数学建模作业5数学规划模型----供应与选址的问题
数学建模中选址问题(Lingo程序)
P94,例3.4 选址问题目录题目 (1)第一步,旧址基础上只求运量的LP程序 (1)第二步,旧址基础上选择新址的NLP程序 (2)题目6个工地的地址(坐标表示,距离单位KM)及水泥用量(单位:吨)如下表,而在P(5,1)及Q(2,7)处有两个临时料场,日储量各有20t,如何安排运输,可使总的吨公里数最小?新料场应选何处?能节约多少吨公里数?第一步,旧址基础上只求运量的LP程序MODEL:Title Location Problem;sets:demand/1..6/:a,b,d;supply/1..2/:x,y,e;link(demand,supply):c;endsetsdata:!locations for the demand(需求点的位置);a=1.25,8.75,0.5,5.75,3,7.25;b=1.25,0.75,4.75,5,6.5,7.75;!quantities of the demand and supply(供需量);d=3,5,4,7,6,11; e=20,20;x,y=5,1,2,7;enddatainit:!initial locations for the supply(初始点);endinit!Objective function(目标);[OBJ] min=@sum(link(i,j): c(i,j)*((x(j)-a(i))^2+(y(j)-b(i))^2)^(1/2) );!demand constraints(需求约束);@for(demand(i):[DEMAND_CON] @sum(supply(j):c(i,j)) =d(i););!supply constraints(供应约束);@for(supply(i):[SUPPL Y_CON] @sum(demand(j):c(j,i)) <=e(i); );!@for(supply: @free(x);!@free(Y);!);@for(supply: @bnd(0.5,X,8.75); @bnd(0.75,Y,7.75); );END运行可得到全局最优解Global optimal solution found.Objective value: 136.2275Total solver iterations: 1Model Title: Location ProblemVariable Value Reduced CostX( 1) 5.000000 0.000000X( 2) 2.000000 0.000000Y( 1) 1.000000 0.000000Y( 2) 7.000000 0.000000E( 1) 20.00000 0.000000E( 2) 20.00000 0.000000第二步,旧址基础上选择新址的NLP程序!选新址的NLP程序;MODEL:Title Location Problem;sets:demand/1..6/:a,b,d;supply/1..2/:x,y,e;link(demand,supply):c;endsetsdata:!locations for the demand(需求点的位置);a=1.25,8.75,0.5,5.75,3,7.25;b=1.25,0.75,4.75,5,6.5,7.75;!quantities of the demand and supply(供需量);d=3,5,4,7,6,11; e=20,20;enddatainit:!initial locations for the supply(初始点);!x,y=5,1,2,7;endinit!Objective function(目标);[OBJ] min=@sum(link(i,j): c(i,j)*((x(j)-a(i))^2+(y(j)-b(i))^2)^(1/2) );!demand constraints(需求约束);@for(demand(i):[DEMAND_CON] @sum(supply(j):c(i,j)) =d(i););!supply constraints(供应约束);@for(supply(i):[SUPPL Y_CON] @sum(demand(j):c(j,i)) <=e(i); );!@for(supply: @free(x);!@free(Y);!);@for(supply: @bnd(0.5,X,8.75); @bnd(0.75,Y,7.75); );END求解结果只得到局部最优解Local optimal solution found.Objective value: 89.88347Total solver iterations: 67Model Title: Location ProblemVariable Value Reduced CostX( 1) 5.695966 0.000000X( 2) 7.250000 -0.3212138E-05Y( 1) 4.928558 0.000000Y( 2) 7.750000 -0.1009767E-05如果不要初始数据,可能计算时间更长,本例的结果更优:Local optimal solution found.Objective value: 85.26604Total solver iterations: 29Model Title: Location ProblemVariable Value Reduced CostX( 1) 3.254883 0.000000X( 2) 7.250000 -0.2958858E-05Y( 1) 5.652332 0.000000Y( 2) 7.750000 -0.1114154E-05如果想求全局最优解,结果将会出现如下错误版本限制,但会得到一个的局部最优解,结果与不要初始数据时算出的结果一样。
数学建模作业5数学规划模型----供应与选址的问题
日储量为 e j ,j=1,2;料场 j 向工地 i 的运送量为 Xij 。
目标函数为:
26
min f X ij j1 i1
约束条件为:
(x j ai )2 ( y j bi )2
2
X ij di ,
j 1
6
X ij e j ,
i 1
i 1,2,,6 j 1,2
再编写主程序 liaochang2.m 为:
clear x0=[3 5 4 7 1 0 0 0 0 0 5 11 5 4 7 7]; A=[1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0]; B=[20;20]; Aeq=[1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1
2
3
4
5
6
料场 1 3
5
0
7
0
1
料场 2 0
0
4
0
6
10
总的吨千米数为 136.2275.
改建两个新料场的情形:
先编写 M 文件 liaochang.m:
function f=liaoch(x) a=[1.25 8.75 0.5 5.75 3 7.25]; b=[1.25 0.75 4.75 5 6.5 7.75]; d=[3 5 4 7 6 11]; e=[20 20]; f1=0; for i=1:6
for i=1:6 for j=1:2 aa(i,j)=sqrt((x(j)-a(i))^2+(y(j)-b(i))^2); end
end
CC=[aa(:,1); aa(:,2)]'
数学建模学校选址问题
学校选址问题摘要本文为解决学校选址问题,建立了相应的数学模型。
针对模型一首先,根据已知信息,对题目中给出的数据进行处理分析。
在保证每个小区,学生至少有一个校址可供选择的情况下,运用整数规划中的0-1规划法,列出建校方案的目标函数与其约束条件,通过LINGO软件,使用计算机搜索算法进行求解。
得出建立校址的最少数目为4个。
再运用MATLAB软件编程,运行得到当建校的个数为4个时,学首先,对文中给出的学校建设成本参数表和各校区1到6年级学龄儿童的平均值(样本均值)进行分析,可知20个小区估计共有4320个学龄儿童,当每个学校的平均人数都小于600时,至少需要建设8个学校;其次,模型一得到最少的建校数目为4个,运用MATLAB软件编程,依次列出学校个数为4、5、6、7、8时的最优建校方案,分别算出其最优建校方案下的总成本;最后,通过对比得出,最低的建校总成本为1650万,即选取校址10、11、13、14、15、16建设学校。
最后,我们不但对模型进行了灵敏度分析,,保证了模型的有效可行。
关键词:MATLAB灵敏度 0-1规划总成本选址1 问题重述当代教育的普及,使得学校的建设已成为不得不认真考虑的问题。
1.1已知信息1、某地新开发的20个小区需要建设配套的小学,备选的校址共有16个,各校址覆盖的小区情况如表1所示:2、在问题二中,每建一所小学的成本由固定成本和规模成本两部分组成,固定成本由学校所在地域以及基本规模学校基础设施成本构成,规模成本指学校规模超过基本规模时额外的建设成本,它与该学校学生数有关,同时与学校所处地域有关。
设第i 个备选校址的建校成本i c 可表示为(单元:元)学生人数)600-(50100200010⎩⎨⎧⨯⨯⨯+=i i i c βα,若学生人数超过600人,其中i α和i β由表2给出:并且考虑到每一小区的学龄儿童数会随住户的迁移和时间发生变化,当前的精确数据并不能作为我们确定学校规模的唯一标准,于是我们根据小区规模大小用统计方法给出每个小区的学龄儿童数的估计值,见表3:1.2提出问题1、要求建立数学模型并利用数学软件求解出学校个数最少的建校方案。
数学建模仓库选址问题
数学建模仓库选址问题(总10页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除仓库选址问题摘要随着全球经济的一体化,物资流通的范围已经不仅仅局限在国家内部,而是也走向来了世界各地。
面对多种多样的物资运输方案,就需要我们从中选择一种最节约费用的方案来实施。
基于此,本文针对美国超级医疗设备公司选址问题给出了两种数学模型。
全文首先对给出的题目进行数学分析,分析数据之间的直观联系和潜在联系,把数据从现实问题中抽离出来转化为纯粹的数学符号,然后借助于数学分析中求解重心坐标的公式(Dix--第i个地点的x坐标;Diy--第i个地点的y坐标;Vi--运到第i个地点或从第i个地点运出的货物量)两点间距离公式和数理统计中求解加权平均值的方法对数据进一步整合。
在此基础上,将之转化为MATLAB计算语言进行数据操作,一方面,借助于MAYLAB绘图工具将题中给出的数据再现于图中,直观明了,便于从图中发现些隐含信息;另一方面,利用MATLAB程序设计中的循环结构进行必要的编程和计算。
由于每种方案的均相等,所以只需比较一下每种方案的总成本(外向运输成本和内向运输成本)即可,总成本最低的城市即为最佳选址点,利用方案比较法最终得出结论。
关键词:重心法、加权平均值法一、问题重述美国超级医疗设备公司在亚利桑那州的菲尼克斯和墨西哥的蒙特雷生产零部件,然后由位于堪萨斯州堪萨斯城的一家仓库接受生产出来的零件,随后在分拨给位于美国和加拿大的客户。
但由于某些原因,公司要考虑仓库选址的最优化。
现已知若继续租赁原仓库,租金为每年每平方英尺美元,仓库面积为20万平方英尺,若在其他城市租同等规模的仓库,租金为每平方英尺美元,并且新租约或续租的期限均为5年。
假如转移仓库,则需一次性支付30万美元的搬迁费及其他选址费。
从工厂到堪萨斯仓库的运输费为2162535美元,从仓库到客户的运输费为4519569美元,仓库租赁费为每年100万美元。
数学建模报告选址问题
长沙学院数学建模课程设计说明书题目选址问题系(部) 数学与计算机科学专业(班级) 数学与应用数学姓名学号指导教师起止日期 2015、6、1——2015、6、5课程设计任务书课程名称:数学建模课程设计设计题目:选址问题已知技术参数和设计要求:选址问题(难度系数1.0)已知某地区的交通网络如下图所示,其中点代表居民小区,边代表公路,边上的数字为小区间公路距离(单位:千米),各个小区的人数如下表所示,问区中心医院应建在哪个小区,可使离医院最远的小区居民人均就诊时所走的路程最近?各阶段具体要求:1.利用已学数学方法和计算机知识进行数学建模。
2.必须熟悉设计的各项内容和要求,明确课程设计的目的、方法和步骤。
3.设计中必须努力认真,独立地按质按量地完成每一阶段的设计任务。
4.设计中绝对禁止抄袭他人的设计成果。
5.每人在设计中必须遵守各组规定的统一设计时间及有关纪律。
6.所设计的程序必须满足实际使用要求,编译出可执行的程序。
7.要求程序结构简单,功能齐全,使用方便。
设计工作量:论文:要求撰写不少于3000个文字的文档,详细说明具体要求。
1v 5工作计划:提前一周:分组、选题;明确需求分析、组内分工;第一天:与指导老师讨论,确定需求、分工,并开始设计;第二~四天:建立模型并求解;第五天:完成设计说明书,答辩;第六天:针对答辩意见修改设计说明书,打印、上交。
注意事项⏹提交文档➢长沙学院课程设计任务书(每学生1份)➢长沙学院课程设计论文(每学生1份)➢长沙学院课程设计鉴定表(每学生1份)指导教师签名:日期:教研室主任签名:日期:系主任签名:日期:长沙学院课程设计鉴定表目录第一章课程设计的目的、任务及要求 (2)1.1 目的 (2)1.2 主要任务 (2)1.3 要求 (2)摘要 (3)第二章问题重述 (4)2.1 问题背景 (4)2.2 问题重述 (4)第三章问题分析 (5)第四章假设与符号约定 (6)4.1 模型假设 (6)4.2符号说明 (6)第五章模型的建立与求解 (7)5.1.选定中心点 (7)5.1.1 模型一 (7)5.1.2 模型二 (7)5.2 题目引申 (9)第六章模型的结果分析与检验 (10)6.1 结果分析 (10)6.2 模型检验 (10)6.3 模型优缺点 (12)结论 (13)参考文献 (14)结束语 (15)附录 (16)第一章课程设计的目的、任务及要求1.1 目的1、巩固《数学建模》课程基本知识,培养运用《数学建模》理论知识和技能分析解决实际应用问题的能力;2、初步掌握数学建模的基本流程,培养科学务实的作风和团体协作精神;3、培养调查研究、查阅技术文献、资料、手册以及撰写科技论文的能力。
【数学建模案例分析6.选址问题】
出版社销售代理点的选择模型摘要:本文主要是为了解决出版社准备在某市建立两个销售代理点,向七个区的大学生售书,知道每个区的大学生人数(千人)和每个区的位置关系,如图一,每个销售代理点只能向本区和一个相邻区的大学生售书,建立模型确定销售代理点的位置,使得能供应的大学生的数量最大。
我们建立了一个整数线性规划模型,确定决策变量:12x ,13x ,23x ,24x ,34x ,25x ,45x ,46x ,47x ,56x ,67x ,ij x 1=表示(i ,j )区的大学生由一个销售代理点供应,否则0ij x =,写出目标函数,确定约束条件。
用lindo 软件求解,的到的最优解:max 177=, 251x =,471x =。
对图一得各区进行标号,见图二,说明2和5区的大学生由一个销售代理点供应,4和7区的大学生由一个销售代理点供应,该出版社能供应的大学生的最大数量为177千人。
此整数线性规划模型在地区小的范围和销售代理点少的情况小无疑是一个很好的模型,但要在比较大的市场上来选在较多的代理点的话还得考虑其他更好的方案。
关键字:整数线性规划模型 lindo 软件1 问题重述随着现在社会的进步,人民生活水平的提高,市场的公司也是越做越大,销售代理点也是越来越多,而且是做到更小的区域了,以满足更多人的需要,这就要求我们在选择销售代理点的时候,需要考虑的情况也越来越多,在满足更多人方便的时候也得为公司赚取更多的资金。
本文需要解决的题目:一家出版社准备在某市建立两个销售代理点,向七个区的大学生售书,每个区的大学生(单位:千人)已经表示在图上,如图一。
每个销售代理点只能向本区和一个相邻区的大学生售书,这两个销售代理点应该建在何处,才能使所能供应的大学生的数量最大。
2 模型假设及符号说明对七个区分别进行标号,如图二,图中的人数和标号是对应的。
(1)i ,j 表示区,i ,j 1,2,3,4,5,6,7=;(2)i y 表示第i 区大学生的人数;(3)ij x 1=表示(i ,j )区的大学生由一个销售代理点供应,i j <且它们在地图上相邻。
数学建模 学校选址问题模型
学校选址问题摘 要本文针对某地新开发的20个小区建设配套小学问题建立了0-1规划模型和优化模型。
为问题一和问题二的求解,提供了理论依据。
模型一:首先:根据目标要求,要建立最少学校的方案列出了目标函数:∑==161i i x s然后:根据每个小区至少能被一所学校所覆盖,列出了20个约束条件;最后:由列出的目标函数和约束函数,用matlab 进行编程求解,从而得到,在每个小区至少被一所学校所覆盖时,建立学校最少的个数是四所,并且一共有22种方案。
模型二:首先:从建校个数最少开始考虑建校总费用,在整个费用里面,主要是固定费用,由此在问题一以求解的条件下,进行初步筛选,得到方案1,4,8的固定成本最少。
然后:在初步得出成本费用最少时,对每个这三个方案进一步的求解,求出这三个方案的具体的总费用,并记下这三套方案中的最小费用。
其次:对这三套方案进行调整,调整的原则是:在保证每个小区有学校覆盖的条件下,用多个固定成本费用低的备选校址替换固定成本费用高的备选校址。
在替换后,进行具体求解。
再次:比较各种方案的计算结果,从而的出了如下结论: 选用10,11,13,15,16号备选校址的选址方案,花费最少,最少花费为13378000元。
最后:对该模型做了灵敏度分析,模型的评价和推广。
关键字:最少建校个数 最小花费 固定成本 规模成本 灵敏度分析1. 问题重述1.1问题背景:某地新开发的20个小区内需要建设配套的小学,以方便小区内居民的的孩子上学。
但是为了节省开支,建造的学校要求尽量的少,为此,设备选定的16个校址提供参考,各校址覆盖的小区情况如表1所示:表1-1备选校址表备选校址1 2 345 6 7 8 覆盖小区1,2,3, 4,6 2,3,5,8, 11,20 3,5,11,201,4,6,7,12 1,4,7,8,9,11,13, 14 5,8,9,10 11,16,20 10,11,1516,19, 20 6,7,12, 13,17, 18 备选校址9 10 11 12 13 14 15 16覆盖小区 7,9,13, 14,15, 17,18, 199,10,14,15,16, 18,191,2,4,6, 75,10,11, 16,20,12,13,14,17, 189,10,14, 152,3,,5, 11,202,3,4,5,81.2 问题提出:问题一、求学校个数最少的建校方案,并用数学软件求解(说明你所使用的软件并写出输入指令)。
数学建模论文选址优化
安徽建筑大学大学生数学建模竞赛报名表编号(由活动组织者填写):队员详细信息(选手题写)公司新厂选址问题摘要本文针对公司新厂址选址问题,以经济因素作为主要评判指标,综合分析了各城市距原加工厂的距离数值、各城市的月需求量、相关的人工工资和运费标准数据,运用灰色预测法、指数平滑法、线性规划法、重心迭代法分别建立了需求量预测模型、最优生产规模模型和新厂厂址选址模型,运用EXCEL、MATLAB、LINGO数学软件得出了相应的预测数据和地理位置坐标。
最后,我们从运费节省的角度对新厂厂址进行了评价,与原厂厂址的运费花费作对比得到了新厂厂址更优的结论。
针对问题一,根据所给各城市的月需求量,为了减少单种预测方法带来的误差,我们采用了灰色预测法和指数平滑法建立了模型I:组合预测模型。
首先,采用灰色预测法,运用MATLAB数学软件对18个城市本年度第12个月和未来一年的产品需求量进行预测,并将得到的预测值与实际值进行对比分析,得到未来一年中各地区每月的产品需求量。
由对预测结果的分析可知,各城市需求量在1-5月呈递增趋势,但是增长幅度不太明显,在5月份以后各月产量上下波动,波动相对稳定,其中最大需求量出现在1月份,最小需求量在12月份。
针对问题二,根据所给工资标准及运输价格等条件,确定各工厂的生产规模。
在考虑总成本即人工费用和运输费用最小的前提下运用线性规划思想,建立了模型II:最有生产规模模型。
以满足加工厂产量不小于供货城市的需求量为条件,同时为了确定加工厂和供货城市之间的对应关系,我们引入了0—1规划并运用LINGO数学软件分别对11个月份进行线性规划分析,从而得到各个工厂的生产产量和工人人数针对问题三,我们在问题一和问题二的基础上,参考各城市的地理位置重新选址,并给新厂选址做出评价,建立模型III:重心迭代模型。
首先,我们对18个城市地理位置特点进行区域划分。
然后,采用重心法和微分法利用MATLAB软件求解,并通过迭代计算。
数学建模之规划问题
一、线性规划1.简介1.1适用情况用现有资源来安排生产,以取得最大经济效益的问题。
如: (1)资源的合理利用(2)投资的风险与利用问题 (3)合理下料问题 (4)合理配料问题 (5)运 输 问 题 (6)作物布局问题(7)多周期生产平滑模型 (8)公交车调度安排 1.2建立线性规划的条件(1)要求解问题的目标函数能用数值指标来反映,且为线性函数; (2)要求达到的目标是在一定条件下实现的,这些约束可用线性等式或不等式描述。
1.3线性规划模型的构成决策变量、目标函数、约束条件。
2、一般线性规划问题数学标准形式:目标函数:1max ==∑ njjj z cx约束条件:1,1,2,...,,..0,1,2,...,.=⎧==⎪⎨⎪≥=⎩∑nij j i j ja xb i m s t x j nmatlab 标准形式:3、可以转化为线性规划的问题例:求解下列数学规划问题解:作変量変换1||||,,1,2,3,4,22+-===i i i ii x x x x u v i 并把新变量重新排序成一维变量[]1414,,,,,⎡⎤==⎢⎥⎣⎦L L Tu y u u v v v ,则可把模型转化为线性规划模型其中:[]1,2,3,4,1,2,3,4;=T c 12,1,;2⎡⎤=---⎢⎥⎣⎦Tb 111111131 - - ⎡⎤⎢⎥= - -⎢⎥⎢⎥ -1 -1 3⎣⎦A 。
利用matlab 计算得最优解:12342,0,=-===x x x x 最优值z=2。
程序如下:略二、整数规划1.简介数学规划中的变量(部分或全部)限制为整数时称为整数规划。
目前流行求解整数规划的方法一般适用于整数线性规划。
1.1整数规划特点1)原线性规划有最优解,当自变量限制为整数后,出现的情况有①原线性规划最优解全是整数,则整数规划最优解与线性规划最优解一致。
②整数规划无可行解。
③有可行解(存在最优解),但最优解值变差。
数学建模最佳选址类问题分析
,
则n=-7
,所以直线L' 为:x-4 y-7
=0.
所以L'与L的距离为:
故输水管的总长度:S(R) =2a +9-
(5)
用△法,可得S(R)≥21或S(R) ≤ -3,由于S(R)≥0, 则S(R)≥21
,即S(R)的最小值为21, 代入(5),
解得a=8,从而d=5,进一步可求出|PR|=10, |PQ|=6。
=
。
Q R
Q'
x
图3
这里建立的是关于x、y的二元函数模型,但求 解困难。
第7页,本讲稿共11页
如图4,过R作L‘//x 轴,则问题
y
转化为在 L'上找点R, 使RP+RQ为最小。
l' P
作Q关于L'的对称点 Q',则
S(R)=| RP | +| RQ | +y≥ | PQ' |+y ,
取这样的 R,使 S(R)=| PQ' |+y
Q RQ
M
x
图4 思
则S(R)= (3 8 ) 2 ( 2 8 1 y20 y ) 2y 2 1 8 1y 2 y (19 ) 路
二
用判别式法可得 S(R)≥21或S(R)≤ -3.
因为S(R)≥0 故S(R)的最小值是21,代入(1)中得y =5
,于是Q'(8 3 , 2 )
PQ'的直线方程为y =
14
P
Q
即找一点 R ,使 R 到P、Q及 10
R
8
直线 l 的距离之和为最小。
l 河
图1
第2页,本讲稿共11页
二、提出方案
14
P
Q
建模论文示例 供应与选址问题
供应与选址问题的数学模型摘要本论文主要讨论并解决了某公司每天给工地的供应计划与临时料场选址的相关问题。
为使总吨千米数达到最小,在考虑有直线道路连通的情况下建立相应的数学模型,给出了相关算法。
并运用Lingo、matlab等软件编程和处理相关数据,得到最优决策方案。
问题一是一个线性规划问题,我们首先建立单目标的优化模型,也即模型一。
借助Lingo软件得到了该公司每天向六个建筑工地运输水泥的供应计划如下表,从而可使得总的吨千米数最小为157.473.问题二是一个非线性规划模型,要求改变临时料场的位置以使吨千米数进一步减少,在改变临时料场的同时,料场向各个工地的水泥运输量的计划也会随之而改变。
用matlab中的fmincon函数求解,得到料场的新位置及料场向各工地的水泥运输量计划如下表,总的吨千米数最小为118.9878。
与第一问的线比较,节省的吨千米数最小为38.4852。
料场的新位置及料场向各工地的水泥运输量计划表关键词选址与供应非线性规划fmincon函数最优化1 问题背景随着经济的发展,工地的建设选址与供应问题也越来越重要,供应与选址问题是运筹学中经典的问题之一。
我国是一个人口众多的国家,供应与选址问题在生产生活、物流、甚至军事中都有着非常广泛的应用,如工厂、仓库、急救中心、消防站、垃圾处理中心、物流中心、导弹仓库的选址等。
供应和选址是最重要的长期决策之一,供应的位置和选址的好坏直接影响到工地建设服务方式、服务质量、服务效率、服务成本等,从而影响到工地的建设效益,甚至决定了建设工地所在单位的命运。
好的选址和供应会给工地的建设和服务带来便利,降低成本,扩大利润和市场份额,提高服务效率和竞争力,对进一步加快公司的工地建设和创新创业发展步伐,突出产业创新,在本行业中打造现代产业体系中做先锋,激活创新主体,在加快提升公司与企业创新能力上实现重大突破有重大意义。
差的选址与供应往往会带来很大的不便和损失,甚至是灾难。
数学建模选址问题完整版
数学建模选址问题 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】选址问题摘要目前,社区的优化管理和最佳服务已经成为一种趋势,并且为城市的发展作出了一定的贡献。
本文针对在社区中选址问题及巡视路线问题,分别建立了多目标决策模型、约束最优化线路模型,并分别提供了选址社区和巡视路线。
对于问题一,我们建立了单目标优化模型,考虑到各社区居民到收费站点的平均距离最小,我们使用floyd 算法并通过matlab 编程,算出任意两个社区之间的最短路径,并以此作为工具,使用0-1变量列出了目标函数。
在本题中,我们根据收费站数、超额覆盖等确定了约束条件,以保证收费站覆盖每个社区,同时保证居民与最近煤气站之间的平均距离最小,最终利用lingo 软件求得收费站建在M、Q、W三个社区。
对于问题二,同样是单目标优化模型,较之问题一不同的是,问题二不需要考虑人口问题,但需要确定选址的个数。
接下来的工作分了两步,第一步,我们通过0-1变量列出目标函数,以超额覆盖等确定约束条件,用lingo 软件编程求出最小派出所站点的个数;第二步,我们利用第一步中求出的派出所个数作为新的约束条件,建立使总距离最小的优化模型,最终利用lingo 软件求得三个派出所分别建在W、Q、K社区。
对于问题三,我们建立了约束最优化线路模型,根据floyd 算法求得的任意两个社区之间的最短路径,建立了以w 点为树根的最短路径生成树,并据此对各点的集中区域进行划分,再利用破圈法得到最短回路。
在本题中,我们初定了两种方案,并引入均衡度α对两种方案进行比较,最终采用了方案二。
最后,我们用matlab编程求解方案二中各组的巡视路线为113百米,123百米,117百米,均衡度α=%。
具体路线见关键词:最短路径 hamilton圈最优化 floyd算法1问题重述在社区中缴费站的选址对于居民快速缴费和充分的利用公共设施的资源有很重要的指导意义。
数学建模选址问题
摘要目前,社区的优化管理和最佳服务已经成为一种趋势,并且为城市的发展作出了一定的贡献。
本文针对在社区中选址问题及巡视路线问题,分别建立了多目标决策模型、约束最优化线路模型,并分别提供了选址社区和巡视路线。
对于问题一,我们建立了单目标优化模型,考虑到各社区居民到收费站点的平均距离最小,我们使用floyd 算法并通过matlab 编程,算出任意两个社区之间的最短路径,并以此作为工具,使用0-1变量列出了目标函数。
在本题中,我们根据收费站数、超额覆盖等确定了约束条件,以保证收费站覆盖每个社区,同时保证居民与最近煤气站之间的平均距离最小,最终利用lingo 软件求得收费站建在M、Q、W三个社区。
对于问题二,同样是单目标优化模型,较之问题一不同的是,问题二不需要考虑人口问题,但需要确定选址的个数。
接下来的工作分了两步,第一步,我们通过0-1变量列出目标函数,以超额覆盖等确定约束条件,用lingo 软件编程求出最小派出所站点的个数;第二步,我们利用第一步中求出的派出所个数作为新的约束条件,建立使总距离最小的优化模型,最终利用lingo 软件求得三个派出所分别建在W、Q、K社区。
对于问题三,我们建立了约束最优化线路模型,根据floyd 算法求得的任意两个社区之间的最短路径,建立了以w 点为树根的最短路径生成树,并据此对各点的集中区域进行划分,再利用破圈法得到最短回路。
在本题中,我们初定了两种方案,并引入均衡度α对两种方案进行比较,最终采用了方案二。
最后,我们用matlab编程求解方案二中各组的巡视路线为113百米,123百米,117百米,均衡度α=8.13%。
具体路线见关键词:最短路径hamilton圈最优化floyd算法在社区中缴费站的选址对于居民快速缴费和充分的利用公共设施的资源有很重要的指导意义。
某城市共有24个社区,各社区的人口(单位:千人)如下:(注:横线上的数据表示相邻社区之间的距离,单位:百米)本题要解决的问题如下:(1)方便社区居民缴纳煤气费,煤气公司现拟建三个煤气缴费站,问煤气缴费站为了怎样选址才能使得居民与最近煤气站之间的平均距离最小。
多点选址问题数学建模
多点选址问题数学建模多点选址问题是指在一个区域内选取若干个点,使得这些点与给定的需求点的距离总和最小。
在实际生活中,这个问题经常出现在城市规划、物流配送等领域,如在城市规划中,需要选取若干个地点来建立公园、商场等;在物流配送中,需要选取若干个仓库来满足不同地区的需求。
为了解决这个问题,我们可以采用数学建模的方法。
首先,我们需要确定一个数学模型来描述这个问题。
设需求点的坐标为$(x_i,y_i)$,选取的点的坐标为$(x_j,y_j)$,则选取的点与需求点的距离为$d_{ij}=sqrt{(x_i-x_j)^2+(y_i-y_j)^2}$,选取的点的数量为$n$。
因此,我们的目标是最小化所有需求点与选取点的距离总和,即$sum_{i=1}^{m}min_{j=1}^{n}d_{ij}$。
接下来,我们需要确定一个算法来解决这个问题。
最简单的方法是暴力枚举所有可能的选择,然后计算距离总和,但是这种方法的复杂度非常高,不适用于大规模问题。
一种更优秀的算法是使用分治法或贪心算法。
在分治法中,我们将问题分解成若干个小问题,递归求解,最后将所有结果合并。
具体来说,我们可以采用K-Means算法来实现。
首先,选取$n$个初始点,将所有需求点分配到最近的点所在的集合中,然后重新计算每个集合的中心点,重复这个过程直到中心点不再变化。
这个算法的时间复杂度为$O(kn)$,其中$k$为迭代次数,$n$为点的数量。
在贪心算法中,我们从初始状态出发,每次选取一个距离最近的点加入集合中,直到达到要求的点的数量。
这个算法的时间复杂度为$O(n^2)$,效率较低,但是实现起来较为简单。
综上所述,多点选址问题可以通过数学建模和算法求解来解决,可以应用于城市规划、物流配送等领域。
Matlab供应与选址问题(附详细编程)
a b d
1 1.25 1.25 3
5 3 6.5 6
6 7.25 7.25 11
(一)、建立模型
记工地的位置为(ai,bi),水泥日用量为di,i=1,…,6;料场位置 为(xj,yj),日储量为ej,j=1,2;从料场j向工地i的运送量为Xij。
4 7 0
5 0 6
6 1 10
总的吨千米数为 135.2815
。
(三)改建两个新料场的情形
改建两个新料场,要同时确定料场的位置(xj,yj)和运送量Xij, 在同样条件下使总吨千米数最小。这是非线性规划问题。非线 性规划模型为:
min f X ij ( x j ai ) 2 ( y j bi ) 2
(1)先编写M文件liaoch.m定义目标函数。 function y=liaoch(x) y=x(1)*sqrt((x(13)-1.25)^2+(x(14)-1.25)^2)+x(2)*sqrt((x(13)8.75)^2+(x(14)-0.75)^2)+x(3)*sqrt((x(13)-0.5)^2+(x(14)4.75)^2)+x(4)*sqrt((x(13)-5.75)^2+(x(14)-5)^2)+x(5)*sqrt((x(13)3)^2+(x(14)-6.5)^2)+x(6)*sqrt((x(13)-7.25)^2+(x(14)7.25)^2)+x(7)*sqrt((x(15)-1.25)^2+(x(16)1.25)^2)+x(8)*sqrt((x(15)-8.75)^2+(x(16)0.75)^2)+x(9)*sqrt((x(15)-0.5)^2+(x(16)4.75)^2)+x(10)*sqrt((x(15)-5.75)^2+(x(16)5)^2)+x(11)*sqrt((x(15)-3)^2+(x(16)-6.5)^2)+x(12)*sqrt((x(15)7.25)^2+(x(16)-7.25)^2);
数学建模作业5数学规划模型----供应与选址的问题
三、模型假设
1、假设料场和建筑工地之间都可以由直线到达;
2、运输费用由“吨千米数”来衡量;
3、两料场的日存储量够向各建筑工地供应;
f1=0;
fori=1:6
s(i)=sqrt((x(13)-a(i))^2+(x(14)-b(i))^2);
f1=s(i)*x(i)+f1;
end
f2=0;
fori=7:12
s(i)=sqrt((x(15)-a(i-6))^2+(x(16)-b(i-6))^2);
f2=s(i)*x(i)+f2;
end
一、问题提出
某公司有6个建筑工地要开工,每个工地的位置(用平面坐标系(a,b)表示,距离单位:km)及水泥日用量d(吨)由下表给出。目前有两个料场位于A(5,1),B(2,7),日储量各有20吨。
(1)试制定每天的供应计划,即从A,B两料场分别向各工地运送多少水泥,可使运输费用(总的吨千米数)最小,并求出吨千米数。
d=[3 5 4 7 6 11];
x=[5 2];
y=[1 7];
e=[20 20];
fori=1:6
forj=1:2
aa(i,j)=sqrt((x(j)-a(i))^2+(y(j)-b(i))^2);
end
end
CC=[aa(:,1); aa(:,2)]'
A=[1 1 1 1 1 1 0 0 0 0 0 0
(注:先画图,在坐标上标出各工地位置(用蓝色*标示)和料场位置(用红色o标示))
数学建模论文--物流与选址问题
物流预选址问题 (2)摘要.......................................................................................................... 错误!未定义书签。
一、问题重述 (2)二、问题的分析 (3)2.1 问题一:分析确定合理的模型确定工厂选址和建造规模 (3)2.2 问题二:建立合理的仓库选址和建造规模模型 (3)2.3 问题三:工厂向中心仓库供货的最佳方案问题 (3)2.4 问题四:根据一组数据对自己的模型进行评价 (4)三、模型假设与符号说明 (4)3.1条件假设 (4)3.2模型的符号说明 (4)四、模型的建立与求解 (5)4.1 问题一:分析确定合理的模型为两个工厂合理选址并确定建造规模 (5)4.1.1模型的建立 (5)4.2 问题二:建立合理模型确定中心仓库的位置及建造规模 (7)4.2.1 基于重心法选址模型 (8)4.2.2 基于多元线性回归法确定中心仓库的建造规模 (10)4.3 问题三:工厂向中心仓库供货方案 (10)4.4 问题四:选用一组数据进行计算 (11)五、模型评价 (16)5.1模型的优缺点 (16)5.1.1 模型的优点 (16)5.1.2 模型的缺点 (16)六参考文献 (16)物流预选址问题摘要在物流网络中,工厂对中心仓库和城市进行供货,起到生产者的作用,而中心仓库连接着工厂和城市,是两者之间的桥梁,在物流系统中有着举足轻重的作用,因此搞好工厂和中心仓库的选址将对物流系统作用的发挥乃至物流经济效益的提高产生重要的影响。
本论文在综述工厂和中心仓库选址问题研究现状的基础上,对二者选址的模型和算法进行了研究。
对于问题一二,通过合理的分析,我们采用了重心法选址模型找到了工厂和中心仓库的大致位置并给出了确定工厂和中心仓库建造规模的参数和公式,通过用数据进行实例化分析,我们确定了工厂和中心仓库位置和建造规模。
数学建模选址问题
数学建模选址问题摘要目前,社区的优化管理和最佳服务已经成为一种趋势,并且为城市的发展作出了一定的贡献。
本文针对在社区中选址问题及巡视路线问题,分别建立了多目标决策模型、约束最优化线路模型,并分别提供了选址社区和巡视路线。
对于问题一,我们建立了单目标优化模型,考虑到各社区居民到收费站点的平均距离最小,我们使用floyd 算法并通过matlab 编程,算出任意两个社区之间的最短路径,并以此作为工具,使用0-1变量列出了目标函数。
在本题中,我们根据收费站数、超额覆盖等确定了约束条件,以保证收费站覆盖每个社区,同时保证居民与最近煤气站之间的平均距离最小,最终利用lingo 软件求得收费站建在M、Q、W三个社区。
对于问题二,同样是单目标优化模型,较之问题一不同的是,问题二不需要考虑人口问题,但需要确定选址的个数。
接下来的工作分了两步,第一步,我们通过0-1变量列出目标函数,以超额覆盖等确定约束条件,用lingo 软件编程求出最小派出所站点的个数;第二步,我们利用第一步中求出的派出所个数作为新的约束条件,建立使总距离最小的优化模型,最终利用lingo 软件求得三个派出所分别建在W、Q、K社区。
对于问题三,我们建立了约束最优化线路模型,根据floyd 算法求得的任意两个社区之间的最短路径,建立了以w 点为树根的最短路径生成树,并据此对各点的集中区域进行划分,再利用破圈法得到最短回路。
在本题中,我们初定了两种方案,并引入均衡度α对两种方案进行比较,最终采用了方案二。
最后,我们用matlab编程求解方案二中各组的巡视路线为113百米,123百米,117百米,均衡度α=8.13%。
具体路线见关键词:最短路径hamilton圈最优化floyd算法在社区中缴费站的选址对于居民快速缴费和充分的利用公共设施的资源有很重要的指导意义。
某城市共有24个社区,各社区的人口(单位:千人)如下:编号A B C D E F G H I J K L人口1121861154 8 7111311 编号M N P Q R S T U V W X Y人口118 922148 7115281813VCDGUFEIQSRATWXBJYLHNKMP101587971410611128920241615182211661223810118111510251519928810911819(注:横线上的数据表示相邻社区之间的距离,单位:百米)本题要解决的问题如下:(1)方便社区居民缴纳煤气费,煤气公司现拟建三个煤气缴费站,问煤气缴费站为了怎样选址才能使得居民与最近煤气站之间的平均距离最小。
数学建模优化类型题
题目1产销量的最佳安排某厂生产的某种产品有甲、乙两个型号,假设该工厂的产品都能售出,并等于市场上的销量。
工厂的利润既取决于销量和(单件)价格,也依赖于产量和(单件)成本,按照市场经济规律,甲的价格会随其销量的增长而降低,同时乙的销量的增长也会使甲的价格有一定的下降;乙的价格遵循同样的规律。
而甲、乙的成本都随其各自产量的增长而降低,且各有一渐进值。
请你为该工厂设计一个最佳的产销量安排计划,即确定两个型号各自的产量,使总的利润最大。
解答提示1.无约束优化模型建立与求解记甲、乙两个型号的产(销)量分别为x1和x2,价格分别为p1和p2,成本分别为q1和q2。
简单地假设每个型号的价格与两个型号的销量成线性关系,即,,,并且合理地设(为什么?)。
简单地假设每个型号的成本与本型号的产量服从负指数关系,且有渐进值,即,,。
于是总利润为问题化为求解。
设定如下一组数据:,,输入MatLab求解,得到结果为:甲的产量为23.9025,乙的产量为62.4977,最大利润为6413.5。
查看程序代码function y=fun(x)y1=((100-x(1)-0.1*x(2))-(30*exp(-0.015*x(1))+20))*x(1);y2=((280-0.2*x(1)-2*x(2))-(100*exp(-0.02*x(2))+30))*x(2);y=-y1-y2;x0=[50,70];[x,y]=fminunc(@fun,x0),z=-y题目2饮料厂的生产计划某饮料厂只生产一种饮料用以满足市场需求。
该厂销售科根据市场预测,已经确定了下一个月(未来四周)该饮料的需求量。
该厂生产计划科根据本厂实际列出了一个生产计划数据表(如下表所示)。
根据此表第二栏(生产能力)的数据,该厂能够提前完成生产任务,但如果周末有产品库存,每千箱饮料的库存费为则应如何安排生产, 可以保证按时满足市场需求, 且使总费用最小?1. 线性规划模型建立与求解(注意:此提示的数据是参考默认输入的数据值,请注意比较)本题目主要考察线性规划模型建立与求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
f2=s(i)*x(i)+f2;
end
f=f1+f2;
再编写主程序为:
clear
x0=[3 5 4 7 1 0 0 0 0 0 5 11 5 4 7 7];
A=[1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0];
B=[20;20];
holdon;
plot(x0,y0,'or');
t,,'¹¤µØ1');
text,,'¹¤µØ2');
text,,'¹¤µØ3')
text,5,'¹¤µØ4');
text(3,,'¹¤µØ5');
text,,'¹¤µØ6')
text(5,1,'Áϳ¡A');
text(2,7,'Áϳ¡B');
0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0];
beq=[3 5 4 7 6 11]';
vlb=[zeros(12,1);-inf;-inf;-inf;-inf];
vub=[];
[x,fval,exitflag]=fmincon('liaoch',x0,A,B,Aeq,beq,vlb,vub)
0 0 0 0 1 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0 1 ];
beq=[d(1);d(2);d(3);d(4);d(5);d(6)];
vlb=[0 0 0 0 0 0 0 0 0 0 0 0];vub=[];
x0=[1 2 3 0 1 0 0 1 0 1 0 1];
0
5
11
总的吨千米数为,比用临时料场节省约46吨千米。
A=[1 1 1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 1 1];
B=[20;20];
Aeq=[1 0 0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 1 0 0
一、问题提出
某公司有6个建筑工地要开工,每个工地的位置(用平面坐标系(a,b)表示,距离单位:km)及水泥日用量d(吨)由下表给出。目前有两个料场位于A(5,1),B(2,7),日储量各有20吨。
(1)试制定每天的供应计划,即从A,B两料场分别向各工地运送多少水泥,可使运输费用(总的吨千米数)最小,并求出吨千米数。
二、问题分析
对于问题(1),确定用A,B两料场分别向各工地运送水泥,使运输费用(总的吨千米数)最小,即要知道两点间线段最小,料场到工地的路线是直的,而要满足六个工地的需求,又要考虑到A、B两个料场的供应量,即在各工地用量必须满足和各料场运送量不超过日储量的条件下,使总的吨千米数最小,这是线性问题。。
( 注:先画图,在坐标上标出各工地位置(用蓝色*标示)和料场位置(用红色o标示))
(2)目前公司准备建立两个新的料场,日储量各为20吨,为使运输费用最省,问新的料场应建在何处,并算出两料场分别向工地运输多少吨水泥和费用。
(注:初始值取x0=[3 5 4 7 1 0 0 0 0 0 5 11 5 4 7 7]’)
4、运输途中不发生意外,从料场运出的水泥总量不会超过各个料场的日存储量。
四、模型建立
(显示模型函数的构造过程)
记工地的位置为 ,水泥日用量为 ,i=1,…,6;料场位置为 ,
日储量为 ,j=1,2;料场 向工地 的运送量为 。
目标函数为:
约束条件为:
当用临时料场时决策变量为:
当不用临时料场时决策变量为: , ,
a=[ 3 ];
b=[ 5 ];
d=[3 5 4 7 6 11];
e=[20 20];
f1=0;
fori=1:6
s(i)=sqrt((x(13)-a(i))^2+(x(14)-b(i))^2);
f1=s(i)*x(i)+f1;
end
f2=0;
fori=7:12
s(i)=sqrt((x(15)-a(i-6))^2+(x(16)-b(i-6))^2);
程序截图如下:
程序运行结果如下:
x =
Columns 1 through 8
0 0 0
Columns 9 through 16
0 0
fval =
exitflag =
5
程序结果截图如下:
即两个新料场的坐标分别为(,),(,),由料场A、B向6个工地运料方案为:
1
2
3
4
5
6
料场1
3
5
4
7
1
0
料场2
0
0
0
X12=X7,X22=X8,X32=X9,X42=X10,X52=X11,X62=X12
x1=X13,y1=X14,x2=X15,y2=X16
五、模型求解
(显示模型的求解方法、步骤及运算程序、结果)
建立程序:
x=[ 3 ];
y=[ 5 ];
x0=[5,2];
y0=[1,7];
plot(x,y,'*b');
使用临时料场的情形:
使用两个临时料场A(5,1),B(2,7).求从料场j向工地 的运送量 .在各工地用量必须满足和各料场运送量不超过日储量的条件下,使总的吨千米数最小,这是线性规划问题。线性规划模型为:
其中 ,i=1,2,…,6,j=1,2,为常数
设X11=X1,X21=X 2,,X31=X 3,X41=X 4,X51=X 5,,X61=X 6
对于问题(2),需要重新改建六个新的料场,使得在在各工地用量必须满足和各料场运送量不超过日储量的条件下,使总的吨千米数最小,则需要确定新的料场的具体位置,这是非线性问题。
三、模型假设
1、假设料场和建筑工地之间都可以由直线到达;
2、运输费用由“吨千米数”来衡量;
3、两料场的日存储量够向各建筑工地供应;
X12=X 7,X22=X 8,,X32=X 9,X42=X 10,X52=X 11,,X62=X 12
改建两个新料场的情形:
改建两个新料场,要同时确定料场的位置(xj,yj)和运送量 ,在同样条件下使总吨千米数最小.这是非线性规划问题.非线性规划模型为:
设X11=X1,X21=X2,X31=X3,X41=X4,X51=X5,,X61=X6
使用临时料场的情形:
编写程序如下:
clear
a=[ 3 ];
b=[ 5 ];
d=[3 5 4 7 6 11];
x=[5 2];
y=[1 7];
e=[20 20];
fori=1:6
forj=1:2
aa(i,j)=sqrt((x(j)-a(i))^2+(y(j)-b(i))^2);
end
end
CC=[aa(:,1); aa(:,2)]'
[xx,fval]=linprog(CC,A,B,Aeq,beq,vlb,vub,x0)
程序截图如下:
程序的运行结果为:
xx =
fval =
运行结果截图如下:
即由料场A、B向6个工地运料方案为:
1
2
3
4
5
6
料场1
3
5
0
7
0
1
料场2
0
0
4
0
6
10
总的吨千米数为.
改建两个新料场的情形:
先编写M文件:
functionf=liaoch(x)