石墨烯纳米复合材料的合成和性能研究

合集下载

石墨烯纳米复合材料

石墨烯纳米复合材料

石墨烯纳米复合材料
石墨烯是一种由碳原子构成的二维晶格结构材料,具有优异的导电性、热导性
和机械性能。

石墨烯的发现引起了科学界的广泛关注,人们开始探索如何将石墨烯与其他材料结合,以期望得到更多新颖的性能。

石墨烯纳米复合材料应运而生,成为了当前材料科学研究的热点之一。

石墨烯纳米复合材料是指将石墨烯与其他纳米材料进行复合,形成新的材料体系。

这种复合材料不仅继承了石墨烯的优异性能,还具有了其他纳米材料的特性,因此在电子器件、储能材料、传感器等领域具有广阔的应用前景。

首先,石墨烯与纳米金属复合材料在催化剂领域有着重要的应用。

石墨烯具有
大量的π共轭结构,能够提供丰富的活性位点,而纳米金属具有优异的催化性能,将两者复合能够有效提高催化剂的活性和稳定性,从而在化工领域有着广泛的应用。

其次,石墨烯与纳米陶瓷复合材料在耐磨材料领域有着重要的应用。

石墨烯具
有出色的机械性能和高强度,而纳米陶瓷具有硬度大、耐磨性好的特点,二者复合后能够有效提高材料的耐磨性能,因此在航空航天、汽车制造等领域有着广泛的应用。

此外,石墨烯与纳米聚合物复合材料在柔性电子领域也有着重要的应用。

石墨
烯具有优异的导电性和柔韧性,而纳米聚合物具有良好的柔韧性和成型性,二者复合后能够制备出柔性电子器件,如柔性传感器、柔性电池等,因此在可穿戴设备、医疗器械等领域有着广泛的应用前景。

综上所述,石墨烯纳米复合材料具有广泛的应用前景,在能源、材料、电子等
领域都有着重要的作用。

随着材料科学的不断发展,相信石墨烯纳米复合材料将会有更多的新突破,为人类社会的发展做出更大的贡献。

石墨烯基复合材料的制备及性能研究

石墨烯基复合材料的制备及性能研究

石墨烯基复合材料的制备及性能研究石墨烯是一种由碳原子构成的单层二维晶体材料,具有多种优异的物理、化学和机械性质,被广泛认为是材料科学领域的革命性发现之一。

石墨烯具有极高的电子迁移率、巨大的表面积和出色的机械强度,使其成为制备复合材料的理想增强剂。

石墨烯基复合材料的制备方法有多种,其中最常用的方法之一是化学气相沉积法(Chemical Vapor Deposition,CVD)。

CVD法通过将碳源气体(如甲烷)在高温下引入反应室中,经过化学反应生成石墨烯,并将其沉积在基底材料上。

CVD法制备的石墨烯通常为大面积单层石墨烯,具有较高的质量和较少的缺陷。

石墨烯基复合材料的性能研究是一个热门领域。

其中一个典型应用是石墨烯纳米复合材料的电子器件方面。

石墨烯的高电子迁移率和大量的自由电子使其成为理想的导电层材料,可以用于制备高性能的柔性电子器件、传感器和太阳能电池。

另外,石墨烯还可以作为增强剂用于制备高性能的复合材料。

石墨烯具有极高的拉伸强度和刚度,可以有效地增强复合材料的力学性能。

研究表明,在复合材料中引入少量的石墨烯可以显著提高复合材料的强度、刚度和耐磨性。

除了力学性能的增强,石墨烯还可以改善复合材料的导热性能。

石墨烯具有优异的热导率,能够有效地传导热量。

因此,将石墨烯引入导热性能较差的基体材料中,可以显著提高复合材料的导热性能。

这对于一些需要高导热材料的领域(如电子散热材料)具有重要意义。

此外,石墨烯还可以提高复合材料的抗腐蚀性能。

石墨烯具有较高的化学稳定性,可以有效地防止基体材料受到腐蚀。

因此,在复合材料中引入石墨烯可以增强复合材料的耐腐蚀性能,延长其使用寿命。

总之,石墨烯基复合材料的制备和性能研究是一个充满挑战和潜力的领域。

石墨烯的优异性能使其成为制备高性能电子器件和复合材料的理想材料。

未来,随着对石墨烯制备技术和性能研究的不断深入,相信石墨烯基复合材料将在各个领域展现出更多的应用前景。

TiO_2_石墨烯纳米复合材料制备及其光催化性能研究_周建伟

TiO_2_石墨烯纳米复合材料制备及其光催化性能研究_周建伟

第42卷第4期人工晶体学报Vol.42No.42013年4月JOURNAL OF SYNTHETIC CRYSTALS April ,2013TiO 2/石墨烯纳米复合材料制备及其光催化性能研究周建伟1,2,王储备1,禇亮亮1,张明瑛3,史磊3(1.新乡学院能源与燃料研究所,新乡453003;2.清华大学化学系,北京100084;3.新乡学院化学与化工学院,新乡453003)摘要:以TiCl 3和氧化石墨(GO )为原料,采用简便的原位液相法制备了TiO 2/石墨烯(RGO )纳米复合材料。

利用XRD 、SEM 、XPS 和UV-Vis 光谱表征了其微观结构及性能,实验考察了复合材料光催化还原CO 2性能,探究了其光催化反应机理。

研究表明,TiO 2/石墨烯纳米复合材料具有显著的光催化还原活性,光催化反应产物选择性高,反应6.0h 甲醇的累积产量为3.43mmol /L ,石墨烯的协同效应提高了TiO 2半导体的光催化活性和反应效率。

关键词:TiO 2/石墨烯复合材料;光催化;协同效应;反应机理中图分类号:O643.36文献标识码:A 文章编号:1000-985X (2013)04-0762-06收稿日期:2012-10-14;修订日期:2012-12-12基金项目:河南省高校科技创新人才支持计划项目资助(2010HASTIT040)作者简介:周建伟(1966-),男,河南省人,教授,博士。

E-mail :jwchow@163.com Preparation and Photocatalytic Performance of TiO 2/GrapheneNano-composite MaterialZHOU Jian-wei 1,2,WANG Chu-bei 1,CHU Liang-liang 1,ZHANG Ming-ying 3,SHI Lei 3(1.Institute of Energy and Fuel ,Xinxiang University ,Xinxiang 453003,China ;2.Department of Chemistry ,Tsinghua University ,Beijing 100084,China ;3.College of Chemistry and Engineering ,Xinxiang University ,Xinxiang 453003,China )(Received 14October 2012,accepted 12December 2012)Abstract :TiO 2/graphene composite photocatalyst has been prepared by a facile liquid phase deposition method using titanium trifluoride and graphene oxide as the raw materials.The products were characterized by X-ray diffraction ,scanning electron microscopy ,X-ray photoelectron spectroscopy and UV-Visible analysis.It was found that the reduction graphene was covered with petal-like anatase TiO 2nanoparticles ,which were more uniform and smaller in size.The photocatalytic activities were evaluated using the photocatalytic reduction of CO 2.Photocatalytic reduction of CO 2with H 2O in the aqueous phase is studied by using TiO 2/graphene catalyst under UV irradiation.The results showed that the compostie exhibitedsignificantly photocatalytic reduction activities and reaction products high selectivity ,reaction 6h methanol accumulated production for 3.43mmol /L.Graphene effectively improved the photocatalytic activity and reaction efficiency of the semiconductor ,and synergistic effect was obvious.Key words :TiO 2/graphene composites ;photocatalysis ;synergistic effect ;reaction mechanism1引言人工光合成是CO 2转化和利用的创新技术,它利用太阳能激发半导体光催化材料产生光生电子-空穴,第4期周建伟等:TiO2/石墨烯纳米复合材料制备及其光催化性能研究763以诱发氧化-还原反应将CO2与水合成碳氢燃料。

石墨烯-Fe@Fe3O4纳米复合材料的制备及其电磁性能研究

石墨烯-Fe@Fe3O4纳米复合材料的制备及其电磁性能研究
/ _
所 得 到样 品的饱 和 磁 化 强度 、 顽 力 和 剩磁 均 有 所 矫 提 高 .这 应 该是 由于 F e颗 粒 的逐 步长 大 和增 多所
阻抗为 -A th t其中Z为自 zV a () / ny , D o 由空间 波
阻抗 , 传播 常 数 ,为 吸波 涂层 厚 度 ; 为 t 反射 损 耗计
第 2 8卷 第 l O期 2 2年 1 01 O月






Vo _ .0 l28 No 1
C NES OURNAL OFI HI EJ NORGANI C CHEMIT S RY
2 7 .0 2 0 72 8
石 墨烯 . e e 纳米 复合材 料 的制 备及 其 电磁 词 : 墨烯 ;羰 基 铁 ; e F @F 34 石 F; e e O
中 图分 类 号 : 6 48 +; 6 37 ; B 3 0 1.11 O 1 .1 T 3 1
文献标识码 : A
文 章 编 号 :10 .8 1 0 21—0 70 0 14 6 ( 1)02 7 —6 2
g a h n w s b a n d y t e ma l e fl t n f GO. S b e u n l ,t e n i n o ma in f mu i y r r p e e a o t i e b h r l y x o i i o a o u sq e t y h i st i f r t o h l e u o a g a h n — e eO4n n - o o i s a re u t r u h t e h a e d c mp st n o a b n l i n h r p e e F @F 3 a o c mp st wa c r d o t h o g h e td e o o i o f e r o y r .T e e i i o

硫化铜及其氧化石墨烯纳米复合材料的制备与性能的研究

硫化铜及其氧化石墨烯纳米复合材料的制备与性能的研究

硫化铜及其氧化石墨烯纳米复合材料的制备与性能的研究摘要:本文主要研究了硫化铜及其氧化石墨烯纳米复合材料的制备方法和性能。

以硫化铜为基础,加入不同比例的氧化石墨烯,经过多道工序制备出复合材料,并对其进行了形貌、结构以及电化学性能的表征。

结果表明,与纯硫化铜相比,该氧化石墨烯纳米复合材料具有更高的电化学活性和更好的循环稳定性。

关键词:硫化铜,氧化石墨烯,纳米复合材料,电化学性能1.引言硫化铜是一种重要的功能材料,具有广泛的应用前景。

它具有高导电性、良好的机械性能和化学稳定性,因此被广泛用于传感器、催化剂等领域。

然而,由于其电化学活性和循环稳定性较低,限制了其在电化学储能和转化等方面的应用。

因此,研究硫化铜与其他材料的复合效应,提高其电化学活性和稳定性,具有重要意义。

氧化石墨烯是一种具有优异电学、热学、机械和化学性能的纳米材料。

它由于其大比表面积、高导电性和导热性等制备纳米复合材料。

目前,研究表明,氧化石墨烯与硫化铜的复合材料能够有效提高硫化铜电化学性能。

因此,本文将以硫化铜为基础,加入不同比例的氧化石墨烯,制备出硫化铜及其氧化石墨烯纳米复合材料,并研究其电化学性能。

2.实验部分2.1材料制备硫化铜及其氧化石墨烯纳米复合材料的制备涉及到多到工序,具体步骤如下:(1)物质准备:硫化铜粉末、还原石墨烯oxide 纳米粉末、二甲基亚砜、N-甲基吡咯烷酮、无水氢氟酸。

(2)硫化铜制备:取硫化铜粉末2g加入50ml二甲基亚砜,超声分散;加入旋转摇床中,100rpm振荡反应7h,用离心机将粉末分离、脱液,烘干5h后,将其置于800℃的反应炉中反应4h,即可得到硫化铜。

(3)氧化石墨烯纳米制备:将还原石墨烯oxide纳米粉末1g加入20ml的NMP(N-甲基吡咯烷酮)中,用控制温度加热至100℃,产生深褐色的混悬液;加入1.5ml无水氢氟酸,保持反应1h后加水稀释,并用离心机分离、洗涤,烘干5h后得到产品。

2.2复合材料的制备以上述硫化铜和氧化石墨烯纳米粉末为基础,分别按照不同比例混合,为50:1、10:1、5:1、2:1、1:1的比例,经过物理混合和超声混合,得到硫化铜及其氧化石墨烯复合材料。

石墨烯复合材料的制备、性能与应用

石墨烯复合材料的制备、性能与应用

石墨烯复合材料的制备、性能与应用摘要:纳米科学技术是当今社会科学中一个重要的研究话题。

它是现代科学技术的重要内容,也是未来技术的主流。

是基础研究与应用探索紧密联系的新兴高尖端科学技术。

石墨烯具有独特的结构和优异的电学、热学、力学等性能,自从2004年被成功制备出来,一直是全世界范围内的一个研究热点。

由于石墨烯具有巨大的表面体积比和独特的高导电性等特性,石墨烯及其复合材料在电化学领域中有着诱人的应用前景,因此,石墨烯材料的制备及其在电化学领域应用的研究是石墨烯材料研究的一个重要领域。

综述了石墨烯与石墨烯复合材料的制备及其在超级电容器、锂离子电池、太阳能电池、燃料电池等电化学领域中应用的研究现状,展望了石墨烯材料的制备及其在电化学领域应用的未来发展前景。

关键词;复合材料纳米材料石墨烯正文;一,石墨烯复合材料的制备石墨烯是2004年才被发现的一种新型二维平面复合材料,其特殊的单原子层决定了它具有丰富而新奇的物理性质。

研究表明,石墨烯具有优良的电学性质,力学性能及可加工性。

石墨烯复合材料的制备是石墨烯研究领域的一个重要的课题,如何简单,快速,绿色地制备其复合材料,而又采用化学分散法大量制备氧化石墨烯,并采用直接共混法制备氧化石墨烯/酚醛树脂纳米复合材料。

通过AFM、SEM、FT-IR、TG等对其进行表征,结果表明,氧化石墨烯完全剥离,并在基体中分散均匀,而且两者界面相容性好,提高了复合材料的热稳定性。

通过高温热处理使复合材料薄膜在兼顾形貌的同时实现导电,当氧化石墨烯含量为2%(质量分数)时,其导电率为96.23S/cm。

采用原位乳液聚合和化学还原法制备了石墨烯和聚丙乙烯的复合材料。

研究表明PS微球通过公家方式连接到石墨烯的表面。

通过PS微球修饰后的石墨烯在氯仿中变现良好的分散性。

制备的复合材料具有优良的导电性,同时PS的玻璃化温度的热稳定性得到了提高。

本研究所提出的方法具有环境友好高效的特点,渴望被采用到其他聚合物和化合物来修饰石墨烯。

石墨烯纳米复合材料的微观结构与性能研究

石墨烯纳米复合材料的微观结构与性能研究

石墨烯纳米复合材料的微观结构与性能研究摘要:近年来,石墨烯作为一种新颖的碳基材料,其独特的结构和优异的性能引起了广泛关注。

石墨烯纳米复合材料,是将石墨烯与其他纳米材料相结合的复合材料,可以在综合性能上进一步提升。

本文主要探讨了石墨烯纳米复合材料的微观结构与性能之间的关系,并介绍了目前在此领域进行的研究。

1. 引言石墨烯是一种由碳原子单层构成的二维材料,具有高导电性、高热导性和高机械强度等优秀特性。

然而,石墨烯的应用受限于其脆性和难处理性。

为了克服石墨烯的这些缺点,研究者开始将其与其他纳米材料相结合,形成石墨烯纳米复合材料。

这些复合材料不仅可以发挥石墨烯本身的特性,还可以利用其他纳米材料的功能增强其综合性能。

2. 石墨烯纳米复合材料的微观结构研究石墨烯纳米复合材料的微观结构是其性能的基础。

一种常用的制备方法是通过化学还原石墨烯氧化物,将其还原成石墨烯,并与其他纳米材料进行混合。

这种方法可以有效地将石墨烯和其他纳米材料紧密地结合在一起。

此外,还可以利用层状材料(如石墨烯和二硫化钼)之间的范德华相互作用力实现石墨烯的层间叠加。

这种方法可以灵活地控制石墨烯的层数和纳米材料之间的相互作用,从而实现对石墨烯纳米复合材料微观结构的调控。

3. 石墨烯纳米复合材料的性能研究石墨烯纳米复合材料的性能主要取决于其微观结构和组成。

一方面,石墨烯在复合材料中可以作为导电层或衬底,提供高导电性和高热导性,从而改善复合材料的导电性能和导热性能。

另一方面,其他纳米材料的添加可以增强复合材料的力学性能和化学稳定性。

例如,将石墨烯与高分子材料相结合可以提高复合材料的柔韧性和可塑性。

同时,与金属纳米颗粒的结合可以提高复合材料的抗氧化性能。

此外,石墨烯纳米复合材料还具有其他特殊的性能。

例如,通过控制石墨烯的层数和添加纳米颗粒的种类和浓度,可以实现对复合材料的光学性能的调控。

石墨烯纳米复合材料还具有优异的吸附性能和催化性能。

这些特殊的性能使得石墨烯纳米复合材料在能源存储、传感器、催化剂和电子器件等领域具有广阔的应用前景。

石墨烯基复合材料的制备与性能研究

石墨烯基复合材料的制备与性能研究

石墨烯基复合材料的制备与性能研究石墨烯是一种单层碳原子排列成的二维晶体,具有极高的强度、导电性和导热性。

在过去的几年里,石墨烯在材料科学领域引起了广泛的关注。

为了进一步发展石墨烯的应用,研究人员开始将石墨烯与其他材料相结合,形成石墨烯基复合材料。

这些复合材料具有优异的性能和多样化的应用前景。

本文将探讨石墨烯基复合材料的制备方法以及其性能研究。

一、石墨烯基复合材料的制备方法1. 化学气相沉积法(CVD)化学气相沉积法是一种常用的制备大面积石墨烯的方法。

该方法通过在金属衬底上加热挥发的碳源,使其在高温下与金属表面反应生成石墨烯。

石墨烯的生长在具有合适结晶特性的金属表面上进行,如铜、镍等。

CVD法制备的石墨烯可以获得高质量、大尺寸的单层石墨烯。

2. 液相剥离法液相剥离法是一种以石墨为原料制备石墨烯的方法。

通过在石墨表面涂覆一层粘性聚合物,然后利用粘性聚合物与石墨之间的相互作用力,将石墨从衬底上剥离,最终得到石墨烯。

这种方法能够制备出大面积的石墨烯,并且使用简便、成本较低。

3. 氧化石墨烯还原法氧化石墨烯还原法是一种制备石墨烯的简单方法。

首先将石墨烯氧化生成氧化石墨烯,然后通过还原处理,还原为石墨烯。

该方法可以在实验室条件下进行,操作简单方便。

然而,由于氧化石墨烯的导电性较差,所得石墨烯的质量较低。

二、石墨烯基复合材料的性能研究1. 机械性能石墨烯具有出色的机械性能,其强度和刚度超过大多数材料。

石墨烯基复合材料的机械性能主要取决于基体材料和石墨烯的界面相互作用。

研究表明,合适添加石墨烯可以显著提升材料的强度和硬度。

2. 电学性能石墨烯具有优异的电学性能,可以用作电极材料、导电填料等。

石墨烯基复合材料在导电性能方面表现出色,可以用于制备柔性电子器件、传感器等。

3. 热学性能由于石墨烯的热导率高达3000-5000 W/(m·K),石墨烯基复合材料在热学性能方面具有巨大的潜力。

石墨烯能够显著提高基体材料的热导率,因此可以应用于散热材料、热界面材料等领域。

石墨烯纳米复合材料的制备及应用

石墨烯纳米复合材料的制备及应用

石墨烯纳米复合材料的制备及应用随着材料科学技术的不断发展,石墨烯这种特殊材料被越来越多地应用于诸如高强度材料、高导电材料、高热导材料等领域。

但是石墨烯纯粹的形态在某些领域中不一定能够满足要求,因此需要与其他材料结合起来形成复合材料,以期获得更好的性能。

本文将介绍石墨烯纳米复合材料的制备方法及其应用。

一、石墨烯纳米复合材料制备方法1.机械混合法这是一种较为简单的制备方法,将石墨烯和其他纳米材料一起经过机械混合后再进行压制成材料。

但是这种方法难以获得优秀的分散效果和界面相容性,因此在性能方面存在局限。

2.沉积法这是一种常见的制备方法,通过将纳米材料分散在溶液中,然后将石墨烯沉积在纳米材料上面。

这种方法可以获得较好的分散效果和界面相容性,但是需要进行复杂的前处理和后处理过程。

3.化学还原法这种方法通过化学反应来制备石墨烯纳米复合材料。

将还原剂与石墨烯和其他纳米材料混合,利用还原剂产生的化学反应来将石墨烯还原,然后与其他纳米材料结合形成材料。

这种方法具有优秀的分散效果和界面相容性,制备操作简单,成本低廉,因此被广泛应用。

二、石墨烯纳米复合材料的应用及优势1.高强材料石墨烯具有优秀的强度和刚度,而与其他材料结合可以进一步提高强度。

例如,与纳米碳管混合的石墨烯可以形成更加坚韧且抗弯曲的材料,因此可以应用于强度要求较高的结构材料中。

2.高导电和高热导材料石墨烯本身具有优秀的导电和热导性能,当与其他材料结合可以形成具有更高导电和热导性能的材料。

例如,与金属纳米颗粒混合的石墨烯可以形成高效的热界面材料,用于导热和散热。

3.吸附材料石墨烯和其他纳米材料结合可以形成高效的吸附材料,例如,与氧化镁纳米颗粒混合的石墨烯可以应用于吸附有机污染物的处理。

4.传感器石墨烯和其他纳米材料结合可以形成高灵敏、高精度的传感器,例如,与金属纳米颗粒混合的石墨烯可以应用于制备高灵敏的压力传感器。

综上所述,石墨烯纳米复合材料可以应用于很多领域,具有优良的性能和广阔的应用前景。

石墨烯及其复合材料的制备、性质及应用研究共3篇

石墨烯及其复合材料的制备、性质及应用研究共3篇

石墨烯及其复合材料的制备、性质及应用研究共3篇石墨烯及其复合材料的制备、性质及应用研究1石墨烯及其复合材料的制备、性质及应用研究石墨烯是一种由碳原子构成的单层蜂窝状结构材料,具有独特的电学、光学、热学和机械性质。

自2004年它被首次发现以来,它的研究成果一直是纳米科学和材料科学最活跃的领域之一。

石墨烯具有很高的载流子迁移率、良好的机械强度和高比表面积,因此在传感器、电子器件、能量存储装置、超级电容器、太阳能电池、催化剂和生物医学传感器等领域具有广泛的应用。

本文旨在介绍石墨烯及其复合材料的制备方法、性质及其应用研究进展。

石墨烯的制备有许多方法,包括机械剥离、化学气相沉积、物理气相沉积、化学还原、流体力学剥离和微波辐射法等。

其中,机械剥离法是第一个制备单层石墨烯的方法,虽然成本低、易于实现,但需要大量时间和劳动力,并存在控制问题。

化学还原法则采用氧化石墨的还原,得到具有一定缺陷的石墨烯,且杂质易残留影响性质。

化学气相沉积法制备石墨烯具有高晶格载流子迁移率、具有极高的缺陷密度的石墨烯,但过程复杂,成本高。

物理气相沉积法适合生产无缺陷石墨烯,但难以控制多层石墨烯形成、且温度高,影响成品质量。

流体力学剥离法利用石墨烯的自身表面张力减小形成薄膜,但制备过程仍需要控制单层厚度。

微波辐射法是最新的石墨烯制备方法,采用微波对石墨进行瞬间加热、膨胀、冷却制备大面积石墨烯,具有制备速度快、质量好、颗粒易于控制等优点。

石墨烯的独特性质使其在许多应用中具有广阔的前景。

首先,在电子领域,石墨烯可以用来制造微电子器件、包括场效应晶体管、半导体和光电器件等。

FET型石墨烯晶体管基于石墨烯中载流子迁移率的高值,值得在短时间获得了重大的研究进展;二维电子系统(2DEG)可以用于制造高速逻辑电路和高灵敏感受器。

其次,在传感器领域,石墨烯表现出高度灵敏性,可以用于制造各种传感器,如光学传感器、生物传感器等。

此外,石墨烯还可以用于制造锂离子电池、超级电容器、声波马达等能量存储装置中。

石墨烯纳米复合材料

石墨烯纳米复合材料

石墨烯纳米复合材料
石墨烯是一种由碳原子构成的二维晶格结构材料,具有优异的导热、导电、机械强度和化学稳定性等特性。

因此,石墨烯被广泛应用于电子、能源、材料和生物医药等领域。

而石墨烯纳米复合材料则是将石墨烯与其他纳米材料进行复合,以期望获得更加优异的性能和应用。

本文将介绍石墨烯纳米复合材料的制备方法、性能以及应用前景。

首先,石墨烯纳米复合材料的制备方法包括物理法、化学法和生物法等多种途径。

物理法主要包括机械剥离法、化学气相沉积法和化学氧化还原法等;化学法主要包括溶液剥离法、化学还原法和化学气相沉积法等;生物法则是利用生物体内的生物合成途径来制备石墨烯。

不同的制备方法会影响石墨烯纳米复合材料的结构和性能。

其次,石墨烯纳米复合材料具有优异的性能。

首先,石墨烯的高导热、高导电性能使得纳米复合材料具有优异的导热、导电性能,可应用于导热材料和导电材料领域;其次,石墨烯的高机械强度和化学稳定性使得纳米复合材料具有优异的机械性能和耐腐蚀性能,可应用于材料强化和防腐蚀领域;最后,石墨烯的大比表面积和丰富的官能团使得纳米复合材料具有优异的吸附性能和催化性能,可应用于吸附材料和催化材料领域。

最后,石墨烯纳米复合材料具有广阔的应用前景。

首先,在电子领域,石墨烯纳米复合材料可应用于柔性电子、导电油墨和电磁屏蔽材料等领域;其次,在能源领域,石墨烯纳米复合材料可应用于锂离子电池、超级电容器和光伏材料等领域;最后,在材料和生物医药领域,石墨烯纳米复合材料可应用于复合材料、药物载体和生物传感器等领域。

综上所述,石墨烯纳米复合材料具有优异的性能和广阔的应用前景,其制备方法、性能和应用前景将会在未来得到更加广泛的研究和应用。

聚合物纳米复合材料制备及性能研究

聚合物纳米复合材料制备及性能研究

聚合物纳米复合材料制备及性能研究随着材料科学的不断发展,纳米技术已经成为材料研究领域的热点之一。

纳米材料具有小尺寸效应、表面效应、量子效应等特性,使得其在多个领域中具有广泛应用。

在材料的制备过程中,纳米颗粒不仅可以增强基体材料的性能,还可以应用于制备复合材料。

聚合物纳米复合材料对于增强材料的性能有很好的效果。

在本文中,将会介绍聚合物纳米复合材料的制备方法以及其性能研究。

一、聚合物纳米复合材料的制备方法制备纳米复合材料一般需要两种方法:物理方法和化学方法。

物理方法主要通过混合纳米颗粒和基体材料,然后利用某种加工方法将混合物压成所需要的形态;化学方法则主要是通过化学反应将纳米颗粒与基体材料结合起来。

在聚合物纳米复合材料的制备过程中,通过将纳米颗粒掺杂进聚合物结构中,可以使聚合物材料具有一些特异性质。

为了制备出理想的聚合物纳米复合材料,研究者需要以聚合物作为基体材料,然后向其中加入纳米颗粒。

目前,聚合物纳米复合材料的制备方法大多应用于以下两种材料:1.石墨烯聚合物纳米复合材料该材料通常使用单层或多层石墨烯纳米片作为纳米填料,与聚合物基体进行复合,制备出石墨烯复合材料。

石墨烯具有高的化学稳定性和机械强度,其通过控制石墨烯的浓度和聚合物连接方式,可以使得复合材料具有优良的电导性、导热性、机械性和吸能性等特性。

2.纳米粘土聚合物复合材料纳米粘土指的是一种具有纳米尺度特征的层状晶体结构的粘土材料。

经过表面修饰后,纳米粘土可以被聚合物吸附和插入,进而形成纳米复合材料。

这种复合材料具有结构层次分明,表面性质高度可控的特点。

通过在制备过程中控制粘土的装载量、在聚合物链中的位置和相互作用方式,可以调控纳米粘土对聚合物材料的增强效果。

二、聚合物纳米复合材料的性能研究聚合物纳米复合材料的性能研究主要包括物理性能、力学性能、导电性、导热性、热稳定性等方面。

选择适合的性能测试方法可以更好地评估材料的性能。

1.力学性能测试聚合物纳米复合材料的力学性能一般通过拉伸试验、压缩试验等方式进行测试。

高中创新型实验报告

高中创新型实验报告

实验名称:新型环保材料——石墨烯纳米复合材料制备及其性能研究实验目的:1. 掌握石墨烯纳米复合材料的制备方法。

2. 研究石墨烯纳米复合材料在环保领域的应用性能。

3. 培养学生的创新思维和实践能力。

实验时间:2023年X月X日实验地点:学校化学实验室实验人员:张三、李四、王五实验器材:1. 高压反应釜2. 真空干燥箱3. 扫描电子显微镜(SEM)4. X射线衍射仪(XRD)5. 傅里叶变换红外光谱仪(FTIR)6. 红外热分析仪(TGA)7. 紫外可见分光光度计8. 电子天平实验原理:石墨烯纳米复合材料是将石墨烯与聚合物、无机材料等复合而成的新型材料,具有优异的力学性能、导电性能、热稳定性能和环保性能。

本实验通过化学还原法制备石墨烯纳米复合材料,并研究其在环保领域的应用性能。

实验步骤:1. 石墨烯的制备:(1)将氧化石墨烯粉末与一定比例的还原剂(如氢气)混合。

(2)将混合物放入高压反应釜中,加热至一定温度。

(3)反应一段时间后,冷却、过滤、洗涤,得到还原石墨烯。

2. 石墨烯纳米复合材料的制备:(1)将还原石墨烯与聚合物、无机材料等混合。

(2)在一定温度下,将混合物搅拌均匀,制成纳米复合材料。

3. 性能测试:(1)采用SEM观察石墨烯纳米复合材料的形貌。

(2)采用XRD分析石墨烯纳米复合材料的晶体结构。

(3)采用FTIR分析石墨烯纳米复合材料的官能团。

(4)采用TGA分析石墨烯纳米复合材料的耐热性能。

(5)采用紫外可见分光光度计分析石墨烯纳米复合材料的吸光性能。

实验结果与分析:1. 形貌观察:SEM结果显示,石墨烯纳米复合材料具有良好的分散性,石墨烯片层均匀分布在聚合物基体中。

2. 晶体结构分析:XRD结果显示,石墨烯纳米复合材料具有典型的石墨烯结构,说明石墨烯片层得到了有效分散。

3. 官能团分析:FTIR结果显示,石墨烯纳米复合材料中含有C=C、C-O等官能团,表明石墨烯与聚合物、无机材料发生了化学键合。

《石墨烯增强铜基复合材料的制备工艺及其性能研究》范文

《石墨烯增强铜基复合材料的制备工艺及其性能研究》范文

《石墨烯增强铜基复合材料的制备工艺及其性能研究》篇一一、引言随着科技的不断进步,新型材料的研究与开发成为了科研领域的重要方向。

其中,石墨烯增强铜基复合材料因其独特的物理和化学性质,在电子、热管理、机械等多个领域展现出巨大的应用潜力。

本文旨在研究石墨烯增强铜基复合材料的制备工艺,并对其性能进行深入探讨。

二、制备工艺1. 材料选择制备石墨烯增强铜基复合材料的主要原料为高纯度铜粉、石墨烯纳米片以及适量的添加剂。

其中,铜粉应选择粒径适中、纯度高、分散性好的材料;石墨烯应选用具有优异导电性、导热性以及良好力学性能的产品。

2. 制备流程(1)将铜粉与石墨烯纳米片按照一定比例混合,并加入适量的添加剂,进行预处理。

(2)在球磨机中混合均匀,以获得良好的分散效果。

(3)将混合后的粉末进行压制,形成所需的形状和尺寸。

(4)将压制后的材料进行烧结处理,使铜粉与石墨烯纳米片之间形成良好的结合。

(5)对烧结后的材料进行后续处理,如表面处理、热处理等,以提高其性能。

三、性能研究1. 力学性能通过拉伸试验、硬度测试等方法,对石墨烯增强铜基复合材料的力学性能进行评估。

实验结果表明,添加适量的石墨烯能有效提高铜基复合材料的强度和硬度,降低其延展性损失。

2. 电学性能通过电阻率测试、导电性能测试等方法,研究石墨烯对铜基复合材料电学性能的影响。

实验结果显示,添加石墨烯能有效降低铜基复合材料的电阻率,提高其导电性能。

3. 热学性能通过热导率测试、热稳定性测试等方法,对石墨烯增强铜基复合材料的热学性能进行研究。

实验数据表明,添加石墨烯能显著提高铜基复合材料的热导率,增强其热稳定性。

四、结论本研究成功制备了石墨烯增强铜基复合材料,并通过实验研究了其力学、电学和热学性能。

实验结果表明,添加适量的石墨烯能有效提高铜基复合材料的强度、硬度、导电性和热导率。

此外,制备工艺简单、成本低廉,为石墨烯增强铜基复合材料在实际应用中的推广提供了有力的支持。

石墨烯纳米复合材料的制备与应用研究进展

石墨烯纳米复合材料的制备与应用研究进展
的性能 : 比表 面积超 大 , 论值 为 2 3 理 6 0m ・g [ ; 3 机 械性能 优 异 , 氏模 量 达 1 0TP [ ; 导 率 为 5 0 杨 . a 热 4 30
石墨烯 具有优 异的热性 能 、 力学 性能及 电性 能 , 特 别 是氧化 石 墨烯 由于 成 本低 、 料 易 得 、 原 比表 面 积 超 大 、 面官 能 团丰 富 , 表 在经过了稳 定存 在 的石 墨烯 。石 墨烯 得 的出现颠 覆 了传 统 理论 , 使碳 的晶 体结 构 形成 了从 零 维 的富勒 烯 、 维的碳 纳米管 、 一 二维 的石墨烯 到三维 的 金 刚石和 石墨 的完整 体系 ] 。 作 为一种 独特 的二 维 晶体 , 墨烯 具 有 非常 优 异 石
m 。。、
液 中的石墨烯 也可 与聚合物 单体混 合形成 复合材料 体 系 。此 外 , 墨烯 的加入使 复合材料 多功 能化 , 石 不仅 表 现 出优 异的 力学和 电学性能 , 且具有 优 良的加工性 能 ,
为复合 材料 提供 了更广 阔的应用前 景 。
lS・ m一 。张 好斌 等[] 1 对微 孑 MAA/ 墨烯 3 LP 石
导 电纳米复合 材料 进行 了研 究 , 现极 少 量 均匀 分 散 发
作 者在 此 阐述 了石 墨烯 纳 米 复 合 材 料 的制 备 方
法 , 石墨烯 纳米 复合 材 料 的应 用研 究 进展 进 行 了综 对
的石墨烯 即能显著 改变 材料 的 泡孔 结 构 , 为制备 综 合 性 能优异 的微 孔 发 泡材 料 提供 了基 础 。黄 毅 等n 通 过 溶液共混 制备 了石 墨烯 增 强 的聚 氨 酯 ( U) P 复合 材
基体 中形 成纳米级 分散 , 改善聚合 物 的热性 能 、 在 力学 性 能及 电性 能 等方 面 具有 更大 的潜 力 。石 墨烯/ 聚合

石墨烯纳米复合材料及其应用

石墨烯纳米复合材料及其应用

石墨烯纳米复合材料及其应用石墨烯是一种由碳原子构成的二维材料,具有极高的强度、导电性、热传导性和化学稳定性,所以被广泛地应用于各种领域中。

近年来,石墨烯与纳米复合技术的结合,使得新材料的性能得到了大幅度提升,而石墨烯纳米复合材料的研究也成为了材料科学领域的热门话题。

一、石墨烯纳米复合材料的制备方法1. 化学还原法化学还原法是目前使用最为广泛的方法之一,它利用还原剂将氧化石墨烯还原成石墨烯。

在此基础上,通过添加不同的纳米材料,可以制备出石墨烯复合材料。

化学还原法制备出的复合材料,具有制备简单,成本低廉等优点。

2. 机械合成法机械合成法是通过机械研磨的方法将不同原材料混合制备而成的。

该方法可同时制备出纳米复合材料和石墨烯基材。

机械合成法的优点是制备工艺简单,对原料的要求不高,且制备出的材料具有极好的分散性和稳定性。

3. 真空热蒸发法真空热蒸发法是利用高温真空条件下,将石墨烯和纳米材料掺杂在一起来制备纳米复合材料。

该方法可以制备出高质量、高纯度的石墨烯纳米复合材料。

二、石墨烯纳米复合材料的应用领域1. 电子器件石墨烯纳米复合材料可以制备出具有优异性能的电子器件。

由于石墨烯的高导电性和高透明性,因此可以制备出透明导电膜、柔性电极等新型电子组件。

此外,石墨烯与纳米金属粒子复合后,还可用于纳米传感器的制备。

2. 光电功能材料石墨烯与半导体纳米材料复合后,可以制备出光电功能材料。

石墨烯的高导电性、高透明性和优异的光学性能,可以提高太阳能电池、有机发光二极管和光电探测器等光电器件的性能,并且可以延长其使用寿命。

3. 生物医药材料石墨烯复合纳米材料在生物医药领域中也有着广泛的应用。

例如,石墨烯与纳米颗粒复合后,可以制备成高效的抗菌和抗病毒药物,同时具有良好的生物相容性。

此外,石墨烯还可以用于生物成像、癌症治疗等领域。

三、石墨烯纳米复合材料的优势1. 优异的物理性能石墨烯纳米复合材料具有石墨烯和纳米材料的优异性能,如高导电性、高透明性、优异的力学性能、高比表面积和化学稳定性等。

石墨烯/纳米银复合材料的制备及应用研究进展

石墨烯/纳米银复合材料的制备及应用研究进展

石墨烯/纳米银复合材料的制备及应用研究进展综述了石墨烯/纳米银复合材料的制备方法及应用,讨论了其在导电、导热和生物医学等方面的应用,展望了石墨烯/纳米银复合材料的研究方向和发展前景。

标签:石墨烯;复合材料;纳米银;制备及应用石墨烯作为一种由单层单质原子组成的六边形结晶碳材料,其特殊性能的应用一直是近几年研究的重点。

但是石墨烯的生产效率低,需经常将其进行改性,达到以较少的添加量获得更好性能的目的。

其中,纳米银的出现在一定程度上扩大了石墨烯在导电[1],导热方面的应用。

而且纳米银的生产效率高,很好地解决了石墨烯/纳米银的生产问题,为石墨烯在诸多技术领域的应用拓展了空间[2]。

金属粒子由于含有自由移动的电子和极大的比表面积,在导电性和导热性方面有着出色的表现。

而纳米银颗粒,纳米银棒,纳米银线则可以在复合基体中形成网络通路,提高材料的导电性和导热性。

1 石墨烯/纳米银复合材料的制备方法目前,石墨烯掺杂纳米银复合材料可以根据纳米银的形貌特征分为石墨烯/纳米银颗粒复合材料和石墨烯/纳米银线复合材料。

纳米银的加入使得石墨烯复合材料的导电性和导热性以及石墨烯的表面硬度均得到了提高[3]。

1.1 机械共混法机械共混法可分为搅拌法和熔融共混法。

刘孔华[4]利用搅拌法制备得到石墨烯/纳米银线杂化物,在50 ℃下搅拌,升温至210 ℃,最后降至常温得到石墨烯/纳米银线杂化物。

熔融共混法是利用密炼机或者挤出机的高温和剪切作用力下将石墨烯、纳米银和基材熔融后,共混得到石墨烯/纳米复合材料。

该方法用途广泛,适用于极性和非极性聚合物和填料的共混。

并且纳米银的烧结温度在180 ℃,对于纳米银颗粒可以烧结形成一定规模的网络结构。

此方法制备的复合材料所需时间短,且纳米银线是单独制备,所以可以单独控制纳米银线的长度和长径比。

但是由于是机械共混,纳米银在石墨烯材料中的分散性不是很好,且容易发生团聚,达不到形成大量网络结构的目的。

1.2 化学还原法化学还原法是目前比较常见的将金属纳米粒子附着在石墨烯表面的方法。

石墨烯纳米复合材料的制备及其应用研究

石墨烯纳米复合材料的制备及其应用研究

石墨烯纳米复合材料的制备及其应用研究摘要:石墨烯是一种新兴的二维碳纳米材料,具有完美的晶体结构和出色的物理和化学性能。

石墨烯独特的电、热、光学和机械性能,在电子、导热材料、气体传感器、光敏元件和环境科学中具有广泛的潜在应用。

由于其潜在的实际应用价值。

本文概述了石墨烯制备的方法,介绍了石墨烯电极材料、环境吸附材料领域的应用。

并进一步对石墨烯及其纳米复合材料的发展前景做出了分析。

关键词:石墨烯;纳米复合材料;制备石墨烯是纳米复合材料研究中相对重要的材料。

纳米石墨烯复合材料具有更高的制备要求。

目的是生产可用于生物、机械和其他生产领域的高质量、高性能材料,发挥纳米石墨烯复合材料的适用性。

目前,就石墨烯复合材料的制备而言,纳米复合材料的制备是主要的发展趋势。

在当今的各个领域,纳米石墨烯复合材料具有非常明显的优势,并具有良好的发展前景。

因此,纳米石墨烯复合材料的制备和应用也受到越来越多的关注。

一、石墨烯复合材料的制备(一)熔融共混法制备通过熔融共混法制备纳米石墨烯复合材料,实际上是借助高温和高剪切力,将石墨烯或氧化石墨烯分散在聚合物基质中。

由于在使用该方法的纳米石墨烯复合材料的制造过程中不需要溶剂,因此非常适用于极性和非极性聚合物。

研究表明,在以单层或多层形式均匀分布的PET(石墨烯)基质中,基质中可能会出现卷曲和皱褶。

以栅格的形式,大大提高了复合材料的导电性。

当PET基体的石墨烯含量达到3vol%时,复合材料的最大电导率可以达到2.11S/m,这与目前电磁屏蔽领域对石墨烯复合材料的需求一致。

通过这种制造方法,一些专家和学者已经制成了高导电复合材料,例如分离的石墨烯-多壁纳米管/超高分子量聚乙烯,它们的导电率非常高,并且其导电渗透率低,仅为0.039vot%[1]。

(二)溶液混合法制备通过溶液混合法制备纳米石墨烯复合材料,实际上是指在溶剂的作用下,将聚合物分子插入GO片材后,通过还原制备纳米石墨烯复合材料。

石墨烯纳米复合材料的研究及其应用

石墨烯纳米复合材料的研究及其应用

石墨烯纳米复合材料的研究及其应用引言石墨烯是一种最近研发起来的材料,在过去几年中已经吸引了许多科学家和工程师的关注。

石墨烯的独一无二的特性使得其成为了新时代材料科学研究的重要领域之一。

石墨烯单层碳原子排列成一个六边形晶格,其厚度仅为单层纳米且几乎无厚度限制,电子在其表面的运动非常快,寿命长,机械强度极高,导电性也非常优异。

这些特性及其它许多优点使得石墨烯物理和化学的性质十分广泛。

本文将全面介绍石墨烯纳米复合材料的研究及其应用领域。

一、石墨烯纳米复合材料的制备方法1. 机械法机械法制备的石墨烯复合材料是将石墨烯纳米片与基质材料(如聚合物或金属)混合,经过高能机械研磨或高剪切力加工处理得到。

这种制备方法简单易行,适用范围广,成本低廉。

但石墨烯的质量容易受制备条件、基质材料的质量等因素的影响,难以控制。

2. 化学还原法化学还原法制备的石墨烯复合材料是将氧化石墨烯与基质材料进行混合,然后通过还原处理得到。

这种制备方法可以实现大范围和高质量的石墨烯纳米片制备。

但是由于这种方法使用的还原剂一般为有毒物质,制备过程对环境污染大。

3. 气相沉积法气相沉积法制备的石墨烯复合材料是利用化学气相沉积法制备石墨烯,然后将其与基质材料进行混合,制备出石墨烯复合材料。

这种方法生成的石墨烯复合材料具有高质量、高稳定性,但是成本较高。

二、石墨烯纳米复合材料应用的领域1. 储氢领域石墨烯纳米复合材料在储氢领域具有广泛的应用前景。

由于石墨烯具有高表面积、橄榄式晶体结构和良好的导电性能,使得其在氢吸附、存储和释放等方面有着潜力的应用。

同时,石墨烯复合材料的强度和稳定性也具有优势,对于储氢性能进行改进具有重要的作用。

2. 生物医学领域石墨烯纳米复合材料在生物医学领域也具有广泛的应用前景。

石墨烯复合材料可以应用于治疗癌症、制造更好的心血管材料,并且还可以制造出具有高灵敏度的生物传感器。

同时,由于石墨烯具有高比表面积,使得其能够提高药物的吸附效率,提高药物在体内的有效性,因此可以用于制造药物载体材料。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

石墨烯纳米复合材料的合成和性能研究
石墨烯是一种具有杰出电学、热学、物理和化学性质的二维材料,已成为当今
材料科学研究中的热点。

而石墨烯纳米复合材料是将石墨烯与其他一些物质混合,制成一种新型的复合材料。

本文将介绍石墨烯纳米复合材料的合成方法与性能研究。

一、石墨烯纳米复合材料的合成方法
要制备石墨烯纳米复合材料,需要对石墨烯和其他物质进行混合。

目前石墨烯
纳米复合材料的制备方法主要有两种:一种是混合法,即将石墨烯和其他物质混合后进行热处理或化学改性;另一种是组装法,即利用石墨烯的自组装性和其他物质的相互作用制备复合材料。

1. 混合法
混合法通常采用溶剂分散和机械混合两种方法,常用的溶剂有NMP、DMF、
水等,常用的机械混合设备有球磨机、超声波等。

以石墨烯和氧化锌为例,石墨烯和氧化锌经过球磨机混合,然后进行热处理,
制备成石墨烯/氧化锌复合物。

该复合物表现出了比单纯的氧化锌或石墨烯更优异
的电导率和光催化性能。

2. 组装法
组装法是通过电化学、自组装等方法,将石墨烯与其他物质组装成复合材料。

组装法中,石墨烯的自组装性和其他物质的相互作用是关键因素。

以石墨烯和金银纳米颗粒为例,将石墨烯溶于季铵盐水溶液中,利用电化学原理,在黄金和银空间上通过电沉积的方法组装出了石墨烯/金银纳米颗粒复合材料。

该复合材料具有优良的表面增强拉曼散射、光学和电化学性质。

二、石墨烯纳米复合材料的性能研究
石墨烯本身具有优异的电学、光学、机械和热学性质,并且与其他物质结合后,可以产生更高级的性质。

1. 电学性能
石墨烯/金属纳米颗粒复合材料具有优异的电学性能,可以在传感器、透明导
电薄膜和柔性电子器件等领域应用。

石墨烯/金属纳米复合材料的电学性能取决于
石墨烯和金属颗粒之间的相互作用。

2. 光学性能
石墨烯可以吸收大量光能,且其光学性质可以与金属纳米颗粒等材料相结合。

石墨烯/银纳米颗粒复合材料具有优良的表面增强拉曼散射、增强荧光和增强吸收
等光学性能,可以应用于传感器、荧光标记等领域。

3. 机械性能
石墨烯本身具有超强的机械性能,并且与其他材料相结合可以产生更高级的机
械性能。

石墨烯/碳纳米管复合材料可以产生超强的机械性能,同时也具有优良的
导电性和热传导性能,可以应用于高性能复合材料领域。

4. 热学性能
石墨烯在热学性能方面也具有杰出的表现,而与其他物质组合后还可以提高其
热学性能。

石墨烯/铜纳米颗粒复合材料可以实现优良的热导率,可以应用于高性
能散热材料领域。

总结起来,石墨烯纳米复合材料具有丰富的应用前景,可以应用于传感器、生
物医学、能源储存、柔性电子器件以及高性能复合材料等领域。

同时,石墨烯纳米复合材料的制备方法和性能研究也是当前材料科学研究中的热点,需要不断深入探索和发展。

相关文档
最新文档