高中数学《必修》立体几何知识点及解题思路

合集下载

高中数学 必修二-第一章 立体几何初步 知识点整理

高中数学 必修二-第一章  立体几何初步 知识点整理

底面为三角形、四边形、五边形„„的棱锥分别叫做三棱锥、四棱锥、五棱锥„„,
其中三棱锥又叫四面体。
4
必修二
正棱锥:如果一个棱锥的底面是正多边形,并且顶点在底面上的射影是底面的中心, 这样的棱锥叫做正棱锥。
正棱锥的性质: ①各侧棱相等,各侧面都是全等的等腰三角形; ②棱锥的高、斜高和斜高在底面上的射影组成一个直角三角形,棱锥的高、侧棱和侧 棱在底面上的射影也组成一个直角三角形。 (4)棱台的结构特征 用一个平行于棱锥底面的平面去截棱 锥,底面与截面之间的部分叫做棱台。 原棱锥的底面和截面分别叫做棱台的 下底面和上底面;其它各面叫做棱台的侧 面;相邻侧面的公共边叫做棱台的侧棱; 底面与侧面的公共顶点叫做棱台的顶点; 当棱台的底面水平放置时,铅垂线与两底 面交点间的线段叫做棱台的高。 由正棱锥截得的棱台叫做正棱台。正棱台的性质: ①各侧棱相等,侧面是全等的等腰梯形;②两底面以及平行于底面的截面是相似多边 形;③两底面中心连线、相应的边心距和斜高组成一个直角梯形;④两底面中心连线、侧 棱和两底面外接圆相应半径组成一个直角梯形;⑤正棱台的上下底面中心的连线是棱台的 一条高;⑥正四棱台的对角面是等腰梯形。
8
必修二
②在已知图形中平行于 x 轴或 y 轴的线段,在直观图中分别画成平行于 x′轴或 y′ 轴的线段。
③在已知图形中平行于 x 轴的线段,在直观图中保持原长度不变,平行于 y 轴的线段, 长度变为原来的一半。
用斜二测法画直观图,关键是掌握水平放置的平面图形的直观图的画法,而画水平放 置的平面图形的关键是确定多边形的顶点。因为多边形顶点的位置一旦确定,依次连接这 些顶点就可画出多边形。
在一束平行光线照射下形成的投影,叫做平行投影。平行投影的投影线是平行的。在 平行投影中,投影线正对着投影面时,叫做正投影,否则叫做斜投影。

高中数学必修空间几何体知识点精选全文完整版

高中数学必修空间几何体知识点精选全文完整版

可编辑修改精选全文完整版第1讲空间几何体一、空间几何体1、空间几何体在我们周围存在着各种各样的物体,它们都占据着空间的一部分。

如果我们只考虑这些物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体。

2、多面体和旋转体多面体:由若干个平面多边形围成的几何体叫做多面体。

围成多面体的各个多边形叫做多面体的面;相邻两个面的公共边叫做多面体的棱;棱及棱的公共点叫做多面体的顶点。

旋转体:由一个平面图形绕它所在的平面内的一条定直线旋转所形成的封闭几何体,叫做旋转几何体。

这条定直线叫做旋转体的轴。

多面体旋转体圆台圆柱-圆锥圆柱+圆锥圆台+大圆锥-小圆锥二、柱、锥、台、球的结构特征1.棱柱定义图形表示分类性质有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。

两个互相平行的平面叫做棱柱的底面,其余各面叫做棱柱的侧面。

用平行的两底面多边形的字母表示棱柱,如:棱柱ABCDEF-A1B1C1D1E1F1。

棱柱的分类一(底面):棱柱的底面可以是三角形、四边形、五边形、……我们把这样的棱柱分别叫做三棱柱、四棱柱、五棱柱、……棱柱的分类二(根据侧棱及底面的关系):斜棱柱: 侧棱不垂直于底面的棱柱.直棱柱: 侧棱垂直于底面的棱柱叫做直棱柱(1)上下底面平行,且是全等的多边形。

(2)侧棱相等且相互平行。

(3) 侧面是平行四边形。

正棱柱: 底面是正多边形的直棱柱叫做正棱柱三棱柱四棱柱五棱柱斜棱柱直棱柱正棱柱2.棱锥定义图形表示性质分类有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。

用顶点及底面各顶点字母表示棱锥,如:棱锥S-ABC侧面是三角形,底面是多边形。

按底面多边形的边数分类可分为三棱锥、四棱锥、五棱锥等等,其中三棱锥又叫四面体。

特殊的棱锥-正棱锥定义:如果一个棱锥的底面是正多边形,并且顶点在底面的射影是底面中心三棱锥四棱锥五棱锥直棱锥2.棱台定义图形表示分类性质用一个平行于棱锥底面的平面去截棱锥,底面和截面之间的部分叫做棱台。

高考数学中的立体几何解题方法总结

高考数学中的立体几何解题方法总结

高考数学中的立体几何解题方法总结在高考数学中,立体几何是一个重要的考点。

对于大部分学生来说,立体几何是比较新颖的知识点,需要掌握一些特定的解题方法。

本文将总结一些高考数学中的立体几何解题方法,以便于广大考生能够更好地应对高考数学考试。

一、立体几何基本概念在解决立体几何问题之前,首先需要理解一些基本概念。

立体几何主要包括三维图形、视图、棱锥、棱柱、圆锥、圆柱、球体等。

学生需要认真理解这些概念,并掌握绘制三维图形的技巧,以便于快速准确地分析问题。

二、立体几何定理掌握一些常见的立体几何定理十分必要。

例如,平行截面定理、截棱锥定理、圆锥与平面的位置关系、球的性质等等。

这些定理可以帮助学生在解决一些复杂的立体几何题目时,能够快速找到规律,从而准确解决问题。

三、快速计算体积的方法体积是立体几何题目中最常见的考点。

理解如何快速计算体积可以帮助学生在有限的时间内快速解决问题。

例如,计算实体的体积可以分别计算各部分的体积再相加;计算投影面积的体积可以利用截线公式或剖面法等方法。

此外,还应当掌握利用相似关系计算体积的方法,以便于解决一些复杂的题目。

四、快速计算表面积的方法表面积的计算同样是立体几何中常见的考点。

学生需要掌握表面积的计算方法,并能够快速灵活地运用这些方法。

例如,计算立体几何的表面积可以分解成各个面的表面积再相加;计算圆锥的表面积可以利用母线和圆周角的关系等等。

五、快速计算正多面体体积的方法对于正多面体的体积计算,学生需要掌握一些类比和相似关系等方法。

例如,正八面体的体积可以利用正四面体体积乘以3的方法;正二十面体的体积可以利用正四面体体积乘以5的方法。

这些方法可以帮助学生在复杂的题目中快速计算正多面体的体积。

以上五点是掌握高考数学中的立体几何解题方法的基础。

学生需要认真理解这些方法,并在解决立体几何题目时不断运用,直到形成自己的解题风格。

通过不断练习和总结,相信大家一定可以在高考数学中取得好成绩!。

高中数学 立体几何知识点及解题思路

高中数学 立体几何知识点及解题思路

第一章 空间几何体一、常见几何体的定义能说出棱柱、棱锥、棱台、圆柱、圆锥、圆台、球的定义和性质。

二、常见几何体的面积、体积公式1.圆柱:侧面积rl cl S π2==侧 (其中c 是底面周长,r 是底面半径,l 是圆柱的母线,也是高)表面积)(2222l r r r rl S S S +=⋅+=+=πππ底侧表h r sh V 2π==柱体2.圆锥:侧面积rl cl S π==21侧 (其中c 是底面周长,r 是底面半径,l 是圆锥的母线) 表面积)(2l r r r rl S S S +=+=+=πππ底侧表 h r sh V 23131π==椎体 3.圆台:侧面积l R r l R r S )(2)22(+=+=πππ侧 (其中r 、R 是上下底面半径,l 是圆台的母线) 表面积)()(2222R r Rl rl R r l R r S S S +++=+++=+=ππππ底侧表 h S S S S V )(31''++=台体 (其中'S 、S 是上下底面面积,h 是圆台的高) 4.球:表面积24R S π=表,体积334R V π=球 三、直观图:会用斜二侧画法画出平面图形的直观图。

画法步骤:①在原图中画一个直角坐标系,在新图中画一个夹角为45°的坐标系; ②与x 轴平行的线段仍然与x 轴平行,长度不变;与y 轴平行的线段仍然与y 轴平行,但是长度减半。

四、三视图1.投影:光线照射物体留在屏幕上的影子。

①中心投影:光由一点向外散射形成的投影。

②平行投影:在平行光线照射下形成的投影。

③正投影:光线正对着投影面时的平行投影。

2.三视图:正视图:光线从前向后的正投影;侧视图:光线从左向右的正投影;俯视图:光线从上向下的正投影。

三视图的性质:侧视图和正视图的高相同;俯视图和正视图的长相同;侧视图和俯视图的宽相同。

第二章:点、直线、平面之间的位置关系 一、立体几何中的公理与基本关系1.平面公理:公理1:如果一条直线上有两个点在一个平面内,那么这条直线在此平面内。

高中立体几何知识点总结

高中立体几何知识点总结

高中立体几何知识点总结高中立体几何知识点总结高中立体几何知识点总结1三角函数。

注意归一公式、诱导公式的正确性数列题。

1.证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;2.最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。

利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。

简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;3.证明不等式时,有时构造函数,利用函数单调性很简单立体几何题1.证明线面位置关系,一般不需要去建系,更简单;2.求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,要建系;3.注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系。

概率问题。

1.搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数;2.搞清是什么概率模型,套用哪个公式;3.记准均值、方差、标准差公式;4.求概率时,正难则反(根据p1+p2+...+pn=1);5.注意计数时利用列举、树图等基本方法;6.注意放回抽样,不放回抽样; 高中立体几何知识点总结2平面通常用一个平行四边形来表示。

平面常用希腊字母α、β、γ…或拉丁字母M、N、P来表示,也可用表示平行四边形的两个相对顶点字母表示,如平面AC。

在立体几何中,大写字母A,B,C,…表示点,小写字母,a,b,c,…l,m,n,…表示直线,且把直线和平面看成点的集合,因而能借用集合论中的符号表示它们之间的关系,例如:a) A∈l—点A在直线l上;Aα—点A不在平面α内;b) lα—直线l在平面α内;c) aα—直线a不在平面α内;d) l∩m=A—直线l与直线m相交于A点;e) α∩l=A—平面α与直线l交于A点;f) α∩β=l—平面α与平面β相交于直线l。

《新课程标准高中数学必修②复习讲义》第一、二章-立体几何

《新课程标准高中数学必修②复习讲义》第一、二章-立体几何

一、立体几何知识点归纳 第一章 空间几何体(一)空间几何体的结构特征(1)多面体——由若干个平面多边形围成的几何体.围成多面体的各个多边形叫叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做顶点.旋转体--把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。

其中,这条定直线称为旋转体的轴。

(2)柱,锥,台,球的结构特征 1。

棱柱1。

1棱柱—-有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。

1。

2相关棱柱几何体系列(棱柱、斜棱柱、直棱柱、正棱柱)的关系: ①⎧⎪⎧−−−−−→⎨⎪−−−−−→⎨⎪⎪⎩底面是正多形棱垂直于底面斜棱柱棱柱正棱柱直棱柱其他棱柱 底面为矩形侧棱与底面边长相等1.3①侧棱都相等,侧面是平行四边形;②两个底面与平行于底面的截面是全等的多边形; ③过不相邻的两条侧棱的截面是平行四边形;④直棱柱的侧棱长与高相等,侧面与对角面是矩形。

1。

4长方体的性质:①长方体一条对角线长的平方等于一个顶点上三条棱的平方和;【如图】222211AC AB AD AA =++②(了解)长方体的一条对角线1AC 与过顶点A 的三条棱所成的角分别是αβγ,,,那么222cos cos cos 1αβγ++=,222sin sin sin 2αβγ++=;③(了解)长方体的一条对角线1AC 与过顶点A 的相邻三个面所成的角分别是αβγ,,,则,222sin sin sin 1αβγ++=222cos cos cos 2αβγ++=.1.5侧面展开图:正n 棱柱的侧面展开图是由n 个全等矩形组成的以底面周长和侧棱长为邻边的矩形. 1.6面积、体积公式:2S c hS c h S S h=⋅=⋅+=⋅直棱柱侧直棱柱全底棱柱底,V (其中c 为底面周长,h 为棱柱的高)2.圆柱2。

1圆柱—-以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱.2.2圆柱的性质:上、下底及平行于底面的截面都是等圆;过轴的母线截面(轴截面)是全等的矩形.2。

高中立体几何知识点总结

高中立体几何知识点总结

高中立体几何知识点总结高中立体几何知识点总结立体几何是几何学的一个分支,研究物体的三维空间结构和性质,其重点是探讨物体的表面积、体积、形状、投影、相交等问题。

作为高中数学的重要组成部分,立体几何的知识点包含几何体、空间向量、空间位置关系和空间几何解析四大方面。

一、几何体1.球与球的关系:两球相离、相切、相交。

2.立体角:定义、立体角对立面的定义及对应角相等、立体角的典型问题及其解法。

3.圆锥面积与圆锥体积:圆锥旋转成体的概念与性质,及圆锥面积和圆锥体积的计算公式。

4.棱锥与棱柱:棱锥的特征和体积公式、棱柱的特征和体积公式、棱柱剖面的面积公式。

5.四面体、六面体:四面体特征和体积公式、六面体特征和体积公式。

二、空间向量1.向量的概念和性质:向量的定义、运算律、数量积、向量积。

2.向量的表示方法:坐标表示、参数表示和模、方向角、方向余弦。

3.线性运算:向量表示为线性组合形式,解决向量的线性方程组。

三、空间位置关系1.点与直线、点与平面、直线与平面的位置关系:点与直线的位置关系、点与平面的位置关系、直线和平面的位置关系。

2.平行、垂直的判定及相关问题:平行、垂直判定公式,两直线距离及交点的坐标求解。

3.点到直线、点到平面的距离:点到直线的距离公式和推导、点到面的距离公式和推导。

4.三角形的性质:三角形重心、垂心、辅助线问题,海伦公式与三角形面积公式。

5.四边形的性质:四边形同种类四边形的性质、对角线互相垂直的条件、美索不达米亚定理。

四、空间几何解析1.空间坐标系的建立:矩形坐标系、极坐标系、柱面坐标系与球长坐标系。

2.空间中的方位角、高度角等概念:距离角度、方位角、高度角的定义及计算。

3.两点之间的距离公式:平面坐标系中求直线距离、空间坐标系中求空间线段的距离。

4.空间直线和平面的方程及相关问题:直线和平面方程求解,直线和平面的交线、交点问题。

立体几何中主要解题思路

立体几何中主要解题思路

立体几何中主要解题思路如下:
1.建立空间坐标系:对于三维空间中的点、线、面等几何对象,
可以通过建立空间直角坐标系来描述它们的坐标。

通过坐标系,可以将几何问题转化为代数问题,从而利用代数方法进行求解。

2.向量方法:向量是解决立体几何问题的重要工具。

通过向量的
加、减、数乘以及向量的模长、向量之间的夹角等性质,可以
方便地解决与长度、角度、平行、垂直等问题。

3.空间几何的性质:掌握空间几何的基本性质,如平行、垂直、
相交等,对于理解问题和寻找解题思路至关重要。

4.投影与截面:在解决与空间几何体相关的问题时,常常需要利
用投影和截面的性质。

例如,求一个几何体的体积或表面积时,
可以通过投影或截面的面积来推导。

5.转化与构造:在解决立体几何问题时,有时需要将问题转化为
更容易处理的形式,或者构造新的几何图形来帮助解决问题。

6.运用几何定理:掌握并运用基本的几何定理是解决立体几何问
题的关键。

例如,勾股定理、余弦定理、正弦定理等。

7.数形结合:在解题过程中,将代数表达式与几何图形相结合,
有助于更直观地理解问题并找到解决方案。

8.逻辑推理:在证明题中,逻辑推理是必不可少的。

通过严密的
逻辑推理,可以证明某些结论或性质。

综上所述,掌握这些解题思路对于解决立体几何问题至关重要。

通过不断练习和总结,可以提高解决立体几何问题的能力。

高考数学中立体几何的考点及解题技巧

高考数学中立体几何的考点及解题技巧

高考数学中立体几何的考点及解题技巧高考数学中的立体几何是相对来说比较难的一个环节,也是考生必须要掌握的内容之一。

本文将针对高考数学中立体几何的考点和解题技巧做一个详尽的论述。

1. 空间基本概念在解决空间问题时,首先需要掌握的就是空间基本概念。

包括点、线、面的概念及其相关性质。

比如平行四边形的对角线相交于点O,则线段OA、OB互相平分且相等。

2. 立体图形的投影立体图形的投影是指将三维的立体图形在某一平面上产生的影像。

在这里,我们主要讲解直线与平面的投影,并通过题目的解答来加深记忆。

3. 三视图三视图是三维立体图形的三个面正、左、俯视图。

在解决题目时,需要掌握三维图形和其三视图之间的对应关系,想象立体图形在视线方向上的不同表现,来确定视角和投影位置。

特别是在椎体、金字塔、棱锥等图形的题目中,需要考生准确细致地确定各部分的位置。

4. 空间向量空间向量是指空间中有大小和方向的量,在立体几何中经常使用,可以用于排除无关信息,简化问题。

5. 立体几何解题的思路立体几何解题的方法及思路与平面几何有些不同。

在立体几何中,有的题目需要平面几何的方法来解决;某些题目需要分解为几个简单的平面图形,再运用三角函数来解决;有些题目需要利用向量的性质,优化模型。

因此,在解答的过程中,需要先明确各部分关系,做到想象明确,思路清晰。

高考数学中立体几何的考点及解题技巧就是如此,需要同学们根据自已的掌握程度,不断深化学习。

建议同学们多进行课堂上的实际解答,熟练掌握相关理论知识。

除此之外,同学们还需要养成良好自习习惯,在课外时间多加练习,巩固学习成果。

相信在充分掌握理论知识的情况下,同学们一定可以取得优异的高考成绩。

新教材 人教A版高中数学必修第二册 第八章 立体几何初步 知识点汇总及解题规律方法提炼

新教材 人教A版高中数学必修第二册 第八章 立体几何初步 知识点汇总及解题规律方法提炼

第八章立体几何初步8.1基本立体图形第1课时棱柱、棱锥、棱台的结构特征1.空间几何体的定义及分类(1)定义:如果只考虑物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体.(2)分类:常见的空间几何体有多面体与旋转体两类.2.空间几何体记作棱柱ABCDEF­A′B′C′D′E′F′记作棱锥S­ABCD按底面多边形的边数分为三棱锥、记作棱台ABCD­A′B′C′D′得的棱台分别为三棱台、四棱台、(1)棱柱、棱锥、棱台的关系在运动变化的观点下,棱柱、棱锥、棱台之间的关系可以用下图表示出来(以三棱柱、三棱锥、三棱台为例).(2)各种棱柱之间的关系①棱柱的分类棱柱⎩⎨⎧直棱柱⎩⎨⎧正棱柱(底面为正多边形)一般的直棱柱斜棱柱②常见的几种四棱柱之间的转化关系典型应用1棱柱的结构特征下列关于棱柱的说法:①所有的面都是平行四边形;②每一个面都不会是三角形;③两底面平行,并且各侧棱也平行;④被平面截成的两部分可以都是棱柱.其中正确说法的序号是__________.【解析】①错误,棱柱的底面不一定是平行四边形;②错误,棱柱的底面可以是三角形;③正确,由棱柱的定义易知;④正确,棱柱可以被平行于底面的平面截成两个棱柱,所以正确说法的序号是③④.【答案】③④棱柱结构特征的辨析技巧(1)扣定义:判定一个几何体是否是棱柱的关键是棱柱的定义.①看“面”,即观察这个多面体是否有两个互相平行的面,其余各面都是四边形;②看“线”,即观察每相邻两个四边形的公共边是否平行.(2)举反例:通过举反例,如与常见几何体或实物模型、图片等不吻合,给予排除.典型应用2棱锥、棱台的结构特征下列关于棱锥、棱台的说法:①用一个平面去截棱锥,底面和截面之间的部分组成的几何体叫棱台;②棱台的侧面一定不会是平行四边形;③棱锥的侧面只能是三角形;④由四个面围成的封闭图形只能是三棱锥;⑤棱锥被平面截成的两部分不可能都是棱锥.其中正确说法的序号是________.【解析】①错误,若平面不与棱锥底面平行,用这个平面去截棱锥,棱锥底面和截面之间的部分不是棱台.②正确,棱台的侧面一定是梯形,而不是平行四边形.③正确,由棱锥的定义知棱锥的侧面只能是三角形.④正确,由四个面围成的封闭图形只能是三棱锥.⑤错误,如图所示四棱锥被平面截成的两部分都是棱锥.所以正确说法的序号为②③④.【答案】②③④判断棱锥、棱台形状的两种方法(1)举反例法结合棱锥、棱台的定义举反例直接判断关于棱锥、棱台结构特征的某些说法不正确.(2)直接法棱锥棱台定底面只有一个面是多边形,此面即为底面两个互相平行的面,即为底面看侧棱相交于一点延长后相交于一点空间几何体的平面展开图(1)水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示,如图是一个正方体的平面展开图(图中数字写在正方体的外表面上),若图中的“2”在正方体的上面,则这个正方体的下面是()A.1 B.9C.快D.乐(2)如图是三个几何体的侧面展开图,请问各是什么几何体?【解】(1)选B.由题意,将正方体的展开图还原成正方体,“1”与“乐”相对,“2”与“9”相对,“0”与“快”相对,所以下面是“9”.(2)题图①中,有5个平行四边形,而且还有两个全等的五边形,符合棱柱的特点;题图②中,有5个三角形,且具有共同的顶点,还有一个五边形,符合棱锥的特点;题图③中,有3个梯形,且其腰的延长线交于一点,还有两个相似的三角形,符合棱台的特点,把侧面展开图还原为原几何体,如图所示:所以①为五棱柱,②为五棱锥,③为三棱台.多面体展开图问题的解题策略(1)绘制展开图:绘制多面体的平面展开图要结合多面体的几何特征,发挥空间想象能力或者是亲手制作多面体模型.在解题过程中,常常给多面体的顶点标上字母,先把多面体的底面画出来,然后依次画出各侧面,便可得到其平面展开图.(2)由展开图复原几何体:若是给出多面体的平面展开图,来判断是由哪一个多面体展开的,则可把上述过程逆推,同一个几何体的平面展开图可能是不一样的,也就是说,一个多面体可有多个平面展开图.圆柱、圆锥、圆台、球、简单组合体的结构特征1.圆柱、圆锥、圆台和球的结构特征(1)圆柱的结构特征(1)圆柱有无数条母线,它们平行且相等.(2)平行于底面的截面是与底面大小相同的圆,如图1所示.(3)过轴的截面(轴截面)都是全等的矩形,如图2所示.(4)过任意两条母线的截面是矩形,如图3所示.(2)圆锥的结构特征(1)圆锥有无数条母线,它们有公共点即圆锥的顶点,且长度相等.(2)平行于底面的截面都是圆,如图1所示.(3)过轴的截面是全等的等腰三角形,如图2所示.(4)过任意两条母线的截面是等腰三角形,如图3所示.(3)圆台的结构特征(1)圆台有无数条母线,且长度相等,延长后相交于一点.(2)平行于底面的截面是圆,如图1所示.(3)过轴的截面是全等的等腰梯形,如图2所示.(4)过任意两条母线的截面是等腰梯形,如图3所示.(4)球的结构特征(1)球心和截面圆心的连线垂直于截面.(2)球心到截面的距离d与球的半径R及截面圆的半径r有如下关系:r=R2-d2.2.简单组合体(1)概念由简单几何体组合而成的几何体叫做简单组合体.(2)两种构成形式①由简单几何体拼接而成;②由简单几何体截去或挖去一部分而成.典型应用1圆柱、圆锥、圆台、球的概念(1)给出下列说法:①圆柱的底面是圆面;②经过圆柱任意两条母线的截面是一个矩形面;③圆台的任意两条母线的延长线可能相交,也可能不相交;④夹在圆柱的两个截面间的几何体还是一个旋转体.其中说法正确的是________.(2)给出以下说法:①球的半径是球面上任意一点与球心所连线段的长;②球的直径是球面上任意两点间所连线段的长;③用一个平面截一个球,得到的截面可以是一个正方形;④过圆柱轴的平面截圆柱所得截面形状是矩形.其中正确说法的序号是________.【解析】(1)①正确,圆柱的底面是圆面;②正确,如图所示,经过圆柱任意两条母线的截面是一个矩形面;③不正确,圆台的母线延长相交于一点;④不正确,圆柱夹在两个平行于底面的截面间的几何体才是旋转体.(2)根据球的定义知,①正确;②不正确,因为球的直径必过球心;③不正确,因为球的任何截面都是圆面;④正确.【答案】(1)①②(2)①④(1)判断简单旋转体结构特征的方法①明确由哪个平面图形旋转而成;②明确旋转轴是哪条直线.(2)简单旋转体的轴截面及其应用①简单旋转体的轴截面中有底面半径、母线、高等体现简单旋转体结构特征的关键量;②在轴截面中解决简单旋转体问题体现了化空间图形为平面图形的转化思想.典型应用2简单组合体的结构特征如图所示的几何体是由下面哪一个平面图形旋转而形成的()【解析】该几何体自上而下由圆锥、圆台、圆台、圆柱组合而成,故应选A.【答案】A[变条件、变问法]若将本例选项B中的平面图形旋转一周,试说出它形成的几何体的结构特征.解:①是直角三角形,旋转后形成圆锥;②是直角梯形,旋转后形成圆台;③是矩形,旋转后形成圆柱,所以旋转后形成的几何体如图所示.通过观察可知,该几何体是由一个圆锥、一个圆台和一个圆柱自上而下拼接而成的.不规则平面图形旋转形成几何体的结构特征的分析策略(1)分割:首先要对原平面图形适当分割,一般分割成矩形、梯形、三角形或圆(半圆或四分之一圆)等基本图形.(2)定形:然后结合圆柱、圆锥、圆台、球的形成过程进行分析.典型应用3旋转体中的计算问题如图所示,用一个平行于圆锥SO底面的平面截这个圆锥,截得圆台上、下底面的面积之比为1∶16,截去的圆锥的母线长是3 cm,求圆台O′O的母线长.【解】设圆台的母线长为l cm,由截得的圆台上、下底面面积之比为1∶16,可设截得的圆台的上、下底面的半径分别为r cm,4r cm.过轴SO作截面,如图所示,则△SO′A′∽△SOA,SA′=3 cm.所以SA′SA=O′A′OA,所以33+l=r4r=14.解得l=9,即圆台O′O的母线长为9 cm.解决旋转体中计算问题的方法用平行于底面的平面去截柱、锥、台等几何体,注意抓住截面的性质(与底面全等或相似),同时结合旋转体中的轴截面(经过旋转轴的截面)的几何性质,利用相似三角形中的相似比,列出相关几何变量的方程(组)而解得.[注意]在研究与截面有关的问题时,要注意截面与物体的相对位置的变化.由于相对位置的改变,截面的形状也会随之发生变化.8.2立体图形的直观图1.用斜二测画法画水平放置的平面图形的直观图的步骤(1)建系:在已知图形中取互相垂直的x轴和y轴,两轴相交于点O.画直观图时,把它们画成对应的x′轴与y′轴,两轴交于点O′,且使∠x′O′y′=45°(或135°),它们确定的平面表示水平面.(2)平行不变:已知图形中平行于x轴或y轴的线段,在直观图中分别画成平行于x′轴或y′轴的线段.(3)长度规则:已知图形中平行于x轴的线段,在直观图中保持原长度不变,平行于y轴的线段,长度为原来的一半.2.空间几何体直观图的画法(1)与平面图形的直观图画法相比多了一个z轴,直观图中与之对应的是z′轴.(2)直观图中平面x′O′y′表示水平平面,平面y′O′z′和x′O′z′表示竖直平面.(3)已知图形中平行于z轴(或在z轴上)的线段,在其直观图中平行性和长度都不变.(4)成图后,去掉辅助线,将被遮挡的部分改为虚线.■名师点拨(1)画水平放置的平面图形的直观图,关键是确定多边形顶点的位置,借助于平面直角坐标系确定顶点后,只需把这些顶点顺次连接即可.(2)用斜二测画法画直观图要掌握水平长不变,垂线长减半,直角画45°(或135°).典型应用1画水平放置的平面图形的直观图画水平放置的直角梯形的直观图,如图所示.【解】(1)在已知的直角梯形OBCD中,以底边OB所在直线为x轴,垂直于OB的腰OD所在直线为y轴建立平面直角坐标系.如图①所示.(2)画相应的x′轴和y′轴,使∠x′O′y′=45°,在x′轴上截取O′B′=OB,在y′轴上截取O′D′=12OD,过点D′作x′轴的平行线l,在l上沿x′轴正方向取点C′使得D′C′=DC.连接B′C′,如图②.(3)所得四边形O′B′C′D′就是直角梯形OBCD的直观图.如图③.画水平放置的平面图形的直观图的关键及注意事项(1)在画水平放置的平面图形的直观图时,选取适当的直角坐标系是关键,一般要使平面多边形尽可能多的顶点在坐标轴上或边与坐标轴平行,以便于画图.(2)画图时要注意原图和直观图中线段的长度的关系是否发生变化.典型应用2画简单几何体的直观图已知一个正四棱台的上底面边长为2,下底面边长为6,高为4,用斜二测画法画出此正四棱台的直观图.【解】(1)画轴.如图①,画x轴、y轴、z轴,三轴相交于点O,使∠xOy =45°,∠xOz=90°.(2)画下底面.以O为中点,在x轴上取线段EF,使得EF=6,在y轴上取线段GH,使得GH=3,再过G,H分别作AB綊EF,CD綊EF,且使得AB的中点为G,CD的中点为H,连接AD,BC,这样就得到了正四棱台的下底面ABCD 的直观图.(3)画上底面.在z轴上截取线段OO1=4,过O1作O1x′∥Ox,O1y′∥Oy,使∠x′O1y′=45°,建立坐标系x′O1y′,在x′O1y′中仿照(2)的步骤画出上底面A1B1C1D1的直观图.(4)连接AA1、BB1、CC1、DD1,擦去辅助线,得到的图形就是所求的正四棱台的直观图(如图②).画空间图形的直观图的原则(1)用斜二测画法画空间图形的直观图时,图形中平行于x 轴、y 轴、z 轴的线段在直观图中应分别画成平行于x ′轴、y ′轴、z ′轴的线段.(2)平行于x 轴、z 轴的线段在直观图中长度保持不变,平行于y 轴的线段长度变为原来的12.典型应用3直观图的还原与计算如图所示,梯形A 1B 1C 1D 1是一平面图形ABCD 的直观图.若A 1D 1∥O ′y ′,A 1B 1∥C 1D 1,A 1B 1=23C 1D 1=2,A 1D 1=O ′D 1=1.试画出原四边形,并求原图形的面积.【解】 如图,建立直角坐标系xOy ,在x 轴上截取OD =O ′D 1=1,OC =O ′C 1=2.在过点D 与y 轴平行的直线上截取DA =2D 1A 1=2.在过点A 与x 轴平行的直线上截取AB =A 1B 1=2.连接BC ,便得到了原图形(如图).由作法可知,原四边形ABCD 是直角梯形,上、下底长度分别为AB =2,CD =3,直角腰长度为AD =2.所以面积为S =2+32×2=5.(1)直观图的还原技巧由直观图还原为平面图的关键是找与x ′轴、y ′轴平行的直线或线段,且平行于x ′轴的线段还原时长度不变,平行于y ′轴的线段还原时放大为直观图中相应线段长的2倍,由此确定图形的各个顶点,顺次连接即可.(2)直观图与原图面积之间的关系若一个平面多边形的面积为S ,其直观图的面积为S ′,则有S ′=24S 或S =22S ′.利用这一公式可由原图形面积求其直观图面积或由直观图面积求原图形面积.柱、锥、台的表面积和体积1.棱柱、棱锥、棱台的表面积多面体的表面积就是围成多面体各个面的面积的和.棱柱、棱锥、棱台的表面积就是围成它们的各个面的面积的和.2.棱柱、棱锥、棱台的体积(1)V棱柱=Sh;(2)V棱锥=13Sh;V棱台3S′,S分别是棱台的上、下底面面积,h为棱台的高.3.圆柱、圆锥、圆台的表面积和体积1.柱体、锥体、台体的体积(1)柱体:柱体的底面面积为S ,高为h ,则V =Sh . (2)锥体:锥体的底面面积为S ,高为h ,则V =13Sh .(3)台体:台体的上、下底面面积分别为S ′、S ,高为h ,则V =13()S ′+SS ′+S h .2.圆柱、圆锥、圆台的侧面积公式之间的关系 S 圆柱侧=2πrl ――→r ′=r S 圆台侧=π(r ′+r )l ――→r ′=0S 圆锥侧=πrl . 3.柱体、锥体、台体的体积公式之间的关系V 柱体=Sh ――→S ′=S V 台体=13(S ′+S ′S +S )h ――→S ′=0V 锥体=13Sh . 典型应用1柱、锥、台的表面积(1)若圆锥的正视图是正三角形,则它的侧面积是底面积的( ) A.2倍 B .3 倍 C .2 倍D .5 倍(2)已知正方体的 8 个顶点中,有 4 个为侧面是等边三角形的三棱锥的顶点,则这个三棱锥与正方体的表面积之比为( )A .1∶ 2B .1∶3C .2∶ 2D .3∶6(3)已知某圆台的一个底面周长是另一个底面周长的 3 倍,母线长为 3 ,圆台的侧面积为 84π,则该圆台较小底面的半径为( )A .7B .6C .5D .3【解析】 (1)设圆锥的底面半径为 r ,母线长为 l ,则由题意可知,l =2r ,于是 S 侧=πr ·2r =2πr 2,S 底=πr 2,可知选 C.(2)棱锥 B ′­ACD ′为适合条件的棱锥,四个面为全等的等边三角形,设正方体的棱长为 1,则 B ′C =2,S △B ′AC =32.三棱锥的表面积 S 锥=4×32=23,又正方体的表面积S正=6.因此S锥∶S正=23∶6=1∶ 3.(3)设圆台较小底面的半径为r,则另一底面的半径为3r.由S侧=3π(r+3r)=84π,解得r=7.【答案】(1)C (2)B (3)A空间几何体表面积的求法技巧(1)多面体的表面积是各个面的面积之和.(2)组合体的表面积应注意重合部分的处理.(3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展开为平面图形计算,而表面积是侧面积与底面圆的面积之和.典型应用2柱、锥、台的体积如图所示,正方体ABCD­A1B1C1D1的棱长为a,过顶点B,D,A1截下一个三棱锥.(1)求剩余部分的体积;(2)求三棱锥A­A1BD的体积及高.【解】(1)V三棱锥A1­ABD=13S△ABD·A1A=13×12·AB·AD·A1A=16a3.故剩余部分的体积V=V正方体-V三棱锥A1­ABD=a3-16a3=56a3.(2)V三棱锥A­A1BD=V三棱锥A1­ABD=1 6a 3.设三棱锥A­A1BD的高为h,则V三棱锥A­A1BD=13·S△A1BD·h=13×12×32(2a)2h=36a2h,故36a2h=16a3,解得h=3 3a.求几何体体积的常用方法(1)公式法:直接代入公式求解.(2)等积法:例如四面体的任何一个面都可以作为底面,只需选用底面积和高都易求的形式即可.(3)补体法:将几何体补成易求解的几何体,如棱锥补成棱柱,棱台补成棱锥等.(4)分割法:将几何体分割成易求解的几部分,分别求体积.[提醒]求几何体的体积时,要注意利用好几何体的轴截面(尤其为圆柱、圆锥时),准确求出几何体的高和底面积.典型应用3组合体的表面积和体积如图在底面半径为2,母线长为 4 的圆锥中内接一个高为3的圆柱,求圆柱的表面积.【解】设圆锥的底面半径为R,圆柱的底面半径为r,表面积为S.则R=OC=2,AC=4,AO=42-22=2 3.如图所示,易知△AEB∽△AOC,所以AEAO=EBOC,即323=r2,所以r=1,S 底=2πr 2=2π,S 侧=2πr ·h =23π. 所以 S =S 底+S 侧=2π+23π =(2+23)π.1.[变问法]本例中的条件不变,求圆柱的体积与圆锥的体积之比. 解:由例题解析可知:圆柱的底面半径为 r =1,高 h =3,所以圆柱的体积 V 1=πr 2h =π×12×3=3π.圆锥的体积 V 2=13π×22×23=833π. 所以圆柱与圆锥的体积比为 3∶8.2.[变问法]本例中的条件不变,求图中圆台的表面积与体积.解:由例题解析可知:圆台的上底面半径 r =1,下底面半径 R =2,高 h =3,母线 l =2,所以圆台的表面积 S =π(r 2+R 2+r ·l +Rl )=π(12+22+1×2+2×2)=11π.圆台的体积 V =13π(r 2+rR +R 2)h =13π(12+2+22)×3=733π.3.[变条件、变问法]本例中的“高为3”改为“高为 h ”,试求圆柱侧面积的最大值.解:设圆锥的底面半径为 R ,圆柱的底面半径为 r , 则 R =OC =2,AC =4, AO =42-22=2 3.如图所示易知△AEB ∽△AOC , 所以AE AO =EB OC , 即23-h 23=r2, 所以 h =23-3r ,S 圆柱侧=2πrh =2πr (23-3r ) =-23πr 2+43πr ,所以当 r =1,h =3时,圆柱的侧面积最大,其最大值为 23π.求组合体的表面积与体积的步骤(1)分析结构特征:弄清组合体的组成形式,找准有关简单几何体的关键量.(2)设计计算方法:根据组成形式,设计计算方法,特别要注意“拼接面”面积的处理,利用“切割”“补形”的方法求体积.(3)计算求值:根据设计的计算方法求值.球的体积和表面积1.球的表面积设球的半径为R,则球的表面积S=4πR2.2.球的体积设球的半径为R,则球的体积V=43πR3.■名师点拨对球的体积和表面积的几点认识(1)从公式看,球的表面积和体积的大小,只与球的半径相关,给定R都有唯一确定的S和V与之对应,故表面积和体积是关于R的函数.(2)由于球的表面不能展开成平面,所以,球的表面积公式的推导与前面所学的多面体与旋转体的表面积公式的推导方法是不一样的.(3)球的表面积恰好是球的大圆(过球心的平面截球面所得的圆)面积的4倍.典型应用1球的表面积与体积(1)已知球的体积是32π3,则此球的表面积是()A.12πB.16πC.16π3 D.64π3(2)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径,若该几何体的体积是28π3,则它的表面积是()A.17πB.18πC.20πD.28π【解析】(1)设球的半径为R,则由已知得V=43πR3=32π3,解得R=2.所以球的表面积S=4πR2=16π.(2)由三视图可得此几何体为一个球切割掉18后剩下的几何体,设球的半径为r,故78×43πr3=283π,所以r=2,表面积S=78×4πr2+34πr2=17π,选A.【答案】(1)B(2)A球的体积与表面积的求法及注意事项(1)要求球的体积或表面积,必须知道半径R或者通过条件能求出半径R,然后代入体积或表面积公式求解.(2)半径和球心是球的最关键要素,把握住了这两点,计算球的表面积或体积的相关题目也就易如反掌了.典型应用2球的截面问题如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm,如果不计容器厚度,则球的体积为()A.500π3cm3 B.866π3cm3C.1 372π3cm 3D.2 048π3cm 3【解析】 如图,作出球的一个截面,则MC =8-6=2(cm), BM =12AB =12×8=4(cm). 设球的半径为R cm ,则 R 2=OM 2+MB 2 =(R -2)2+42, 所以R =5,所以V 球=43π×53=5003π (cm 3). 【答案】 A球的截面问题的解题技巧(1)有关球的截面问题,常画出过球心的截面圆,将问题转化为平面中圆的问题.(2)解题时要注意借助球半径R ,截面圆半径r ,球心到截面的距离d 构成的直角三角形,即R 2=d 2+r 2.典型应用3与球有关的切、接问题 角度一 球的外切正方体问题将棱长为 2 的正方体木块削成一个体积最大的球,则该球的体积为( )A.4π3B.2π3C.3π2D.π6【解析】 由题意知,此球是正方体的内切球,根据其几何特征知,此球的直径与正方体的棱长是相等的,故可得球的直径为 2,故半径为 1,其体积是43×π×13=4π3.【答案】 A角度二球的内接长方体问题一个长方体的各个顶点均在同一球的球面上,且一个顶点上的三条棱的长分别为1,2,3,则此球的表面积为________.【解析】长方体外接球直径长等于长方体体对角线长,即2R=12+22+32=14,所以球的表面积S=4πR2=14π.【答案】14π角度三球的内接正四面体问题若棱长为a的正四面体的各个顶点都在半径为R的球面上,求球的表面积.【解】把正四面体放在正方体中,设正方体棱长为x,则a=2x,由题意2R=3x=3×2a2=62a,所以S球=4πR2=32πa2.角度四球的内接圆锥问题球的一个内接圆锥满足:球心到该圆锥底面的距离是球半径的一半,则该圆锥的体积和此球体积的比值为________.【解析】①当圆锥顶点与底面在球心两侧时,如图所示,设球半径为r,则球心到该圆锥底面的距离是r2,于是圆锥的底面半径为r2-⎝⎛⎭⎪⎫r22=3r2,高为3r 2.该圆锥的体积为13×π×⎝⎛⎭⎪⎫3r22×3r2=38πr3,球体积为43πr3,所以该圆锥的体积和此球体积的比值为38πr343πr3=932.②同理,当圆锥顶点与底面在球心同侧时,该圆锥的体积和此球体积的比值为332.【答案】 932或332角度五 球的内接直棱柱问题设三棱柱的侧棱垂直于底面,所有棱的长都为 a ,顶点都在一个球面上,则该球的表面积为( )A .πa 2 B.73πa 2 C.113πa 2D .5πa 2【解析】 由题意知,该三棱柱为正三棱柱,且侧棱与底面边长相等,均为 a .如图,P 为三棱柱上底面的中心,O 为球心,易知 AP =23×32a =33a ,OP =12a ,所以球的半径 R = OA 满足R 2=⎝ ⎛⎭⎪⎫33a 2+⎝ ⎛⎭⎪⎫12a 2=712a 2,故 S 球=4πR 2=73πa 2.【答案】 B(1)正方体的内切球球与正方体的六个面都相切,称球为正方体的内切球,此时球的半径为 r 1=a2,过在一个平面上的四个切点作截面如图(1).(2)长方体的外接球长方体的八个顶点都在球面上,称球为长方体的外接球,根据球的定义可知,长方体的体对角线是球的直径,若长方体过同一顶点的三条棱长为 a ,b ,c ,过球心作长方体的对角线,则球的半径为 r 2=12a 2+b 2+c 2,如图(2).(3)正四面体的外接球正四面体的棱长a与外接球半径R的关系为:2R=6 2a.8.4.1平面1.平面(1)平面的概念几何里所说的“平面”,是从课桌面、黑板面、海面这样的一些物体中抽象出来的.平面是向四周无限延展的.(2)平面的画法我们常用矩形的直观图,即平行四边形表示平面.当水平放置时,常把平行四边形的一边画成横向;当平面竖直放置时,常把平行四边形的一边画成竖向.(3)平面的表示方法我们常用希腊字母α,β,γ等表示平面,如平面α、平面β、平面γ等,并将它写在代表平面的平行四边形的一个角内;也可以用代表平面的平行四边形的四个顶点,或者相对的两个顶点的大写英文字母作为这个平面的名称.如图中的平面α,也可以表示为平面ABCD、平面AC或者平面BD.■名师点拨(1)平面和点、直线一样,是只描述而不加定义的原始概念,不能进行度量.(2)平面无厚薄、无大小,是无限延展的.2.点、线、面之间的关系及符号表示A是点,l,m是直线,α,β是平面.从集合的角度理解点、线、面之间的关系(1)直线可以看成无数个点组成的集合,故点与直线的关系是元素与集合的关系,用“∈”或“∉”表示.(2)平面也可以看成点集,故点与平面的关系也是元素与集合的关系,用“∈”或“∉”表示.(3)直线与平面都是点集,它们之间的关系可看成集合与集合的关系,故用“⊂”或“⊄”表示.3.平面的性质在画两个相交平面时,如果其中一个平面的一部分被另一个平面挡住,通常把被挡住的部分画成虚线或不画,这样可使画出的图形立体感更强一些.如下图①,图②所示:4.平面性质的三个推论推论1经过一条直线和这条直线外一点,有且只有一个平面.如图(1).推论2经过两条相交直线,有且只有一个平面.如图(2).推论3经过两条平行直线,有且只有一个平面.如图(3).典型应用1图形、文字、符号语言的相互转化(1)用符号语言表示下面的语句,并画出图形.平面ABD与平面BDC交于BD,平面ABC与平面ADC交于AC.(2)将下面用符号语言表示的关系用文字语言予以叙述,并用图形语言予以表示.α∩β=l,A∈l,AB⊂α,AC⊂β.【解】(1)符号语言表示:平面ABD∩平面BDC=BD,平面ABC∩平面ADC=AC.用图形表示如图①所示.(2)文字语言叙述为:点A在平面α与平面β的交线l上,直线AB,AC分别在平面α,β内,图形语言表示如图②所示.。

部编版高中数学必修二第八章立体几何初步解题方法技巧

部编版高中数学必修二第八章立体几何初步解题方法技巧

(名师选题)部编版高中数学必修二第八章立体几何初步解题方法技巧单选题1、如图所示的正方形SG1G2G3中,E , F分别是G1G2,G2G3的中点,现沿SE,SF,EF把这个正方形折成一个四面体,使G1,G2,G3重合为点G,则有()A.SG⊥平面EFG B.EG⊥平面SEFC.GF⊥平面SEF D.SG⊥平面SEF答案:A解析:根据正方形的特点,可得SG⊥FG,SG⊥EG,然后根据线面垂直的判定定理,可得结果.由题意:SG⊥FG,SG⊥EG,FG∩EG=G,FG,EG⊂平面EFG所以SG⊥平面EFG正确,D不正确;.又若EG⊥平面SEF,则EG⊥EF,由平面图形可知显然不成立;同理GF⊥平面SEF不正确;故选:A小提示:本题主要考查线面垂直的判定定理,属基础题.2、下图是一个圆台的侧面展开图,若两个半圆的半径分别是1和2,则该圆台的体积是()A .7√2π24B .7√3π24C .7√2π12D .7√3π12答案:B分析:先计算出上下底面的半径和面积,再求出圆台的高,按照圆台体积公式计算即可.如图,设上底面的半径为r ,下底面的半径为R ,高为ℎ,母线长为l ,则2πr =π⋅1,2πR =π⋅2,解得r =12,R =1,l =2−1=1,ℎ=√l 2−(R −r )2=√12−(12)2=√32, 设上底面面积为S ′=π⋅(12)2=π4,下底面面积为S =π⋅12=π,则体积为13(S +S ′+√SS ′)ℎ=13(π+π4+π2)⋅√32=7√3π24. 故选:B.3、在《九章算术》中,将底面为矩形且有一条侧棱与底面垂直的四棱锥称之为阳马.如图,若四棱锥P −ABCD 为阳马,侧棱PA ⊥底面ABCD ,且PA =2√2,AB =BC =2,则该阳马的外接球的表面积为( )A .4πB .8πC .16πD .32π答案:C分析:补全该阳马所得到的长方体,则该长方体的体对角线即为该阳马外接球的直径,求出外接球半径,即可得出答案.解:因为四棱锥P −ABCD 为阳马,侧棱PA ⊥底面ABCD ,如图,补全该阳马所得到的长方体,则该长方体的体对角线即为该阳马外接球的直径,设外接球半径为R,则(2R)2=AB2+BC2+PA2=4+4+8=16,所以R=2,所以该阳马的外接球的表面积为4πR2=16π.故选:C.4、锐角△ABC中,角A、B、C所对的边分别为a、b、c,若a=7、b=8,m⃑⃑ =(12,cosA),n⃑=(sinA,−√32),且m⃑⃑ ⊥n⃑,则△ABC的面积为()A.√3B.3√3C.5√3D.10√3答案:D分析:先由向量垂直得到A=π3,利用余弦定理求出c=3或c=5,利用锐角三角形排除c=3,从而c=5,利用面积公式求出答案.由题意得:12sinA−√32cosA=0,故tanA=√3,因为A∈(0,π2),所以A=π3,由余弦定理得:cosA=64+c2−492×8c =12,解得:c=3或c=5,当c=3时,最大值为B,其中cosB=49+9−642×7×3<0,故B为钝角,不合题意,舍去;当c=5时,最大值为B,其中cosB=49+25−642×7×5>0,故B为锐角,符合题意,此时S△ABC=12bcsinA=12×8×5×√32=10√3.故选:D5、下列空间图形画法错误的是()A.B.C.D.答案:D分析:根据空间图形画法:看得见的线画实线,看不见的线画虚线.即可判断出答案.D选项:遮挡部分应画成虚线.故选:D.6、一条直线和两条异面直线中的一条平行,则它和另一条的位置关系是()A.平行B.相交C.异面D.相交或异面答案:D分析:根据空间中两直线的位置关系,即可求解:如图(1)所示,此时直线a与直线b为异面直线,其中l//a,此时直线l与b为相交直线;如图(2)所示,此时直线a与直线b为异面直线,其中l//a,此时直线l与b为异面直线,综上,一条直线与两条异面直线中的一条平行,则它和另一条直线的位置关系是相交或异面.故选: D.7、已知正方体ABCD−A1B1C1D1的棱长为2,点P在棱AD上,过点P作该正方体的截面,当截面平行于平面B1D1C且面积为√3时,线段AP的长为()A.√2B.1C.√3D.√32答案:A分析:过点P作DB,A1D的平行线,分别交棱AB,AA1于点Q,R,连接QR,BD,即可得到△PQR为截面,且为等边三角形,再根据截面面积求出PQ的长度,即可求出AP;解:如图,过点P作DB,A1D的平行线,分别交棱AB,AA1于点Q,R,连接QR,BD,因为BD//B1D1,所以PQ//B1D1,B1D1⊂面B1D1C,PQ⊄面B1D1C,所以PQ//面B1D1C因为A1D//B1C,所以PR//B1C,B1C⊂面B1D1C,PR⊄面B1D1C,所以PR//面B1D1C又PQ∩PR=P,PQ,PR⊂面PQR,所以面PQR//面B1D1C,则PQR为截面,易知△PQR是等边三角形,则12PQ2⋅√32=√3,解得PQ=2,∴AP=√22PQ=√2.故选:A.8、如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则直线AB与平面MNQ 不平行的是()A.B.C.D.答案:A分析:利用线面平行的判定定理逐项判断可得出合适的选项.对于A选项,连接CD、BE交于点O,则O为BE的中点,设BE∩MN=F,连接FQ,因为Q、O分别为AE、BE的中点,则OQ//AB,若AB//平面MNQ,AB⊂平面ABE,平面ABE∩平面MNQ=FQ,则FQ//AB,在平面ABE内,过该平面内的点Q作直线AB的平行线,有且只有一条,与题设矛盾,假设不成立,故A选项中的直线AB与平面MNQ不平行.对于B选项,连接CD,如下图所示:因为AC//BD且AC=BD,所以,四边形ABDC为平行四边形,所以AB//CD,因为M、Q分别为CE、DE的中点,所以MQ//CD,所以MQ//AB,因为AB⊄平面MNQ,MQ⊂平面MNQ,所以,AB//平面MNQ;对于C选项,连接CD,如下图所示:因为AC//BD且AC=BD,所以,四边形ABDC为平行四边形,所以AB//CD,因为M、Q分别为CE、DE的中点,所以MQ//CD,所以MQ//AB,因为AB⊄平面MNQ,MQ⊂平面MNQ,所以,AB//平面MNQ;对于D选项,连接CD,如下图所示:因为AC//BD且AC=BD,所以,四边形ABDC为平行四边形,所以CD//AB,因为N、Q分别为CE、DE的中点,则NQ//CD,所以NQ//AB,因为AB⊄平面MNQ,NQ⊂平面MNQ,所以,AB//平面MNQ;故选:A多选题9、已知直线l和不重合的两个平面α,β,且l⊂α,下列命题正确的是()A.若l∥β,则α∥βB.若α∥β,则l∥βC.若l⊥β,则α⊥βD.若α⊥β,则l⊥β答案:BC分析:结合面面平行的判定定理、面面平行的定义、面面垂直的判定定理和面面垂直的性质定理可分别判断四个选项的正误.对于A,由l∥β可得α与β平行或相交,故错误;对于B,若α∥β,则由面面平行的定义可得l∥β,故正确;对于C,若l⊥β,则由面面垂直的判定定理可得α⊥β,故正确;对于D,当α⊥β时,l可能在β内,可能与β平行,也可能与β相交,所以不一定有l⊥β,故错误.故选:BC.10、如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,∠ABC=∠BAD=π,AP=AD=2BC=2AB,PA⊥底2面ABCD,M为PA的中点,则下列叙述中正确的是()A.PC//平面MBDB.BD⊥平面PACC.异面直线BC与PD所成的角是π4D.直线PC与底面ABCD所成的角的正切值是√2答案:CD分析:利用反证法,根据线面平行的性质定理,结合题意,可判断A的正误;利用反证法,根据线面垂直的性质定理,可判断B的正误;根据异面直线成角的几何求法,即可判断C的正误;根据线面角的几何求法,可判断D的正误,即可得答案.设AC∩BD=E,则E不是AC中点,假设PC∕∕平面MBD因为PC⊂平面PAC,平面PAC∩平面MBD=ME,所以PC∕∕ME,因为M为AP中点,所以E是AC中点,与题意矛盾,所以A错;假设BD⊥平面PAC,则BD⊥AC,因为直角梯形ABCD所,AB=BC,所以知BD与AC不垂直,与假设矛盾,故B错;因为BC∕∕AD,所以异面直线BC与PD所成的角就是直线AD与PD所成的角,为∠PDA,,因为△PAD是等腰直角三角形,所以∠PDA=π4故异面直线BC与PD所成的角是π,所以C对.4因为PA⊥底面ABCD,所以直线PC与底面ABCD所成的角为∠PCA,又因为AC=√2AB,PA=2AB,=√2,所以D对.所以tan∠PCA=PAAC故选:CD.11、如图PA垂直于以AB为直径的圆所在的平面,点C是圆上异于A,B的任一点,则下列结论中正确的是()A.PC⊥BC B.AC⊥平面PCBC.平面PAB⊥平面PBC D.平面PAC⊥平面PBC答案:AD解析:根据线面垂直、面面垂直的判定与性质判断各选项.AB是圆直径,C在圆上,则AC⊥BC,PA⊥平面ABC,BC⊂平面ABC,则PA⊥BC,PA∩AC=A,∴BC⊥平面PAC,又PC⊂平面PAC,∴PC⊥BC,A正确;又BC⊂平面PBC,∴平面PBC⊥平面PAC.D正确;若AC⊥平面PCB,则AC⊥PC,而PA⊥平面ABC,则PA⊥AC,PA,PC重合,矛盾,B错;若平面PAB⊥平面PBC,作CD⊥PB于D,∵平面PAB∩平面PBC=PB,∴CD⊥平面PAB,而PA⊂平面PAB,∴CD⊥PA,CD∩BC=C,∴PA⊥平面PBC,于是平面PBC与平面ABC重合.矛盾,C错.故选:AD.小提示:易错点睛:本题考查空间线面、面面垂直的判定定理和性质定理.由于是多选题,仅仅判断AD正确还不够,必须说明(证明)BC为什么是错误的.否则会出错.填空题12、已知角α和角β的两边分别平行且一组边方向相同,另一组边的方向相反,若α=45°,则β=________. 答案:135°分析:首先根据题意将图画出,然后根据α=45°,AB∥CD,可得∠BCD=180°−α,进而得出结论.解:如图,由题意知α=45°,AB∥CD,∴∠BCD=180°−α=135°,即β=135°.所以答案是:135°.小提示:本题考查了平行线的性质,结合图会使问题变得简单,属于基础题.。

高中数学立体几何的相关题型及解题思路

高中数学立体几何的相关题型及解题思路

高中数学立体几何的相关题型及解题思路在高中数学中,立体几何是一个重要的考点,也是许多学生感到困惑和头疼的地方。

本文将介绍一些常见的立体几何题型,并给出相应的解题思路和技巧,希望能够帮助高中学生和他们的父母更好地应对这一考点。

一、体积计算题体积计算题是立体几何中最基础的题型之一,常见的题目有计算立方体、长方体、圆柱体、圆锥体、球体等的体积。

解决这类题目的关键在于熟练掌握各种几何体的体积公式,并能够根据题目给出的条件灵活运用。

例如,某题给出一个长方体的底面积为12平方厘米,高为5厘米,要求计算其体积。

我们可以直接应用长方体的体积公式V=底面积×高,代入已知数据计算得出答案为60立方厘米。

二、表面积计算题表面积计算题也是立体几何中常见的题型之一,常见的题目有计算立方体、长方体、圆柱体、圆锥体、球体等的表面积。

解决这类题目的关键在于熟练掌握各种几何体的表面积公式,并能够根据题目给出的条件灵活运用。

例如,某题给出一个正方体的边长为3厘米,要求计算其表面积。

我们可以直接应用正方体的表面积公式S=6a^2,其中a为边长,代入已知数据计算得出答案为54平方厘米。

三、立体图形的相似题立体图形的相似题是立体几何中较为复杂的题型之一,常见的题目有判断两个立体图形是否相似、计算相似立体图形的比例等。

解决这类题目的关键在于观察立体图形的形状和比例关系,并能够利用相似三角形的性质进行推理。

例如,某题给出一个正方体ABCDA'B'C'D',另一个正方体EFGHE'F'G'与之相似,要求计算两个正方体的体积比。

我们可以观察到两个正方体的边长比为AE/AA'=EF/EE'=FG/FF'=...=1/2,而体积与边长的关系为V=k^3,其中k为边长的比值。

因此,两个正方体的体积比为(1/2)^3=1/8。

四、立体图形的投影题立体图形的投影题是立体几何中较为抽象的题型之一,常见的题目有计算某个立体图形在某个平面上的投影面积或投影长度等。

高考数学中的立体几何问题及解题方法

高考数学中的立体几何问题及解题方法

高考数学中的立体几何问题及解题方法高考数学中,立体几何是一项重要的考试题型。

相比于平面几何、代数和概率统计等内容,立体几何更为抽象,对学生的空间想象力和逻辑能力要求更高。

本文旨在探讨高考数学中的立体几何问题及其解题方法。

一、立体几何常考题型常见的立体几何问题包括立体几何图形的性质、体积、表面积等问题。

下面列举一些高考中经常出现的立体几何考点。

1. 立体图形的名字和性质高考中经常出现的立体图形包括正方体、长方体、棱柱、棱锥、圆柱、圆锥、球等。

学生需要掌握这些图形的属性,比如正方体的六个面都是正方形、长方体的所有面都是矩形等等,只要掌握了它们的基本属性,在解决题目时就能做到心中有数。

2. 体积求立体图形的体积是立体几何中比较基础和常见的题型。

学生需要清楚掌握各种常见图形的体积公式,例如:①正方体的体积公式:V=a³②长方体的体积公式:V=lxwxh③棱柱的体积公式:V=Ah④圆柱的体积公式:V=πr²h⑤球的体积公式:V=4/3πr³⑥棱锥的体积公式:V=1/3Ah注意,这些公式必须要掌握,不要在考试中还在纠结于公式的推导方法。

3. 表面积求立体图形的表面积也是数学中的一大题型。

常见的几何图形表面积的计算方式有如下几种公式:①正方体的表面积公式:S=6a²②长方体的表面积公式:S=2(lw+lh+wh)③棱柱的表面积公式:S=2B+Ph④圆柱的表面积公式:S=2πr²+2πrh⑤球的表面积公式:S=4πr²⑥棱锥的表面积公式:S=B+1/2Pl其中B表示底面积,P表示底面外接多边形的周长,l表示斜几何。

上面列举的是一些常见的立体几何题目,还有一些特殊题目需要学生掌握,例如“平行四边形体积定理”、“曲面半径定理”等等。

二、举例分析解题方法1. 体积题例题:某学校花坛为正方形,长和宽之和为25米,现在将花坛增加5个方块,每个方块边长为2米,求增加的花坛的体积。

高中数学立体几何知识点总结(超详细)

高中数学立体几何知识点总结(超详细)

立体几何知识梳理一 、空间几何体 (一) 空间几何体的类型1 多面体:由若干个平面多边形围成的几何体.围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点.2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体.其中,这条直线称为旋转体的轴.(二) 几种空间几何体的结构特征 1 、棱柱的结构特征1.1 棱柱的定义:由一个平面多边形沿某一方向平移形成的空间几何体叫做棱柱. 1.2 棱柱的分类棱柱四棱柱平行六面体直平行六面体长方体正四棱柱正方体 性质:Ⅰ、侧面都是平行四边形,且各侧棱互相平行且相等; Ⅱ、两底面是全等多边形且互相平行; Ⅲ、平行于底面的截面和底面全等;1.3 棱柱的面积和体积公式ch S 直棱柱侧(c 是底周长,h 是高)S 直棱柱表面 = c ·h+ 2S 底 V 棱柱 = S 底 ·h2 、棱锥的结构特征2.1 棱锥的定义(1) 棱锥:当棱柱的一个底面收缩为一个点时,得到的几何体叫做棱锥.(2)正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的投影是底面的中心,这样的棱锥叫做正棱锥.棱长都相等底面是正方形底面是矩形侧棱垂直于底面底面是平行四边形底面是四边形图1-1 棱柱2.2 正棱锥的结构特征Ⅰ、 平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比;它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比;Ⅱ、 正棱锥的各侧棱相等,各侧面是全等的等腰三角形;Ⅲ、两个特征三角形:(1)POH ∆(包含棱锥的高、斜高和底面内切圆半径);(2)POB ∆(包含棱锥的高、侧棱和底面外接圆半径) 正棱锥侧面积:1'2S ch =正棱椎(c 为底周长,'h 为斜高) 体积:13V Sh =棱椎(S 为底面积,h 为高)正四面体:各条棱长都相等的三棱锥叫正四面体对于棱长为a 正四面体的问题可将它补成一个边长为a 22的正方体问题. 对棱间的距离为a 2(正方体的边长) 正四面体的高a 6(正方体体对角线l 32=) 正四面体的体积为32a (正方体小三棱锥正方体V V V 314=-) 正四面体的中心到底面与顶点的距离之比为3:1(正方体体对角线正方体体对角线:l l 2161=) 3 、棱台的结构特征3.1 棱台的定义:用一个平行于底面的平面去截棱锥,我们把截面和底面之间的部分称为棱台. 3.2 正棱台的结构特征(1)各侧棱相等,各侧面都是全等的等腰梯形;(2)正棱台的两个底面和平行于底面的截面都是正多边形; (3)正棱台的对角面也是等腰梯形; (4)各侧棱的延长线交于一点. 4 、圆柱的结构特征4.1 圆柱的定义:以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲ABC D POH面所围成的几何体叫圆柱.4.2 圆柱的性质(1)上、下底及平行于底面的截面都是等圆;(2)过轴的截面(轴截面)是全等的矩形.4.3 圆柱的侧面展开图:圆柱的侧面展开图是以底面周长和母线长为邻边的矩形.4.4 圆柱的面积和体积公式S圆柱侧面= 2π·r·h (r为底面半径,h为圆柱的高)V圆柱= S底h = πr2h5、圆锥的结构特征5.1 圆锥的定义:以直角三角形的一直角边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫做圆锥.5.2 圆锥的结构特征(1)平行于底面的截面都是圆,截面直径与底面直径之比等于顶点到截面的距离与顶点到底面的距离之比;(2)轴截面是等腰三角形;图1-5 圆锥(3)母线的平方等于底面半径与高的平方和:l2 = r2 + h25.3 圆锥的侧面展开图:圆锥的侧面展开图是以顶点为圆心,以母线长为半径的扇形.6、圆台的结构特征6.1 圆台的定义:用一个平行于底面的平面去截圆锥,我们把截面和底面之间的部分称为圆台.6.2 圆台的结构特征⑴圆台的上下底面和平行于底面的截面都是圆;⑵圆台的截面是等腰梯形;⑶圆台经常补成圆锥,然后利用相似三角形进行研究.6.3 圆台的面积和体积公式S圆台侧= π·(R + r)·l (r、R为上下底面半径)V圆台= 1/3 (π r2+ π R2+ π r R) h (h为圆台的高)7 球的结构特征7.1 球的定义:以半圆的直径所在的直线为旋转轴,半圆旋转一周形成的旋转体叫做球体.空间中,与定点距离等于定长的点的集合叫做球面,球面所围成的几何体称为球体.7-2 球的结构特征⑴ 球心与截面圆心的连线垂直于截面;⑵ 截面半径等于球半径与截面和球心的距离的平方差:r 2 = R 2 – d 2 ⑶注意圆与正方体的两个关系:球内接正方体,球直径等于正方体对角线; 球外切正方体,球直径等于正方体的边长. 7-3 球的面积和体积公式S 球面 = 4 π R 2 (R 为球半径); V 球 = 4/3 π R 3 (三)空间几何体的表面积与体积 空间几何体的表面积棱柱、棱锥的表面积:各个面面积之和圆柱的表面积 :222S rl r ππ=+圆锥的表面积:2S rl r ππ=+圆台的表面积:22S rl r Rl R ππππ=+++球的表面积:24S R π= 空间几何体的体积柱体的体积 :V S h =⨯底;锥体的体积 :13V S h =⨯底台体的体积:1)3V S S h =++⨯下上(;球体的体积:343V R π=斜二测画法:(1)平行于坐标轴的线依然平行于坐标轴;(2)平行于y 轴的线长度变半,平行于x ,z 轴的线长度不变;二 、点、直线、平面之间的关系(一)、立体几何网络图:1、线线平行的判断:(1)平行于同一直线的两直线平行.(3)如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(6)如果两个平行平面同时和第三个平面相交,那么它们的交线平行.(12)垂直于同一平面的两直线平行.2、线线垂直的判断:(7)三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直.(8)三垂线逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它和这条斜线的射影垂直.如图,已知PO⊥α,斜线PA在平面α内的射影为OA,a是平面α内一条直线.①三垂线定理:若a⊥OA,则a⊥PA.即垂直射影则垂直斜线.②三垂线定理逆定理:若a⊥PA,则a⊥OA.即垂直斜线则垂直射影.(10)若一直线垂直于一个平面,则这条直线垂直于平面内所有直线.补充:一条直线和两条平行直线中的一条垂直,也必垂直平行线中的另一条.3、线面平行的判断:(2)如果平面外的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行.(5)两个平面平行,其中一个平面内的直线必平行于另一个平面.判定定理:性质定理:★判断或证明线面平行的方法⑴利用定义(反证法):lα=∅,则l∥α (用于判断);⑵利用判定定理:线线平行线面平行(用于证明);⑶利用平面的平行:面面平行线面平行(用于证明);⑷利用垂直于同一条直线的直线和平面平行(用于判断).2线面斜交和线面角:l∩α = A2.1 直线与平面所成的角(简称线面角):若直线与平面斜交,则平面的斜线与该斜线在平面内射影的夹角θ.2.2 线面角的范围:θ∈[0°,90°]注意:当直线在平面内或者直线平行于平面时,θ=0°;当直线垂直于平面时,θ=90°4、线面垂直的判断:(9)如果一直线和平面内的两相交直线垂直,这条直线就垂直于这个平面.(11)如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面.(14)一直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面.(16)如果两个平面垂直,那么在—个平面内垂直于交线的直线必垂直于另—个平面.判定定理:性质定理:(1)若直线垂直于平面,则它垂直于平面内任意一条直线.即:(2)垂直于同一平面的两直线平行.即:★判断或证明线面垂直的方法⑴利用定义,用反证法证明.⑵利用判定定理证明.⑶一条直线垂直于平面而平行于另一条直线,则另一条直线也垂直与平面.⑷一条直线垂直于两平行平面中的一个,则也垂直于另一个.⑸如果两平面垂直,在一平面内有一直线垂直于两平面交线,则该直线垂直于另一平面.5、面面平行的判断:(4)一个平面内的两条相交直线分别平行于另一个平面,这两个平面平行.(13)垂直于同一条直线的两个平面平行.6、面面垂直的判断:(15)一个平面经过另一个平面的垂线,这两个平面互相垂直.判定定理:性质定理:(1)若两面垂直,则这两个平面的二面角的平面角为90°;(2)(二)、其他定理结论:(1)确定平面的条件:①不共线的三点;②直线和直线外一点;③两条相交直线;④两条平行直线;(2)直线与直线的位置关系:相交;平行;异面;直线与平面的位置关系:在平面内;平行;相交(垂直是它的特殊情况);平面与平面的位置关系:相交;;平行;(3)等角定理:如果两个角的两边分别平行且方向相同,那么这两个角相等;如果两条相交直线和另外两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等;(4)射影定理(斜线长、射影长定理):从平面外一点向这个平面所引的垂线段和斜线段中,射影相等的两条斜线段相等;射影较长的斜线段也较长;反之,斜线段相等的射影相等;斜线段较长的射影也较长;垂线段比任何一条斜线段都短.(5)最小角定理:斜线与平面内所有直线所成的角中最小的是与它在平面内射影所成的角.(6)异面直线的判定:①反证法;②过平面外一点与平面内一点的直线,和平面内不过该点的直线是异面直线.(7)过已知点与一条直线垂直的直线都在过这点与这条直线垂直平面内.(8)如果—直线平行于两个相交平面,那么这条直线平行于两个平面的交线.(三)、唯一性定理结论:(1)过已知点,有且只能作一直线和已知平面垂直.(2)过已知平面外一点,有且只能作一平面和已知平面平行.(3)过两条异面直线中的一条能且只能作一平面与另一条平行.四、空间角的求法:(所有角的问题最后都要转化为解三角形的问题,尤其是直角三角形)(1)异面直线所成的角:平移转化,把异面直线所成的角转化为平面内相交直线o o(2)线面所成的角:①线面平行或直线在平面内:线面所成的角为o 0; ②线面垂直:线面所成的角为o 90;③斜线与平面所成的角:射影转化,即转化为斜线与它在平面内的射影所成的角.o o 线面所成的角范围090o o α≤≤ (3)二面角:关键是找出二面角的平面角,o o α≤<; 五、距离的求法:(1)点点、点线、点面距离:点与点之间的距离就是两点之间线段的长、点与线、面间的距离是点到线、面垂足间线段的长.求它们首先要找到表示距离的线段,然后再计算.注意:求点到面的距离的方法:①直接法:直接确定点到平面的垂线段长(垂线段一般在二面角所在的平面上); ②转移法:转化为另一点到该平面的距离(利用线面平行的性质); ③体积法:利用三棱锥体积公式.。

高中数学立体几何的重点知识点整理如何解决立体几何题目

高中数学立体几何的重点知识点整理如何解决立体几何题目

高中数学立体几何的重点知识点整理如何解决立体几何题目立体几何是数学的一个重要分支,其研究的是空间中的图形和物体。

在高中数学中,学生将接触到一些重要的立体几何知识点,并且需要学会如何解决立体几何题目。

本文将对高中数学立体几何的重点知识点进行整理,并介绍如何解决立体几何题目。

一、立体几何的基本概念1. 空间中的点、直线和平面是立体几何的基本概念。

学生需要理解三维空间中点、直线和平面的性质,以及它们之间的相互关系。

2. 学生还需要掌握棱、面和顶点的概念,并能够正确识别出立体图形中的棱、面和顶点。

二、多面体的特征和性质1. 多面体是由多个平面围成的空间图形。

学生需要了解常见的多面体,例如立方体、正四面体、正六面体等,并掌握它们的特征和性质。

2. 对于立体图形,学生还需要学会计算其表面积和体积。

通过求解表面积和体积的问题,可以帮助学生加深对多面体的认识。

三、平行线与平面的交角1. 平行线与平面的交角是数学中的重要概念。

学生需要理解平行线与平面的交角定义,并熟练运用相关的性质解决问题。

2. 根据平行线与平面的交角定义,学生可以判断两个立体图形是否相似,并进行相关计算。

四、截痕与截面1. 截痕是指平面与立体图形的交线。

学生需要理解截痕的特征和性质,并能够根据截痕计算立体图形的体积和表面积。

2. 截面是指平面与立体图形的交面。

学生需要学会根据截面的形状和大小来判断立体图形的性质,并运用相关的性质解决问题。

五、三棱锥和三棱柱的特征和计算1. 三棱锥是由一个底面和三个棱共同围成的空间图形。

学生需要掌握三棱锥的特征和性质,并能够计算三棱锥的表面积和体积。

2. 三棱柱是由两个平面底面和三个棱共同围成的空间图形。

学生需要了解三棱柱的特征和性质,并学会计算三棱柱的表面积和体积。

通过掌握以上的立体几何知识点,学生可以更好地解决立体几何题目。

在解题过程中,可以使用以下方法:1. 理清题意,明确问题的要求。

2. 根据题目给出的条件,运用相应的知识点进行分析。

高中数学立体几何知识点

高中数学立体几何知识点

高中数学立体几何知识点(大全)一、【空间几何体结构】1.空间结合体:如果我们只考虑物体占用空间部分的形状和大小,而不考虑其它因素,那么由这些物体抽象出来的空间图形,就叫做空间几何体。

2.棱柱的结构特征:有两个面互相平行,其余各面都是四边形,每相邻两个四边形的公共边互相平行,由这些面围成的图形叫做棱柱。

棱柱(1):棱柱中,两个相互平行的面,叫做棱柱的底面,简称底。

底面是几边形就叫做几棱柱。

(2):棱柱中除底面的各个面。

(3):相邻侧面的公共边叫做棱柱的侧棱。

(4):侧面与底面的公共顶点叫做棱柱的顶点棱柱的表示:用表示底面的各顶点的字母表示。

如:六棱柱表示为ABCDEF-A’B’C’D’E’F’3.棱锥的结构特征:有一个面是多边形,其余各面都是三角形,并且这些三角形有一个公共定点,由这些面所围成的多面体叫做棱锥。

棱锥4.圆柱的结构特征:以矩形的一边所在直线为旋转轴,其余边旋转形成的面所围成的旋转体叫做圆柱。

圆柱(1):旋转轴叫做圆柱的轴。

(2):垂直于轴的边旋转而成的圆面叫做圆柱的底面。

(3):平行于轴的边旋转而成的曲面叫做圆柱的侧面。

(4):无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线。

圆柱用表示它的轴的字母表示,如:圆柱O’O(注:棱柱与圆柱统称为柱体)5.圆锥的结构特征:以直角三角形的一条直角边所在直线为旋转轴, 两余边旋转形成的面所围成的旋转体叫做圆锥。

圆锥(1):作为旋转轴的直角边叫做圆锥的轴。

(2):另外一条直角边旋转形成的圆面叫做圆锥的底面。

(3):直角三角形斜边旋转形成的曲面叫做圆锥的侧面。

(4):作为旋转轴的直角边与斜边的交点。

(5):无论旋转到什么位置,直角三角形的斜边叫做圆锥的母线。

圆锥可以用它的轴来表示。

如:圆锥SO(注:棱锥与圆锥统称为锥体)二、【棱台和圆台的结构特征】1.棱台的结构特征:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分是棱台。

棱台(1):原棱锥的底面和截面分别叫做棱台的下底面和上底面。

高中数学立体几何解题技巧及常见题型详解

高中数学立体几何解题技巧及常见题型详解

高中数学立体几何解题技巧及常见题型详解立体几何是数学中的一个重要分支,它研究的是空间中的图形和体积。

在高中数学中,立体几何是一个重要的考点,也是考试中难度较大的部分之一。

本文将介绍一些高中数学立体几何解题技巧,并详细解析几种常见的立体几何题型,帮助读者更好地应对这一考点。

一、平行六面体的体积计算平行六面体是高中数学中常见的立体几何题型之一。

解决这类题目的关键是确定底面积和高,进而计算体积。

例如,有一平行六面体的底面积为A,高为h,求其体积。

解题技巧:首先,我们需要明确平行六面体的定义,即六个面都是平行的。

其次,根据平行六面体的性质,我们可以将其看作一个长方体,因为长方体是一种特殊的平行六面体。

因此,平行六面体的体积可以通过底面积乘以高来计算,即V = Ah。

举例说明:假设有一个平行六面体,其底面积为5平方厘米,高为10厘米。

那么,它的体积可以通过计算5乘以10得到,即V = 5 × 10 = 50立方厘米。

二、正方体的表面积计算正方体是高中数学中常见的立体几何题型之一。

解决这类题目的关键是确定正方体的边长,进而计算表面积。

例如,有一个正方体的边长为a,求其表面积。

解题技巧:首先,我们需要明确正方体的定义,即六个面都是正方形。

其次,根据正方体的性质,我们可以将其看作一个立方体,因为立方体是一种特殊的正方体。

因此,正方体的表面积可以通过边长的平方乘以6来计算,即S = 6a²。

举例说明:假设有一个正方体,其边长为3厘米。

那么,它的表面积可以通过计算6乘以3的平方得到,即S = 6 × 3² = 54平方厘米。

三、棱柱的体积计算棱柱是高中数学中常见的立体几何题型之一。

解决这类题目的关键是确定底面积和高,进而计算体积。

例如,有一个棱柱的底面积为A,高为h,求其体积。

解题技巧:首先,我们需要明确棱柱的定义,即底面是一个多边形,顶面与底面的对应点通过直线相连。

其次,根据棱柱的性质,我们可以将其看作一个长方体,因为长方体是一种特殊的棱柱。

高中立体几何基础知识点全集(图文并茂)

高中立体几何基础知识点全集(图文并茂)

高中立体几何基础知识点全集(图文并茂)立体几何知识点整理 2. 线面平行:姓名: 方法一:用线线平行实现。

一、直线和平面的三种位置关系:1.线面平行lim lm⊂aI=a}⇒IBa符号表示:2.线面相交方法二:用面面平行实现。

α//βI⊂β⇒Iα符号表示:3.线在面内符号表示:方法三:用平面法向量实现。

若n为平面α的一个法向量。

⃗⃗且/ɑα.则111α. 3. 面面平行:二. 平行关系:方法一:用线线平行实现。

1. 线线平行:方法一:用线面平行实现。

lIIaI ⇒lIm方法二:用面面平行实现。

方法三:用线面垂直实现。

1//rm∥m'l. m=β且相交 ⇒α∥βl',m'cα且相交方法二:用线面平行实现。

1/1am//α ⇒α∥β 1. m ⊂β且相交)三.垂直关系:1.线面垂直:若/⊥α,m⊥α,则|∥m.方法四:用向量方法:若向量i 和向量 ⃗共线且1. m 不重合,则|//m 。

方法一:用线线垂直实现。

IA方法二:用面面垂直实现。

2.面面垂直:方法一:用线面垂直实现。

方法二:计算所成二面角为直角。

3. 线线重直:方法一:用线面垂直实现。

方法二:三重线定理及其逆定理。

方法三:用向量方法:若向量/和向量⃗的数量积为0,则/⊥m.三.夹角问题。

(一)异面直线所成的角:(1) 范围: (0°,90°](2)求法:方法一:定义法。

步骤1:平移,使它们相交,找到夹角。

步骤2:解三角形求出角。

(常用到余弦定理)(计算结果可能是其补角)方法二:向量法。

转化为向量的夹角(二)线面角(1)定义:直线/ 上任取一点P(交点除外),作PO⊥α于O,连结AO,则AO为斜线PA 在面α内的射影,∠PAO(图中θ)为直线t与面α所成的角。

(2)范围: [0°.90°]当θ=0°时, 1cα或1//α当θ=90°时, 1⊥α(3)求法:方法一:定义法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 空间几何体一、常见几何体的定义能说出棱柱、棱锥、棱台、圆柱、圆锥、圆台、球的定义和性质。

二、常见几何体的面积、体积公式1.圆柱:侧面积rl cl S π2==侧 (其中c 是底面周长,r 是底面半径,l 是圆柱的母线,也是高)表面积)(2222l r r r rl S S S +=⋅+=+=πππ底侧表h r sh V 2π==柱体2.圆锥:侧面积rl cl S π==21侧 (其中c 是底面周长,r 是底面半径,l 是圆锥的母线) 表面积)(2l r r r rl S S S +=+=+=πππ底侧表 h r sh V 23131π==椎体 3.圆台:侧面积l R r l R r S )(2)22(+=+=πππ侧 (其中r 、R 是上下底面半径,l 是圆台的母线) 表面积)()(2222R r Rl rl R r l R r S S S +++=+++=+=ππππ底侧表 h S S S S V )(31''++=台体 (其中'S 、S 是上下底面面积,h 是圆台的高) 4.球:表面积24R S π=表,体积334R V π=球 三、直观图:会用斜二侧画法画出平面图形的直观图。

画法步骤:①在原图中画一个直角坐标系,在新图中画一个夹角为45°的坐标系; ②与x 轴平行的线段仍然与x 轴平行,长度不变;与y 轴平行的线段仍然与y 轴平行,但是长度减半。

四、三视图1.投影:光线照射物体留在屏幕上的影子。

①中心投影:光由一点向外散射形成的投影。

②平行投影:在平行光线照射下形成的投影。

③正投影:光线正对着投影面时的平行投影。

2.三视图:正视图:光线从前向后的正投影;侧视图:光线从左向右的正投影;俯视图:光线从上向下的正投影。

三视图的性质:侧视图和正视图的高相同;俯视图和正视图的长相同;侧视图和俯视图的宽相同。

第二章:点、直线、平面之间的位置关系 一、立体几何中的公理与基本关系1.平面公理:公理1:如果一条直线上有两个点在一个平面内,那么这条直线在此平面内。

公理2:过不在一条直线上的三个点,有且只有一个平面。

推论1:一条直线和直线外一点确定一个平面。

推论2:两条相交直线确定一个平面。

推论3:两条平行直线确定一个平面。

公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的平面。

公理4:平行于同一条直线的两条直线互相平行。

【本公理也称为平行直线的传递性】2.等角定理:空间中如果两个角的两边分别平行,那么这两个角相等或互补。

3.空间四边形:四个顶点不在同一个平面内的四边形。

4.点、线、面之间的位置关系的表示方法:①点A 在直线l 上,记作 ,点A 不在直线l 上,记作 ;②点A 在平面α内,记作 ,点A 不在平面α内,记作 ;③直线l 在平面α内,记作 ,直线l 不在平面α内,记作 ;④直线l 与平面α相交,记作 ,直线l 与平面α平行,记作 ;⑤平面α与平面β平行,记作 ,平面α与平面β相交,记作 。

二、线面间的位置关系1.线线间的位置关系:相交、平行、异面。

①异面直线的定义:不同在任何一个平面内的两条直线叫做异面直线。

②异面直线所成的角:过空间任意点O 分别作两条异面直线的平行线,所得的两条相交直线所成的锐角或直角。

异面直线所成的角的取值范围是(0,90]α∈。

2.线面间的位置关系:平行,相交,线在面内。

【线在面外是指:平行或相交。

】3.面面间的位置关系:平行、相交。

【注:垂直是相交的一种特殊情况。

】三、平行关系1.线线平行:在同一个平面内没有公共点的两条直线称为平行直线。

2.线面平行①定义:直线a 与平面α没有公共点,叫做直线a 与平面α平行,记作://a α。

②判定定理:若平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。

符号语言:若,,//a b a b αα⊄⊂,则//a α。

③性质定理:若一直线与一平面平行,则过这条直线的平面与此平面的交线与该直线平行。

符号语言:若//,,a a b αβαβ⊂=,则//a b 。

3.面面平行①定义:平面α与平面β没有公共点,则称平面α与平面β平行,记作//αβ。

②判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。

符号语言:若,,,//,//a b a b p a b ββαα⊂⊂=,则//αβ。

③性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行。

符号语言:若//,,a b αβαγβγ==,则//a b 。

四、垂直关系1.线线垂直:若两条直线的夹角为90°,则称为两直线垂直。

2.线面垂直①定义:若直线l 与平面α内的任意一条直线都垂直,则直线l 与平面α互相垂直;记作:l α⊥。

②判断定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。

符号语言:若,,,,l m l n m n m n P αα⊥⊥⊂⊂=,则l α⊥。

③性质定理:垂直于同一个平面的两条直线平行。

符号语言:若,m n αα⊥⊥,则//m n 。

3.面面垂直①定义:若两个相交平面所成的二面角是直二面角,则这两个平面互相垂直。

记作:αβ⊥。

②判断定理:一个平面过另一个平面的垂线,则这两个平面垂直。

符号语言:若,m m αβ⊥⊂,则αβ⊥。

③性质定理:若两个平面垂直,则一个平面内垂直于它们交线的直线与另一个平面垂直。

符号语言:若,,,m m l l αβααβ⊥⊂⊥=,则m β⊥。

四、空间中的角1.线线角:线线角的范围[0,90]α∈。

2.线面角:平面的斜线和它在平面上的射影所成的角。

线面角的范围[0,90]α∈。

3.面面角:【二面角】从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面。

二面角的范围[0,180]α∈。

【二面角的平面角】在二面角l αβ--的棱l 上任取一点O ,以点O 为垂足,在半平面α和β内分别作垂直于棱l 的垂线OB OA 和,则射线OB OA 和所成的角AOB ∠叫做二面角的平面角。

注:二面角的大小等于它的平面角的大小。

五、空间的距离(略)【常见题型与思路】【一、平行的证明方法】1.线线平行的证明方法:①平行线的传递性:若//,//a b a c ,则//b c 。

②平行四边形:平行四边形的对边平行。

③中位线定理:三角形中位线定理和梯形中位线定理。

④若一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。

符号语言:若//,,l l m αβαβ⊂=,则//l m 。

⑤若两个平行平面同时和第三个平面相交,则它们的交线平行。

符号语言:若//,,m n αβαγβγ==,则//m n 。

⑥垂直于同一平面的两条直线平行。

符号语言:若,m n αα⊥⊥,则//m n 。

2.线面平行的证明方法:①若平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。

符号语言:若,,//l m l m αα⊄⊂,则//l α。

②若两个平面平行,则其中一个平面内的直线一定平行于另一个平面。

符号语言:若//,l αβα⊂,则//l β。

③若平面外的两条平行线中的一条平行于平面,则另一条也平行这个平面。

符号语言:若,,//,//m n m n m ααα⊄⊄,则//n α。

3.面面平行的证明方法:①若一个平面内的两条相交直线都与另一个平面平行,则这两个平面平行。

符号语言:若,,,//,//m n m n A m n ααββ⊂⊂=,则//αβ。

②若两个平面同时与一条直线垂直,则这两个平面平行。

符号语言:若,l l αβ⊥⊥,则//αβ。

③若两个平面同时与一个平面平行,则这两个平面平行。

符号语言:若//,//αγβγ,则//αβ。

【二、垂直的证明方法】1.线线垂直的证明方法:①定义:若两条直线的夹角为90°,则两条直线垂直。

②勾股定理逆定理:在ABC ∆中,若222AB AC BC +=,则90A ∠=,即AB AC ⊥。

③若一条直线垂直一个平面,则这条直线垂直这个平面里的所有直线。

符号语言:若,l m αα⊥⊂,则l m ⊥。

④若直线垂直两平行直线中的一条,则也垂直另一条。

符号语言:若//,m n l m ⊥,则l n ⊥。

2.线面垂直的证明方法:①若一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。

符号语言:若,,,,m n m n A l m l n αα⊂⊂=⊥⊥,则l α⊥。

②若两条平行直线中的一条垂直于一个平面,则另一条直线也垂直这个平面。

符号语言:若//,m n m α⊥,则n α⊥。

③若一条直线垂直于两平行平面中的一个平面,则该直线也垂直另一个平面。

符号语言:若//,l αβα⊥,则l β⊥。

④若两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。

符号语言:若,,,l m m l αβαβα⊥=⊂⊥,则m β⊥。

3.面面垂直的证明方法:①定义:若二面角l αβ--的平面角为90°,则αβ⊥。

②若一个平面过另一个平面的垂线,则这两个平面垂直。

符号语言:若,l l αβ⊥⊂,则αβ⊥。

【三、角的求法】1.线线角:首先把把两条直线平移到相交,其次把夹角放在三角形中。

2.线面角:首先找出线面角(斜线与射影的夹角),然后按照线线角求解。

3.面面角:首先找出二面角的平面角,然后按照线线角求解。

【四、距离的求法(略)】【注意:以上每句话都有文字、符号、图像三种形式,理解并熟练转化才能学好,加油!】。

相关文档
最新文档