初等数论期末试题及答案

合集下载

20111 初等数论 期末试卷 参考答案 A(数学091)

20111 初等数论 期末试卷 参考答案 A(数学091)

莆 期末考试参考答案及评分标准 2011 —— 2012 学年第 一 学期 (A )卷课程名称: 初等数论 适用年级/专业 数学091 试卷类别:开卷( )闭卷(√) 学历层次: 本科 考试用时: 120 分钟 一、填空题(每空2分,共20分) 1、 ① 9072 2、 ① 4 3、 ① 无 4、 ① -2,-1,0,1,2 5、 ① -1 6、 ① 星期三 7、 ① 若p 是素数,则(mod )p a a p ≡。

8、 ① (28,45,53) (注:答案不惟一!) 9、 ① 6 ② 2,5,6,7,8,11 二、计算题(每小题10分,共50分) 1、(10分)解:因为(6,14,32)2=,而2|80,所以原不定方程有整数解。

将原方程化简得371640x y z ++=。

设37x y t +=,显然,2,x t y t =-=是方程37x y t +=的一个解。

因此,其通解为27()3x t uu y t u=-+⎧⎨=-⎩为任意整数。

‥‥‥‥(5分) 把37x y t +=代入原三元一次不定方程得:1640t z +=,这个二元一次不定方程的通解为816()2t vv z v =+⎧⎨=-⎩为任意整数, 把=8+16t v 分别代入,x y ,可得原不定方程的通解为163278163(,)2x v u y v u u v z v =--+⎧⎪=+-⎨⎪=-⎩为任意整数 (注:答案形式上不唯一!) ‥‥‥‥(5分)2、(10分)解:由(2,243)1=及①式可得:28580(mod143)x y +-≡ ③由②,③得:171420(mod143)y -≡,解此一次同余式得42(mod143)y ≡,‥‥‥‥(5分)再由①式442290(mod143)x +⨯-≡,即4(mod143)x ≡。

所以此联立同余式的解是4(mod143)42(mod143)x y ≡⎧⎨≡⎩。

‥‥‥‥(5分)3、(10分)解:注意到原式与下面的同余式组等价:()0(mod5)()0(mod 7)f x f x ≡⎧⎨≡⎩容易验证()0(mod5)f x ≡有两个解:1,4(mod5)x ≡;()0(mod7)f x ≡有三个解:35,6(mod7)x ≡,。

三套大学初等数论期末考试试卷

三套大学初等数论期末考试试卷

期末考试卷(A)一、填空题(每空3分,共45分)1. 若a ︱b ,b <a ,则b= ;a ︱b ,b ︱a ,则a= 。

2. (36,108,204)= ;[30,45,84]= 。

3. 300 000的质因数标准分解为 ,它的所有正约数的个数是 ,所有正约数的和是 。

4. 。

5. 四位数b a 27能同时被2,3,5整除,则a= ;b= 。

6. 用m ϕ()表示数0,1,2,1m -中与数m 互质的数的个数,则ϕ(20)= ,ϕ(120)= 。

7. 循环小数0.01001001000100010001……的循环节的长度h= 。

8. 已知费马(Fermat )数为2F 21nn =+,n N ∈,则前四个费马质数是 。

9. 设今天是星期一,则102天后是星期 。

二、从0、3、5、7四个数中任意选三个,排成能同时被2、3、5 整除的三位数,求这样的三位数,且确定有多少个这样的三位数。

(7分)三、(16分)1、求4063的个位数。

2、 求1001006!约分后的分母。

四.解方程(16分)。

=0 ;2. 525x +231y=42。

五.证明题、(16分) 1. 求证:77733337|(333777) 。

2.设p为质数,a为整数,且a2≡b2(mod p),证明:a≡b(mod p)或a≡-b(mod p)。

中央广播电视大学2006—2007学年度第二学期“开放本科”期末考讧数学专业初等数论试题2007年7月一、单项选择题(每题4分,共24分)1.如果b,d,e,b,则( ).A.a=b B.a=-bC.a≥b D.a=±b2.如果2|n, 15|n,则30( )n.A. 整除B.不整除c. 等于D.不一定3.大于10且小于30的素数有( ).A.4个B.5个C 6个D.7个4.模5的最小非负完全剩余系是( ).A.一2,一1,O,1,2 B.一5,一4,一3,一2,一1C.1,2,3,4,5 D.0,1,2,3,45.如果( ),则不定方程ax+by=c 有解.A.(a,b)|c B.c|(a,b)C.a|c D.(a,b)|a6.整数637693能被( )整除.A.3 B.5C.7 D.9二、填空题(每题4分,共24分)1.x=[x]+ ·2.同余式111x≡75(mod321)有解,而且解的个数.3.在176与545之间有是17的倍数.4.如果ab>o,则[a,b](a,b)= ·5. a,b的最小公倍数是它们公倍数的·S.如果(a,b)=1,那么(ab,a+b)= .三、计算题(共32分)1.求(336,221,391)=?2.求解不定方程4x+12y=8.3.解同余式12x+4≡0(mod 7).4.解同余式x2≡2(mod 23)四、证明题(第1小题10分,第2小题10分,共20分)1.如果(a,b)=1,则(a十b,a-b)=l或2.2.证明相邻两个偶数的乘积是8的倍数.试卷代号:1077中央广播电视大学2006—2007学年度第二学期“开放本科”期末考试2007年7月一、单项选择题(每题4分,共24分)1.B 2.D 3.B4.A 5.D 6.A二、填空题(每题4分,共24分)1.{x}2.33.124.ab5.因数6.1三、计算题(每题8分,共32分)1.求(336,221,391)=?解:(336,221,391)=(336,(22l,391))…………………………—…………………(4分)=(336,17)=l ,.,..,,,.,.....,...·(4分)2.求解不定方程4x+12y=8.解:因为(4,12)=4 | 8,所以有解……………………………………………………(2分)化简x+3y=2,则有x=-1,y=l ……………………………………………(4分)通解为x=-1十3t,y=1一t ……………………………………………………(2分)3.解同余式12x十4≡O(mod7).解:因为(12,7)=1|4,所以有解,而且解的个数为1 …………………………(2分)变形12x一7y=一4………………………………………………………………(2分)简单计算x≡2(mod7).…………………………………………………………(4分)4.解同余式x2≡2(mod23)解:因为,所以有解,而且解的个数为2……………………(4分)解分别为x≡5,18(mod23)………………………………………………………(4分)四、证明题(第14、题lo分,第2小题lo分,共20分)1.如果(a,b)=1,则(a+b,a-b)=1或2.证明设(a十b,a一b)=d,则d|(a十b),d|(a一b)…………………………………(3分)所以d|(a十b)十(a一b),d|2a.同理d|2b…………………………………………(4分)再(a,b)=1,所以d|2.即d=1或2……………………………………—………(3分)2.证明相邻两个偶数的乘积是8的倍数.(10分)证明设相邻两个偶数分别为2n,(2n+2)…………………………………………(2分)所以2n(2n十2)=4n(n十1) …………………………………………………………<3分)而且两个连续整数的乘积是2的倍数………………………………………………(2分)即4n(n+1)是8的倍数.…………………………………………—……………(3分)初等数论一、判断题1、任意给出5个整数必有三个数之和能被整数3整除。

福师期末考试《初等数论》复习题及参考答案

福师期末考试《初等数论》复习题及参考答案

福师期末考试《初等数论》复习题及参考答案复习题及参考答案一一、填空(40%)1 、求所有正约数的与等于15的最小正数为 考核知识点:约数,参见P14-19 2、若1211,,,b b b 是模11的一个完全剩余系,则121181,81,,81b b b +++也是模11的 剩余系.考核知识点:完全剩余系,参见P54-573.模13的互素剩余系为考核知识点:互素剩余系,参见P584.自176到545的整数中是13倍数的整数个数为 考核知识点:倍数,参见P11-13 5、如果p 是素数,a 是任意一个整数,则a 被p 整除或者考核知识点:整除,参见P1-4 6、b a ,的公倍数是它们最小公倍数的 .考核知识点:最小公倍数,参见P11-13 7、如果b a ,是两个正整数,则存在 整数r q ,,使r bq a +=,b r ≤0.考核知识点:整除,参见P1-4 8、如果n 3,n 5,则15( )n . 考核知识点:整除,参见P1-4二、(10%)试证:6|n(n+1)(2n+1),这里n 是任意整数。

考核知识点:整除的性质,参见P9-12 提示:i)若 则ii)若 则iii)若 则又三、(10%)假定a 是任意整数,求证a a (mod )++≡2103或a a (mod )+≡203考核知识点:二次同余式,参见P88提示:要证明原式成立,只须证明231a a ++,或者23a a +成立即可。

四、(10%)设p 是不小于5的素数,试证明21(mod24)p ≡ 考核知识点:同余的性质,参见P48-52 提示: 且是不小于5的素数.又且是不小于5的素数.只能是奇数且即即五、(15%)解同余式组 51(mod7)142(mod8)x x ≡⎧⎨≡⎩考核知识点:同余式,参见P74-75 提示∵ (14,8)=2 且 2 | 2 ∴ 14x ≡2(mod8) 有且仅有二个解解7x ≡1(mod4) ⇒ x ≡3 (mod4) ∴ 6x ≡10(mod8)的解为 x ≡3,3+4(mod8) 原同余式组等价于()()3mod 73mod8x x ≡⎧⎪⎨≡⎪⎩ 或()()3mod 77mod8x x ≡⎧⎪⎨≡⎪⎩ 分别解出两个解即可。

初等数论期末考试模拟试卷(含答案)

初等数论期末考试模拟试卷(含答案)

初等数论期末考试模拟试卷(含答案)一、填空题(每题5分,共25分)1. 若两个正整数a和b的最大公约数为1,则称a和b互质。

若a和b互质,则a+b与a-b也互质。

()2. 设m和n是正整数,且m、n互质。

若存在正整数k,使得km+1与kn+1互质,则k的最小值为()。

答案:13. 已知p和q是不同的质数,且p+q=17,则p^2+q^2的最小值为()。

答案:974. 设F(n)表示斐波那契数列的第n项,且F(n+1)=F(n)+F(n-1),F(1)=1,F(2)=1。

若F(n)能被3整除,则n的最小值为()。

答案:85. 已知正整数a、b、c满足a^2+b^2=c^2,则称a、b、c 为勾股数。

勾股数中,a、b、c都是奇数的三元组称为奇素勾股数。

已知最小的奇素勾股数是(3,4,5),则第二小的奇素勾股数是()。

答案:(15,8,17)二、选择题(每题5分,共25分)6. 以下关于最大公约数和最小公倍数的说法,错误的是()。

A. 两个正整数的最大公约数是它们的公共因子中最大的一个B. 两个正整数的最大公约数等于它们的乘积除以最小公倍数C. 两个正整数的最大公约数和最小公倍数的乘积等于这两个数的乘积D. 两个正整数的最大公约数和最小公倍数一定互质答案:D7. 设p是质数,且p>2,则以下说法正确的是()。

A. p的平方能被3整除B. p的立方能被3整除C. p的平方加1能被3整除D. p的平方减1能被3整除答案:D8. 以下关于斐波那契数列的说法,错误的是()。

A. 斐波那契数列中的任意两个相邻项互质B. 斐波那契数列中的任意两个非相邻项互质C. 斐波那契数列中的任意三个连续项构成勾股数D. 斐波那契数列中的任意两个相邻项之比越来越接近黄金比例答案:C9. 设a、b、c是勾股数,且a是最小的质数。

以下说法正确的是()。

A. b和c一定互质B. b和c一定不互质C. b和c中至少有一个是质数D. b和c中至少有一个不是质数答案:D10. 以下关于同余的说法,错误的是()。

初等数论试卷,最全面的答案,包括截图

初等数论试卷,最全面的答案,包括截图

初等数论试卷,最全⾯的答案,包括截图初等数论考试试卷⼀、单项选择题:(1分/题X 20题=20分)1 ?设x为实数,lx ]为x的整数部分,则(A )A.[xl X ::: lx ; E. [x I ::: x Ixl ? 1 ;C. lx I x lx A:;1 ;D. lx I ::: X ::: Ix.l ? 1 .2.下列命题中不正确的是(B )A.整数a i,a2,||(,a n的公因数中最⼤的称为最⼤公因数;C.整数a与它的绝对值有相同的倍数D.整数a与它的绝对值有相同的约数3 .设⼆元⼀次不定⽅程ax?by=c (其中a,b,c是整数,且a,b不全为零)有⼀整数解x o,y°,d⼆a,b,则此⽅程的⼀切解可表为(C )a bA.x =x°t, y ⼆y°t,t =0, _1,_2」H;d da bB.x = X o t, y ⼆y o t,t = 0, —1, _2」H;d db ac. x =X o t, y =y°t,t =0, _1,_2,川;d db aD. x =x°t, y ⼆y o t,t =0, ⼀1,_2,|";d d4. 下列各组数中不构成勾股数的是(D )A. 5, 12, 13;B. 7, 24, 25;C.3, 4, 5;D. 8, 16, 175. 下列推导中不正确的是(D )A.? 三b modm ,a2 三d modm = y a?三b b2modm ;B.Q= b mod m ,a2 = b2 modm = Qa? = bb 2mod m ;c. Q= b mod m = 时2 = ba 2modm ;2 2C. ⼀5, -4, _3,-2,_1,0,1,2,3,4;D. 1,3,7,9.D.a1= b1 modm = Q=b modm .6 .模10的⼀个简化剩余系是(D )A. 0,1,2,川,9;B. 1,2,3川1,10;7. a三b modm的充分必要条件是(A )A. ma —b;B. a —b m;C.m a +b;D. a +b m.&设f x =x42x38x 9,同余式f x三0 mod5的所有解为(C )A. x =1 或-1;B. x =1 或4;C. x 三1 或-1 mod5 ;D.⽆解.9、设f(x)= a n X n JlUII a1x ? a°其中a i是奇数,若x = x0mod p 为f(x) = 0 mod p 的⼀个解, 则:(?)A. 了.三/.: mod p ⼚定为f (x)三0(mod p勺,1的⼀个解B. '三I mod p「,::1,⼀定为f (x)三0 mod p :的⼀个解D. 若x三x° mod p -为f (x)三0 mod p -的⼀个解,则有x :三x° mod p10.设f (x)⼆a n x n|川|) ax a0,其中a i为奇数,a n丞Omodp,n p,则同余式f (x) =0 mod p 的解数:( )A.有时⼤于p但不⼤于n; B .不超过pC.等于p D .等于n11.若2为模p的平⽅剩余,则p只能为下列质数中的:( D )A. 3 B . 11 C . 13 D . 2312.若雅可⽐符号->1,则(C )Im⼃2A. 同余式x三a modm ⼀定有解,B. 当a,m =1时,同余式x2=a mod p有解;C. 当m = p(奇数)时,同余式x2三a mod p有解;D. 当a⼆p(奇数)时,同余式x2三a mod p有解.13.若同余式x2三a mod2‘,〉-3, 2, a =1有解,则解数等于(A )C. ⼀5, -4, _3,-2,_1,0,1,2,3,4;D. 1,3,7,9.D.18. 若x 对模m 的指数是ab , a >0, ab >0,则a 对模m 的指数是(B )A. a B . b C . ab D.⽆法确定19. f a , g a 均为可乘函数,则(A ) A. f a g a 为可乘函数; B . f ag (a )C. f a g a 为可乘函数; D . f a - g a 为可乘函数20. 设丄[a 为茂陛乌斯函数,则有(B )不成⽴A ⼆ J 1 =1B .空-1 =1C .⼆■-2 = -1D .⼆=9 =0⼆. 填空题:(每⼩题1分,共10分)21.3在45!中的最⾼次n = ________ 21 ___ ; 22. 多元⼀次不定⽅程:a 1x 1 a 2x 2 ?⼁II a n x^ N ,其中a 1 , a 2,…,a n , N 均为整数,n _ 2 ,有整数解的充分必要条件是 _ ( a 1 , a 2 ,…,a n ,) I N_a23.有理数⼀,0cavb , (a,b )=1,能表成纯循环⼩数的充分必要条件是_ (10, b ) =1__; b- _ 24. 设x 三冷 mod m 为⼀次同余式ax 三b modm , a = 0 mod m 的⼀个解,则它的所有解 A . 414. A . 15. A . B . 3 C 模12的所有可能的指数为:( 1, 2, 4 B . 1, 2, 4, 6, 若模m 的原根存在,下列数中,2 B .3 C 16. 对于模5,下列式⼦成⽴的是.2 A )12 C . 1, 2, m不可能等于:( D . 12 B ) 3, D 4, 6,12 D ?⽆法确定 )A. in d 32 =2ind 3^=3 C. in d 35 =0ind 310 ⼆ ind 32 ind 35 17. A. 下列函数中不是可乘函数的是:茂陛鸟斯(mobius )函数w(a ); B. 欧拉函数■- a ;C. 不超过x 的质数的个数⼆x ;25. ____________________________ 威尔⽣(wilson )定理: _______________ (P —1)! +1 三0(modp ), p 为素数 _____________ ;26. 勒让德符号'^03 |= 1 ;訂013⼃27. 若a, p [=1,则a 是模p 的平⽅剩余的充分必要条件是 a 2三1 mod p (欧拉判别条件; 28.在模m 的简化剩余系中,原根的个数是 _讥営m __; 29.设。

初等数论练习题一(含答案)

初等数论练习题一(含答案)

《初等数论》期末练习二一、单项选择题1、=),0(b ( ).A bB b -C bD 02、如果1),(=b a ,则),(b a ab +=( ).A aB bC 1D b a +3、小于30的素数的个数( ).A 10B 9C 8D 74、如果)(mod m b a ≡,c 是任意整数,则A )(mod m bc ac ≡B b a =C (mod )ac bc m ≡/D b a ≠5、不定方程210231525=+y x ( ).A 有解B 无解C 有正数解D 有负数解6、整数5874192能被( )整除.A 3B 3与9C 9D 3或97、如果a b ,b a ,则( ).A b a =B b a -=C b a ≥D b a ±=8、公因数是最大公因数的( ).A 因数B 倍数C 相等D 不确定9、大于20且小于40的素数有( ).A 4个B 5个C 2个D 3个10、模7的最小非负完全剩余系是( ).A -3,-2,-1,0,1,2,3B -6,-5,-4,-3,-2,-1C 1,2,3,4,5,6D 0,1,2,3,4,5,611、因为( ),所以不定方程71512=+y x 没有解.A [12,15]不整除7B (12,15)不整除7C 7不整除(12,15)D 7不整除[12,15]12、同余式)593(m od 4382≡x ( ).A 有解B 无解C 无法确定D 有无限个解二、填空题1、有理数ba ,0,(,)1ab a b <<=,能写成循环小数的条件是( ). 2、同余式)45(mod 01512≡+x 有解,而且解的个数为( ). 3、不大于545而为13的倍数的正整数的个数为( ).4、设n 是一正整数,Euler 函数)(n ϕ表示所有( )n ,而且与n ( )的正整数的个数.5、设b a ,整数,则),(b a ( )=ab .6、一个整数能被3整除的充分必要条件是它的( )数码的和能被3整除.7、+=][x x ( ).8、同余式)321(m od 75111≡x 有解,而且解的个数( ). 9、在176与545之间有( )是17的倍数.10、如果0 ab ,则),](,[b a b a =( ).11、b a ,的最小公倍数是它们公倍数的( ).12、如果1),(=b a ,那么),(b a ab +=( ).三、计算题1、求24871与3468的最小公倍数?2、求解不定方程2537107=+y x .(8分)3、求⎪⎭⎫ ⎝⎛563429,其中563是素数. (8分) 4、解同余式)321(m od 75111≡x .(8分) 5、求[525,231]=?6、求解不定方程18116=-y x .7、判断同余式)1847(m od 3652≡x 是否有解?8、求11的平方剩余与平方非剩余.四、证明题1、任意一个n 位数121a a a a n n -与其按逆字码排列得到的数n n a a a a 121- 的差必是9的倍数.(11分)2、证明当n 是奇数时,有)12(3+n .(10分)3、一个能表成两个平方数和的数与一个平方数的乘积,仍然是两个平方数的和;两个能表成两个平方数和的数的乘积,也是一个两个平方数和的数.(11分)4、如果整数a 的个位数是5,则该数是5的倍数.5、如果b a ,是两个整数,0 b ,则存在唯一的整数对r q ,,使得r bq a +=,其中b r ≤0.《初等数论》期末练习二答案一、单项选择题1、C2、C3、A4、A5、A6、B7、D8、A9、A 10、D 11、B 12、B二、填空题1、有理数ba ,1),(,0=b a b a ,能写成循环小数的条件是( 1)10,(=b ). 2、同余式)45(mod 01512≡+x 有解,而且解的个数为( 3 ). 3、不大于545而为13的倍数的正整数的个数为( 41 ).4、设n 是一正整数,Euler 函数)(n ϕ表示所有( 不大于 )n ,而且与n ( 互素 )的正整数的个数.5、设b a ,整数,则),(b a ( ],[b a )=ab .6、一个整数能被3整除的充分必要条件是它的( 十进位 )数码的和能被3整除.7、+=][x x ( }{x ).8、同余式)321(m od 75111≡x 有解,而且解的个数( 3 ). 9、在176与545之间有( 12 )是17的倍数.10、如果0 ab ,则),](,[b a b a =( ab ).11、b a ,的最小公倍数是它们公倍数的( 因数 ).12、如果1),(=b a ,那么),(b a ab +=( 1 ).三、计算题1、求24871与3468的最小公倍数?解:因为(24871,3468)=17所以[24871,3468]= 17346824871⨯=5073684 所以24871与3468的最小公倍数是5073684。

初等数论试卷和答案解析

初等数论试卷和答案解析

初等数论考试试卷1一、单项选择题(每题3分,共18分) 1、如果a b ,b a ,则( ). Ab a = B b a -= C b a ≤ D b a ±=2、如果n 3,n 5,则15( )n .A 整除B 不整除C 等于D 不一定 3、在整数中正素数的个数( ).A 有1个B 有限多C 无限多D 不一定 4、如果)(mod m b a ≡,c 是任意整数,则 A)(mod m bc ac ≡ B b a = C ac T )(mod m bc D b a ≠5、如果( ),则不定方程c by ax =+有解. Acb a ),( B),(b a c Cca Dab a ),(6、整数5874192能被( )整除. A 3 B 3与9 C 9 D 3或9二、填空题(每题3分,共18分)1、素数写成两个平方数和的方法是( ).2、同余式)(mod 0m b ax ≡+有解的充分必要条件是( ).3、如果b a ,是两个正整数,则不大于a 而为b 的倍数的正整数的个数为( ).4、如果p 是素数,a 是任意一个整数,则a 被p 整除或者( ).5、b a ,的公倍数是它们最小公倍数的( ).6、如果b a ,是两个正整数,则存在( )整数r q ,,使r bq a +=,b r ≤0.三、计算题(每题8分,共32分) 1、求[136,221,391]=? 2、求解不定方程144219=+y x . 3、解同余式)45(mod 01512≡+x .4、求⎪⎭⎫ ⎝⎛563429,其中563是素数. (8分)四、证明题(第1小题10分,第2小题11分,第3小题11分,共32分)1、证明对于任意整数n ,数62332n n n ++是整数.2、证明相邻两个整数的立方之差不能被5整除.3、证明形如14-n 的整数不能写成两个平方数的和.试卷1答案一、单项选择题(每题3分,共18分) 1、D. 2、A 3、C 4、A 5、A 6、B 二、填空题(每题3分,共18分)1、素数写成两个平方数和的方法是(唯一的).2、同余式)(mod 0m b ax ≡+有解的充分必要条件是(b m a ),().3、如果b a ,是两个正整数,则不大于a 而为b 的倍数的正整数的个数为(][b a ).4、如果p 是素数,a 是任意一个整数,则a 被p 整除或者( 与p 互素 ).5、b a ,的公倍数是它们最小公倍数的( 倍数 ).6、如果b a ,是两个正整数,则存在( 唯一 )整数r q ,,使r bq a +=,b r ≤0.三、计算题(每题8分,共32分) 1、求[136,221,391]=?(8分)解 [136,221,391]=[[136,221],391]=[391,17221136⨯]=[1768,391]------------(4分)= 173911768⨯=104⨯391=40664. ------------(4分)2、求解不定方程144219=+y x .(8分) 解:因为(9,21)=3,1443,所以有解;----------------------------(2分) 化简得4873=+y x ;-------------------(1分)考虑173=+y x ,有1,2=-=y x , -------------------(2分) 所以原方程的特解为48,96=-=y x ,-------------------(1分)因此,所求的解是Z t t y t x ∈-=+-=,348,796。

初等数论期末考试

初等数论期末考试

初等数论期末考试一、选择题(共20题,每题2分)1.质数是指只能被1和本身整除的自然数。

下列数中,属于质数的是()A. 1B. 2C. 4D. 92.下列数中,能被2整除的是()A. 15B. 21C. 34D. 493.下列数中,属于互质数对的是()A. 6和9B. 12和15C. 16和24D. 18和254.在100以内,能被2和3整除的数是()A. 12B. 24C. 36D. 48…二、填空题(共10题,每题4分)1.两个数的最大公约数为5,最小公倍数为30,则这两个数为____和____。

2.两个数的最大公约数为18,较大的数为54,则较小的数为_____。

3.一个数除以9余7,除以13余11,这个数最小是_____。

4.两个数的最大公约数等于45,较小的数是135,则较大的数为_____。

…三、计算题1.用辗转相除法求出以下两个数的最大公约数和最小公倍数:()A. 72和96B. 80和120C. 112和140D. 135和180解答:设a和b为两个数,不妨设a > b,则执行以下步骤:1.计算a除以b的余数,记作r1。

2.将b除以r1的余数,记作r2。

3.若r2不等于0,则将r1除以r2的余数,记作r3。

4.依此类推,直到rk等于0为止,此时rk-1即为最大公约数。

5.最小公倍数可以通过a和b的乘积除以最大公约数得到。

经过计算,得到以下结果:–72和96的最大公约数为24,最小公倍数为288。

–80和120的最大公约数为40,最小公倍数为240。

–112和140的最大公约数为28,最小公倍数为560。

–135和180的最大公约数为45,最小公倍数为540。

所以答案为:A. 72和96,B. 80和120,C. 112和140,D. 135和180。

…四、证明题1.证明素数有无穷多个。

证明:假设素数只有有限个,记作p1, p2, p3, …, pn。

令P = p1 * p2 * p3 * … * pn + 1,则P必定是一个大于1的整数。

《初等数论》期末模拟试题

《初等数论》期末模拟试题
(1) 0(mod
证明:∵ n 2 p 1 为素数,由威尔逊定理 (n 1)!1 0(mod n) , 即有
(n 1)!1 (n 1)(n 2) 3 2 1 1 (n 1) 2 (n 2) p(n p) 1(mod n)
∴ n 为素数。
18、
18、(10 分)证明: (a b) p ap bp(mod p)
证明:由费尔马小定理知对一切整数有: ap a( p), bp b( p)
只供学习与交流
资料收集于网络,如有侵权 请联系网站删除
由同余性质知有: ap bp a b( p)
又由费尔马小定理有 (a b) p a b( p) ap bp(mod p)
5、(15 分)设 p、q 是两个大于3
是两个大于 3 的质数,证明:

3,8) = 1,
证明:因为24
证明:因为24 = 3 × 8,(3,8)


≡ ()
(mod3),p2 ≡ q2 (mod8)同时成立。
(mod8)同时成立。
∴ 只需证明p
只需证明p2 ≡ q2 (mod3),

故 b1 ka .因此 m aka ab1t
反过来,当 t 为任一整数时,
ab
t ,其中 t 满足等式 k a b1t .
( a, b)
ab
t 为 a , b 的一个公倍数,
(a, b)
故上式可以表示 a , b 的一切公倍数.
的一切公倍数.
令 t 1 ,即得到最小的正数,故得证 a , b
证明:由题设可知, mi mi 1 , i 2,3,L , n 1, 且 a1 m2 , ai mi , i 2,3,L , n , ,

初等数论复习题答案

初等数论复习题答案

初等数论复习题答案1. 试述质数与合数的定义。

答案:质数是指大于1的自然数,除了1和它本身以外不再有其他因数的数。

合数则是指除了1和它本身之外,还有其他因数的自然数。

2. 请解释最大公约数和最小公倍数的概念。

答案:最大公约数(GCD)是指两个或多个整数共有约数中最大的一个。

最小公倍数(LCM)是指两个或多个整数的最小公共倍数。

3. 举例说明辗转相除法(欧几里得算法)的计算过程。

答案:设两个正整数为a和b(a > b),辗转相除法的过程是:用较大的数除以较小的数,得到余数r,然后用较小的数去除这个余数,再得到新的余数,如此反复,直到余数为0,最后的除数即为最大公约数。

4. 试证明费马小定理。

答案:费马小定理指出,如果p是一个质数,a是一个不被p整除的整数,则a^(p-1) ≡ 1 (mod p)。

证明过程通常涉及模运算和群论的基本概念。

5. 说明中国剩余定理的基本原理。

答案:中国剩余定理是数论中一个关于线性同余方程组的定理。

给定一组两两互质的模数和一组对应的余数,定理保证了存在一个唯一的解,这个解在模数乘积的模下是唯一的。

6. 什么是素数定理?请简要说明。

答案:素数定理描述了素数在自然数中的分布情况。

它指出,小于或等于给定数x的素数数量大约是x除以x的自然对数,即π(x) ≈ x / ln(x)。

7. 描述同余的概念及其性质。

答案:同余是指两个整数a和b,若它们除以正整数n后余数相同,则称a和b同余模n,记作a ≡ b (mod n)。

同余具有自反性、对称性和传递性等性质。

8. 简述模运算的性质。

答案:模运算的性质包括加法和乘法的封闭性、结合律、交换律、分配律以及模逆元的存在性等。

9. 试解释什么是完全数。

答案:完全数是指一个正整数,它等于其所有真因数(即除了自身以外的因数)之和。

10. 请解释什么是亲和数。

答案:亲和数是一对或一组数,其中每个数的所有真因数之和等于另一个数。

例如,220和284就是一对亲和数,因为220的真因数之和为1+2+4+5+10+11+20+22+44+55+110=284,而284的真因数之和也为220。

初等数论期末试题(A)

初等数论期末试题(A)

042初等数论期末试题(A )一.选择题(每题4分,共6题)1.把49化为二进制数,下列表示正确的是( )A 100001B 110001C 101111 D110012.某数除以3余2,除以4余1,该数除以12余( )A 1B 3C 4D 53.某数除300,262,205余数相同,则该数为( )A 21B 18C 19D 134.方程x 1+y 1=19981的整数解的个数为( ) A 125 B 63 C 126 D 625.自200到500的整数中7的倍数的个数为( )A 43B 42C 41D 446.下列表达式正确的是( )A )199(mod 12001198≡∑=k k B )199(mod 01991198≡∑=k k C )199(mod 11981198-≡∑=k k D )199(mod 11991198≡∑=k k二.填空题(每题5分,共4题)1. 模9的最小简化剩余系为_______.2. 4327891除以18的余数为_______. 3. 1006!100约简后的分母为_______. 4. 250的末两位数为_______.三.计算题(每题8分,共5题)1. 设942762ab ,1142762ab ,求42762ab .2. 用欧拉算法把(5767,4453)表示成5767和4453的倍数和.3. 求20!的标准分解式.4. 解同余方程 )72(mod 4420≡x .5. 装月饼的盒子有两种,大盒子能装7块,小盒子能装4块,要把41块月饼装满盒子,问需要大小盒子各多少个?四.证明题(每题8分,共2题)1.证明:质数有无限多个.2.若整系数二次三项式)(x f =2x +bx +c 当x =0, x =1时的值为奇数,求证:方程)(x f =0没有整数根。

《初等数论》试卷及参考答案(与闵嗣鹤第三版配套)

《初等数论》试卷及参考答案(与闵嗣鹤第三版配套)

《初等数论》试卷一、 单项选择题:(1分/题×20题=20分) 1.设x 为实数,[]x 为x 的整数部分,则( ) A.[][]1x x x ≤<+; B.[][]1x x x <≤+; C.[][]1x x x ≤≤+; D.[][]1x x x <<+. 2.下列命题中不正确的是( ) A.整数12,,,n a a a 的公因数中最大的称为最大公因数; B.整数12,,,n a a a 的公倍数中最小的称为最小公倍数C.整数a 与它的绝对值有相同的倍数 D.整数a 与它的绝对值有相同的约数3.设二元一次不定方程ax by c +=(其中,,a b c 是整数,且,a b 不全为零)有一整数解()00,,,x y d a b =,则此方程的一切解可表为( )A.00,,0,1,2,;abx x t y y t t d d =-=+=±± B.00,,0,1,2,;abx x t y y t t d d =+=-=±± C.00,,0,1,2,;bax x t y y t t d d =+=-=±± D.00,,0,1,2,;bax x t y y t t dd =-=-=±±4.下列各组数中不构成勾股数的是( )A.5,12,13; B.7,24,25; C.3,4,5; D.8,16,17 5.下列推导中不正确的是( )A.()()()11221212mod ,mod mod ;a b m a b m a a b b m ≡≡⇒+≡+ B.()()()11221212mod ,mod mod ;a b m a b m a a bb m ≡≡⇒≡ C.()()111212mod mod ;a b m a a b a m ≡⇒≡ D.()()112211mod mod .a b m a b m ≡⇒≡ 6.模10的一个简化剩余系是( ) A.0,1,2,,9; B.1,2,3,,10;C.5,4,3,2,1,0,1,2,3,4;----- D.1,3,7,9. 7.()mod a b m ≡的充分必要条件是( ) A.;m a b - B.;a b m - C.;m a b + D..a b m +8.设()43289f x x x x =+++,同余式()()0mod5f x ≡的所有解为( ) A.1x =或1;- B.1x =或4; C.1x ≡或()1mod5;- D.无解. 9、设f(x)=10n n a x a x a +++其中()0,mod i a x x p ≡是奇数若为f(x)()0mod p ≡的一个解,则:( )A .()()mod ()0mod ,1p f x p χχ∂≡≡∂>一定为的一个解 B .()()0mod ,1,()0mod p f x p χχ∂∂≡∂>≡一定为的一个解C .()()()00(),()0mod mod ,mod p f x f x p x x p x x p ααα≡≡≡当不整除时一定有解其中 D .()()()00mod ()0mod ,mod x x p f x p x x p ααα≡≡≡若为的一个解则有 10.()10(),,0mod ,,n n i n f x a x a x a a a p n p =+++≡>/设其中为奇数则同余式()()0mod f x p ≡的解数:( ) A .有时大于p 但不大于n; B .可超过pC .等于pD .等于n11.若2为模p 的平方剩余,则p 只能为下列质数中的 :( )A .3B .11C .13D .23 12.若雅可比符号1a m ⎛⎫=⎪⎝⎭,则 ( ) A .()2mod ,x a m ≡同余式一定有解B .()()2,1,mod a m x a p =≡当时同余式有解;C .()2(,mod m p x a p =≡当奇数)时同余式有解;D .()2(),mod a p x a p =≡当奇数时同余式有解.13.()()2mod 2,3,2,1,x a a αα≡≥=若同余式有解则解数等于( )A . 4B .3C . 2D . 1 14. 模12的所有可能的指数为;( )A .1,2,4B .1,2,4,6,12C .1,2,3,4,6,12D .无法确定 15. 若模m 的单根存在,下列数中,m 可能等于: ( ) A . 2 B .3 C . 4 D . 12 16.对于模5,下列式子成立的是: ( )A .322ind =B .323ind =C .350ind =D .3331025ind ind ind =+ 17.下列函数中不是可乘函数的是: ( ) A .茂陛鸟斯(mobius)函数w(a) ; B . 欧拉函数()a φ;C .不超过x 的质数的个数()x π;D .除数函数()a τ;18. 若x 对模m 的指数是ab ,a >0,ab >0,则x α对模m 的指数是( ) A .a B .b C .ab D .无法确定 19.()f a ,()g a 均为可乘函数,则( ) A .()()f a g a 为可乘函数; B .()()f ag a 为可乘函数 C .()()f a g a +为可乘函数; D .()()f a g a -为可乘函数 20.设()a μ为茂陛乌斯函数,则有( )不成立A .()11μ=B .()11μ-=C .()21μ=-D .()90μ= 二.填空题:(每小题1分,共10分)21. 3在45!中的最高次n = ____________________; 22. 多元一次不定方程:1122n n a x a x a x N +++=,其中1a ,2a ,…,n a ,N 均为整数,2n ≥,有整数解的充分必要条件是___________________;23.有理数ab,0a b <<,)(,1a b =,能表成纯循环小数的充分必要条件是_______________________;24. 设()0mod x x m ≡为一次同余式()mod ax b m ≡,a ≡()0mod m 的一个解,则它的所有解为_________________________;25. 威尔生(wilson )定理:________________________________________; 26. 勒让德符号5031013⎛⎫⎪⎝⎭=________________________________________; 27. 若)(,1a p =,则a 是模p 的平方剩余的充分必要条件是_____________(欧拉判别条件); 28. 在模m 的简化剩余系中,原根的个数是_______________________; 29. 设1α≥,g 为模p α的一个原根,则模2p α的一个原根为_____________; 30.()48ϕ=_________________________________。

(完整版)初等数论练习题二(含答案)

(完整版)初等数论练习题二(含答案)

《初等数论》期末练习一、单项选择题1 如果 ba , a b ,则().A a b Bab2、如果 3n , 5n ,贝U 15 (A 整除B 不整除 C3、 在整数中正素数的个数( ).A 有1个B 有限多C 无限多D 不一定4、 如果a b (modm ) ,c 是任意整数 贝UA ac bc(modm)B a bC ac bc(mod m) Dab5、 如果(),则不定方程ax by c 有解.A (a,b) cB c(a, b)C a cD (a, b)a6、 整数5874192能被()整除.A 3B 3 与 9C 9D 3 或 97、 如果 2n , 15n ,贝U 30( ) n . A 整除 B 不整除 C 等于 D 不一定& 大于10且小于30的素数有(). A 4个 B 5个 C 6个 D 7个9、 模5的最小非负兀全剩余系是( ). A -2,-1,0,1,2 B -5,-4,-3,-2,-1 C 1,2,3,4,5 D 0,1,2,3,4 10、 整数637693能被()整除. A 3 B 5 C 7 D 9二、填空题1、素数写成两个平方数和的方法是(). 2、 同余式ax b O (modm )有解的充分必要条件是().8、 如果同余式ax b O (modm )有解,则解的个数(). 9、 在176与545之间有()是13的倍数.10、 如果 ab 0 则[a,b ](a,b )=( ). Cab Dab )n . 等于 D 不一定 3、 如果a,b 是两个正整数,则不大于 4、 如果p 是素数,a 是任意一个整数 5、 a,b 的公倍数是它们最小公倍数的6、 如果a,b 是两个正整数,则存在a 而为b 的倍数的正整数的个数为 ().,则a 被p 整除或者().(). )整数 q, r ,使 a bq r, 0 r b. y 2有( ).11、如果(a,b) 1,那么(ab,a b)=().二、计算题1、求[136,221,391]=?2、求解不定方程9x 21y 144.3、解同余式12x 15 0(mod45).4294、求——,其中563是素数.(8分)5635、求[24871,3468]=?6、求解不定方程6x 17y 18.7、解同余式111x 75(mod321).8、求17的平方剩余与平方非剩余.四、证明题1、证明对于任意整数2n nn,数3 23—是整数.62、证明相邻两个整数的立方之差不能被5整除.3、证明形如4n 1的整数不能写成两个平方数的和4、如果整数a的个位数是5,则该数是5的倍数.5、证明相邻两个偶数的乘积是8的倍数.初等数论期末练习一答案、单项选择题1、D.2、A3、C4、A5、A6、B7、A8、C9、D 10、C二、填空题1、 素数写成两个平方数和的方法是(唯一的)2、 同余式ax b 0(modm)有解的充分必要条件是 ((a,m)b ).3、 如果a,b 是两个正整数,则不大于a 而为b 的倍数的正整数的个数为 ([-]). b4、 如果p 是素数,a 是任意一个整数,则a 被p 整除或者(与p 互素).5、 a,b 的公倍数是它们最小公倍数的(倍数).6、 如果a,b 是两个正整数,则存在(唯一)整数q, r ,使a bq r, 0 r b.7、 设p 是素数,则不定方程p x 2 y 2有(唯一解 ).8、 如果同余式ax b 0(mod m)有解,则解的个数((a, m)).9、 在176与545之间有(28 )是13的倍数.10、 如果 ab 0 则[a,b](a,b)=( ab ).11、 如果(a,b) 1,那么(ab, a b)=(1). 三、计算题1、求[136,221,391]=? ( 8 分) 解[136,221,391]=[[136,221],391]=[1768,391] 1768 391 17=104 391 =40664.解:因为(9,21)=3, 3144,所以有解;化简得3x 7y 48 ;考虑 3x 7y 1,有 x 2, y 1,所以原方程的特解为 x 96, y 48,因此,所求的解是 x 96 7t, y 48 3t,t Z 。

初等数论试卷和答案

初等数论试卷和答案

初等数论考试试卷1一、单项选择题(每题3分,共18分)1、如果a b ,b a ,则( ).A b a =B b a -=C b a ≤D b a ±=2、如果n 3,n 5,则15( )n .A 整除B 不整除C 等于D 不一定3、在整数中正素数的个数( ).A 有1个B 有限多C 无限多D 不一定4、如果)(mod m b a ≡,c 是任意整数,则A )(mod m bc ac ≡B b a =C ac T )(mod m bcD b a ≠5、如果( ),则不定方程c by ax =+有解. A c b a ),( B ),(b a c C c a D a b a ),(6、整数5874192能被( )整除.A 3B 3与9C 9D 3或9二、填空题(每题3分,共18分)1、素数写成两个平方数和的方法是( ).2、同余式)(mod 0m b ax ≡+有解的充分必要条件是( ).3、如果b a ,是两个正整数,则不大于a 而为b 的倍数的正整数的个数为( ).4、如果p 是素数,a 是任意一个整数,则a 被p 整除或者( ).5、b a ,的公倍数是它们最小公倍数的( ).6、如果b a ,是两个正整数,则存在( )整数r q ,,使r bq a +=,b r π≤0.三、计算题(每题8分,共32分)1、求[136,221,391]=?2、求解不定方程144219=+y x .3、解同余式)45(mod 01512≡+x .4、求⎪⎭⎫ ⎝⎛563429,其中563是素数. (8分)四、证明题(第1小题10分,第2小题11分,第3小题11分,共32分)1、证明对于任意整数n ,数62332n n n ++是整数.2、证明相邻两个整数的立方之差不能被5整除.3、证明形如14-n 的整数不能写成两个平方数的和.试卷1答案一、单项选择题(每题3分,共18分)1、D.2、A3、C4、A5、A6、B二、填空题(每题3分,共18分)1、素数写成两个平方数和的方法是(唯一的).2、同余式)(mod 0m b ax ≡+有解的充分必要条件是(b m a ),().3、如果b a ,是两个正整数,则不大于a 而为b 的倍数的正整数的个数为( ][b a ).4、如果p 是素数,a 是任意一个整数,则a 被p 整除或者( 与p 互素 ).5、b a ,的公倍数是它们最小公倍数的( 倍数 ).6、如果b a ,是两个正整数,则存在( 唯一 )整数r q ,,使r bq a +=,b r π≤0.三、计算题(每题8分,共32分)1、 求[136,221,391]=?(8分)解 [136,221,391]=[[136,221],391] =[391,17221136⨯]=[1768,391]------------(4分) = 173911768⨯=104⨯391=40664. ------------(4分)2、求解不定方程144219=+y x .(8分)解:因为(9,21)=3,1443,所以有解; ----------------------------(2分)化简得4873=+y x ; -------------------(1分)考虑173=+y x ,有1,2=-=y x , -------------------(2分)所以原方程的特解为48,96=-=y x , -------------------(1分)因此,所求的解是Z t t y t x ∈-=+-=,348,796。

初等数论试题及答案大学

初等数论试题及答案大学

初等数论试题及答案大学一、选择题(每题5分,共20分)1. 以下哪个数是素数?A. 4B. 9C. 11D. 15答案:C2. 100以内最大的素数是:A. 97B. 98C. 99D. 100答案:A3. 一个数的最小素因子是3,那么这个数至少是:A. 3B. 6C. 9D. 12答案:B4. 以下哪个数是完全数?A. 6B. 28C. 496D. 8128答案:A二、填空题(每题5分,共20分)1. 一个数的因数个数是______,那么这个数一定是合数。

答案:32. 如果一个数的各位数字之和是3的倍数,那么这个数本身也是3的倍数,这个性质称为______。

答案:3的倍数规则3. 欧拉函数φ(n)表示小于或等于n的正整数中与n互质的数的个数,那么φ(10)等于______。

答案:44. 哥德巴赫猜想是指任何一个大于2的偶数都可以表示为两个______之和。

答案:素数三、解答题(每题15分,共30分)1. 证明:如果p是一个素数,那么2^(p-1) - 1是p的倍数。

证明:设p是一个素数,根据费马小定理,对于任意整数a,若p不能整除a,则有a^(p-1) ≡ 1 (mod p)。

特别地,当a=2时,有2^(p-1) ≡ 1 (mod p)。

这意味着2^(p-1) - 1是p的倍数。

2. 计算:求1到100之间所有素数的和。

答案:2 + 3 + 5 + 7 + 11 + 13 + 17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47 + 53 + 59 + 61 + 67 + 71 + 73 + 79 + 83 + 89 +97 = 1060四、综合题(每题10分,共20分)1. 已知a和b是两个不同的素数,证明:a + b至少有4个不同的素因子。

证明:设a和b是两个不同的素数,那么a和b至少有2个不同的素因子。

如果a + b是素数,那么a + b至少有3个不同的素因子。

初等数论期末考试试卷张

初等数论期末考试试卷张

初等数论试卷(B)一,选择题(满分15分,每题3分)1,下列不正确的是( )A 设m ∈+N ,a ,b ∈Z ,若)(mod m b a ≡ ,则)(mod m a b ≡。

B 设m ∈+N ,a ,b ,c ∈Z ,若)(mod m c b a ≡+,则)(mod m b c a -≡.C 设m ∈+N ,,,11b a 22,b a ∈Z ,,若)(m od 11m b a ≡,)(m od 22m b a ≡,则)(mo d 2121m b b a a ≡。

D 设m ∈+N ,a ,b ∈Z ,若)(m od 22m b a ≡ ,则)(mod m b a ≡。

2,下列哪一个为模12互质的剩余类( )A [2],B [5],C [6],D [3]。

3,下列哪一个有理数不可以化为有限小数( )A 203,B 607,C 51,D 10019。

4,同余方程)5(m od 022≡+x 的解为( )A )5(mod 0≡x ,B )5(mod 4≡x ,C )5(mod 2≡x ,D 此方程无解。

5,下列哪一个同余方程组无解( )A ⎪⎩⎪⎨⎧≡≡)10(mod 7)25(mod 9x x ,B ⎪⎩⎪⎨⎧≡≡)6(mod 1)9(mod 4x xC ⎪⎩⎪⎨⎧≡≡)45(mod 2)25(mod 17x x ,D ⎪⎩⎪⎨⎧≡≡)7(mod 26)14(mod 19x x 。

二,填空题(满分10分,每题2分)1,当m = 时,)(mod 1132m ≡和)(mod 1117m ≡同时成立。

2,设m ∈+N ,则 为模m 的非负最小完全剩余系。

3,=)16(ϕ 。

4,写出模8的一个简化剩余系: 。

5,余式)5(mod a x ≡等价于等式: 。

三,判断题(满分10分,每题2分 )1,)(m ϕ为欧拉函数,则1)(1-≤≤m m ϕ。

( )2, 设m ∈+N ,a ∈Z ,(a,m )=1,若整数集合{})(21,......,,m a a a ϕ为模m 的一个简化剩余系,则{})(21,......,,m aa aa aa ϕ也为模m 的一个简化剩余系。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初等数论期末试题及答案1. 选择题
1.1 以下哪个数是质数?
A. 10
B. 17
C. 26
D. 35
答案:B. 17
1.2 下列哪个数不是完全平方数?
A. 16
B. 25
C. 36
D. 49
答案:C. 36
1.3 对于任意正整数n,下列哪个数一定是n的倍数?
A. n^2
B. n^3
C. n+1
D. n-1
答案:A. n^2
2. 填空题
2.1 求下列数的最大公约数:
a) 24和36
b) 45和75
答案:
a) 12
b) 15
2.2 求下列数的最小公倍数:
a) 6和9
b) 12和18
答案:
a) 18
b) 36
3. 计算题
3.1 求1到100之间所有奇数的和。

解答:观察可知,1到100之间的奇数是等差数列,公差为2。

根据等差数列的求和公式,我们可以得到:
(100 - 1) / 2 + 1 = 50 个奇数
所以,奇数的和为:50 * (1 + 99) / 2 = 2500
3.2 求1到100之间所有能被3整除的数的和。

解答:观察可知,1到100之间能被3整除的数是等差数列,首项为3,公差为3。

根据等差数列的求和公式,我们可以得到:
(99 - 3) / 3 + 1 = 33 个数
所以,能被3整除的数的和为:33 * (3 + 99) / 2 = 1683
4. 证明题
4.1 证明:如果一个数是平方数,那么它一定有奇数个正因数。

证明:设n是一个平方数,即n = m^2,其中m是一个正整数。

我们知道,一个数的因数总是成对出现的,即如果a是n的因数,那么n/a也是n的因数。

对于一个平方数n来说,它的因数可以分成两类:
1) 当因数a小于等于m时,对应的商n/a必然大于等于m,因此这样的因数对有m对;
2) 当因数a大于m时,对应的商n/a必然小于等于m,因此这样的因数对有(m - 1)对。

所以,在m > 1的情况下,平方数n有2m - 1个正因数,由于m是正整数,因此2m - 1一定是奇数。

而当m = 1时,平方数1只有一个因数,也满足奇数个正因数的条件。

综上所述,如果一个数是平方数,那么它一定有奇数个正因数。

5. 解答题
5.1 用辗转相除法求出32和24的最大公约数。

解答:用辗转相除法:
32 ÷ 24 = 1 (8)
24 ÷ 8 = 3 0
所以,32和24的最大公约数为8。

5.2 给出一个大于1的正整数n,证明n和n + 2不可能同时都是质数。

解答:考虑两种情况:
1) 如果n是偶数且大于2,那么n + 2一定是偶数,而偶数除了2之外都不是质数,所以n和n + 2不可能同时都是质数。

2) 如果n是奇数,那么n + 2一定是偶数,而奇数和偶数中只有2是质数,所以n和n + 2不可能同时都是质数。

综上所述,n和n + 2不可能同时都是质数。

以上即为初等数论期末试题及答案,祝你学业进步!。

相关文档
最新文档