Ox 轴的夹角( ) (A) 等于60° (B) 大于60° (C) 小于60°(D) 当S′系沿Ox 正方向运动时大于60°,而当S′系沿Ox 负方向运动时小于60°分析与解按照相对论的长度收缩效应,静止于S′系的细棒在运动方向的分量(即Ox 轴方向)相对S系观察者来说将会缩短,而在垂直于运动方向上的分量不变,因此S系中观察者测得细棒与Ox 轴夹角将会大于60°,此结论与S′系相对S系沿Ox 轴正向还是负向运动无关.由此可见应选(C).14 -4 一飞船的固有长度为L,相对于地面以速度v1 作匀速直线运动,从飞船中的后端向飞船中的前端的一个靶子发射一颗相对于飞船的速度为v2 的子弹.在飞船上测得子弹从射出到击中靶的时间间隔是( ) (c 表示真空中光速) (A)LLLL (B) (C) (D)2v1?v2v2-v1v2v11??v1/c?分析与解固有长度是指相对测量对象静止的观察者所测,则题中L、v2 以及所求时间间隔均为同一参考系(此处指飞船)中的三个相关物理量,求解时与相对论的时空观无关.故选(C). 讨论从地面测得的上述时间间隔为多少?建议读者自己求解.注意此处要用到相对论时空观方面的规律了.14 -5 设S′系以速率v=0.60c相对于S系沿xx′轴运动,且在t=t′=0时,x =x′=0.(1)若有一事件,在S系中发生于t=2.0×107s,x=50m处,该事件在S′系中发生于何时刻?(2)如有另一事件发生于S系中t=3.0×10-7 s,x=10m处,在S′系中测得这两个事件的时间间隔为多少?分析在相对论中,可用一组时空坐标(x,y,z,t)表示一个事件.因此,本题可直接利用洛伦兹变换把两事件从S系变换到S′系中.解 (1) 由洛伦兹变换可得S′系的观察者测得第一事件发生的时刻为-vx21c??t1?1.25?10?7s 1?v2/c2t1? (2) 同理,第二个事件发生的时刻为vx22c??t2?3.5?10?7s 1?v2/c2t2?所以,在S′系中两事件的时间间隔为??t1??2.25?10?7s Δt??t214 -6 设有两个参考系S和S′,它们的原点在t=0和t′=0时重合在一起.有一事件,在S′系中发生在t′=8.0×108 s,x′=60m,y′=0,z′=0处若S′系相对于S系以速率v=0.6c 沿xx′轴运动,问该事件在S系中的时空坐标各为多少?分析本题可直接由洛伦兹逆变换将该事件从S′系转换到S系. 解由洛伦兹逆变换得该事件在S系的时空坐标分别为-x?x??vt?1?v/c22?93my =y′=0 z =z′=0vx?2ct??2.5?10?7s 1?v2/c2t??14 -7 一列火车长0.30km(火车上观察者测得),以100km·h-1 的速度行驶,地面上观察者发现有两个闪电同时击中火车的前后两端.问火车上的观察者测得两闪电击中火车前后两端的时间间隔为多少?分析首先应确定参考系,如设地面为S系,火车为S′系,把两闪电击中火车前后端视为两个事件(即两组不同的时空坐标).地面观察者看到两闪电同时击中,即两闪电在S系中的时间间隔Δt=t2-t1=0.火车的长度是相对火车静止的观察者测得的长度(注:物体长度在不指明观察者的情况下,均指相对其静止参考系测得的长度),即两事件在S′系中的空间间隔Δx′=x′2 -x′1=0.30×103m.S′系相对S系的速度即为火车速度(对初学者来说,完成上述基本分析是十分必要的).由洛伦兹变换可得两事件时间间隔之间的关系式为t2?t1???t1????t2v??x1???x22c (1) 221?v/c??t1??t2?t2?t1??v?x2?x1?2c (2) 221?v/c将已知条件代入式(1)可直接解得结果.也可利用式(2)求解,此时应注意,式中x2?x1为地面观察者测得两事件的空间间隔,即S系中测得的火车长度,而不是火车原长.根据相对论,运??x1??1?v/c.考虑这一关系方可利用式(2)动物体(火车)有长度收缩效应,即x2?x1??x222求解.解1 根据分析,由式(1)可得火车(S′系)上的观察者测得两闪电击中火车前后端的时间间隔为??t1??t2v??x1????9.26??14s ?x22c负号说明火车上的观察者测得闪电先击中车头x′2 处.??x1??1?v/c 代入式(2)亦可得解2 根据分析,把关系式x2?x1??x222??x1?=0.30km这一与解1 相同的结果.相比之下解1 较简便,这是因为解1中直接利用了x2已知条件.14 -8 在惯性系S中,某事件A发生在x1处,经过2.0 ×106s后,另一事件B发生在x2处,已知x2-x1=300m.问:(1) 能否找到一个相对S系作匀速直线运动的参考系S′,在S′系中,两事件发生在同一地点?(2) 在S′系中,上述两事件的时间间隔为多少?分析在相对论中,从不同惯性系测得两事件的空间间隔和时间间隔有可能是不同的.它与两惯性系之间的相对速度有关.设惯性系S′以速度v 相对S系沿x 轴正向运动,因在S系中两事件的时空坐标已知,由洛伦兹时空变换式,可得-??x1??x2?x2?x1??v?t2?t1? (1)1?v2/c2??t1??t2?t2?t1??v2?x2?x1?c1?v2/c2 (2)两事件在S′系中发生在同一地点,即x′2-x′1=0,代入式(1)可求出v 值以此作匀速直线运动的S′系,即为所寻找的参考系.然后由式(2)可得两事件在S′系中的时间间隔.对于本题第二问,也可从相对论时间延缓效应来分析.因为如果两事件在S′系中发生在同一地点,则Δt′为固有时间间隔(原时),由时间延缓效应关系式Δt??Δt1?v/c可直接求得结果.22解 (1) 令x′2-x′1=0,由式(1)可得v?x2?x1?1.50?108m?s-1?0.50ct2?t1 (2) 将v值代入式(2),可得??t1??t2?t2?t1??v2?x2?x1?c1?v2/c2??t2?t1?1?v2/c2?1.73?10?6s这表明在S′系中事件A先发生.14 -9 设在正负电子对撞机中,电子和正电子以速度0.90c 相向飞行,它们之间的相对速度为多少?分析设对撞机为S系,沿x 轴正向飞行的正电子为S′系.S′系相对S系的速度v=0.90c,则另一电子相对S系速度ux=-0.90c,该电子相对S′系(即沿x轴正向飞行的电子)的速度u′x即为题中所求的相对速度.在明确题目所述已知条件及所求量的物理含义后,即可利用洛伦兹速度变换式进行求解.解按分析中所选参考系,电子相对S′系的速度为u?x?ux?u?x??0.994c v1?2uxc式中负号表示该电子沿x′轴负向飞行,正好与正电子相向飞行. 讨论若按照伽利略速度变换,它们之间的相对速度为多少?14 -10 设想有一粒子以0.050c 的速率相对实验室参考系运动.此粒子衰变时发射一个电子,电子的速率为0.80c,电子速度的方向与粒子运动方向相同.试求电子相对实验室参考系的速度.分析这是相对论的速度变换问题.取实验室为S系,运动粒子为S′系,则S′系相对S系的速度v=0.050c.题中所给的电子速率是电子相对衰变粒子的速率,故u′x =0.80c. 解根据分析,由洛伦兹速度逆变换式可得电子相对S系的速度为ux?u?x?v?0.817c v1?2u?xc14 -11 设在宇航飞船中的观察者测得脱离它而去的航天器相对它的速度为1.2×108m·s-1 i.同时,航天器发射一枚空间火箭,航天器中的观察者测得此火箭相对它的速度为。

《大学物理》下册(第五版)课后答案

《大学物理》下册(第五版)课后答案

第九章振动9-1一个质点作简谐运动,振幅为A,在起始时刻质点的位移为-A,且向x 轴正方向运2动,代表此简谐运动的旋转矢量为()题9-1图分析与解(b)图中旋转矢量的矢端在x 轴上投影点的位移为-A/2,且投影点的运动方向指向O x轴正向,即其速度的x 分量大于零,故满足题意.因而正确答案为(b).9-2已知某简谐运动的振动曲线如图(a)所示,则此简谐运动的运动方程为()(A)x = 2cos⎡2πt -2 π⎤(cm)(C)x = 2cos⎡2 πt +2 π⎤(cm)⎢⎣3 3 ⎥⎦ ⎢⎣3 3 ⎥⎦(B)x = 2cos⎡4πt -2 π⎤(cm)(D)x = 2cos⎡4 πt +2 π⎤(cm)⎢⎣3 3 ⎥⎦ ⎢⎣3 3 ⎥⎦题9-2图分析与解由振动曲线可知,初始时刻质点的位移为–A/2,且向x 轴负方向运动.图(b)是其相应的旋转矢量图,由旋转矢量法可知初相位为2π / 3 .振动曲线上给出质点从–A/2 处运动到+A 处所需时间为 1 s,由对应旋转矢量图可知相应的相位差∆ϕ=4π3 ,则角频率ω=∆ϕ/ ∆t =(4π/ 3)s-1 ,故选(D).本题也可根据振动曲线所给信息,逐一代入方程来找出正确答案.9-3两个同周期简谐运动曲线如图(a)所示,x1 的相位比x2 的相位()(A)落后π2(B)超前π2(C)落后π(D)超前π分析与解由振动曲线图作出相应的旋转矢量图(b)即可得到答案为(b).题9-3图9-4当质点以频率ν作简谐运动时,它的动能的变化频率为()(A)v(B)v (C)2v2(D)4v分析与解质点作简谐运动的动能表式为E k=1mω2 A 2sin2 (ωt2+ϕ),可见其周期为简谐运动周期的一半,则频率为简谐运动频率ν 的两倍.因而正确答案为(C).9-5图(a)中所画的是两个简谐运动的曲线,若这两个简谐运动可叠加,则合成的余弦振动的初相位为()3(A)π21(B)π2(C)π(D)0分析与解由振动曲线可以知道,这是两个同振动方向、同频率简谐运动,它们的相位差是π(即反相位).运动方程分别为x1=A cosωt 和x2=Acos(ωt +π).它们的振幅不同.对2于这样两个简谐运动,可用旋转矢量法,如图(b)很方便求得合运动方程为x1 =而正确答案为(D).Acosωt .因2题9-5图9-6 有一个弹簧振子,振幅A = 2.0 ⨯10-2 m ,周期T = 1.0 s ,初相ϕ出它的运动方程,并作出x -t 图、v -t 图和a -t 图.=3π / 4 .试写题9-6 图分析弹簧振子的振动是简谐运动.振幅 A 、初相ϕ、角频率ω是简谐运动方程m / k 外, ω 可通过关系式ω = 2π / T 确定.振子运动的速度和加速度的计算仍与质点运动学中的计算方法相同.解 因ω = 2π / T ,则运动方程x = A cos (ωt + ϕ ) = A ⎛ 2πt + ϕ ⎫cos ⎪ ⎝ T⎭根据题中给出的数据得x = 2.0 ⨯ 10-2 cos (2πt + 0.75π ) (m )振子的速度和加速度分别为v = d x / d y a = d 2x / d 2y = -4π ⨯ 10-2sin (2πt = -8π ⨯ 10-2cos (2πt + 0.75π) ( m ⋅ s-1 )+ 0.75π) ( m ⋅ s -1)x - t 、 v - t 及 a - t 图如图所示.9-7 若简谐运动方程为 x = 0.10 cos (20πt + 0.25π)(m ),求:(1) 振幅、频率、角频率、周期和初相;(2) t = 2s 时的位移、速度和加速度.分析 可采用比较法求解.将已知的简谐运动方程与简谐运动方程的一般形式x = A cos (ωt + ϕ )作比较,即可求得各特征量.运用与上题相同的处理方法,写出位移、速度、加速度的表达式,代入t 值后,即可求得结果.解 (1) 将 x = 0.10 cos (20πt + 0.25π)(m )与 x = A cos (ωt + ϕ )比较后可得:振幅 A = 0.10m ,角频率ω = 20π s -1,初相ϕ =0.25 π ,则周期T = 2π / ω = 0.1 s ,频率 v = 1/ T Hz .(2) t = 2s 时的位移、速度、加速度分别为x = 0.10 cos (40πt + 0.25π) = 7.07 ⨯10-2 mv = d x / d t = -2πsin (40π + 0.25π) = -4.44m ⋅ s -1a = d 2 x / d 2t = -40π2cos (40π + 0.25π) = -2.79 ⨯102 m ⋅ s -29-8 一远洋货轮,质量为 m ,浮在水面时其水平截面积为 S .设在水面附近货轮的水平截面积近似相等,水的密度为 ρ,且不计水的粘滞阻力,证明货轮在水中作振幅较小的竖直自由运动是简谐运动,并求振动周期.分析 要证明货轮作简谐运动,需要分析货轮在平衡位置附近上下运动时,它所受的合外力 F 与位移 x 间的关系,如果满足 F = -kx ,则货轮作简谐运动.通过 F = -kx 即可求得振动 周期T = 2π / ω = 2π .证 货轮处于平衡状态时[图(a )],浮力大小为 F =mg .当船上下作微小振动时,取货轮处于力平衡时的质心位置为坐标原点 O ,竖直向下为 x 轴正向,如图(b )所示.则当货轮向下偏移 x 位移时,受合外力为∑ F = P + F '其中 F ' 为此时货轮所受浮力,其方向向上,大小为F ' = F + ρgSx = mg + ρgSx则货轮所受合外力为题9-8图∑F=P -F '=-ρgSx =-kx式中k =ρgS 是一常数.这表明货轮在其平衡位置上下所作的微小振动是简谐运动.由∑F =m d2 x / d2t 可得货轮运动的微分方程为d2 x / d2t +ρgSx / m = 0令ω2 =ρgS / m ,可得其振动周期为T =2π / ω = 2π9-9设地球是一个半径为R 的均匀球体,密度ρ= 5.5 ⨯103 kg ⋅ m-3 .现假定沿直径凿通一条隧道,若有一质量为m 的质点在此隧道内作无摩擦运动.(1)证明此质点的运动是简谐运动;(2)计算其周期.题9-9图分析证明方法与上题相似.分析质点在隧道内运动时的受力特征即可.证(1)取图所示坐标.当质量为m 的质点位于x 处时,它受地球的引力为m / ρgSm / k x xF = -Gm x m式中G 为引力常量, m 是以 x 为半径的球体质量,即 m = 4πρx 3/ 3 .令 k = 4πρGm / 3 ,则质点受力F = 4πρGmx / 3 = -kx因此,质点作简谐运动.(2) 质点振动的周期为T = 2π = = 5.07 ⨯103 s9-10 如图(a )所示,两个轻弹簧的劲度系数分别为 k 1 、k 2时.(1) 证明其运动仍是简谐运动;(2) 求系统的振动频率..当物体在光滑斜面上振动题 9-10 图分析 从上两题的求解知道,要证明一个系统作简谐运动,首先要分析受力情况,然后看是否满足简谐运动的受力特征(或简谐运动微分方程).为此,建立如图(b )所示的坐标.设系统平衡时物体所在位置为坐标原点 O ,Ox 轴正向沿斜面向下,由受力分析可知,沿 Ox 轴, 物体受弹性力及重力分力的作用,其中弹性力是变力.利用串联时各弹簧受力相等,分析物体 在任一位置时受力与位移的关系,即可证得物体作简谐运动,并可求出频率υ .证 设物体平衡时两弹簧伸长分别为 x 1 、 x 2 ,则由物体受力平衡,有mg sin θ = k 1x 1 = k 2 x 2按图(b )所取坐标,物体沿 x 轴移动位移 x 时,两弹簧又分别被拉伸 x 1' 和 x 2' ,即物体受力为(1)x = x 1' + x 2' .则 3π / Gρ1 2π(k + k )/ m 1 21 2F = mg si n θ - k 2 (x 2 + x 2' )= mg si n θ - k 1 (x 1 + x 1') 将式(1)代入式(2)得(2) F = -k 2 x 2' = -k 1x 1' 由式(3)得 x 1' = -F / k 1 、 x 2' = -F / k 2 ,而 x = x 1' + x 2' ,则得到(3)F = -[k k / (k + k )]x = -kx 1 2式中 k = k 1k 2 / (k 1 + k 2 )为常数,则物体作简谐运动,振动频率v = ω / 2π = 12π k / m = 讨论 (1) 由本题的求证可知,斜面倾角 θ 对弹簧是否作简谐运动以及振动的频率均不产生影响.事实上,无论弹簧水平放置、斜置还是竖直悬挂,物体均作简谐运动.而且可以证明它们的频率相同,均由弹簧振子的固有性质决定,这就是称为固有频率的原因.(2) 如果振动系统如图(c )(弹簧并联)或如图(d )所示,也可通过物体在某一位置的受力分析得出其 作简谐运动,且振动频率均为v = ,读者可以一试.通过这些例子可以知道,证明物体是否作简谐运动的思路是相同的.*9-11 在如图(a )所示装置中,一劲度系数为 k 的轻弹簧,一端固定在墙上,另一端连接一质量为 m 1 的物体 A ,置于光滑水平桌面上.现通过一质量 m 、半径为 R 的定滑轮 B (可视为匀质圆盘)用细绳连接另一质量为 m 2 的物体 C .设细绳不可伸长,且与滑轮间无相对滑动, 求系统的振动角频率.题 9-11 图分析 这是一个由弹簧、物体 A 、C 和滑轮 B 组成的简谐运动系统.求解系统的振动频率可采用两种方法.(1) 从受力分析着手.如图(b )所示,设系统处于平衡状态时,与物体1 2πk k /(k + k )m1 2 1 2k 正向从原点 O 伸长 x 时,分析物体 A 、C 及滑轮 B 的受力情况,并分别列出它们的动力学方程,可解得系统作简谐运动的微分方程.(2)从系统机械能守恒着手.列出系统机械能守恒方 程,然后求得系统作简谐运动的微分方程.解 1 在图(b )的状态下,各物体受力如图(c )所示.其中 F = -k (x + x 0 )i .考虑到绳 子不可伸长,对物体 A 、B 、C 分别列方程,有F T 1 = -k (x + x 0 ) = d 2 x m 1 d t 2 d 2 x(1)m 2 g - F T 2 = m 2 d t2 (2)( - ) = α = 1d 2 xF T 2 F T 1 R J2 mR d t 2(3) kx 0 = m 2 g (4)方程(3)中用到了 F = F ' 、F = F ' 、J = mR 2/ 2 及α = a / R .联立式(1) ~式(4)T 2 T 2 可得T 1 T 1d 2 x k则系统振动的角频率为d t2+m 1 + m 2 + m / 2x = 0(5)ω = 解 2 取整个振动装置和地球为研究系统,因没有外力和非保守内力作功,系统机械能守恒.设物体平衡时为初始状态,物体向右偏移距离 x (此时速度为 v 、加速度为 a )为末状态, 则由机械能守恒定律,有E = -m gx + 1 m v 2 + 1 m v 2 + 1 J ω2 + 1 k (x + x )20 2 2 1 2 2 2 2在列出上述方程时应注意势能(重力势能和弹性势能)零点的选取.为运算方便,选初始状态下物体 C 所在位置为重力势能零点;弹簧原长时为弹性势能的零点.将上述方程对时间求导得0 = -m gv + m v d v + m v d v + Jω d ω + k (x + x )d x2 1 d t 2 d t d t 0d t 将 J = mR 2 / 2 , ωR = v , d v / d t = d 2 x / d t 2和m g = kx 代入上式,可得d 2x + d t 2 m2 0+ m + m / 2 x = 0(6)12式(6)与式(5)相同,表明两种解法结果一致.9-12 一放置在水平桌面上的弹簧振子,振幅 A =2.0 ×10-2 m ,周期 T =0.50s.当 t =0 时,(1) 物体在正方向端点;(2) 物体在平衡位置、向负方向运动;(3) 物体在 x =-1.0×10-2m 处, 向负方向运动; (4) 物体在 x =-1.0×10-2 m 处,向正方向运动.求以上各种情况的运动方程.分析 在振幅 A 和周期 T 已知的条件下,确定初相 φ 是求解简谐运动方程的关键.初相k / (m 1 + m 2 + m / 2)π π = 4π 的确定通常有两种方法.(1) 解析法:由振动方程出发,根据初始条件,即 t =0 时,x =x 0 和 v =v 0 来确定 φ 值.(2) 旋转矢量法:如图(a )所示,将质点 P 在 Ox 轴上振动的初始位置 x 0 和速度 v 0 的方向与旋转矢量图相对应来确定 φ.旋转矢量法比较直观、方便,在分析中常采用.题 9-12 图解 由题给条件知 A =2.0 ×10-2 m , ω = 2 / T = 4π s -1,而初相 φ 可采用分析中的两种不 同方法来求.解析法 : 根据简 谐 运动方 程 x = A cos (ωt + ϕ ) ,当 t = 0 时有 x 0 = A cos (ωt + ϕ ) ,v 0 = - Aωsin .当(1) x 0 = A 时, cos ϕ1 = 1,则ϕ1 = 0 ;π π(2) x 0 = 0 时, cos ϕ2 = 0 ,ϕ2 = ± ,因v 0 < 0 ,取ϕ2 = ;2 2(3) x 0 = 1.0 ⨯10-2 m 时, cos ϕ = 0.5 ,ϕ3 = ± π 3 ,由v 0 < 0 ,取ϕ3 = ; 3(4) x = -1.0 ⨯10-2m 时, cos ϕ = -0.5 ,ϕ = π ± ,由v > 0 ,取ϕ 4π 0 4 4 3 0 4 3旋转矢量法:分别画出四个不同初始状态的旋转矢量图,如图(b )所示,它们所对应的初 相分别为ϕ1 = 0 , ϕ2 =, ϕ3 =2, ϕ4 =.33振幅 A 、角频率 ω、初相 φ 均确定后,则各相应状态下的运动方程为(1) x = 2.0 ⨯10-2cos4πt(m )(2) x = 2.0 ⨯10-2 cos (4πt + π/2) (m ) (3) x = 2.0 ⨯10-2 cos (4πt + π/3) (m ) (4) x = 2.0 ⨯10-2 cos (4πt + 4π/3) (m )9-13 有一弹簧, 当其下端挂一质量为 m 的物体时, 伸长量为 9.8 ×10-2 m .若使物体上、下振动,且规定向下为正方向.(1) 当 t =0 时,物体在平衡位置上方 8.0 ×10-2 m 处,由静止开始向下运动,求运动方程.(2) 当 t =0 时,物体在平衡位置并以 0.6m·s -1 的速度向上运动,求运动方程.π π 3.k / m g / ∆l x + ( 21010 v / ω )2⎝ 12 ⎭分析 求运动方程,也就是要确定振动的三个特征物理量 A 、ω 和 φ.其中振动的角频率是 由弹簧振子系统的固有性质(振子质量 m 及弹簧劲度系数 k )决定的,即ω =k /m ,k 可根据物体受力平衡时弹簧的伸长来计算;振幅 A 和初相 φ 需要根据初始条件确定.题 9-13 图解 物体受力平衡时,弹性力 F 与重力 P 的大小相等,即 F =mg .而此时弹簧的伸长量 Δl =9.8 ×10-2m .则弹簧的劲度系数 k =F /Δl =mg /Δl .系统作简谐运动的角频率为ω = = = 10 s -1(1) 设系统平衡时,物体所在处为坐标原点,向下为 x 轴正向.由初始条件 t =0 时, x 10 =8.0 ×10-2 m 、v 10 =0 可得振幅 A = = 8.0 ⨯10- 2m ;应用旋转矢量法可确定初相ϕ1 = π [图(a )].则运动方程为x = 8.0 ⨯10-2cos (10t + π) (m ) (2)t =0 时,x 20 =0、v 20 =0.6 m·s -1 ,同理可得 A 2 == 6.0 ⨯10- 2 m ; ϕ2 = π / 2 [图(b )].则运动方程为x = 6.0 ⨯10-2cos (10t + 0.5π) (m ) 9-14 某振动质点的 x -t 曲线如图(a )所示,试求:(1) 运动方程;(2) 点 P 对应的相位;(3) 到达点 P 相应位置所需的时间.分析 由已知运动方程画振动曲线和由振动曲线求运动方程是振动中常见的两类问题.本题就是要通过 x -t 图线确定振动的三个特征量 A 、ω 和ϕ0 ,从而写出运动方程.曲线最大幅值即为振幅 A ;而 ω、ϕ0 通常可通过旋转矢量法或解析法解出,一般采用旋转矢量法比较方便. 解 (1) 质点振动振幅 A =0.10 m.而由振动曲线可画出 t 0 =0 和 t 1 =4 s时旋转矢 量,如图( b ) 所 示.由图可见初相 ϕ0 = -π / 3 (或 ϕ0 = 5π / 3 ), 而由 ω(t 1 - t 0 ) = π / 2 + π / 3 得ω = 5π / 24 s ,则运动方程为 -1x = 0.10 cos⎛ 5πt - π / 3⎫(m )24⎪ x + ( 220 20 v / ω)2ppp p题9-14 图(2)图(a)中点P 的位置是质点从A/2 处运动到正向的端点处.对应的旋转矢量图如图(c)所示.当初相取ϕ0 =-π / 3 时,点P 的相位为ϕp =ϕ0 +ω(t - 0)= 0 (如果初相取成=5π / 3 ,则点P 相应的相位应表示为ϕp =ϕ0 +ω(t -0)=2π .(3)由旋转矢量图可得ω(t - 0)=π/ 3 ,则t =1.6 s .9-15作简谐运动的物体,由平衡位置向x 轴正方向运动,试问经过下列路程所需的最短时间各为周期的几分之几?(1)由平衡位置到最大位移处;(2)由平衡位置到x =A/2 处;(3)由x =A/2 处到最大位移处.解采用旋转矢量法求解较为方便.按题意作如图所示的旋转矢量图,平衡位置在点O.(1))平衡位置x1到最大位移x3处,图中的旋转矢量从位置 1 转到位置 3 ,故∆ϕ1=π / 2 ,则所需时间∆t1=∆ϕ1 / ω=T / 4(2)从平衡位置x1到x2=A/2 处,图中旋转矢量从位置1 转到位置2,故有∆ϕ2则所需时间=π / 6 ,∆t2=∆ϕ2 / ω=T / 12(3)从x2=A/2 运动到最大位移x3处,图中旋转矢量从位置 2 转到位置3,有∆ϕ0=π / 3 ,则所需时间∆t3=∆ϕ3 / ω=T / 6N 题 9-15 图9-16 在一块平板下装有弹簧,平板上放一质量为 1.0 kg 的重物.现使平板沿竖直方向作上下简谐运动,周期为 0.50s,振幅为 2.0×10-2 m .求:(1) 平板到最低点时,重物对平板的作用力;(2) 若频率不变,则平板以多大的振幅振动时,重物会跳离平板? (3) 若振幅不变,则平板以多大的频率振动时, 重物会跳离平板?题 9-16 图分析 按题意作示意图如图所示.物体在平衡位置附近随板作简谐运动,其间受重力 P 和板支持力 F N 作用,F N 是一个变力.按牛顿定律,有d 2 y F = mg - F N = m d t 2(1)由于物体是随板一起作简谐运动,因而有a 改写为 = d 2y d t 2 = -A ω 2 cos (ωt + ϕ ) ,则式(1)可 F N = mg + mA ω 2cos (ωt + ϕ ) (2)(1) 根据板运动的位置,确定此刻振动的相位ωt + ϕ ,由式(2)可求板与物体之间的作 用力.(2) 由式(2)可知支持力 F N 的值与振幅 A 、角频率 ω 和相位( ωt + ϕ )有关.在振 动过程中,当ωt + ϕ = π 时 F N 最小.而重物恰好跳离平板的条件为 F N =0,因此由式(2)可 分别求出重物跳离平板所需的频率或振幅.解 (1) 由分析可知,重物在最低点时,相位ωt + ϕ =0,物体受板的支持力为F = mg + mA ω 2 = mg + mA (2π / t)2 = 12.96 N 重物对木块的作用力 F N ' 与 F N 大小相等,方向相反. (2) 当频率不变时,设振幅变为 A ′.根据分析中所述,将 F N =0 及ωt + ϕ 分析中式(2),可得= π 代入max max2A ' = mg / mω2 = gT 2 / 4π2 = 6.2 ⨯10-2 m(3) 当振幅不变时,设频率变为v ' .同样将 F N =0 及ωt + ϕ 可得= π 代入分析中式(2), v ' = ω = 2π = 3.52 Hz 9-17 两 质点作同 频率、同 振幅的简 谐运动. 第一个质 点的运动 方程 为x 1 = A cos (ωt + ϕ ),当第一个质点自振动正方向回到平衡位置时,第二个质点恰在振动正方 向的端点,试用旋转矢量图表示它们,并求第二个质点的运动方程及它们的相位差.题 9-17 图解 图示为两质点在时刻 t 的旋转矢量图,可见第一个质点 M 的相位比第二个质点 N 的相位超前π / 2 ,即它们的相位差 Δφ=π/2.故第二个质点的运动方程应为x 2 = A cos (ωt + ϕ - π / 2)9-18 图(a )为一简谐运动质点的速度与时间的关系曲线,且振幅为 2cm ,求(1) 振动周期;(2) 加速度的最大值;(3) 运动方程.分析 根据 v -t 图可知速度的最大值 v max ,由 v max =Aω 可求出角频率 ω,进而可求出周期 T 和加速度的最大值 a max =Aω2 .在要求的简谐运动方程 x =A cos (ωt +φ)中,因为 A 和 ω 已得出,故只要求初相位 φ 即可.由 v -t 曲线图可以知道,当 t =0 时,质点运动速度v 0 =v max /2 =Aω/2,之后速度越来越大,因此可以判断出质点沿 x 轴正向向着平衡点运动.利用 v 0 =-Aωsinφ 就可求出 φ.解 (1) 由v = A ω 得ω =1.5 s -1 ,则 T = 2π / ω = 4.2 s (2) a = A ω 2 = 4.5 ⨯10-2 m ⋅ s -2 (3) 从分析中已知 v 0 = - Aωsin= Aω / 2 ,即 sin ϕ = -1 / 2= -π / 6,-5π / 6因为质点沿 x 轴正向向平衡位置运动,则取 = -5π / 6 ,其旋转矢量图如图(b )所示.则运动 方程为 x = 2cos (1.5t - 5π / 6) (cm )1 mg / m A 2πg / l g / l max题 9-18 图9-19 有一单摆,长为 1.0m ,最大摆角为 5°,如图所示.(1) 求摆的角频率和周期;(2)设开始时摆角最大,试写出此单摆的运动方程;(3) 摆角为 3°时的角速度和摆球的线速度各为多少?题 9-19 图分析 单摆在摆角较小时(θ<5°)的摆动,其角量 θ 与时间的关系可表示为简谐运动方程 θ = θmax co s (ωt + ϕ ) ,其中角频率 ω 仍由该系统的性质(重力加速度 g 和绳长 l )决定,即 ω = .初相 φ 与摆角 θ,质点的角速度与旋转矢量的角速度(角频率)均是不同的物理 概念,必须注意区分.解 (1) 单摆角频率及周期分别为ω = = 3.13 s -1; T = 2π / ω = 2.01 s(2) 由t = 0 时θ = θ = 5o可得振动初相ϕ = 0 ,则以角量表示的简谐运动方程为 θ = π cos3.13t 36(3) 摆角为 3°时,有cos (ωt + ϕ ) = θ / θmax = 0.6 ,则这时质点的角速度为J / mgl c maxE c M线速度的大小为d θ/d t = -θmax ωsi n (ωt + ϕ ) = -θmax ω = -0.80θ ω = -0.218 s -1 v = l d θ/d t = -0.218 s -1讨论 质点的线速度和角速度也可通过机械能守恒定律求解,但结果会有极微小的差别.这是因为在导出简谐运动方程时曾取sin θ ≈ θ ,所以,单摆的简谐运动方程仅在 θ 较小时成立.9-20 为了测月球表面的重力加速度,宇航员将地球上的“秒摆”(周期为 2.00s),拿到月 球上去,如测得周期为 4.90s,则月球表面的重力加速度约为多少? (取地球表面的重力加速度 g = 9.80 m ⋅s-2 ) 解 由单摆的周期公式T = 2π 可知 g ∝ 1 / T 2 ,故有 g / g = T 2 / T 2 ,则月球的重力加速度为 g = (T/ T M )2g M E E M= 1.63 m ⋅ s - 29-21 一飞轮质量为 12kg ,内缘半径 r =0.6m,如图所示.为了测定其对质心轴的转动惯量,现让其绕内缘刃口摆动,在摆角较小时,测得周期为 2.0s ,试求其绕质心轴的转动惯量.9-21 题图分析 飞轮的运动相当于一个以刃口为转轴的复摆运动,复摆振动周期为 T = 2π ,因此,只要知道复摆振动的周期和转轴到质心的距离l c ,其以刃口为转轴的 转动惯量即可求得.再根据平行轴定理,可求出其绕质心轴的转动惯量.解 由复摆振动周期T = 2π J / mgl ,可得 J = mgrT 2 / 4π2.则由平行轴定理得 J 0 = J - mr 2 = mgrT 2 / 4π 2 - mr 2 = 2.83 kg ⋅ m 29-22 如图(a )所示,质量为 1.0 ×10-2kg 的子弹,以 500m·s -1 的速度射入木块,并嵌在木块中,同时使弹簧压缩从而作简谐运动,设木块的质量为 4.99 kg ,弹簧的劲度系数为 8.0 ×103 N·m -1 ,若以弹簧原长时物体所在处为坐标原点,向左为 x 轴正向,求简谐运动方程.1 - cos2 (ωt + ϕ ) l / g E E题 9-22 图分析 可分为两个过程讨论.首先是子弹射入木块的过程,在此过程中,子弹和木块组成的系统满足动量守恒,因而可以确定它们共同运动的初速度 v 0 ,即振动的初速度.随后的过程是以子弹和木块为弹簧振子作简谐运动.它的角频率由振子质量 m 1 +m 2 和弹簧的劲度系数 k 确定,振幅和初相可根据初始条件(初速度 v 0 和初位移 x 0 )求得.初相位仍可用旋转矢量法求.解 振动系统的角频率为 ω == 40 s -1由动量守恒定律得振动的初始速度即子弹和木块的共同运动初速度 v 0 为v = m v (m + m ) = 1.0 m ⋅ s -10 1 1 2 又因初始位移 x 0 =0,则振动系统的振幅为A = = v 0/ ω = 2.5⨯10-2 m 图(b )给出了弹簧振子的旋转矢量图,从图中可知初相位 0 = π / 2 ,则简谐运动方程为x = 2.5⨯10-2 cos (40t + 0.5π) (m )9-23 如图(a )所示,一劲度系数为 k 的轻弹簧,其下挂有一质量为 m 1 的空盘.现有一质量为 m 2 的物体从盘上方高为 h 处自由落入盘中,并和盘粘在一起振动.问:(1) 此时的振动周期与空盘作振动的周期有何不同? (2) 此时的振幅为多大?k / (m 1 + m 2 ) x + ( 2 0 0 v / ω) 2x + (v / ω) 2 20 0题 9-23 图分析 原有空盘振动系统由于下落物体的加入,振子质量由 m 1 变为 m 1 + m 2,因此新系统的角频率(或周期)要改变.由于 A = ,因此,确定初始速度 v 0 和初始位移 x 0 是求解振幅 A 的关键.物体落到盘中,与盘作完全非弹性碰撞,由动量守恒定律可确定盘与物体的共同初速度 v 0 ,这也是该振动系统的初始速度.在确定初始时刻的位移 x 0 时,应注意新振动系统的平衡位置应是盘和物体悬挂在弹簧上的平衡位置.因此,本题中初始位移 x 0 ,也就是空盘时的平衡位置相对新系统的平衡位置的位移.解 (1) 空盘时和物体落入盘中后的振动周期分别为T = 2π / ω = 2π T ' = 2π / ω' = 2π 可见 T ′>T ,即振动周期变大了. (2) 如图(b )所示,取新系统的平衡位置为坐标原点 O .则根据分析中所述,初始位移为空盘时的平衡位置相对粘上物体后新系统平衡位置的位移,即x = l - l =m 1g - m 1 + m 2 g = - m 2 g 01 2 k k k式中 l 1 =m 1/k 为空盘静止时弹簧的伸长量,l 2 =(m 1 +m 2)/k 为物体粘在盘上后,静止时弹 簧的伸长量.由动量守恒定律可得振动系统的初始速度,即盘与物体相碰后的速度v 0 = m 2 v =m 1 + m 2 式中 v = 是物体由 h 高下落至盘时的速度.故系统振动的振幅为m 1 / k(m 1 + m 2 )/ km 2 m 1 + m 2 2gh2ghx +(2 v / ω ) ' 20 0x + 20 0( v/ ω) 211A ==本题也可用机械能守恒定律求振幅A.9-24如图所示,劲度系数为k 的轻弹簧,系一质量为m1的物体,在水平面上作振幅为A的简谐运动.有一质量为m2的粘土,从高度h 自由下落,正好在(a)物体通过平衡位置时,(b)物体在最大位移处时,落在物体上.分别求:(1)振动周期有何变化?(2)振幅有何变化?题9-24 图分析谐振子系统的周期只与弹簧的劲度系数和振子的质量有关.由于粘土落下前后,振子的质量发生了改变,因此,振动周期也将变化.至于粘土如何落下是不影响振动周期的.但是,粘土落下时将改变振动系统的初始状态,因此,对振幅是有影响的.在粘土落到物体上的两种不同情况中,系统在水平方向的动量都是守恒的.利用动量守恒定律可求出两种情况下系统的初始速度,从而利用机械能守恒定律(或公式A =)求得两种情况下的振幅.解(1)由分析可知,在(a)、(b)两种情况中,粘土落下前后的周期均为T =2π / ω =2πT '=2π / ω'=2π物体粘上粘土后的周期T′比原周期T 大.(2)(a)设粘土落至物体前后,系统振动的振幅和物体经过平衡位置时的速度分别为A、v 和A′、v′.由动量守恒定律和机械能守恒定律可列出如下各式kA'2 / 2 =m v2 / 2 (1)kA'2 / 2 =(m+m)v'2 / 22(2)联立解上述三式,可得m1v=(m1+m2)v'A'=(3)即A′<A,表明增加粘土后,物体的振幅变小了.(b)物体正好在最大位移处时,粘土落在物体上.则由动量守恒定律知它们水平方向的共同速度v′=m1v/(m1+m2)=0,因而振幅不变,即m2gk1 +2khm1+m2m1/ k(m1+m2)/ km1/(m1+m2)AA / a max max 0 max max 9-25 质量为 0.10kg 的物体,以振幅 1.0×10-2 m 作简谐运动,其最大加速度为 4.0 m·s -1求:(1) 振动的周期;(2) 物体通过平衡位置时的总能量与动能;(3) 物体在何处其动能和势能相等? (4) 当物体的位移大小为振幅的一半时,动能、势能各占总能量的多少?分析 在简谐运动过程中,物体的最大加速度 a = A ω 2,由此可确定振动的周期T .另外,在简谐运动过程中机械能是守恒的,其中动能和势能互相交替转化,其总能量 E =kA 2/2.当动能与势能相等时,E k =E P =kA 2/4.因而可求解本题.解 (1) 由分析可得振动周期 T = 2π / ω = 2π = 0.314 s(2) 当物体处于平衡位置时,系统的势能为零,由机械能守恒可得系统的动能等于总能量,即 E = E = 1 mA 2ω 2 = 1 mAak 2 2max = 2.0 ⨯10-3 J(3) 设振子在位移 x 0 处动能与势能相等,则有kx 2 / 2 = kA 2 / 4得 x 0 = ± 2 A / 2 = ±7.07 ⨯10-3 m(4) 物体位移的大小为振幅的一半(即 x = A / 2 )时的势能为 E = 1 kx 2 = 1 k ⎛ A ⎫ = E / 4 P 2 2 2 ⎪ ⎝ ⎭则动能为E K = E - E P = 3E / 4 9-26 一氢原子在分子中的振动可视为简谐运动.已知氢原子质量 m =1.68 ×10-27 Kg ,振动频率υ =1.0 ×1014 Hz ,振幅 A =1.0 ×10-11m.试计算:(1) 此氢原子的最大速度;(2) 与此振动相联系的能量.解 (1) 简谐运动系统中振子运动的速度 v =-A ωsin (ωt +φ),故氢原子振动的最大速度为v = ωA = 2πvA = 6.28⨯102 m ⋅ s -1 (2) 氢原子的振动能量E = mv 2 / 2 = 3.31⨯10-20 J 9-27 质量 m =10g 的小球与轻弹簧组成一振动系统, 按 x = 0.5(8πt + π / 3) (cm )的规 律作自由振动,求(1) 振动的角频率、周期、振幅和初相;(2) 振动的能量 E ;(3) 一个周期内的平均动能和平均势能.解 (1) 将 x = 0.5(8πt + π / 3) (cm )与 x = A cos (ωt + ϕ )比较后可得:角频率ω = 8π s -1 ,振 幅 A =0.5cm ,初相 φ=π/3,则周期 T =2π/ω=0.25 sA + A + 2 A A cos ( 2 2 1 2 1 2 ϕ - ϕ ) 2 1(2) 简谐运动的能量 E = 1 mA 2ω 2 = 7.90 ⨯10-5 J (3) 简谐运动的动能和势能分别为 E = 1 mA 2ω 2sin 2 (ωt + ϕ ) K 2E = 1 mA 2ω 2cos 2 (ωt + ϕ ) P 2则在一个周期中,动能与势能对时间的平均值分别为E = 1 ⎰T 1 mA 2ω 2 sin 2 (ωt + ϕ )d t = mA 2ω 2 = 3.95 ⨯10-5 J T 0 2 4E = 1 ⎰T 1 mA 2ω 2 cos 2 (ωt + ϕ )d t = mA 2ω 2 = 3.95 ⨯10-5 J T 0 2 49-28已 知 两 同 方 向 、 同 频 率 的 简 谐 运 动 的 运 动 方 程 分 别 为 x 1= 0.05cos (10t + 0.75π) (m ); x 2 = 0.06cos (10t + 0.25π) (m ) .求:(1) 合振动的振幅及初相;(2) 若有另一同方向、同频率的简谐运动 x 3 = 0.07co s (10t + ϕ3 ) (m ),则ϕ3 为多少时, x 1 +x 3 的振幅最大? 又ϕ3 为多少时,x 2 +x 3 的振幅最小?题 9-28 图分析 可采用解析法或旋转矢量法求解.由旋转矢量合成可知,两个同方向、同频率简谐运动 的合成仍为一简谐运动,其角频率不变;合振动的振幅 A = ,其大小与两个分振动的初相差ϕ2 - ϕ1 相关.而合振动的初相位ϕ = arctan [(A s in ϕ + A sin ϕ ) / (A cos ϕ + A cos ϕ )] 1 1 2 2 1 1 2 2解 (1) 作两个简谐运动合成的旋转矢量图(如图).因为∆ϕ 故合振动振幅为= ϕ2 - ϕ1 = -π / 2 , A = 合振动初相位= 7.8 ⨯10-2 m ϕ = arctan [(A s in ϕ + A sin ϕ ) / (A cos ϕ + A cos ϕ )] 1 1 2 2 1 1 2 2= arctan11 = 1.48 rad (2) 要使 x 1 +x 3 振幅最大,即两振动同相,则由∆ϕ= 2k π 得 A + A + 2 A A cos ( 2 2 1 2 1 2 ϕ - ϕ ) 21 K PA 2 + A 2 + 2A 2cos (π + ϕ - ϕ ) 2 12ϕ3 = ϕ1 + 2k π = 2k π + 0.75π, k= 0,±1,±2,...要使 x 1 +x 3 的振幅最小,即两振动反相,则由()得 ϕ3 = ϕ2 + (2k + 1)π = 2k π + 1.25π, k = 0,±1,±2,...9-29 手电筒和屏幕质量均为 m ,且均被劲度系数为 k 的轻弹簧悬挂于同一水平面上,如 图所示.平衡时,手电筒的光恰好照在屏幕中心.设手电筒和屏幕相对于地面上下振动的表达式分别为 x 1 = A cos (ωt + ϕ1 )和 x 2 = A cos (ωt + ϕ2 ).试求在下述两种情况下,初相位 φ1 、φ2 应满足的条件:(1) 光点在屏幕上相对于屏静止不动;(2) 光点在屏幕上相对于屏作振幅 A ′=2A 的振动.并说明用何种方式起动,才能得到上述结果.题 9-29 图分析 落在屏幕上的光点相对地面的运动和屏幕相对于地面的运动都已知道,且是两个简谐运动.因此由运动的合成不难写出光点相对屏的运动(实际上是两个同方向、同频率简谐运动的合成).根据相对运动公式,有依题意x 光对地 = x 光对屏 + x 屏对地x 光对地 = x 1 = A cos (ωt + ϕ1 ) x 屏对地 = x 2 = A cos (ωt + ϕ2 ) 所以 x 光对屏 = x 1 - x 2 = x 1 + x 2'= A cos (ωt + ϕ1 ) + A cos (ωt + π + ϕ2 ) 可见光点对屏的运动就是两个同方向、同频率简谐运动 x 1 = A cos (ωt + ϕ1 ) 和 x 2' = A cos (ωt + π + ϕ2 )的合成.用与上题相同的方法即可求解本题.其中合运动振幅 A ' = . 解 (1) 根据分析和参考上题求解,当要求任一时刻光点相对于屏不动,即 x 光对屏 = 0 ,就是 当π + ϕ2 - ϕ1 = (2k + 1)π 时,即ϕ = ϕ1 + 2k π 时( k = 0,±1,±2,...),A ′=0.当光点 相对于屏作振幅为 2A 的运动时,要求π + ϕ2 - ϕ1 = 2k π ,即ϕ2 = ϕ1 + (2k - 1)π .(2) 由以上求解可知,要使光点相对于屏不动,就要求手电筒和屏的振动始终要同步, 即同相位,为此,把它们往下拉 A 位移后,同时释放即可;同理,要使光点对屏作振幅为 2A 的谐振动,两者必须相位相反,为此,让手电筒位于平衡点 0 上方的-A 处,而屏则位于+A 处同。

南京大学物理化学下册(第五版)复习题解答:最新整理

南京大学物理化学下册(第五版)复习题解答:最新整理

物理化学下册课后复习题答案第八章电解质溶液第九章可逆电池电动势及其应用第十章电解与极化作用第十一章化学动力学(一)第十二章化学动力学基础(二)第十三章1.比表面有哪能几种表示方法?表面张力与表面Gibbs自由能有哪些异同点?答:A0= As/m或A0= As/V;表面张力又可称为表面Gibbs自由能,二者数值一样。

但一个是从能量角度研究表面现象,另一个是从力的角度研究表面现象;故二者物理意义不同;单位不同。

2.为什么气泡、小液滴、肥皂泡等都呈圆形?玻璃管口加热后会变得光滑并缩小(俗称圆口),这些现象的本是什么?用同一滴管滴出相同体积的苯。

水和NaCl 溶液,所得的液滴数是否相同弯曲液面有附加压力,其最终会将不规则的液面变为圆形或球形;球形表面积最小,表面自由能最低,最稳定;不相同。

3.用学到的关于界面现角的知识解释以下几种做法或现象的基体原理:①人工降雨;②有机蒸馏中加沸石;③多孔固体吸附蒸气时的毛细凝聚;④过饱和溶液,过饱和蒸气,过冷液体等过饱和现象;⑤重量分析中的“陈化”过程;⑥喷洒农药时,为何常常在农药中加入少量表面活性剂这些现象都可以用开尔文公式说明,①、②、④、⑤是新相刚形面时的体积小,曲率半径小,对与之平衡的旧相有更加苛刻的条件要求。

③多孔固体吸附蒸气时,被吸附的气体的液相对毛细管是润湿的,其曲率半径小零,当气体的分压小于其饱和蒸气压时,就可以发生凝聚。

⑥喷洒农药时,在农药中加入少量表面活性剂,可以降低药液的表面张力,使药液在叶面上铺展。

4.在三通活塞的两端涂上肥皂液,关断右端通路,在左端吹一个大泡,然后关闭左端,在右端吹一个小泡,最后让左右两端相通。

试问当将两管接通后,两泡的大小有何变化?到何时达到平衡?讲出变化的原因及平衡时两泡的曲率半径的比值。

小球更小,大球更大;最后小泡变成一个与大泡曲率半径相同的弧;由于小泡的附加压力大,所以大泡变大,小泡变小,最后使两泡的曲率半径相同5.因系统的Gibbs自由能越低,系统越稳定,所以物体总有降低本身表面Giibs自由能的趋势。

南京大学物理化学下册(第五版)复习题及解答.docx

南京大学物理化学下册(第五版)复习题及解答.docx

第八章电解质溶液1・Faraday电解定律的基本内容是什么?这定律在电化学中有何用处? 答:法拉第电解定律的基本内容是:通电于电解质溶液之后,(1)在电极上(两相界面),发生化学变化的物质的量与通入电荷成正比・(2〉若将几个电解池串联,通入一定的电荷量后,在各个电解池的电极上发生化学变化的物质的量都相等.Q(E)=Z+eL=z^F根据Faraday定律,通过分析电解过程中反应物在电极上物质的量的变化,就可求岀电荷量的数值,在电化学的定量研究和电解工业上有重要的应用.2.电池中正极、负极、阴极、阳极的定义分别是什么?为什么在原电池中负极是阳极而正极是阴极?答:给出电子到外电路的电极叫做电池的负极,在外电路中电势低.从外电路接受电子的电极叫做电池的正极,在外电路中电势较高.发生氧化作用的电极称为阳极,发生还原作用的一极称为阴极•原电池的阳极发生氧化作用•阴极发生还原作用,内电路的电子由阳极运动到阴极•所以原电池的阴极是正极,阳极是负极.3・电解质溶液的电导率和摩尔电导率与电解质溶液浓度的关系有何不同?为什么?答:强电解质溶液的电导率随着浓度的增大而升高(导电粒子数目增多),但大到一定程度以后,由于正、负离子之间的相互作用增大,因而使离子的运动速率降低,电导率反而下降•弱电解质的电导率随浓度的变化不显著,浓度增加电离度减少,离子数目变化不大•摩尔电导率随浓度的变化与电导率不同,浓度降低,粒子之间相互作用减弱,正、负离子的运动速率因而增加,故摩尔电导率增加.4.怎样分别求强电解质和弱电解质的无限稀释摩尔电导率?为什么要用不同的方法?答:在低浓度下,强电解溶液的摩尔电导率与乞成线性关系.在一定温度下,一定电解质溶液来说,0是定值,通过作图,直线与纵坐标的交点即为无限稀释时溶液的摩尔电导率人箒•即外推法.弱电解质的无限稀释摩尔电导率A益,根据离子独立移动定律,可由强电解质溶液的无限稀释摩尔电导率A 益设计求算,不能由外推法求岀,由于弱电解质的稀溶液在很低浓度下与坨不呈直线关系•并且浓度的变化对4m 的值影响很大,实验的误差很大,由实验值直接求弱电解质的A益很困难.5.离子的摩尔电导率、离子的迁移速率、离子的电迁移率和离子迁移数之间有哪些定量关系式?答:定量关系式:厂+ = “+ dE/ dZ r- = u- dE/ dl厂+ •厂-离产迁移速率山+ 4一离子的电迁移率.饥I4 7一厂++~・"乍=耳=母卯正离子迁移数艺= 1无限稀释强电解质溶液銘=益4 +銘・-盈=(屛+“GF・6.在某电解质溶液中,若有i种离子存在,则溶液的总电导应该用下列哪个公式表示: 答:对电解质溶液来说电导G是其导电的能力,以1一1型电解质溶液为例.⑴G=^+舟+ ・・・;(2)G = 爭?为什么?G=K AJ I K =A H \ • c稀电解质溶液A m =Ai +Am ・•・〃=(△: +Am >C = Am ・ c+Am ・ c «+ =Am • c 则 G+ =/c> A/2・•・G 总=G++G —=盒+古…=工盒・7. 电解质与非电解质的化学势表示形式有何不同?活度因子的表示式有何不同? 答:非电解质的化学势的表示形式:活度因子表示式:非电解质a m ^ = Vm^ —电解质 QB=a 甘• a^r =a±・&为什么要引进离子强度的概念?离子强度对电解质的平均活度因子有什么影响?答:在稀溶液中,影响离子平均活度因子7士的主要因素是离子的浓度和价数,并且离子价数比浓度影 响还要更大一些•且价型愈高,影响愈大,因此而提出离子强度的概念.I = *另加必对平均活度因子的影响lg/+=—常数/!9. 用DebyeHuckel 极限公式计算平均活度因子时有何限制条件?在什么时候要用修正的Debys Hiickel 公式? 答:限制条件为:① 离子在静电引力下的分布遵从Boltzmann 分布公式,并且电荷密度与电势之间的关系遵从静电学中的Poisson (泊松)公式.I② 离子是带电荷的圆球,离子电场是球形对称的,离子不极化•在极稀溶液中可看成点电荷.③ 离子之间的作用力只存在库仑引力,其相互吸引而产生的吸引能小于它的热运动的能量.④ 在稀溶液中,溶液的介电常数与溶剂的介电常数相差不大,可以忽略加入电解质后的介电常数的变 化.若不把离子看作点电荷,考虑到离子的直径,极限公式修正为:—A\z+z- 1/7lgy 士随着离子半径的增大而增大•所以溶液中离子溶度增加,迁移速率亦将增加.12. 影响难溶盐的溶解度主要有哪些因素?试讨论AgCl 在下列电解质溶液中的溶解度大小,按由小 到大的次序排列出来(除水外,所有的电解质的浓度都是0・1 mol ・dm'3).(l) NaNQ (2)NaCl (3)H 2O (4)CuSC)4 (5)NaBr阿=阴(T) +RTlnZn.B 今=炖(丁) +RTlnoni ・B电解质 /zB=/^(T)+RTlnaB=〃g(T) + RTlna# • cf-7M Blgz±= 1+辆I ・10. 不论是离子的电迁移率不是摩尔电导率,氢离子和氢氧根离子都比其他与之带相同电荷的离子要 大得多,试解释这是为什么?答:在水溶液中,屮和OH-离子的电迁移率和摩尔电导率特别大,说明 屮和OH —在电场力作用下 运动速率特别快,这是因为水溶液具有氢键质子可以在水分子间转换,电流很快沿着氢键被传导.11. 在水溶液中带有相同电荷数的离子,如Li 十,Na 十,K + ,Rb +,…,它们的离子半径依次增大,而迁移 速率也相应增大,这是为什么?答:IF ,Na+ ,K+ ,Rb 〒等离子带有相同的电荷,离子半径依次增大,根据修正的Debye-Huckel 公式:答:影响难溶盐的溶解度的主要因素有:①共同离子影响,如AgBr在NaBr中的溶解度远小于水中的溶解度.②其它电解质的影响,其它电解质的存在通过影响离子强度,影响难溶盐的活度系数,从而影响溶解度.溶解度顺序为:(2)<(3)<(1)<(4)«5).13.用Pt电极电解一定浓度的CuSQ溶液,试分析阴极部、中部和阳极部溶液的颜色在电解过程中有何变化?若都改用Cu电极,三部溶液颜色变化又将如何?答:Pt是惰性电极,阴极部溶液中C£+被还原生成Cu,溶液中Ci?+的浓度变小,颜色变淡,阳极部溶液中+向中部迁移,颜色变淡,中部的颜色在短时间内基本保持不变.用Cu做电极时,阴极部的颜色变淡,中部基本不变,阳极部颜色变深.14.什么叫离子氛?Debye-Hiickel-()nsager电导理论说明了什么问题?苔:溶液中每一个离子都被电荷符号相反的离子所包围,由于离子间的相互作用使得离子分布不均匀, 从而形成离子氛.Deby^Huckel-Oisager电导理论说明,电解质溶液的摩尔电导率与离子间相互作用、离子的性质、离子本身结构和溶剂能力以及介质的介电常数都有关系.第九章1.可逆电极有哪些主要类型?每种类型试举一例,并写出该电极的还原反应。

大学物理(下册)课后部分习题答案

大学物理(下册)课后部分习题答案



11畅13( a)
11畅13( b)
(2) 设该异线应放在 y = - d 处 ,显然 ,该异线在轴线处产生的磁成应强度应
与原来的半圆柱面产生的磁感应强度相同 ,即
μ0 I 2π d

μ0 I π2 R
所以
d=
πR 2
因面 ,另一导线应放在 y = - π2R处 .
12唱7 均匀磁场 B 被限制在半径 R = 0 .10 m 的无限长圆柱空间内 ,方向垂
同理 ,空腔轴线上的磁感应强度
因 R2 = 0 ,B0′2 = 0 ,故
B0′ = B0′1 + B0′2
B0′1

μ0 Ia 2π( R21 - R22 )

2 × 10 -4 T
11畅13 如图11畅13( a)所示 ,一半径为 R 的无限长半圆柱面导体 ,其上电流与其
轴线上一无限长直导线的电流等值反向 ,电流 I 在半圆柱面上均匀分布 .试求 :
当 r < R1 时 ,有
促 E · d S = E · 4π r2 = 0

E =0
当 R1 < r < R2 时 ,有
促S
E · d S = E · 4π r2 =
1 ε0



1 4π ε0
q r2
当 r > R2 时 ,有
促S
E · d S = E · 4π r2 =
1 ε0
ab · h
= 1600π - 4 3 × 10 -2 V 式中 h 为由 O 到ab的垂直距离 ,感应电流沿顺时针方向 .
∮ 此题也可用 Ei = Ev · d l 公式直接积分求解 .
图 12 唱7

最新南京大学物理化学下册(第五版傅献彩)复习题及解答

最新南京大学物理化学下册(第五版傅献彩)复习题及解答

第八章电解质溶液第九章1.可逆电极有哪些主要类型?每种类型试举一例,并写出该电极的还原反应。

对于气体电极和氧化还原电极在书写电极表示式时应注意什么问题?答:可逆电极有三种类型:(1)金属气体电极如Zn(s)|Zn2+ (m) Zn2+(m) +2e- = Zn(s)(2)金属难溶盐和金属难溶氧化物电极如Ag(s)|AgCl(s)|Cl-(m), AgCl(s)+ e- = Ag(s)+Cl-(m)(3)氧化还原电极如:Pt|Fe3+(m1),Fe2+(m2) Fe3+(m1) +e- = Fe2+(m2)对于气体电极和氧化还原电极,在书写时要标明电极反应所依附的惰性金属。

2.什么叫电池的电动势?用伏特表侧得的电池的端电压与电池的电动势是否相同?为何在测电动势时要用对消法?答:正、负两端的电势差叫电动势。

不同。

当把伏特计与电池接通后,必须有适量的电流通过才能使伏特计显示,这样电池中发生化学反应,溶液浓度发生改变,同时电池有内阻,也会有电压降,所以只能在没有电流通过的情况下才能测量电池的电动势。

3.为什么Weslon标准电池的负极采用含有Cd的质量分数约为0.04~0.12的Cd一Hg齐时,标准电池都有稳定的电动势值?试用Cd一Hg的二元相图说明。

标准电池的电动势会随温度而变化吗?答:在Cd一Hg的二元相图上,Cd的质量分数约为0.04~0.12的Cd一Hg齐落在与Cd一Hg固溶体的两相平衡区,在一定温度下Cd一Hg齐的活度有定值。

因为标准电池的电动势在定温下只与Cd一Hg齐的活度有关,所以电动势也有定值,但电动势会随温度而改变。

4.用书面表示电池时有哪些通用符号?为什么电极电势有正、有负?用实验能测到负的电动势吗?答:用“|”表示不同界面,用“||”表示盐桥。

电极电势有正有负是相对于标准氢电极而言的。

不能测到负电势。

5.电极电势是否就是电极表面与电解质溶液之间的电势差?单个电极的电势能否测量?如何用Nernst方程计算电极的还原电势?5.电极电势是否就是电极表面与电解质溶液之间的电势差?单个电极的电势能否测量?如何用Nernst 方程计算电极的还原电势?答:电极电势不是电极表面与电解质溶液之间的电势差。

大学物理(第五版)课后习题答案

大学物理(第五版)课后习题答案

面向21 世纪课程教材学习辅导书习题分析与解答马文蔚主编殷实沈才康包刚编高等教育出版社前言本书是根据马文蔚教授等改编的面向21世纪课程教材《物理学》第五版一书中的习题而作的分析与解答。

与上一版相比本书增加了选择题更换了约25的习题。

所选习题覆盖了教育部非物理专业大学物理课程教学指导分委员会制定的《非大学物理课程教学基本要求讨论稿》中全部核心内容并选有少量扩展内容的习题所选习题尽可能突出基本训练和联系工程实际。

此外为了帮助学生掌握求解大学物理课程范围内的物理问题的思路和方法本书还为力学、电磁学、波动过程和光学热物理、相对论和量子物理基础等撰写了涉及这些内容的解题思路和方法以期帮助学生启迪思维提高运用物理学的基本定律来分析问题和解决问题的能力。

物理学的基本概念和规律是在分析具体物理问题的过程中逐步被建立和掌握的解题之前必须对所研究的物理问题建立一个清晰的图像从而明确解题的思路。

只有这样才能在解完习题之后留下一些值得回味的东西体会到物理问题所蕴含的奥妙和涵义通过举一反三提高自己分析问题和解决问题的能力。

有鉴于此重分析、简解答的模式成为编写本书的指导思想。

全书力求在分析中突出物理图像引导学生以科学探究的态度对待物理习题初步培养学生―即物穷理‖的精神通过解题过程体验物理科学的魅力和价值尝试―做学问‖的乐趣。

因此对于解题过程本书则尽可能做到简明扼要让学生自己去完成具体计算编者企盼这本书能对学生学习能力的提高和科学素质的培养有所帮助。

本书采用了1996 年全国自然科学名词审定委员会公布的《物理学名词》和中华人民共和国国家标准GB3100 3102 -93 中规定的法定计量单位。

本书由马文蔚教授主编由殷实、沈才康、包刚、韦娜编写西北工业大学宋士贤教授审阅了全书并提出了许多详细中肯的修改意见在此编者致以诚挚的感谢。

由于编者的水平有限敬请读者批评指正。

编者2006 年1 月于南京目录第一篇力学求解力学问题的基本思路和方法第一章质点运动学第二章牛顿定律第三章动量守恒定律和能量守恒定律第四章刚体的转动第二篇电磁学求解电磁学问题的基本思路和方法第五章静电场第六章静电场中的导体与电介质第七章恒定磁场第八章电磁感应电磁场第三篇波动过程光学求解波动过程和光学问题的基本思路和方法第九章振动第十章波动第十一章光学第四篇气体动理论热力学基础求解气体动理论和热力学问题的基本思路和方法第十二章气体动理论第十三章热力学基础第五篇近代物理基础求解近代物理问题的基本思路和方法第十四章相对论第十五章量子物理附录部分数学公式第一篇力学求解力学问题的基本思路和方法物理学是一门基础学科它研究物质运动的各种基本规律由于不同运动形式具有不同的运动规律从而要用不同的研究方法处理力学是研究物体机械运动规律的一门学科而机械运动有各种运动形态每一种形态和物体受力情况以及初始状态有密切关系掌握力的各种效应和运动状态改变之间的一系列规律是求解力学问题的重要基础但仅仅记住一些公式是远远不够的求解一个具体物理问题首先应明确研究对象的运动性质选择符合题意的恰当的模型透彻认清物体受力和运动过程的特点等等根据模型、条件和结论之间的逻辑关系运用科学合理的研究方法进而选择一个正确简便的解题切入点在这里思路和方法起着非常重要的作用1正确选择物理模型和认识运动过程力学中常有质点、质点系、刚体等模型每种模型都有特定的含义适用范围和物理规律采用何种模型既要考虑问题本身的限制又要注意解决问题的需要例如用动能定理来处理物体的运动时可把物体抽象为质点模型而用功能原理来处理时就必须把物体与地球组成一个系统来处理再如对绕固定轴转动的门或质量和形状不能不计的定滑轮来说必须把它视为刚体并用角量和相应规律来进行讨论在正确选择了物理模型后还必须对运动过程的性质和特点有充分理解如物体所受力矩是恒定的还是变化的质点作一般曲线运动还是作圆周运动等等以此决定解题时采用的解题方法和数学工具2.叠加法叠加原理是物理学中应用非常广泛的一条重要原理据此力学中任何复杂运动都可以被看成由几个较为简单运动叠加而成例如质点作一般平面运动时通常可以看成是由两个相互垂直的直线运动叠加而成而对作圆周运动的质点来说其上的外力可按运动轨迹的切向和法向分解其中切向力只改变速度的大小而法向力只改变速度的方向对刚体平面平行运动来说可以理解为任一时刻它包含了两个运动的叠加一是质心的平动二是绕质心的转动运动的独立性和叠加性是叠加原理中的两个重要原则掌握若干基本的简单运动的物理规律再运用叠加法就可以使我们化―复杂‖为―简单‖此外运用叠加法时要注意选择合适的坐标系选择什么样的坐标系就意味着运动将按相应形式分解在力学中对一般平面曲线运动多采用平面直角坐标系平面圆周运动多采用自然坐标系而对刚体绕定轴转动则采用角坐标系等等叠加原理在诸如电磁学振动、波动等其他领域内都有广泛应用是物理学研究物质运动的一种基本思想和方法需读者在解题过程中不断体会和领悟3.类比法有些不同性质运动的规律具有某些相似性理解这种相似性产生的条件和遵从的规律有利于发现和认识物质运动的概括性和统一性而且还应在学习中善于发现并充分利用这种相似性以拓宽自己的知识面例如质点的直线运动和刚体绕定轴转动是两类不同运动但是运动规律却有许多可类比和相似之处如txddv 与tθωdd taddv 与tωαdd 其实它们之间只是用角量替换了相应的线量而已这就可由比较熟悉的公式联想到不太熟悉的公式这种类比不仅运动学有动力学也有如maF 与JαM0dvvmmtF 与0dLωJωtM 2022121dvvmmxF 与2022121dωJωJθM 可以看出两类不同运动中各量的对应关系十分明显使我们可以把对质点运动的分析方法移植到刚体转动问题的分析中去当然移植时必须注意两种运动的区别一个是平动一个是转动状态变化的原因一个是力而另一个是力矩此外还有许多可以类比的实例如万有引力与库仑力、静电场与稳恒磁场电介质的极化与磁介质的磁化等等只要我们在物理学习中善于归纳类比就可以沟通不同领域内相似物理问题的研究思想和方法并由此及彼触类旁通4微积分在力学解题中的运用微积分是大学物理学习中应用很多的一种数学运算在力学中较为突出也是初学大学物理课程时遇到的一个困难要用好微积分这个数学工具首先应在思想上认识到物体在运动过程中反映其运动特征的物理量是随时空的变化而变化的一般来说它们是时空坐标的函数运用微积分可求得质点的运动方程和运动状态这是大学物理和中学物理最显著的区别例如通过对质点速度函数中的时间t 求一阶导数就可得到质点加速度函数另外对物理量数学表达式进行合理变形就可得出新的物理含义如由tddav借助积分求和运算可求得在t1 -t2 时间内质点速度的变化同样由tddvr也可求得质点的运动方程以质点运动学为例我们可用微积分把运动学问题归纳如下第一类问题已知运动方程求速度和加速度第二类问题已知质点加速度以及在起始状态时的位矢和速度可求得质点的运动方程在力学中还有很多这样的关系读者不妨自己归纳整理一下从而学会自觉运用微积分来处理物理问题运用时有以下几个问题需要引起大家的关注1 运用微积分的物理条件在力学学习中我们会发现ta0vv和2021ttarv等描述质点运动规律的公式只是式tt0ddavvv0和式tttrdd000arv在加速度a为恒矢量条件下积分后的结果此外在高中物理中只讨论了一些质点在恒力作用下的力学规律和相关物理问题而在大学物理中则主要研究在变力和变力矩作用下的力学问题微积分将成为求解上述问题的主要数学工具2 如何对矢量函数进行微积分运算我们知道很多物理量都是矢量如力学中的r、v、a、p 等物理量矢量既有大小又有方向从数学角度看它们都是―二元函数‖在大学物理学习中通常结合叠加法进行操作如对一般平面曲线运动可先将矢量在固定直角坐标系中分解分别对x、y 轴两个固定方向的分量可视为标量进行微积分运算最后再通过叠加法求得矢量的大小和方向对平面圆周运动则可按切向和法向分解对切线方向上描述大小的物理量a 、v、s 等进行微积分运算3 积分运算中的分离变量和变量代换问题以质点在变力作用下作直线运动为例如已知变力表达式和初始状态求质点的速率求解本问题一条路径是由F m a 求得a的表达式再由式dv adt 通过积分运算求得v其中如果力为时间t 的显函数则a at此时可两边直接积分即ttta0ddvvv0但如果力是速率v 的显函数则a av此时应先作分离变量后再两边积分即tta0dd1vvvv0又如力是位置x 的显函数则aax此时可利用txddv得vxtdd并取代原式中的dt再分离变量后两边积分即xxtxa0ddvvvv0 用变量代换的方法可求得vx表达式在以上积分中建议采用定积分下限为与积分元对应的初始条件上限则为待求量5.求解力学问题的几条路径综合力学中的定律可归结为三种基本路径即1 动力学方法如问题涉及到加速度此法应首选运用牛顿定律、转动定律以及运动学规律可求得几乎所有的基本力学量求解对象广泛但由于涉及到较多的过程细节对变力矩问题还将用到微积分运算故计算量较大因而只要问题不涉及加速度则应首先考虑以下路径2 角动量方法如问题不涉及加速度但涉及时间此法可首选3 能量方法如问题既不涉及加速度又不涉及时间则应首先考虑用动能定理或功能原理处理问题当然对复杂问题几种方法应同时考虑此外三个守恒定律动量守恒、能量守恒、角动量守恒定律能否成立往往是求解力学问题首先应考虑的问题总之应学会从不同角度分析与探讨问题以上只是原则上给出求解力学问题一些基本思想与方法其实求解具体力学问题并无固定模式有时全靠―悟性‖但这种―悟性‖产生于对物理基本规律的深入理解与物理学方法掌握之中要学会在解题过程中不断总结与思考从而使自己分析问题的能力不断增强第一章质点运动学1 -1 质点作曲线运动在时刻t 质点的位矢为r速度为v 速率为vt 至t Δt时间内的位移为Δr 路程为Δs 位矢大小的变化量为Δr 或称Δ r 平均速度为v平均速率为v 1 根据上述情况则必有 A Δr Δs Δr B Δr ≠ Δs ≠ Δr当Δt→0 时有 dr ds ≠ dr C Δr ≠ Δr ≠ Δs当Δt→0 时有 dr dr ≠ ds D Δr ≠ Δs ≠ Δr当Δt→0 时有 dr dr ds 2 根据上述情况则必有 A v v v v B v ≠v v ≠ v C v v v ≠ v D v ≠v v v分析与解1 质点在t 至t Δt 时间内沿曲线从P 点运动到P′点各量关系如图所示其中路程Δs PP′ 位移大小Δr PP′而Δr r - r 表示质点位矢大小的变化量三个量的物理含义不同在曲线运动中大小也不相等注在直线运动中有相等的可能但当Δt→0 时点P′无限趋近P 点则有 dr ds但却不等于dr故选B 2 由于 Δr ≠Δs故tstΔΔΔΔr即 v ≠v 但由于 dr ds故tstddddr即 v v由此可见应选C 1 -2 一运动质点在某瞬时位于位矢rxy的端点处对其速度的大小有四种意见即1trdd 2tddr 3tsdd 422ddddtytx 下述判断正确的是 A 只有12正确B 只有2正确 C 只有23正确 D 只有34正确分析与解trdd表示质点到坐标原点的距离随时间的变化率在极坐标系中叫径向速率通常用符号vr表示这是速度矢量在位矢方向上的一个分量tddr表示速度矢量在自然坐标系中速度大小可用公式tsddv计算在直角坐标系中则可由公式22ddddtytxv求解故选D 1 -3 质点作曲线运动r 表示位置矢量v表示速度a表示加速度s 表示路程a 表示切向加速度对下列表达式即1d v /dt a2dr/dt v3ds/dt v4d v /dt a 下述判断正确的是A 只有1、4是对的B 只有2、4是对的C 只有2是对的D 只有3是对的分析与解tddv表示邢蚣铀俣萢 它表示速度大小随时间的变化率是加速度矢量沿速度方向的一个分量起改变速度大小的作用trdd在极坐标系中表示径向速率vr如题1 -2 所述tsdd在自然坐标系中表示质点的速率v而tddv表示加速度的大小而不是切向加速度a 因此只有3 式表达是正确的故选D 1 -4 一个质点在做圆周运动时则有 A 切向加速度一定改变法向加速度也改变B 切向加速度可能不变法向加速度一定改变C 切向加速度可能不变法向加速度不变D 切向加速度一定改变法向加速度不变分析与解加速度的切向分量a 起改变速度大小的作用而法向分量an起改变速度方向的作用质点作圆周运动时由于速度方向不断改变相应法向加速度的方向也在不断改变因而法向加速度是一定改变的至于a 是否改变则要视质点的速率情况而定质点作匀速率圆周运动时a 恒为零质点作匀变速率圆周运动时a 为一不为零的恒量当a 改变时质点则作一般的变速率圆周运动由此可见应选B 1 -5 如图所示湖中有一小船有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动设该人以匀速率v0 收绳绳不伸长且湖水静止小船的速率为v则小船作 A 匀加速运动θcos0vv B 匀减速运动θcos0vv C 变加速运动θcos0vv D 变减速运动θcos0vv E 匀速直线运动0vv 分析与解本题关键是先求得小船速度表达式进而判断运动性质为此建立如图所示坐标系设定滑轮距水面高度为ht 时刻定滑轮距小船的绳长为l则小船的运动方程为22hlx其中绳长l 随时间t 而变化小船速度22ddddhltlltxv式中tldd表示绳长l随时间的变化率其大小即为v0代入整理后为θlhlcos/0220vvv方向沿x 轴合蛴伤俣缺泶锸娇膳卸闲〈 鞅浼铀僭硕 恃 讨论有人会将绳子速率v0按x、y 两个方向分解则小船速度θcos0vv这样做对吗1 -6 已知质点沿x 轴作直线运动其运动方程为32262ttx式中x 的单位为mt 的单位为s求1 质点在运动开始后4.0 s内的位移的大小 2 质点在该时间内所通过的路程3 t4 s时质点的速度和加速度分析位移和路程是两个完全不同的概念只有当质点作直线运动且运动方向不改变时位移的大小才会与路程相等质点在t 时间内的位移Δx 的大小可直接由运动方程得到0Δxxxt而在求路程时就必须注意到质点在运动过程中可能改变运动方向此时位移的大小和路程就不同了为此需根据0ddtx来确定其运动方向改变的时刻tp 求出0 tp 和tp t 内的位移大小Δx1 、Δx2 则t 时间内的路程21xxs如图所示至于t 4.0 s 时质点速度和加速度可用txdd和22ddtx两式计算解 1 质点在4.0 s内位移的大小m32Δ04xxx 2 由0ddtx 得知质点的换向时刻为s2pt t0不合题意则m0.8Δ021xxx m40Δ242xxx 所以质点在4.0 s时间间隔内的路程为m48ΔΔ21xxs 3 t4.0 s时1s0.4sm48ddttxv2s0.422m.s36ddttxa 1 -7 一质点沿x 轴方向作直线运动其速度与时间的关系如图a所示设t0 时x0试根据已知的v-t 图画出a-t 图以及x -t 图分析根据加速度的定义可知在直线运动中v-t曲线的斜率为加速度的大小图中AB、CD 段斜率为定值即匀变速直线运动而线段BC 的斜率为0加速度为零即匀速直线运动加速度为恒量在a-t 图上是平行于t 轴的直线由v-t 图中求出各段的斜率即可作出a-t 图线又由速度的定义可知x-t 曲线的斜率为速度的大小因此匀速直线运动所对应的x -t 图应是一直线而匀变速直线运动所对应的x–t 图为t 的二次曲线根据各段时间内的运动方程xxt求出不同时刻t 的位置x采用描数据点的方法可作出x-t 图解将曲线分为AB、BC、CD 三个过程它们对应的加速度值分别为2sm20ABABABttavv 匀加速直线运动0BCa 匀速直线运动2sm10CDCDCDttavv 匀减速直线运动根据上述结果即可作出质点的a-t 图图B 在匀变速直线运动中有2021ttxxv 由此可计算在0 2 和4 6 时间间隔内各时刻的位置分别为用描数据点的作图方法由表中数据可作0 2 和4 6 时间内的x -t 图在2 4 时间内质点是作1sm20v的匀速直线运动其x -t 图是斜率k20的一段直线图c 1 -8 已知质点的运动方程为jir222tt式中r 的单位为mt 的单位为 求 1 质点的运动轨迹2 t 0 及t 2 时质点的位矢3 由t 0 到t 2 内质点的位移Δr 和径向增量Δr 4 2 内质点所走过的路程s 分析质点的轨迹方程为y fx可由运动方程的两个分量式xt和yt中消去t 即可得到对于r、Δr、Δr、Δs 来说物理含义不同可根据其定义计算其中对s的求解用到积分方法先在轨迹上任取一段微元ds则22dddyxs最后用ssd积分求 解1 由xt和yt中消去t 后得质点轨迹方程为2412xy 这是一个抛物线方程轨迹如图a所示2 将t 0 和t 2 分别代入运动方程可得相应位矢分别为jr20 jir242 图a中的P、Q 两点即为t 0 和t 2 时质点所在位置3 由位移表达式得jijirrr24Δ020212yyxx 其中位移大小m66.5ΔΔΔ22yxr 而径向增量m47.2ΔΔ2020222202yxyxrrrr 4 如图B所示所求Δs 即为图中PQ段长度先在其间任意处取AB 微元ds则22dddyxs由轨道方程可得xxyd21d代入ds则2 内路程为m91.5d4d402xxssQP 1 -9 质点的运动方程为23010ttx 22015tty 式中xy 的单位为mt 的单位为 试求1 初速度的大小和方向2 加速度的大小和方向分析由运动方程的分量式可分别求出速度、加速度的分量再由运动合成算出速度和加速度的大小和方向解 1 速度的分量式为ttxx6010ddv ttyy4015ddv 当t 0 时vox -10 m· -1voy 15 m· -1 则初速度大小为120200sm0.18yxvvv 设vo与x 轴的夹角为α则23tan00xyαvv α123°41′ 2 加速度的分量式为2sm60ddtaxxv 2sm40ddtayyv 则加速度的大小为222sm1.72yxaaa 设a 与x 轴的夹角为β则32tanxyaaβ β-33°41′或326°19′ 1 -10 一升降机以加速度1.22 m· -2上升当上升速度为2.44 m· -1时有一螺丝自升降机的天花板上松脱天花板与升降机的底面相距2.74 m计算1螺丝从天花板落到底面所需要的时间2螺丝相对升降机外固定柱子的下降距离分析在升降机与螺丝之间有相对运动的情况下一种处理方法是取地面为参考系分别讨论升降机竖直向上的匀加速度运动和初速不为零的螺丝的自由落体运动列出这两种运动在同一坐标系中的运动方程y1 y1t和y2 y2t并考虑它们相遇即位矢相同这一条件问题即可解另一种方法是取升降机或螺丝为参考系这时螺丝或升降机相对它作匀加速运动但是此加速度应该是相对加速度升降机厢的高度就是螺丝或升降机运动的路程解1 1 以地面为参考系取如图所示的坐标系升降机与螺丝的运动方程分别为20121attyv 20221gtthyv 当螺丝落至底面时有y1 y2 即20202121gtthattvv s705.02aght 2 螺丝相对升降机外固定柱子下降的距离为m716.021202gttyhdv 解2 1以升降机为参考系此时螺丝相对它的加速度大小a′g a螺丝落至底面时有2210tagh s705.02aght 2 由于升降机在t 时间内上升的高度为2021atthv 则m716.0.。

物理学(第五版)下册 马文蔚等改编(东南大学) 答案

物理学(第五版)下册 马文蔚等改编(东南大学)  答案

第九章振动1、设一物体沿x 轴作谐振动的方程为0.10cos(2)4x t ππ=+,式中x ,t 的单位分别为m ,s .试求:(1)振幅,周期,频率和初相)cos(ϕω+=t A x ;(2)0.5t s =时,物体的位移、速度和加速度.解:(1)谐振动的标准方程为,比较题中所给方程和标准方程,知振幅m A 10.0=,角频率2/rad sωπ=,初4πϕ=.由此,周期为12==ωπT s 频12Hz ωνπ==率为(2)1=t s 时,物体位移m m x 21007.7)45.02cos(10.0)42cos(10.0-⨯-=+⨯=+=ππππ 速度s m s m t dt dx v/44.0/)45.02sin(2.0)42sin(2.0=+⨯-=+-==ππππππ 加速度2222/28/)45.02cos(4)42sin(4s m s m t dtdv a =+⨯-=+-==ππππππ2、有一弹簧,当其下端挂一质量为m 的物体时,伸长量为9.8×10-2m 。

若使物体上、下振动,并规定向上为正方向。

(1)当t=0时,物体在平衡位置下方4.0×10-2m 处,由静止开始向上运动,求运动方程。

(2)当t=0时,物体在平衡位置并处以0.2m ·s -1的速度向下运动,求运动方程。

解:(1)根据题给的条件,20100.4-⨯-=x m, 00=v (题取向上为正方向,且平衡位置处为原点)且2100.4-⨯=A m ,其旋转矢量应为如图9-4-1图位置,所以π0=ϕ。

又mk=ω ,而 0kx mg =,所以x g m k = ,108.98.92⨯=-ω所以谐振动方程:)π10cos(100.42+⨯=-t x m(2)据题意,0=t 时,00=x ,6.00-=v m.s 1-,其旋转矢量应为如图9-4-2图位置则得222222102102.00)(-⨯=+=+=ωv x A m2π0=ϕ 9-4-1图ϕ∆xMM 'O9-5-1图(0=x 的投影有上、下两个矢量,但0v 为负值,故只能选上面的OM 矢量),所以谐振动方程为)2π10cos(100.42+⨯=-t xm 。

大学物理(下册)课后题答案_完整版

大学物理(下册)课后题答案_完整版

大学物理下册课后习题答案习题八8-1电量都是q 的三个点电荷,分别放在正三角形的三个顶点 .试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡 (即每个电荷受其他三个电荷的库 仑力之和都为零)?(2)这种平衡与三角形的边长有无关系 ?解:如题8-1图示(1)以A 处点电荷为研究对象,由力平衡知:q 为负电荷2-1 q1 qq2cos30 ----------------------a4 n0/.3 2(T a)T q(2)与三角形边长无关.8-2两小球的质量都是m ,都用长为I 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2 如题8-2图所示.设小球的半径和线的质量都可以忽略不计,求每个小球所 带的电量.解:如题8-2图示T cos mg解得 q 21 sin 4mgtan8-3根据点电荷场强公式 E J ,当被考察的场点距源点电荷很近(r T 0)时,贝U 场强4°r*,这是没有物理意义的,对此应如何理解解:Ey^r °仅对点电荷成立,当r 0时,带电体不能再视为点电荷,再用上式求4 n 0r场强是错误的,实际带电体有一定形状大小 ,考虑电荷在带电体上的分布求出的场强不会是无限大.8-4在真空中有 A , B 两平行板,相对距离为d ,板面积为S ,其带电量分别为+ q 和解得 题8-1图题8-2图T sinF e4 n 0 (2l sin )2H |2-q •则这两板之间有相互作用力f ,有人说f = q2,又有人说,因为4 o d 22f = qE ,E —,所以f =卫•试问这两种说法对吗?为什么? f 到底应等于多少? o S o S解:题中的两种说法均不对 .第一种说法中把两带电板视为点电荷是不对的 ,第二种说法 把合场强E 2看成是一个带电板在另一带电板处的场强也是不对的.正确解答应为一oS2个板的电场为E —,另一板受它的作用力 f q q q ,这是两板间相互作2 o S 2 o S 2 o S用的电场力.p ql ,场点到偶极子中心 0点的距离为r ,矢量r 与丨的夹角为l .试证P 点的场强E 在r 方向上的分量 E r 和垂直于r 的分量E分别为•••场点P 在r 方向场强分量垂直于r 方向,即方向场强分量psi n 34n o r8-6长l =15.0cm 的直导线AB 上均匀地分布着线密度=5.0x10求:(1)在导线的延长线上与导线 B 端相距a i =5.ocm 处P 点的场强;⑵在导线的垂直平分 线上与导线中点相距 d 2=5.ocm 处Q 点的场强. 解:如题8-6图所示(1)在带电直线上取线元 dx ,其上电量dq 在P 点产生场强为dE p1dx4no (a x)2E P dE P1 2dx 4 n o 2(ax)28-5 一电偶极子的电矩为 ,(见题8-5图),且r E r =2pcos3 , orE =严 4 o r证:如题8-5所示,将p 分解为与 r 平行的分量psin 和垂直于lr 的分量psinE rp cos 2 n o r 3 E o题8-5图 -9Cm -1的正电荷.试题8-6图用I 15 cm , 5.0E P(2)同理dE Q 6.741由于对称性dElQx 0,dE Qy5.0 10 C cm14.9612 2~n 0(4a l )9 110 9 C m 1, a 12.5 cm 代入得2 110 N C 方向水平向右dx—2方向如题8-6图所示x d2即E Q只有y分量,1 dx d24nxd2―dfE Qy l dE Qyl4n 22 dx1 32 z 2 2\2(x d2) l2 n 0 J l24d;1, l 15 cm,d2 5 cm代入得102 N C 1,方向沿y轴正向R的均匀带电半圆环,电荷线密度为,求环心处0点的场强•一个半径为8-7RdE Q E Qydq dl Rd ,它在O点产生场强大小为RddE4 n0R2方向沿半径向外则dE x dE sin sin4 n 0 R积分E x dE y dE cos( cos d4 n 0 Rsin dE y cos d 04 n 0RE E x,方向沿x轴正向.2 n 0R8-8均匀带电的细线弯成正方形,边长为I,总电量为q . (1)求这正方形轴线上离中心为r处的场强E ;(2)证明:在r I处,它相当于点电荷q产生的场强E .q解:如8-8图示,正方形一条边上电荷在P点产生物强dE p方向如图,大小为4COS 12COS 2 COS 1dE P在垂直于平面上的分量dE dE P COSdE I r| 2 f 1 2 丨I 2/ 1 2I 1 2I I 2 I4 n °」—<r—i1r —4 \ 2 V 4题8-8图由于对称性,P点场强沿OP方向,大小为8-9 (1)点电荷q位于一边长为a的立方体中心,试求在该点电荷电场中穿过立方体的一个面的电通量;(2)如果该场源点电荷移动到该立方体的一个顶点上,这时穿过立方体各面的电通量是多少*(3)如题8-9(3)图所示,在点电荷q的电场中取半径为R的圆平面.q在该dE pCOS 1 COS 2E PE P4 dE4n o(r2g4lqr4 lr方向沿OPdE p平面轴线上的A点处,求:通过圆平面的电通量.(R arcta n — )x解:⑴由高斯定理E dS -S立方体六个面,•••各面电通量(2)电荷在顶点时当q在立方体中心时,每个面上电通量相等q6 0 .,将立方体延伸为边长2a的立方体,使q处于边长2a的立方体中心qe6 0边长2a的正方形上电通量对于边长a的正方形,如果它不包含q所在的顶点,则e 如果它包含q所在顶点则 e 0 .如题8-9(a)图所示.题8-9(3)图题8-9(b)图题8-9(a)图(3) ••通过半径为面积* 题8-9(c)图R的圆平面的电通量等于通过半径为..R2x2的球冠面的电通量,球冠S 2 M R2x2)[1q。

南京大学物理化学下册第五版复习题解答:最新整理

南京大学物理化学下册第五版复习题解答:最新整理

物理化学下册课后复习题答案第八章电解质溶液第九章可逆电池电动势及其应用第十章电解与极化作用第十一章化学动力学(一)第十二章化学动力学基础(二)第十三章1.比表面有哪能几种表示方法?表面张力与表面Gibbs自由能有哪些异同点?答:A0= As/m或A0= As/V;表面张力又可称为表面Gibbs自由能,二者数值一样。

但一个是从能量角度研究表面现象,另一个是从力的角度研究表面现象;故二者物理意义不同;单位不同。

2.为什么气泡、小液滴、肥皂泡等都呈圆形?玻璃管口加热后会变得光滑并缩小(俗称圆口),这些现象的本是什么?用同一滴管滴出相同体积的苯。

水和NaCl 溶液,所得的液滴数是否相同弯曲液面有附加压力,其最终会将不规则的液面变为圆形或球形;球形表面积最小,表面自由能最低,最稳定;不相同。

3.用学到的关于界面现角的知识解释以下几种做法或现象的基体原理:①人工降雨;②有机蒸馏中加沸石;③多孔固体吸附蒸气时的毛细凝聚;④过饱和溶液,过饱和蒸气,过冷液体等过饱和现象;⑤重量分析中的“陈化”过程;⑥喷洒农药时,为何常常在农药中加入少量表面活性剂这些现象都可以用开尔文公式说明,①、②、④、⑤是新相刚形面时的体积小,曲率半径小,对与之平衡的旧相有更加苛刻的条件要求。

③多孔固体吸附蒸气时,被吸附的气体的液相对毛细管是润湿的,其曲率半径小零,当气体的分压小于其饱和蒸气压时,就可以发生凝聚。

⑥喷洒农药时,在农药中加入少量表面活性剂,可以降低药液的表面张力,使药液在叶面上铺展。

4.在三通活塞的两端涂上肥皂液,关断右端通路,在左端吹一个大泡,然后关闭左端,在右端吹一个小泡,最后让左右两端相通。

试问当将两管接通后,两泡的大小有何变化?到何时达到平衡?讲出变化的原因及平衡时两泡的曲率半径的比值。

小球更小,大球更大;最后小泡变成一个与大泡曲率半径相同的弧;由于小泡的附加压力大,所以大泡变大,小泡变小,最后使两泡的曲率半径相同5.因系统的Gibbs自由能越低,系统越稳定,所以物体总有降低本身表面Giibs自由能的趋势。

大学物理化学下册(第五版傅献彩)知识点分析归纳

大学物理化学下册(第五版傅献彩)知识点分析归纳

第八章电解质溶液第九章1.可逆电极有哪些主要类型?每种类型试举一例,并写出该电极的还原反应。

对于气体电极和氧化还原电极在书写电极表示式时应注意什么问题?答:可逆电极有三种类型:(1)金属气体电极如Zn(s)|Zn2+ (m) Zn2+(m) +2e- = Zn(s)(2)金属难溶盐和金属难溶氧化物电极如Ag(s)|AgCl(s)|Cl-(m), AgCl(s)+ e- = Ag(s)+Cl-(m)(3)氧化还原电极如:Pt|Fe3+(m1),Fe2+(m2) Fe3+(m1) +e- = Fe2+(m2)对于气体电极和氧化还原电极,在书写时要标明电极反应所依附的惰性金属。

2.什么叫电池的电动势?用伏特表侧得的电池的端电压与电池的电动势是否相同?为何在测电动势时要用对消法?答:正、负两端的电势差叫电动势。

不同。

当把伏特计与电池接通后,必须有适量的电流通过才能使伏特计显示,这样电池中发生化学反应,溶液浓度发生改变,同时电池有内阻,也会有电压降,所以只能在没有电流通过的情况下才能测量电池的电动势。

3.为什么Weslon标准电池的负极采用含有Cd的质量分数约为0.04~0.12的Cd一Hg齐时,标准电池都有稳定的电动势值?试用Cd一Hg的二元相图说明。

标准电池的电动势会随温度而变化吗?答:在Cd一Hg的二元相图上,Cd的质量分数约为0.04~0.12的Cd一Hg齐落在与Cd一Hg固溶体的两相平衡区,在一定温度下Cd一Hg齐的活度有定值。

因为标准电池的电动势在定温下只与Cd一Hg齐的活度有关,所以电动势也有定值,但电动势会随温度而改变。

4.用书面表示电池时有哪些通用符号?为什么电极电势有正、有负?用实验能测到负的电动势吗?答:用“|”表示不同界面,用“||”表示盐桥。

电极电势有正有负是相对于标准氢电极而言的。

不能测到负电势。

5.电极电势是否就是电极表面与电解质溶液之间的电势差?单个电极的电势能否测量?如何用Nernst 方程计算电极的还原电势?5.电极电势是否就是电极表面与电解质溶液之间的电势差?单个电极的电势能否测量?如何用Nernst 方程计算电极的还原电势?答:电极电势不是电极表面与电解质溶液之间的电势差。

南京大学物理化学下册(第五版)复习题解答:最新整理

南京大学物理化学下册(第五版)复习题解答:最新整理

物理化学下册课后复习题答案第八章电解质溶液第九章可逆电池电动势及其应用第十章电解与极化作用第十一章化学动力学(一)第十二章化学动力学基础(二)第十三章1.比表面有哪能几种表示方法?表面张力与表面Gibbs自由能有哪些异同点?答:A0= As/m或A0= As/V;表面张力又可称为表面Gibbs自由能,二者数值一样。

但一个是从能量角度研究表面现象,另一个是从力的角度研究表面现象;故二者物理意义不同;单位不同。

2.为什么气泡、小液滴、肥皂泡等都呈圆形?玻璃管口加热后会变得光滑并缩小(俗称圆口),这些现象的本是什么?用同一滴管滴出相同体积的苯。

水和NaCl 溶液,所得的液滴数是否相同弯曲液面有附加压力,其最终会将不规则的液面变为圆形或球形;球形表面积最小,表面自由能最低,最稳定;不相同。

3.用学到的关于界面现角的知识解释以下几种做法或现象的基体原理:①人工降雨;②有机蒸馏中加沸石;③多孔固体吸附蒸气时的毛细凝聚;④过饱和溶液,过饱和蒸气,过冷液体等过饱和现象;⑤重量分析中的“陈化”过程;⑥喷洒农药时,为何常常在农药中加入少量表面活性剂这些现象都可以用开尔文公式说明,①、②、④、⑤是新相刚形面时的体积小,曲率半径小,对与之平衡的旧相有更加苛刻的条件要求。

③多孔固体吸附蒸气时,被吸附的气体的液相对毛细管是润湿的,其曲率半径小零,当气体的分压小于其饱和蒸气压时,就可以发生凝聚。

⑥喷洒农药时,在农药中加入少量表面活性剂,可以降低药液的表面张力,使药液在叶面上铺展。

4.在三通活塞的两端涂上肥皂液,关断右端通路,在左端吹一个大泡,然后关闭左端,在右端吹一个小泡,最后让左右两端相通。

试问当将两管接通后,两泡的大小有何变化?到何时达到平衡?讲出变化的原因及平衡时两泡的曲率半径的比值。

小球更小,大球更大;最后小泡变成一个与大泡曲率半径相同的弧;由于小泡的附加压力大,所以大泡变大,小泡变小,最后使两泡的曲率半径相同5.因系统的Gibbs自由能越低,系统越稳定,所以物体总有降低本身表面Giibs自由能的趋势。

大学物理学(第五版)下册第十章 波动 补充例题

大学物理学(第五版)下册第十章 波动 补充例题

y/m 0.10
I
II
u
O -0.10
0.20
0.40
0.60 x / m
6 平面简谐波的波动方程为
y 0.08 cos( 4t 2x),式中y的单位为m, t的单位为s.求:(1)t 2.1s 时波源及距波 源0.10m两处的相位; (2)离波源0.80m及 0.30m说明两处的相位.
r1
11 如图所示, x 0 处有一运动方程为 y A cos t 的平面波波源,产生的波沿x轴正、 负方向传播MN为波密介质的反射面,距波源 3 λ / 4.求:(1)波源所发射的波沿波源O左右 传播的波动方程;(2)在MN处反射波的波动 方程;(3)在O~MN区域内形成的驻波方程, 以及波节和波腹的位置;(4)区域内合成波 M 的波动方程.
13 一警车以25m· s-1的速度在静止的空 气中行驶,假设车上警笛的频率为800Hz. 求: (1)静止站在路边的人听到警车驶近和离 去时的警笛声波频率; (2)如果警车追赶一辆速度为15m· s-1的客 车,则客车上人听到的警笛声波频率是多 少? (设空气中声速为u=330m· s-1 )
14 一次军事演习中,有两艘潜艇在水 中相向而行,甲的速度为50.0km· h-1,乙的 速度为70.0km· h-1,如图所示.甲潜艇发出一 个1.0×103Hz的声音信号,设声波在水中的 传播速度为5.47×103km· h-1,试求:(1) 乙潜艇接收到的信号频率;(2)甲潜艇接 收到的从乙潜艇反射回来的信号频率.
) 甲 50.0km· h-1 )
)
)
)
)
)
乙 70.0km· h-1
y/m
u 0.08m s 1
O -0.04

大学物理教案(第五版)下册马文蔚改编09-1简谐振动

大学物理教案(第五版)下册马文蔚改编09-1简谐振动

θ
θ
l
c mg
dθ mgl = sin θ 2 dt J
2
对转动轴, 对转动轴,
dθ mgl sin θ = J 2 dt
2
M = Jα
dθ mgl θ = 2 J dt 2 d θ mgl + θ =0 2 J dt
2
d θ mgl Z + θ =0 + 2 J dt 2 θ lc mgl d θ 2 2 +ω θ = 0 令ω = 2
d x k + x =0 2 dt m
d 2x 2 +ω x = 0 2 dt
2
k = ω2 令: X m
解此微分方程: 解此微分方程:
x = Acos(ωt +)
A = l2 l1 = 0
x = (l2 l1) cosωt
4)复摆 4)复摆
很小 已知: 已知: 轴至质心的距离 l 摆的质量m及转动惯量 及转动惯量J 摆的质量 及转动惯量
T
a t图
T
t
= ω x
2

2
三)描述简谐振动的物理量 x = Acos( 1)振幅 : ) 离开平衡位置最大位移的绝对值
ωt +)
x = Acos(ωt +)
类似的
xmax = A
v = Aω sin( ωt +) vm = Aω 速度振幅 ax 2 2 a = Aω cos(ωt +) am = Aω 加速度振幅 ax
2
J
所以小角度复摆作谐振动
dt
J = 2π T= mgl ω
对于单摆

mg
J = ml
2

大学物理化学公式集(傅献彩_南京大学第五版) 下册

大学物理化学公式集(傅献彩_南京大学第五版) 下册

电解质溶液法拉第定律:Q =nzF m =M zFQ dE r U dl ++= dE r U dl--= t +=-+I I =-++r r r +=-+U U U ++=∞∞+Λm,m λ=()F U U FU ∞∞+∞+-+r +为离子移动速率,U +( U -)为正(负)离子的电迁移率(亦称淌度)。

近似:+∞+≈,m ,m λλ +∞+≈,m ,m U U m m Λ≈Λ∞(浓度不太大的强电解质溶液)离子迁移数:t B =I I B=QQ B∑B t =∑+t +∑-t =1电导:G =1/R =I/U =kA/l 电导率:k =1/ρ 单位:S·m -1 莫尔电导率:Λm =kV m =k/c 单位S·m 2·mol -1cell l R K A ρρ== c e l l 1K R k R ρ== 科尔劳乌施经验式:Λm =()c 1m β-∞Λ 离子独立移动定律:∞Λm =()m,m,+U U F λλ∞∞∞∞+--+=+ m U F λ∞∞+,+=奥斯特瓦儿德稀释定律:Φc K =()mm m 2m c c ΛΛΛΛ∞∞Φ-平均质量摩尔浓度:±m =()v1v v m m --++平均活度系数:±γ=()v1v v --+γγ+ 平均活度:±a =()v1v v a a --++=m mγ±±Φ 电解质B 的活度:a B =va ±=vm m ⎪⎭⎫ ⎝⎛Φ±±γ+v v v B +a a a a ±--== m +=v +m B m -=v -m B ()1v v v B m v v m +±+--=离子强度:I =∑i2i i z m 21德拜-休克尔公式:lg ±γ=-A|z +z --|I可逆电池的电动势及其应用(Δr G )T,p =-W f,max (Δr G m )T,p =zEFNernst Equation :若电池反应为 cC +dD =gG +hHE =E φ-d Dc C hHg G a a a a ln zF RT标准电动势E φ与平衡常数K φ的关系:E φ=φlnK zFRT还原电极电势的计算公式:ϕ=氧化态还原态-a a lnzF RT φϕ 计算电池反应的有关热力学函数变化值:m r S ∆=p T E zF ⎪⎭⎫⎝⎛∂∂m r H ∆=-zEF +p T E zFT ⎪⎭⎫ ⎝⎛∂∂ Q R =T m r S ∆=pT E zFT ⎪⎭⎫⎝⎛∂∂zF ⎪⎪⎭⎫ ⎝⎛∆⎪⎪⎭⎫ ⎝⎛21m r 1122T 1T 1H T E T E -=- zF ⎰⎪⎭⎫ ⎝⎛T2E2E 11T E d =dT T H 21T T 2mr ⎰∆ 电极书面表示所采用的规则:负极写在左方,进行氧化反应(是阳极),正极写在右方,进行还原反应(是阴极) 电动势测定的应用:(1) 求热力学函数变量Δr G m 、Δr G m Φ、m r H ∆、m r S ∆及电池的可逆热效应Q R 等。

大学物理化学下册(第五版傅献彩)知识点分析归纳-(1)教学提纲

大学物理化学下册(第五版傅献彩)知识点分析归纳-(1)教学提纲

大学物理化学下册(第五版傅献彩)知识点分析归纳-(1)第八章电解质溶液第九章1.可逆电极有哪些主要类型?每种类型试举一例,并写出该电极的还原反应。

对于气体电极和氧化还原电极在书写电极表示式时应注意什么问题?答:可逆电极有三种类型:(1)金属气体电极如(s)2+ (m) 2+(m) +2= (s)(2)金属难溶盐和金属难溶氧化物电极如 (s)(s)(m), (s)+ = (s)(m)(3)氧化还原电极如:3+(m1)2+(m2) 3+(m1) = 2+(m2)对于气体电极和氧化还原电极,在书写时要标明电极反应所依附的惰性金属。

2.什么叫电池的电动势?用伏特表侧得的电池的端电压与电池的电动势是否相同?为何在测电动势时要用对消法?答:正、负两端的电势差叫电动势。

不同。

当把伏特计与电池接通后,必须有适量的电流通过才能使伏特计显示,这样电池中发生化学反应,溶液浓度发生改变,同时电池有内阻,也会有电压降,所以只能在没有电流通过的情况下才能测量电池的电动势。

3.为什么标准电池的负极采用含有的质量分数约为0.04~0.12的一齐时,标准电池都有稳定的电动势值?试用一的二元相图说明。

标准电池的电动势会随温度而变化吗?答:在一的二元相图上,的质量分数约为0.04~0.12的一齐落在与一固溶体的两相平衡区,在一定温度下一齐的活度有定值。

因为标准电池的电动势在定温下只与一齐的活度有关,所以电动势也有定值,但电动势会随温度而改变。

4.用书面表示电池时有哪些通用符号?为什么电极电势有正、有负?用实验能测到负的电动势吗?答:用“|”表示不同界面,用“”表示盐桥。

电极电势有正有负是相对于标准氢电极而言的。

不能测到负电势。

5.电极电势是否就是电极表面与电解质溶液之间的电势差?单个电极的电势能否测量?如何用方程计算电极的还原电势?5.电极电势是否就是电极表面与电解质溶液之间的电势差?单个电极的电势能否测量?如何用方程计算电极的还原电势?答:电极电势不是电极表面与电解质溶液之间的电势差。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第9、10章振动与波动习题一、选择题1. 已知四个质点在x 轴上运动, 某时刻质点位移x 与其所受合外力F 的关系分别由下列四式表示(式中a 、b 为正常数).其中不能使质点作简谐振动的力是 [ ] (A) abx F =(B) abx F -=(C) b ax F +-=(D) a bx F /-=2. 如图4-1-5所示,一弹簧振子周期为T .现将弹簧截去一半,仍挂上原来的物体, 则新的弹簧振子周期为 [ ] (A) T (B) 2T (C) 1.4T (D) 0.7T3. 在简谐振动的运动方程中,振动相位)(ϕω+t 的物理意义是 [ ] (A) 表征了简谐振子t 时刻所在的位置 (B) 表征了简谐振子t 时刻的振动状态 (C) 给出了简谐振子t 时刻加速度的方向(D) 给出了简谐振子t 时刻所受回复力的方向角, 然后放手任其作微4. 如图4-1-9所示,把单摆从平衡位置拉开, 使摆线与竖直方向成小的摆动.若以放手时刻为开始观察的时刻, 用余弦函数表示这一振动,则其振动的初相位为[ ] (A) (B) 2π或π23(C) 0 (D) π5. 两质点在同一方向上作同振幅、同频率的简谐振动.在振动过程中, 每当它们经过振幅一半的地方时, 其运动方向都相反.则这两个振动的相位差为 [ ] (A) π (B)π32 (C) π34(D) π54 6. 一质点作简谐振动, 振动方程为)cos(ϕω+=t A x .则在2Tt =(T 为振动周期)时, 质点的速度为 [ ] (A) ϕωsin A - (B) ϕωsin A (C) ϕωcos A - (D) ϕωcos A7. 一物体作简谐振动, 其振动方程为)4πcos(+=t A x ω.则在2Tt = (T 为周期)时, 质点的加速度为 (A) 222ωA - (B) 222ωA (C) 223ωA - (D) 223ωA8. 一质点以周期T 作简谐振动, 则质点由平衡位置正向运动到最大位移一半处的最短时间为 [ ] (A)6T (B) 8T (C) 12T(D) T 127 9. 某物体按余弦函数规律作简谐振动, 它的初相位为2π3, 则该物体振动的初始状态为[ ] (A) x 0 = 0 , v 0 0 (B) x 0 = 0 , v 0<0 (C) x 0 = 0 , v 0 = 0 (D) x 0 = A , v 0 = 010. 有一谐振子沿x 轴运动, 平衡位置在x = 0处, 周期为T , 振幅为A ,t = 0时刻振子过2Ax =处向x 轴正方图4-1-9图4-1-5向运动, 则其运动方程可表示为[ ] (A) )21cos(t A x ω= (B))cos(2t A x ω= (C) )3π2sin(--=T t A x ω (D))3π2cos(-=T t A x ω11. 当一质点作简谐振动时, 它的动能和势能随时间作周期变化.如果ν是质点振动的频率, 则其动能变化的频率为[ ] (A) ν4(B) ν2(C) ν (D)2ν 12. 已知一简谐振动系统的振幅为A , 该简谐振动动能为其最大值一半的位置是 [ ] (A)(B)(C)(D)3. 简谐振动的振幅由哪些因素决定?[ ] (A) 谐振子所受的合外力 (B) 谐振子的初始加速度 (C) 谐振子的能量和力常数(D) 谐振子的放置位置14. 如果两个同方向同频率简谐振动的振动方程分别为π)433cos(73.11+=t x (cm)和π)413cos(2+=t x (cm),则它们的合振动方程为[ ] (A) π)433cos(73.0+=t x (cm) (B) π)413cos(73.0+=t x (cm) (C) π)1273cos(2+=t x (cm) (D) π)1253cos(2+=t x (cm) 15. 两个同方向、同频率、等振幅的谐振动合成, 如果其合成振动的振幅仍不变, 则此二分振动的相位差为 [ ] (A)2π (B) 3π2 (C) 4π (D) π 16. 将一个弹簧振子分别拉离平衡位置1 cm 和2 cm 后, 由静止释放(弹簧形变在弹性范围内), 则它们作谐振动的[ ] (A)周期相同 (B) 振幅相同 (C) 最大速度相同 (D) 最大加速度相同17. 关于振动和波, 下面几句叙述中正确的是 [ ] (A) 有机械振动就一定有机械波 (B) 机械波的频率与波源的振动频率相同(C) 机械波的波速与波源的振动速度相同(D) 机械波的波速与波源的振动速度总是不相等的18. 下列函数f ( x , t )可以用来表示弹性介质的一维波动, 其中a 和b 是正常数.则下列函数中, 表示沿x 轴负方向传播的行波是[ ] (A))sin(),(bt ax A t x f +=(B) )sin(),(bt ax A t x f -= (C) )cos()cos(),(bt ax A t x f =(D) )sin()sin(),(bt ax A t x f =19. 已知一列机械波的波速为u , 频率为ν, 沿着x 轴负方向传播.在x 轴的正坐标上有两个点x 1和x 2.如果x 1<x 2 , 则x 1和x 2的相位差为 [ ] (A) 0 (B))(π221x x u -ν (C) π (D) )(π212x x u-ν20. 已知一平面余弦波的波动方程为)01.05.2π(cos 2x t y -=, 式中 x 、y 均以cm 计.则在同一波线上, 离x =5cm 最近、且与 x = 5cm 处质元振动相位相反的点的坐标为[ ] (A) 7.5 cm (B) 55 cm (C) 105 cm (D) 205 cm21. 若一平面简谐波的波动方程为)cos(cx bt A y -=, 式中A 、b 、c 为正值恒量.则 [ ] (A) 波速为c (B) 周期为b 1 (C) 波长为c π2 (4) 角频率为bπ2 22. 一平面简谐横波沿着Ox 轴传播.若在Ox 轴上的两点相距8λ(其中λ为波长), 则在波的传播过程中, 这两点振动速度的[ ] (A) 方向总是相同 (B) 方向有时相同有时相反 (C) 方向总是相反 (D) 大小总是不相等23. 一简谐波沿Ox 轴正方向传播,t =0时刻波形曲线如图4-1-56所示,其周期为2 s .则P 点处质点的振动速度v 与时间t 的关系曲线为 [ ]24. 平面简谐机械波在弹性介质中传播时, 在传播方向上某介质元在负的最大位移处, 则它的能量是 [ ] (A) 动能为零, 势能最大 (B) 动能为零, 势能为零 (C) 动能最大, 势能最大 (D) 动能最大, 势能为零25. 有两列波在空间某点P 相遇, 某时刻观察到P 点的合振幅等于两列波的振幅之和, 由此可以判定这两列波 [ ] (A) 是相干波 (B) 相干后能形成驻波 (C) 是非相干波 (D) 以上三种情况都有可能26. 已知两相干波源所发出的波的相位差为 , 到达某相遇点P 的波程差为半波长的两倍, 则P 点的合成情况是[ ] (A) 始终加强 (B) 始终减弱(C) 时而加强, 时而减弱, 呈周期性变化(D) 时而加强, 时而减弱, 没有一定的规律27. 两列完全相同的余弦波左右相向而行, 叠加后形成驻波.下列叙述中, 不是驻波特性的是 [ ] (A) 叠加后, 有些质点始终静止不动 (B) 叠加后, 波形既不左行也不右行(C) 两静止而相邻的质点之间的各质点的相位相同(D) 振动质点的动能与势能之和不守恒28. 平面正弦波)π3π5sin(4y t x +=与下面哪一列波相叠加后能形成驻波?[ ] (A) )2325π(2sin 4x t y += (B) )2325π(2sin 4x t y -= (C) )2325π(2sin 4y t x += (D) )2325π(2sin 4yt x -=二、填空题AωsD ωsω-ω-s图4-1-561. 一质点沿x 轴作简谐振动,平衡位置为x 轴原点,周期为T ,振幅为A . (1) 若t =0 时质点过x =0处且向x 轴正方向运动,则振动方程为x =.(2) 若t =0时质点在2Ax =处且向x 轴负方向运动,则质点方程为x =. 2. 一质点沿x 轴作简谐振动, 其振动方程为: π)31π2cos(4-=t x (cm).从t =0时刻起, 直到质点到达2-=x cm 处、且向x 轴正方向运动的最短时间间隔为.3. 一个作简谐振动的质点,其谐振动方程为π)23cos(π1052+⨯=-t x (SI).它从计时开始到第一次通过负最大位移所用的时间为.4. 一质点作简谐振动, 频率为2Hz .如果开始时质点处于平衡位置, 并以-1s m π⋅的速率向x 轴的负方向运动, 则该质点的振动方程为.5. 一谐振动系统周期为0.6s, 振子质量为200g .若振子经过平衡位置时速度为-1s cm 12⋅,则再经0.2s 后该振子的动能为.6.劲度系数为100N ⋅m -1的轻质弹簧和质量为10g 的小球组成一弹簧振子.第一次将小球拉离平衡位置4cm, 由静止释放任其振动; 第二次将小球拉离平衡位置2cm 并给以2m.s -1的初速度任其振动.这两次振动的能量之比为.为-1m N 40⋅的竖直放7. 如图4-2-9所示,将一个质量为20g 的硬币放在一个劲度系数置的弹簧上, 然后向下压硬币使弹簧压缩 1.0cm, 突然释放后, 这个硬币将飞离原来位置的高度为.8. 质量为0.01 kg 的质点作简谐振动, 振幅为0.1m, 最大动能为0.02 J .如果开始时质点处于负的最大位移处, 则质点的振动方程为.9 一物体放在水平木板上,这木板以Hz 2=ν的频率沿水平直线作简谐运动,物体和水平木板之间的静摩擦系数50.0=s μ,物体在木板上不滑动的最大振幅max A =.10. 如果两个同方向同频率简谐振动的振动方程分别为π)3110sin(31+=t x cm 和)π6110sin(42-=t x cm, 则它们的合振动振幅为.11. 已知由两个同方向同频率的简谐振动合成的振动,其振动的振幅为20 cm, 与第一个简谐振动的相位差为6π.若第一个简谐振动的振幅为cm 3.17cm 310=, 则第二个简谐振动的振幅为cm ,两个简谐振动的相位差为.12. 已知一平面简谐波的方程为: )π(2cos λνxt A y -=, 在ν1=t 时刻λ411=x 与λ432=x 两点处介质质点的速度之比是.13. 已知一入射波的波动方程为)4π4πcos(5xt y +=(SI), 在坐标原点x = 0处发生反射, 反射端为一自由端.则对于x = 0和x = 1 m 的两振动点来说, 它们的相位关系是相位差为.14. 有一哨子, 其空气柱两端是打开的, 基频为5000 Hz, 由此可知,此哨子的长度最接近cm .图4-2-915. 已知一平面简谐波沿x 轴正向传播,振动周期T = 0.5 s ,波长λ = 10 m , 振幅A = 0.1m .当t = 0时波源振动的位移恰好为正的最大值.若波源处为原点,则沿波传播方向距离波源为2λ处的振动方程为.当2T t =时,4λ=x 处质点的振动速度为.16. 图4-2-20表示一平面简谐波在t = 2 s 时刻的波形图,波的振幅为 0.2 m ,周期为4s .则图中P 点处质点的振动方程为.17. 一简谐波沿BP 方向传播,它在B 点引起的振动方程为t A y π2cos 11=.另一简谐波沿CP 方向传播,它在C 点引起的振动方程为()ππ2cos 22+=t A y .P 点与B 点相距0.40 m ,与C 点相距0.50 m ,如图4-2-21所示.波速均为u =0.20 m ⋅s -1.则两波在P 的相位差为.18. 如图4-2-22所示,一平面简谐波沿Ox 轴正方向传播,波长为λ,若1P 点处质点的振动方程为)π2cos(1ϕν+=t A y ,则2P 点处质点的振动方程为,与1P 点处质点振动状态相同的那些点的位置是.19. 两相干波源1S 和2S 的振动方程分别是t A y ωcos 1=和π)21(cos 2+=t A y ω.1S 距P 点3个波长,2S 距P 点421个波长.两波在P 点引起的两个振动的相位差的绝对值是.20. 如图4-2-26所示,1S 和2S 为同相位的两相干波源,相距为L ,P 点距1S 为r ;波源1S 在P 点引起的振动振幅为1A ,波源2S 在P 点引起的振动振幅为2A ,两波波长都是λ,则P 点的振幅A =. 三、计算题1. 一质量为10 g 的物体在x 方向作简谐振动,振幅为24 cm ,周期为4 s .当t =0时该物体位于x = 24 cm 处.求:(1) 当t =0.5 s 时物体的位置及作用在物体上力的大小.(2) 物体从初位置到x =-12 cm 处所需的最短时间,此时物体的速度. 系数k =241-m N ⋅,重2. 如图 4-3-5所示,有一水平弹簧振子,弹簧的劲度力F =10 N 向左作用物的质量m =6 kg .最初重物静止在平衡位置上,一水平恒此时撤去力F .当重物于物体,(不计摩擦),使之由水平位置向左运动了0.05 m ,运动到左方最远位置时开始计时,求该弹簧振子的运动方程.3. 如图4-3-12所示,一质点作简谐振动,在一个周期内相继通过距离为12cm 的两点A 、B ,历时2s ,并且在A、B 两点处具有相同的速度;再经过2 s 后,质点又从另一方向通过B点.试求质点运动的周期和振幅.4. 有两个振动方向相同的简谐振动,其振动方程分别为图4-3-5图4-3-12A图4-2-20图4-2-21PB1r 2r ...C12图4-2-26x12图4-2-22(cm)2ππ2cos 3(cm)π)π2cos(421⎪⎭⎫⎝⎛+=+=t x t x (1)求它们的合振动方程;(2)另有一同方向的简谐振动(cm))π2cos(233ϕ+=t x ,问当3ϕ为何值时,31x x +的振幅为最大值?当3ϕ为何值时,31x x +的振幅为最小值?5. 一简谐波,振动周期21=T s ,波长λ =10m ,振幅A = 0.1m. 当t = 0时刻,波源振动的位移恰好为正方向的最大值.若坐标原点和波源重合,且波沿Ox 轴正方向传播,求:(1) 此波的表达式;(2) 41T t =时刻,41λ=x 处质点的位移; (3) 42T t =时刻,41λ=x 处质点振动速度.6 已知一平面简谐波的方程为(SI))24(πcos x t A y +=(1) 求该波的波长λ,频率ν和波速度u 的值;(2) 写出t = 4.2s 时刻各波峰位置的坐标表达式,并求出此时离坐标原点最近的那个波峰的位置; (3) 求t = 4.2s 时离坐标原点最近的那个波峰通过坐标原点的时刻t .7. 有一平面波沿x 轴负方向传播,s 1=t 时的波形如图4-3-23所示,波速1s m 2-⋅=u ,求该波的波函数. 8. 一弦上的驻波方程式为 I)(S )π550cos()π6.1cos (1000.32t x y -⨯=(1) 若将此驻波看作传播方向相反的两列波叠加而成,求两列波的振幅及波速;(2) 求相邻波节之间的距离;(3) 求s 1000.33-⨯=t 时,位于m 625.0=x 处质点的振动速度. 9. 一沿弹性绳的简谐波的波动方程为⎪⎭⎫⎝⎛-=210π2cos x t A y (SI),波在m 11=x 的固定端反射.设传播中无能量损失,反射是完全的.试求:(1) 该简谐波的波长和波速; (2) 反射波的波动方程;(3) 驻波方程,并确定波节的位置.第11章光学练习题一、 选择题11. 如图所示,用厚度为d 、折射率分别为n 1和n 2 (n 1<n 2)的两片透明介质分别盖住杨氏双缝实验中的上下两缝, 若入射光的波长为 , 此时屏上原来的中央明纹处被第三级明纹所占据, 则该介质的厚度为 [] (A) λ3(B)123n n -λ(C) λ2(D)122n n -λ17. 如图所示,在杨氏双缝实验中, 若用一片厚度为d 1的透光云母片将双缝装置中的上面一个缝挡住; 再用一片厚度为d 2的透光云母片将下面一个缝挡住, 两云母片的折射率均为n , d 1>d 2, 干涉条纹的变化情况是[] (A) 条纹间距减小(B) 条纹间距增大(C) 整个条纹向上移动(D) 整个条纹向下移动18. 如图所示,在杨氏双缝实验中, 若用一片能透光的云母片将双缝装置中的上面一个缝盖住, 干涉条纹的变化情况是 [] (A) 条纹间距增大(B)整个干涉条纹将向上移动(C) 条纹间距减小(D) 整个干涉条纹将向下移动26. 如图(a)所示,一光学平板玻璃A 与待测工件B 之间形成空气劈尖,用波长λ=500nm(1nm = 10-9m)右边条纹的直线部分的切线相切.则工件的上表面缺陷是[] (A) 不平处为凸起纹,最大高度为500 nm(B) 不平处为凸起纹,最大高度为250 nm (C) 不平处为凹槽,最大深度为500 nm (D) 不平处为凹槽,最大深度为250 nm 43. 光波的衍射现象没有声波显著, 这是由于 [] (A) 光波是电磁波, 声波是机械波(B) 光波传播速度比声波大(C) 光是有颜色的 (D) 光的波长比声波小得多53. 在图所示的单缝夫琅禾费衍射实验中,将单缝K[] (A)衍射条纹移动,条纹宽度不变 (B) 衍射条纹移动,条纹宽度变动(C) 衍射条纹中心不动,条纹变宽(D) 衍射条纹不动,条纹宽度不变54. 在图所示的单缝夫琅禾费衍射实验中,将单缝宽度a 稍稍变宽,同时使单缝沿x 轴正向作微小移动,则屏幕E 的中央衍射条纹将 [] (A)变窄,同时上移(B) 变窄,同时下移 (C) 变窄,不移动(D) 变宽,同时上移55. 在图所示的单缝夫琅禾费衍射实验中,将单缝宽度a 稍稍变窄,同时使汇聚透镜L 2沿x 轴正方向作微小移动,则屏幕E 上的中央衍射条纹将[] (A)变宽,同时上移(B) 变宽,同时下移(C)变宽,不移动 (D) 变窄,同时上移56. 一衍射光栅由宽300nm 、中心间距为900nm 的缝构成, 当波长为600nm 的光垂直照射时, 屏幕上最多能观察到的亮条纹数为[] (A) 2条 (B) 3条(C) 4条 (D) 5条57. 白光垂直照射到每厘米有5000条刻痕的光栅上, 若在衍射角ϕ= 30°处能看到某一波长的光谱线, 则该光谱线所属的级次为[] (A) 1 (B) 2 (C) 3 (D) 483. 如图所示,起偏器A 与检偏器B 的偏振化方向相互垂直,偏振片C 位于A 、B 中间且与A 、B 平行,其偏振化方向与A 的偏振化方向成30°夹角. 当强度为I 的自然光垂直射向A 片时,最后的出射光强为 [ ] (A) 0(B)2I(C)8I(D) 以上答案都不对84. 如图所示,一束光强为I 0的自然光相继通过三块偏振片P 1、P 2、P 3后,其出射光的强度为80II =.已知P 1和P 3的偏振化方向相互垂直.若以入射光线为轴转动P 2, 问至少要转过多少角度才能出射光的光强度为零?[ ] (A) 30° (B) 45° (C) 60° (D) 90° 86. 两偏振片堆叠在一起,一束自然光垂直入射其上时没有光线通过.当其中一偏振片慢慢转动时, 投射光强度发生的变化为 [ ] (A) 光强单调增加(B) 光强先增加,后又减小至零 (C) 光强先增加,后减小,再增加(D) 光强先增加,然后减小,再增加,再减小至零 1. 在相同的时间内,一束波长为λ的单色光在空气和在玻璃中[] (A) 传播的路程相等,走过的光程相等 (B)传播的路程相等,走过的光程不相等 (C)传播的路程不相等,走过的光程相等 (D)传播的路程不相等,走过的光程不相2. 真空中波长为 的单色光, 在折射率为n 的均匀透明介质中从a 点沿某一路径传到b 点.若a 、b 两点的相位差为π3,则此路径的长度为[] (A)n23λ (B)nλ3 (C)λ23(D) λn 233. 相干光波的条件是振动频率相同、相位相同或相位差恒定以及[] (A) 传播方向相同 (B) 振幅相同 (C) 振动方向相同 (D) 位置相同4. 如图所示,有两个几何形状完全相同的劈形膜:一个由空气中的玻璃形成玻璃劈形膜; 一个由玻璃中的空气形成空劈形膜.当用相同的单色光分别垂直照射它们时, 从入射光方向观察到干涉条纹间距较大的是[] (A) 玻璃劈形膜(B) 空气劈形膜I AC I1P 3P 2P(C) 两劈形膜干涉条纹间距相同 (D) 已知条件不够, 难以判定5. 用波长可以连续改变的单色光垂直照射一劈形膜, 如果波长逐渐变小, 干涉条纹的变化情况为[] (A) 明纹间距逐渐减小, 并背离劈棱移动 (B) 明纹间距逐渐变小, 并向劈棱移动 (C) 明纹间距逐渐变大, 并向劈棱移动 (D) 明纹间距逐渐变大, 并背向劈棱移动6. 牛顿环实验中, 透射光的干涉情况是[] (A) 中心暗斑, 条纹为内密外疏的同心圆环 (B) 中心暗斑, 条纹为内疏外密的同心圆环 (C) 中心亮斑, 条纹为内密外疏的同心圆环 (D) 中心亮斑, 条纹为内疏外密的同心圆环7. 若用波长为 的单色光照射迈克耳孙干涉仪, 并在迈克耳孙干涉仪的一条光路中放入一厚度为l 、折射率为n 的透明薄片, 则可观察到某处的干涉条纹移动的条数为[] (A)λln )1(4-(B)λln(C)λln )1(2-(D)λln )1(-8. 如图12-1-44所示,波长为 的单色光垂直入射在缝宽为a 的单缝上, 缝后紧靠着焦距为f 的薄凸透镜, 屏置于透镜的焦平面上, 若整个实验装置浸入折射率为n 的液体中,[](A) na f λ(B) na f λ(C) naf λ2(D) anf λ29. 在一光栅衍射实验中,若衍射光栅单位长度上的刻痕数越多, 则在入射光波长一定的情况下, 光栅的[] (A) 光栅常数越小 (B) 衍射图样中亮纹亮度越小 (C) 衍射图样中亮纹间距越小 (D) 同级亮纹的衍射角越小10. 一束平行光垂直入射在一衍射光栅上, 当光栅常数)(b a +为下列哪种情况时(a 为每条缝的宽度, b 为不透光部分宽度) , k = 3, 6, 9, …等级次的主极大均不出现.[] (A) a b a 2=+ (B) a b a 3=+ (C) a b a 4=+(D) a b a 6=+11. 自然光以 60的入射角照射到不知其折射率的某一透明介质表面时,反射光为线偏振光,则[ ] (A) 折射光为线偏振光,折射角为 30 (B) 折射光为部分线偏振光,折射角为 30 (C) 折射光为线偏振光,折射角不能确定 (D) 折射光为部分线偏振光,折射角不能确定 12. 关于光的干涉,下面说法中唯一正确的是[](A) 在杨氏双缝干涉图样中, 相邻的明条纹与暗条纹间对应的光程差为2λ(B) 在劈形膜的等厚干涉图样中, 相邻的明条纹与暗条纹间对应的厚度差为2λ(C) 当空气劈形膜的下表面往下平移2λ时, 劈形膜上下表面两束反射光的光程差将增加2λ(D) 牛顿干涉圆环属于分波振面法干涉 二、 填空题1. 如图12-2-1所示,折射率为2n 、厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为1n 和3n ,已知321n n n ><,若用波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下表面反射的光束(用①与②示意)的光程差是2. 真空中波长 = 400 nm 的紫光在折射率为 n =1.5 的介质中从A 点传到B 点时, 光振动的相位改变了5 , 该光从A 到B 所走的光程为.4. 如图所示,在双缝干涉实验中SS 1=SS 2,用波长为λ的光照射双缝S 1和S 2,通过空气后在屏幕E 上形成干涉条纹.已知P 点处为第三级明条纹,则S 1和S 2到P 点的光程差为 ____________.若将整个装置放于某种透明液体中,P 点为第四级明条纹,则该液体的折射率n = ____________. 5. 两条狭缝相距2mm, 离屏300cm, 用600nm 的光照射时, 干涉条纹的相邻明纹间距为___________mm.6. 将一块很薄的云母片(n = 1.58)覆盖在杨氏双缝实验中的一条缝上,这时屏幕上的中央明纹中心被原来的第7级明纹中心占据.如果入射光的波长λ= 550nm,则该云母片的厚度为___________. 9. 如图所示,在玻璃(折射率n 3 = 1.60)表面镀一层MgF 2(折射n 2=1.38)薄膜作为增透膜.为了使波长为500nm 的光从空气(折射率n 1=1.00)正入射时尽可能减少反射,MgF 2膜的最小厚度应是.10. 用白光垂直照射厚度e =350nm 的薄膜,若膜的折射率n 2=1.4 ,薄膜上面的介质折射率为n 1,薄膜下面的介质折射率为n 3,且n 1<n 2<n 3.则透射光中可看到的加强光的波长为.14. 波长为λ的平行单色光垂直地照射到劈尖薄膜上,劈尖薄膜的折射率为n ,第二级明纹与第五条明纹所对应的薄膜厚度之差是 _____________. 15. 两玻璃片中夹满水(水的折射率34=n )形成一劈形膜, 用波长为λ的单色光垂直照射其上, 若要使某一条纹从明变为暗, 则需将上面一片玻璃向上平移.22. 若在迈克耳孙干涉仪的可动反射镜M 移动0.620mm 的过程中,观察到干涉条纹移动了2300条,则所用光波的波长为.23. 在迈克耳孙干涉仪的一条光路中,放入一折射率为n ,厚度为d 的透明介质薄片,放入后,这条光路的光程改变了.25. 如果单缝夫琅禾费衍射的第一级暗纹发生在衍射角为 30=ϕ的方位上,所用的单色光波长为nm 500=λ,则单缝宽度为.26. 一束平行光束垂直照射宽度为1.0 mm 的单缝上,在缝后放一焦距为2.0 mm 的汇聚透镜.已知位于透镜焦平面处的中央明纹的宽度为2.0 mm ,则入射光波长约为.29 用半波带法讨论单缝衍射暗条纹中心的条件时,与中央明条纹旁第三个暗条纹中心相对应的半波带的数目是__________.30. 平行单色光垂直入射于单缝上,观察夫琅禾费衍射.若屏上P 点处为第三级暗纹,则单缝处波面相应地可划分为___________ 个半波带.若将单缝宽度缩小一半,P 点处将是_________级________纹.36. 一衍射光栅, 狭缝宽为a , 缝间不透明部分宽为b .当波长为600 nm 的光垂直照射时, 在某一衍射角ϕ处出现第二级主极大.若换为400nm 的光垂直入射时, 则在上述衍射角ϕ处出现缺级, b 至少是a 的倍.38. 已知衍射光栅主极大公式(a +b ) sin ϕ=±k λ,k =0,1,2, ….在k =2的方向上第一条缝与第六条缝对应点发出的两条衍射光的光程差∆=_____________.40. 当自然光以58︒角从空气射入到玻璃板表面上时, 若反射光为线偏振光, 则透射光的折射角为_________. 41. 一束自然光入射到空气和玻璃的分界面上, 当入射角为60︒时反射光为完全偏振光, 则此玻璃的折射率为_________.44. 一束由自然光和线偏振光组成的混合光,让它垂直通过一偏振片.若以此入射光束轴旋转偏振片,测得透射光强度的最大值是最小值的7倍;那么入射光束自然光和线偏振光的光强比为_____________ 三、 计算题8. 用白光垂直照射置于空气中的厚度为0.50 μm 的玻璃片.玻璃片的折射率为1.50.在可见光范围内(400 nm ~ 760 nm)哪些波长的反射光有最大限度的增强?13. 图12-3-13所示为一牛顿环装置,设平凸透镜中心恰好与平玻璃接触,透镜凸表面的曲率半径是R =400cm .用单色平行光垂直入射,观察反射光形成的牛顿环,测得第5个明环的半径是0.30 cm .(1) 求入射光的波长;(2) 设图中OA =1.00 cm ,求在半径为OA 的范围内可观察到的明环数目.18. 在某个单缝衍射实验中,光源发出的光含有两种波长1λ和2λ,并垂直入射于单缝上.假如1λ的第一级衍射极小与2λ的第二级衍射极小相重合,试问:(1)这两种波长之间有何关系?(2)在这两种波长的光所形成的衍射图样中,是否还有其它极小相重合?19. 某种单色平行光垂直地入射在一单缝上, 单缝的宽度a = 0.15mm .缝后放一个焦距f = 400 mm 的凸透镜,在透镜的焦平面上,测得中央明条纹两侧的两个第三级暗条纹之间的距离为8.0 mm ,求入射光的波长.30. 一衍射光栅,每厘米有200条透光缝,每条透光缝宽为a = 2⨯10-3 cm ,在光栅后方一焦距f = 1m 的凸透镜.现以nm 600=λ的单色平行光垂直照射光柵,求:(1) 透光缝a 的单缝衍射中央明区条纹宽度; (2)在透光缝a 的单缝衍射中央明纹区内主极大条数.31.波长λ= 600nm 的单色光垂直入射到一光柵上,测得第二级主级大的衍射角为30o ,且第三级是缺级. (1) 光栅常量(a +b )等于多少?(2) 透光缝可能的最小宽度a 等于多少?(3) 在选定了上述(a +b )和a 之后,求在屏幕上可能呈现的全部主极大的级次.36 两个偏振片叠在一起,欲使一束垂直入射的线偏振光经过这两个偏振片之后振动方向转过了90°,且使出射光强尽可能大,那么入射光振动方向和两偏振片的偏振化方向之间的夹角应如何选择?这种情况下的最大出射光强与入射光强的比值是多少?第13章 热力学基础一、选择题2. 对于物体的热力学过程, 下列说法中正确的是[ ] (A) 内能的改变只决定于初、末两个状态, 与所经历的过程无关 (B) 摩尔热容量的大小与所经历的过程无关(C) 在物体内, 若单位体积内所含热量越多, 则其温度越高(D) 以上说法都不对4. 关于功的下列各说法中, 错误的是 [ ] (A) 功是能量变化的一种量度(B) 功是描写系统与外界相互作用的物理量(C) 气体从一个状态到另一个状态, 经历的过程不同, 则对外做的功也不一样 (D) 系统具有的能量等于系统对外做的功5. 理想气体物态方程在不同的过程中有不同的微分表达式, 式T R MmV p d d 表示 [ ] (A) 等温过程 (B) 等压过程(C) 等体过程 (D) 绝热过程 9. 热力学第一定律表明[ ] (A) 系统对外做的功不可能大于系统从外界吸收的热量 (B) 系统内能的增量等于系统从外界吸收的热量(C) 不可能存在这样的循环过程, 在此过程中, 外界对系统所做的功 不等于系统传给外界的热量 (D) 热机的效率不可能等于110. 对于微小变化的过程, 热力学第一定律为d Q = d E d A .在以下过程中, 这三者同时为正的过程是 [ ] (A) 等温膨胀 (B) 等体膨胀 (C) 等压膨胀 (D) 绝热膨胀13. 一定量的理想气体从状态),(V p 出发, 到达另一状态)2,(V p .一次是等温压缩到2V, 外界做功A ;另一次为绝热压缩到2V, 外界做功W .比较这两个功值的大小是 [ ] (A) A >W (B) A = W (C) A <W (D) 条件不够,不能比较19. 同一种气体的摩尔定压热容大于摩尔定容热容, 其原因是 [ ] (A) 膨胀系数不同 (B) 温度不同(C) 气体膨胀需要做功 (D) 分子引力不同28. 一定量的理想气体分别经历了等压、等体和绝热过程后其内能均由E 1变化到E 2.在上述三过程中, 气体的 [ ] (A) 温度变化相同, 吸热相同 (B) 温度变化相同, 吸热不同 (C) 温度变化不同, 吸热相同 (D) 温度变化不同, 吸热也不同30. 一定量的理想气体, 从同一状态出发, 经绝热压缩和等温压缩达到相同体积时, 绝热压缩比等温压缩的终。

相关文档
最新文档