高中数学《立体几何》高考专题复习

合集下载

高考数学立体几何专项知识点精选全文完整版

高考数学立体几何专项知识点精选全文完整版

可编辑修改精选全文完整版高考数学立体几何专项知识点高中数学平面几何不时是数学的一大难点,下面是小编整理的数学平面几何专项知识点,对提高数学效果会有很大的协助。

(1)空间几何体① 看法柱、锥、台、球及其复杂组合体的结构特征.② 能画出复杂空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的平面模型,会用斜二侧法画出它们的直观图.③ 了解球、棱柱、棱锥、台的外表积和体积的计算公式(不要求记忆公式).(2)点、直线、平面之间的位置关系① 了解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理.◆公理1:假设一条直线上的两点在一个平面内,那么这条直线上一切的点在此平面内.◆公理2:过不在同一条直线上的三点,有且只要一个平面.◆公理3:假设两个不重合的平面有一个公共点,那么它们有且只要一条过该点的公共直线.◆公理4:平行于同一条直线的两条直线相互平行◆定理:空间中假设一个角的两边与另一个角的两边区分平行,那么这两个角相等或互补.② 以平面几何的上述定义、公理和定理为动身点,看法和了解空间中线面平行、垂直的有关性质与判定.了解以下判定定理:◆假设平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.◆假设一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行.◆假设一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直.◆假设一个平面经过另一个平面的垂线,那么这两个平面相互垂直.了解以下性质定理,并可以证明:◆假设一条直线与一个平面平行,经过该直线的任一个平面与此平面相交,那么这条直线就和交线平行.◆假设两个平行平面同时和第三个平面相交,那么它们的交线相互平行◆垂直于同一个平面的两条直线平行◆假设两个平面垂直,那么一个平面内垂直于它们交线的直线与另一个平面垂直.③ 能运用公理、定理和已取得的结论证明一些空间位置关系的复杂命题.温习关注:平面几何试题着重考察空间点、线、面的位置关系的判别及几何体的外表积与体积的计算,关注画图、识图、用图的才干,关注对平行、垂直的探求,关注对条件或结论不完备情形下的开放性效果的探求小编为大家提供的2021-2021高考数学平面几何专项知识点大家细心阅读了吗?最后祝考生们学习提高。

2023届高考数学总复习《立体几何》附答案解析

2023届高考数学总复习《立体几何》附答案解析

(2)若点 N 为 BC 的中点,求四面体 A'MNB 的体积.
【解答】证明:(1)连接 BD,设 BD∩EC=F,连接 MF,
由题意可得四边形 BCDE 为正方形,则 F 为 BD 的中点,
∴MF 为△A′BD 的中位线,可得 MF∥A′B,
又 A′B⊄平面 EMC,MF⊂平面 EMC,
∴A'B∥平面 EMC;
2023 年高考:立体几何复习题及答案
1.如图,已知直角梯形 ABCD,BC∥AD,BC=CD=2,AD=4,∠BCD=90°,点 E 为 AD 的中点,现将三角形 ABE 沿 BE 折叠,得到四棱锥 A'﹣BCDE,其中∠A'ED=120°, 点 M 为 A'D 的中点.
(1)求证:A'B∥平面 EMC;
第2页共3页
∵BE⊂平面 BEF,∴平面 BEF⊥平面 AMD, 结合题意分析知,点 F 在线段 AD 上,连接 MF, 过 A 作 AH⊥MF,交 MF 的延长线于点 H,
则结合已知条件得
,解得 AH ,
设 Dt ,
第3页共3页
【解答】解:(1)证明:由题意知 PC2+AC2=PA2,∴PC⊥AC, 同理,PC⊥BC,又 AC∩BC=C,∴PC⊥平面 ABC, ∵D,E 分别是 AC,PA 的中点,∴DE∥PC, ∴DE⊥平面 ABC, 又 DE⊂平面 BDE,∴平面 BDE⊥平面 ABC. (2)在△BDE 中,DE⊥BD,BD=2 ,DE=2,∴BE=4, 如图,过 A 作 AM⊥BE 于 M,连接 MD, 在△ABE 中,AB=BE=4,AE=2 ,解得 AM ,ME=1, ∵DM⊂平面 BDE,∴AC⊥DM, 在 Rt△ADM 中,AM ,AD=2,∴DM , ∴DM2+EM2=DE2,∴MD⊥BE, ∵AM∩MD=M,∴BE⊥平面 AMD,

高三高考数学总复习《立体几何》题型归纳与汇总

高三高考数学总复习《立体几何》题型归纳与汇总

(3)当 PA// 平面 BDE 时, PA 平面 PAC ,且平面 PAC 平面 BDE DE ,可得 PA//DE .由 D 是 AC 边的中 点知, E 为 PC 边的中点.故而 ED 1 PA 1, ED∥PA ,因为 PA 平面 ABC ,所以 ED 平面 BDC .
2
由 AB BC 2 ,AB BC ,D 为 AC 边中点知,BD CD 2. 又 BD AC ,有 BD DC ,即 BDC 90.
3 【解析】(1)∵ PA PD, N 为 AD 的中点,∴ PN AD, ∵底面 ABCD为菱形, BAD 60 ,∴ BN AD, ∵ PN BN N ,∴ AD 平面 PNB . (2)∵ PN PD AD 2 , ∴ PN NB 3 , ∵平面 PAD 平面 ABCD,平面 PAD 平面 ABCD AD , PN AD, ∴ PN 平面 ABCD, ∴ PN NB ,
【易错点】 外接球球心位置不好找 【思维点拨】 应用补形法找外接球球心的位置
题型四 立体几何的计算
例 1 如图,已知三棱锥的底面是直角三角形,直角 边边长分别为 3 和 4 ,过直角顶点的侧棱长为 4 ,且 垂直于底面,该三棱锥的主视图是 ( )
【答案】 B 【解析】显然由空间直角坐标系可知,该几何体在 xoy 面内的点保持不动,在 y 轴上的点在 xoy 面内的射影为坐标原 点,所以该几何体的主视图就是其在面 xoy 面的表面图形,即主视图应为高为 4 ,底面边长为 3 的直角三角形.故选 B.
以 PA BD . (2)因为 AB BC , AB BC , D 为线段 AC 的中点,所以在等腰 Rt△ABC 中, BD AC .又 由(1)可知, PA BD,PA AC A,所以 BD 平面 PAC .由 E 为线段 PC 上一点,则 DE 平面 PAC ,

2023年高考数学总复习《立体几何》附答案解析

2023年高考数学总复习《立体几何》附答案解析

所以 z1=0,
,故可取
, ,,
于是 < , >

设所成锐二面角为θ,所以 sinθ

所以平面 PAD 和平面 PBE 所成锐二面角的正弦值为 .
第3页共3页
第1页共3页
∴CF CC1 AA1 , ∵∠BAC=90°,
∴CD

在 Rt△FCD 中,tan∠FDC 맨

故直线 DF 与平面 ABC 所成角的正切值为 .
2.如图所示,四棱锥 P﹣ABCD 的底面 ABCD 是边长为 1 的菱形,∠BCD=60°,E 是 CD 的中点,PA⊥底面 ABCD,PA=2. (1)证明:平面 PBE⊥平面 PAB; (2)求平面 PAD 和平面 PBE 所成二面角(锐角)的正弦值.
【解答】(1)证明:如图所示,连接 BD,由 ABCD 是菱形且∠BCD=60°, 知△ABC 是等边三角形. ∵E 是 CD 的中点, ∴BE⊥CD,又 AB∥CD, ∴AB⊥BE,∴BE⊥平面 PAB, 又 BE⊂平面 PBE, ∴平面 PBE⊥平面 PAB. (2)解:在平面 ABCD 内,过点 A 作 AB 的垂线,如图所示,以 A 为原点建立空间直角
【解答】(1)证明:连接 DG、FG, 由直三棱柱的性质知,BB1∥CC1,且 BB1=CC1, ∵B1E=2EB,C1F=2FC, ∴EB∥FC,且 EB=FC, ∴四边形 BCFE 为平行四边形, ∴EF∥BC,EF=BC, ∵BD=2DA,CG=2GA, ∴GD∥BC,且 GD BC, ∴EF∥GD,且 GD EF, ∴四边形 DEFG 为梯形,即 D、E、F、G 四点共面, ∴点 G 在平面 EFD 内. (2)解:由直三棱柱的性质知,CC1⊥平面 ABC, ∵F 为 CC1 上一点, ∴点 F 在平面 ABC 上的投影为点 C, 连接 CD,则∠FDC 即为直线 DF 与平面 ABC 所成角. ∵点 D 在棱 AB 上,且 BD=2DA, ∴AD AB , ∵C1F=2FC,

高考立体几何专题复习公开课获奖课件

高考立体几何专题复习公开课获奖课件
(7)假如一种平面与另一种平面垂线平行, 则这两个平面互相垂直
第20页
面面垂直鉴定
假如一种平面通过另一种平面一条 垂线,则这两个平面互相垂直
推论:假如一种平面与另一种平面垂线 平行,则这两个平面互相垂直
第21页
面面垂直性质
假如两个平面垂直,则在一种平面内垂直 于它们交线直线垂直于另一种平面
推论:假如两个相交平面都与另一种平面 垂直,则这两个平面交线 l 垂直于另一种 平面
(3)推论:
假如一种平面内两条相交直线与另一种平面两条 相交直线分别平行,那么这两个平面平行。
第10页
(4)运用线面垂直:
假如两个平面分别垂直于同一条直线,那么这两 个平面平行。
(5)运用面面平行:
假如两个平面都平行于第三个平面,那么这两个 平面平行。
(6)运用距离:
假如一种平面上所有点到另一种平面距离相等, 那么这两个平面平行。
α
a
直线与平 面所成角
βA Pm
αB
二面角
00<θ≤900
00≤ θ≤900
00≤θ ≤1800
空间角计算环节:一作、二证、三算
第34页
空间中角解法小结
1、异面直线所成角措施 (1)平移法(2)补形法
2、直线与平面所成角措施
关键:抓垂足、斜足,找斜线在平面内射影。
3、二面角
找二面角棱,进而找棱两条垂线
第6页
(4)运用垂直
假如一条直线和一种平面分别与另一种平面垂 直,且直线不在这个平面内,则这条直线和这 个平面平行。
(5)运用平行 假如一条直线与两个平行平面中一种平 行且不在另一种平面内,则这条直线与 另一种平面平行。
(6)运用距离

高考数学(文)《立体几何》专题复习

高考数学(文)《立体几何》专题复习

(2)两个平面垂直的判定和性质
✓ 考法5 线面垂直的判定与性质
1.证明直线 与平面垂直 的方法
2.线面垂直 的性质与线 线垂直
(1)判定定理(常用方法): 一条直线与一个平面内的两条相交直线都垂直,则该直线
与此平面垂直.判定定理中的两条相交直线必须保证“在平面 内相交”这一条件. (2)性质: ①应用面面垂直的性质(常用方法):若两平面垂直,则在一 个平面内垂直于交线的直线必垂直于另一个平面,是证明线 面垂直的主要方法; ②(客观题常用)若两条平行直线中的一条垂直于一个平面, 则另一条也垂直于这个平面.
64
65
✓ 考法4 面面平行的判定与性质
1.证明平面 与平面平行 的常用方法 2.空间平行关系 之间的转化
66
✓ 考法3 面面平行的判定与性质
1.证明平面 与平面平行 的常用方法
这是立体几何中证明平行关系常用的思路,三 种平行关系的转化可结合下图记忆
2.空间平行关系 之间的转化
67
68
600分基础 考点&考法
定义 判定方法
2.等角定理
判定定理 反证法 两条异面直线所成的角
✓ 考法2 异面直线所成的角
常考形式
直接求 求其三角函数值
常用方法
作角
正弦值 余弦值 正切值
证明 求值 取舍
55
56
57
58
600分基础 考点&考法
➢ 考点46 线面、面面平行的判定与性质 ✓ 考法3 线面平行的判定与性质 ✓ 考法4 面面平行的判定与性质
1.计算有关 线段的长
2.外接球、内切 球的计算问题
观察几何体的特征 利用一些常用定理与公式 (如正弦定理、余弦定理、勾股定理、 三角函数公式等) 结合题目的已知条件求解

2023届高考数学总复习:立体几何复习题附答案

2023届高考数学总复习:立体几何复习题附答案

a,
在 Rt△FCM 中,tan∠FCM .

∴sin∠FCM ,
故直线 CF 与平面 ACDE 所成角的正弦值为 . 2.如图,在三棱柱 ABC﹣A1B1C1 中,BC⊥平面 AA1C1C,D 是 AA1 的中点,△ACD 是边长
为 1 的等边三角形. (1)证明:CD⊥B1D; (2)若 BC ,求二面角 B﹣C1D﹣B1 的大小.
,令
由(1)知,平面 B1C1D 的一个法向量为
,得
,, ,
, ,,
故 th< , >

所以二面角 B﹣C1D﹣B1 的大小为 30°.
第3页共3页
在直角梯形 AEFB 中,有 AF EF,BF

∴AF2+BF2=AB2,即 AF⊥BF.
∵BC∩BF=B,BC、BF⊂平面 BCF,
∴AF⊥平面 BCF.
EF,AB=2EF,
(2)解:∵AE⊥平面 ABC,AE⊂平面 ACDE,∴平面 ACDE⊥平面 ABC,
又平面 ABC∥平面 DEF,∴平面 ACDE⊥平面 DEF.
【解答】解:(1)证明:因为△ACD 是边长为 1 的等边三角形,所以∠ADC=60°,∠ DA1C1=120° 因为 D 是 AA1 的中点,所以 AD=A1D=A1C1=1,即△A1C1D 是等腰三角形, 则∠A1DC1=30°,故∠CDC1=90°,即 CD⊥C1D, 因为 BC⊥平面 AA1C1C,BC∥B1C1,所以 B1C1⊥平面 AA1C1C, 因为 CD⊂平面 AA1C1C,所以 B1C1⊥CD, 因为 B1C1∩C1D=C1,B1C1⊂平面 B1C1D,C1D⊂平面 B1C1D,所以 CD⊥平面 B1C1D, 因为 B1D⊂平面 B1C1D,所以 CD⊥B1D;

2023届高考数学总复习:立体几何附答案

2023届高考数学总复习:立体几何附答案

设平面 PCD 的一个法向量为 (x1,y1,z1),

t
t, (0,1,1),
平面 ECD 的一个法向量为 (x2,y2,z2),
t 所以 th
t, (0,1,2), tt,
t 即二面角 P﹣DC﹣E 的余弦值为 .
t
第3页共3页
以 F 为坐标原点, , , ‐的方向为 x,y,z 轴的正方向建立空间直角坐标系,
t, t, , t,

t, , tt,
,t,tt,
t, , t,
设平面 AEF 的法向量为
,,t

t,
t

t ,∴ t
t, , t,




∴直线 B1F⊥平面 AEF.
(Ⅱ)
, , t,
【解答】(Ⅰ)证明:因为 PA=AB,E 为 PB 中点,所以 AE⊥PB,
因为 PA⊥平面 ABCD,所以 PA⊥BC,
由 BC⊥AB,所以 BC⊥平面 PAB,所以 BC⊥AE,又 AE⊥PB,BC∩PB=B,
所以 AE⊥平面 PBC,
平面 AEF⊥平面 PBC.
(Ⅱ)解:法 1:取 PA 中点 G,连结 GE,GD,由 GE∥AB,CD∥AB,
t,t, t,
设平面 B1AE 的法向量为
,,t

t ,∴
t
t
t, t
不妨取 y2=3 ,则 x2=﹣5,z2=﹣4 .

⺁, , t t,
第1页共3页
平面 AEF 的法向量为
t, , t,
设二面角 B1﹣AE﹣F 的平面角为θ,
∴ th
t⺁.
2.如图,在四棱锥 P﹣ABCD 中,底面 ABCD 为正方形,PA⊥底面 ABCD,PA=AB,E 为 PB 的中点,F 为线段 BC 上的动点. (Ⅰ)求证:平面 AEF⊥平面 PBC; (Ⅱ)求二面角 P﹣DC﹣E 的余弦值.

2024年高考数学立体几何知识点总结(2篇)

2024年高考数学立体几何知识点总结(2篇)

2024年高考数学立体几何知识点总结立体几何是数学中的一个重要分支,也是高考数学中的重要内容之一。

在高考中,立体几何的知识点主要包括空间几何、立体图形的面积与体积等方面。

下面是对2024年高考数学立体几何知识点的总结,供考生参考。

一、空间几何1. 空间几何中的点、线、面的概念和性质。

点是没有长度、宽度和高度的,只有位置的大小,用字母表示。

线是由一组无限多个点构成的集合,用两个点的字母表示。

面是由无限多条线构成的,这些线共面且没有相交或平行关系。

2. 空间几何中的垂直、平行等概念和性质。

两条线在同一平面内,如果相交角为90°,则称两线垂直。

两条线没有相交关系,称两线平行。

3. 点到直线的距离的计算。

点到直线的距离等于该点在直线上的正交投影点的距离。

二、立体图形的面积与体积1. 立体图形的分类和性质。

立体图形包括球体、圆柱体、圆锥体、棱柱体、棱锥体等。

各种立体图形具有不同的性质,如球体表面上每一点到球心的距离都相等。

2. 立体图形的面积计算。

(1)球体的表面积计算公式:S = 4πr²,其中r为球的半径。

(2)圆柱体的侧面积计算公式:S = 2πrh。

(3)圆柱体的全面积计算公式:S = 2πrh + 2πr²。

(4)圆锥体的侧面积计算公式:S = πrl,其中r为圆锥底面半径,l为斜高。

(5)棱柱体的侧面积计算公式:S = ph,其中p为棱柱底面周长,h为高。

3. 立体图形的体积计算。

(1)球体的体积计算公式:V = 4/3πr³,其中r为球的半径。

(2)圆柱体的体积计算公式:V = πr²h。

(3)圆锥体的体积计算公式:V = 1/3πr²h。

(4)棱柱体的体积计算公式:V = ph。

(5)棱锥体的体积计算公式:V = 1/3Bh,其中B为底面积,h 为高。

三、立体几何的一般理论1. 点、线、面的位置关系。

在空间中,点、线、面可以相互相交、平行、垂直等。

高考数学总复习《立体几何》部分试题及答案

高考数学总复习《立体几何》部分试题及答案

高考数学总复习试卷立体几何综合训练第I卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列命题正确的是()A.直线a,b与直线l所成角相等,则a//bB.直线a,b与平面α成相等角,则a//bC.平面α,β与平面γ所成角均为直二面角,则α//βD.直线a,b在平面α外,且a⊥α,a⊥b,则b//α2.空间四边形ABCD,M,N分别是AB、CD的中点,且AC=4,BD=6,则()A.1<MN<5 B.2<MN<10C.1≤MN≤5 D.2〈MN<53.已知AO为平面α的一条斜线,O为斜足,OB为OA在α内的射影,直线OC在平面α内,且∠AOB=∠BOC=45°,则∠AOC等于()A.30°B.45°C.60°D.不确定4.甲烷分子结构是:中心一个碳原子,外围四个氢原子构成四面体,中心碳原子与四个氢原子等距离,且连成四线段,两两所成角为θ,则cosθ值为()A.B.C.D.5.对已知直线a,有直线b同时满足下面三个条件:①与a异面;②与a成定角;③与a距离为定值d,则这样的直线b有()A.1条B.2条C.4条D.无数条6.α,β是不重合两平面,l,m是两条不重合直线,α//β的一个充分不必要条件是()A.,且l//β,m//βB.,且l//mC.l⊥α,m⊥β,且l//m D.l//α,m//β,且l//m7.如图正方体中,E,F分别为AB,的中点,则异面直线与EF所成角的余弦值为( )A.B.C.D.8.对于任一个长方体,都一定存在一点:①这点到长方体的各顶点距离相等;②这点到长方体的各条棱距离相等;③这点到长方体的各面距离相等,以上三个结论中正确的是()A.①②B.①C.②D.①③9.在斜棱柱的侧面中,矩形最多有几个?A.2 B.3 C.4 D.610.正六棱柱的底面边长为2,最长的一条对角线长为,则它的侧面积为()A.24 B.12 C.D.11.异面直线a,b成80°角,P为a,b外的一个定点,若过P有且仅有2条直线与a,b所成的角相等且等于α,则角α属于集合()A.{α|0°〈α〈40°} B.{α|40°<α〈50°}C.{α|40°〈α<90°}D.{α|50°<α〈90°}12.从水平放置的球体容器的顶部的一个孔向球内以相同的速度注水,容器中水面的高度与注水时间t之间的关系用图象表示应为()第II卷(非选择题共90分)二、填空题(本大题共4个小题,每小题4分,共16分,把答案填在题中横线上)13.正四棱锥S—ABCD侧棱长与底面边长相等,E为SC中点,BE与SA所成角的余弦值为_____________。

2023年高考数学总复习:立体几何及答案解析

2023年高考数学总复习:立体几何及答案解析

又∵已知 E 为 PB 的中点,∴OE∥PD.
∵PD⊄平面 AEC,OE⊂平面 AEC,
∴PD∥平面 AEC.
解:(2)∵
⺁,
⺁ ,∴
⺁ ⺁.
又∵PD⊥底面 ABCD,∴ 三棱锥 െ
∵E 是 PB 的中点,∴ 三棱锥 െ
⺁ 三棱锥 െ
⺁ ⺁⺁ ⺁ ⺁
⺁.
⺁ 三棱锥 െ
⺁ ⺁.
2.如图,在四棱锥 P﹣ABCD 中,PA⊥平面 ABC,AD∥BC,∠ABC=90°,AD=2, ⺁ , BC=6. (1)求证:平面 PBD⊥平面 PAC; (2)PA 长为何值时,直线 PC 与平面 PBD 所成角最大?并求此时该角的正弦值.
第1页共3页
【解答】(1)证明:∵PA⊥平面 ABCD,BD⊂平面 ABCD,∴BD⊥PA,
又 ㋨๗
, ㋨๗

∴∠ABD=30°,∠BAC=60°,∴∠AEB=90°,即 BD⊥AC(E 为 AC 与 BD 交点).
又 PA∩AC,∴BD⊥平面 PAC
又因为 BD⊂平面 PBD,所以平面 PBD⊥平面 PAC.
则๗ ๗
,即 െ ⺁ ㌳ ⺁ െ⺁ ㌳ ൅
,取 x=1,
⺁ 得平面 PBD 的一个法向量为๗ (1, , ),
所以 cos< ,๗>



쳌㌳ ⺁

⺁ ⺁
㌳ ⺁㌳ ⺁
因为 ㌳ ⺁ ㌳ ⺁
㌳⺁ ⺁ ⺁
,当且仅当 t=2 时等号成立,
所以 cos< ,๗>
,记直线 PC 与平面 PBD 所成角为θ,
则 sinθ=|cos< ,๗>|,故 t๗ ,
即 ⺁ 时,直线 PC 与平面 PBD 所成角最大,此时该角的正弦值为 .

2024届新高考数学大题精选30题--立体几何含答案

2024届新高考数学大题精选30题--立体几何含答案

大题立体几何1(2024·黑龙江·二模)如图,已知正三棱柱ABC-A1B1C1的侧棱长和底面边长均为2,M是BC的中点,N是AB1的中点,P是B1C1的中点.(1)证明:MN⎳平面A1CP;(2)求点P到直线MN 的距离.2(2024·安徽合肥·二模)如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,∠BAD=60°,M是侧棱PC的中点,侧面PAD为正三角形,侧面PAD⊥底面ABCD.(1)求三棱锥M-ABC的体积;(2)求AM与平面PBC所成角的正弦值.2024届新高考数学大题精选30题--立体几何3(2023·福建福州·模拟预测)如图,在三棱柱ABC-A1B1C1中,平面AA1C1C⊥平面ABC,AB= AC=BC=AA1=2,A1B=6.(1)设D为AC中点,证明:AC⊥平面A1DB;(2)求平面A1AB1与平面ACC1A1夹角的余弦值.4(2024·山西晋中·三模)如图,在六面体ABCDE中,BC=BD=6,EC⊥ED,且EC=ED= 2,AB平行于平面CDE,AE平行于平面BCD,AE⊥CD.(1)证明:平面ABE⊥平面CDE;(2)若点A到直线CD的距离为22,F为棱AE的中点,求平面BDF与平面BCD夹角的余弦值.5(2024·辽宁·二模)棱长均为2的斜三棱柱ABC-A1B1C1中,A1在平面ABC内的射影O在棱AC的中点处,P为棱A1B1(包含端点)上的动点.(1)求点P到平面ABC1的距离;(2)若AP⊥平面α,求直线BC1与平面α所成角的正弦值的取值范围.6(2024·重庆·模拟预测)在如图所示的四棱锥P-ABCD中,已知AB∥CD,∠BAD=90°,CD= 2AB,△PAB是正三角形,点M在侧棱PB上且使得PD⎳平面AMC.(1)证明:PM=2BM;(2)若侧面PAB⊥底面ABCD,CM与底面ABCD所成角的正切值为311,求二面角P-AC-B的余弦值.7(2024·安徽·模拟预测)2023年12月19日至20日,中央农村工作会议在北京召开,习近平主席对“三农”工作作出指示.某地区为响应习近平主席的号召,积极发展特色农业,建设蔬菜大棚.如图所示的七面体ABG-CDEHF是一个放置在地面上的蔬菜大棚钢架,四边形ABCD是矩形,AB=8m,AD=4m,ED=CF=1m,且ED,CF都垂直于平面ABCD,GA=GB=5m,HE=HF,平面ABG⊥平面ABCD.(1)求点H到平面ABCD的距离;(2)求平面BFHG与平面AGHE所成锐二面角的余弦值.8(2024·重庆·模拟预测)如图,ACDE为菱形,AC=BC=2,∠ACB=120°,平面ACDE⊥平面ABC,点F在AB上,且AF=2FB,M,N分别在直线CD,AB上.(1)求证:CF⊥平面ACDE;(2)把与两条异面直线都垂直且相交的直线叫做这两条异面直线的公垂线,若∠EAC=60°,MN为直线CD,AB的公垂线,求ANAF的值;(3)记直线BE与平面ABC所成角为α,若tanα>217,求平面BCD与平面CFD所成角余弦值的范围.9(2024·安徽·二模)将正方形ABCD 绕直线AB 逆时针旋转90°,使得CD 到EF 的位置,得到如图所示的几何体.(1)求证:平面ACF ⊥平面BDE ;(2)点M 为DF 上一点,若二面角C -AM -E 的余弦值为13,求∠MAD .10(2024·安徽黄山·二模)如图,已知AB 为圆台下底面圆O 1的直径,C 是圆O 1上异于A ,B 的点,D 是圆台上底面圆O 2上的点,且平面DAC ⊥平面ABC ,DA =DC =AC =2,BC =4,E 是CD 的中点,BF =2FD .(1)证明:DO 2⎳BC ;(2)求直线DB 与平面AEF 所成角的正弦值.11(2024·黑龙江哈尔滨·一模)正四棱台ABCD -A 1B 1C 1D 1的下底面边长为22,A 1B 1=12AB ,M 为BC 中点,已知点P 满足AP =1-λ AB +12λ⋅AD +λAA 1 ,其中λ∈0,1 .(1)求证D 1P ⊥AC ;(2)已知平面AMC 1与平面ABCD 所成角的余弦值为37,当λ=23时,求直线DP 与平面AMC 1所成角的正弦值.12(2024·辽宁·三模)如图,在三棱柱ABC -A 1B 1C 1中,侧面ACC 1A 1⊥底面ABC ,AC =AA 1=2,AB =1,BC =3,点E 为线段AC 的中点.(1)求证:AB 1∥平面BEC 1;(2)若∠A 1AC =π3,求二面角A -BE -C 1的余弦值.13(2024·广东广州·一模)如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,△DCP是等边三角形,∠DCB=∠PCB=π4,点M,N分别为DP和AB的中点.(1)求证:MN⎳平面PBC;(2)求证:平面PBC⊥平面ABCD;(3)求CM与平面PAD所成角的正弦值.14(2024·广东梅州·二模)如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,底面ABCD 为直角梯形,△PAD为等边三角形,AD⎳BC,AD⊥AB,AD=AB=2BC=2.(1)求证:AD⊥PC;(2)点N在棱PC上运动,求△ADN面积的最小值;(3)点M为PB的中点,在棱PC上找一点Q,使得AM⎳平面BDQ,求PQQC的值.15(2024·广东广州·模拟预测)如图所示,圆台O1O2的轴截面A1ACC1为等腰梯形,AC=2AA1= 2A1C1=4,B为底面圆周上异于A,C的点,且AB=BC,P是线段BC的中点.(1)求证:C1P⎳平面A1AB.(2)求平面A1AB与平面C1CB夹角的余弦值.16(2024·广东深圳·二模)如图,三棱柱ABC-A1B1C1中,侧面BB1C1C⊥底面ABC,且AB= AC,A1B=A1C.(1)证明:AA1⊥平面ABC;(2)若AA1=BC=2,∠BAC=90°,求平面A1BC与平面A1BC1夹角的余弦值.17(2024·河北保定·二模)如图,在四棱锥P -ABCD 中,平面PCD 内存在一条直线EF 与AB 平行,PA ⊥平面ABCD ,直线PC 与平面ABCD 所成的角的正切值为32,PA =BC =23,CD =2AB =4.(1)证明:四边形ABCD 是直角梯形.(2)若点E 满足PE =2ED ,求二面角P -EF -B 的正弦值.18(2024·湖南衡阳·模拟预测)如图,在圆锥PO 中,P 是圆锥的顶点,O 是圆锥底面圆的圆心,AC 是圆锥底面圆的直径,等边三角形ABD 是圆锥底面圆O 的内接三角形,E 是圆锥母线PC 的中点,PO =6,AC =4.(1)求证:平面BED ⊥平面ABD ;(2)设点M 在线段PO 上,且OM =2,求直线DM 与平面ABE 所成角的正弦值.19(2024·湖南岳阳·三模)已知四棱锥P -ABCD 的底面ABCD 是边长为4的菱形,∠DAB =60°,PA =PC ,PB =PD =210,M 是线段PC 上的点,且PC =4MC .(1)证明:PC ⊥平面BDM ;(2)点E 在直线DM 上,求BE 与平面ABCD 所成角的最大值.20(2024·湖南·二模)如图,直四棱柱ABCD -A 1B 1C 1D 1的底面是边长为2的菱形,∠ABC =60°,BD 1⊥平面A 1C 1D .(1)求四棱柱ABCD -A 1B 1C 1D 1的体积;(2)设点D 1关于平面A 1C 1D 的对称点为E ,点E 和点C 1关于平面α对称(E 和α未在图中标出),求平面A 1C 1D 与平面α所成锐二面角的大小.21(2024·山东济南·二模)如图,在四棱锥P-ABCD中,四边形ABCD为直角梯形,AB∥CD,∠DAB=∠PCB=60°,CD=1,AB=3,PC=23,平面PCB⊥平面ABCD,F为线段BC的中点,E为线段PF上一点.(1)证明:PF⊥AD;(2)当EF为何值时,直线BE与平面PAD夹角的正弦值为74.22(2024·山东潍坊·二模)如图1,在平行四边形ABCD中,AB=2BC=4,∠ABC=60°,E为CD 的中点,将△ADE沿AE折起,连结BD,CD,且BD=4,如图2.(1)求证:图2中的平面ADE⊥平面ABCE;(2)在图2中,若点F在棱BD上,直线AF与平面ABCE所成的角的正弦值为3010,求点F到平面DEC 的距离.23(2024·福建·模拟预测)如图,在三棱锥P-ABC中,PA⊥PB,AB⊥BC,AB=3,BC=6,已知二面角P-AB-C的大小为θ,∠PAB=θ.(1)求点P到平面ABC的距离;(2)当三棱锥P-ABC的体积取得最大值时,求:(Ⅰ)二面角P-AB-C的余弦值;(Ⅱ)直线PC与平面PAB所成角.24(2024·浙江杭州·二模)如图,在多面体ABCDPQ中,底面ABCD是平行四边形,∠DAB=60°, BC=2PQ=4AB=4,M为BC的中点,PQ∥BC,PD⊥DC,QB⊥MD.(1)证明:∠ABQ=90°;(2)若多面体ABCDPQ的体积为152,求平面PCD与平面QAB夹角的余弦值.25(2024·浙江嘉兴·二模)在如图所示的几何体中,四边形ABCD为平行四边形,PA⊥平面ABCD,PA∥QD,BC=2AB=2PA=2,∠ABC=60°.(1)证明:平面PCD⊥平面PAC;(2)若PQ=22,求平面PCQ与平面DCQ夹角的余弦值.26(2024·浙江绍兴·二模)如图,在三棱锥P-ABC中,AB=4,AC=2,∠CAB=60°,BC⊥AP.(1)证明:平面ACP⊥平面ABC;(2)若PA=2,PB=4,求二面角P-AB-C的平面角的正切值.27(2024·河北沧州·一模)如图,在正三棱锥A -BCD 中,BC =CD =BD =4,点P 满足AP=λAC ,λ∈(0,1),过点P 作平面α分别与棱AB ,BD ,CD 交于Q ,S ,T 三点,且AD ⎳α,BC ⎳α.(1)证明:∀λ∈(0,1),四边形PQST 总是矩形;(2)若AC =4,求四棱锥C -PQST 体积的最大值.28(2024·湖北·二模)如图1.在菱形ABCD 中,∠ABC =120°,AB =4,AE =λAD ,AF =λAB(0<λ<1),沿EF 将△AEF 向上折起得到棱锥P -BCDEP .如图2所示,设二面角P -EF -B 的平面角为θ.(1)当λ为何值时,三棱锥P -BCD 和四棱锥P -BDEF 的体积之比为95(2)当θ为何值时,∀λ∈0,1 ,平面PEF 与平面PFB 的夹角φ的余弦值为5529(2024·湖北·模拟预测)空间中有一个平面α和两条直线m ,n ,其中m ,n 与α的交点分别为A ,B ,AB =1,设直线m 与n 之间的夹角为π3,(1)如图1,若直线m ,n 交于点C ,求点C 到平面α距离的最大值;(2)如图2,若直线m ,n 互为异面直线,直线m 上一点P 和直线n 上一点Q 满足PQ ⎳α,PQ ⊥n 且PQ ⊥m ,(i )求直线m ,n 与平面α的夹角之和;(ii )设PQ =d 0<d <1 ,求点P 到平面α距离的最大值关于d 的函数f d .30(2024·浙江绍兴·模拟预测)如图所示,四棱台ABCD -A 1B 1C 1D 1,底面ABCD 为一个菱形,且∠BAD =120°. 底面与顶面的对角线交点分别为O ,O 1. AB =2A 1B 1=2,BB 1=DD 1=392,AA 1与底面夹角余弦值为3737.(1)证明:OO 1⊥平面ABCD ;(2)现将顶面绕OO 1旋转θ角,旋转方向为自上而下看的逆时针方向. 此时使得底面与DC 1的夹角正弦值为64343,此时求θ的值(θ<90°);(3)求旋转后AA 1与BB 1的夹角余弦值.大题 立体几何1(2024·黑龙江·二模)如图,已知正三棱柱ABC -A 1B 1C 1的侧棱长和底面边长均为2,M 是BC 的中点,N 是AB 1的中点,P 是B 1C 1的中点.(1)证明:MN ⎳平面A 1CP ;(2)求点P 到直线MN 的距离.【答案】(1)证明见解析(2)3【分析】(1)建立如图空间直角坐标系A -xyz ,设平面A 1CP 的一个法向量为n=(x ,y ,z ),利用空间向量法证明MN ⋅n=0即可;(2)利用空间向量法即可求解点线距.【详解】(1)由题意知,AA 1⊥平面ABC ,∠BAC =60°,而AB ⊂平面ABC ,所以AA 1⊥AB ,在平面ABC 内过点A 作y 轴,使得AB ⊥y 轴,建立如图空间直角坐标系A -xyz ,则A (0,0,0),B (2,0,0),C (1,3,0),A 1(0,0,2),B 1(2,0,2),得M 32,32,0,N (1,0,1),P 32,32,2,所以A 1C =(1,3,-2),A 1P =32,32,0 ,MN =-12,-32,1 ,设平面A1CP 的一个法向量为n=(x ,y ,z ),则n ⋅A 1C=x +3y -2z =0n ⋅A 1P =32x +32y =0,令x =1,得y =-3,z =-1,所以n=(1,-3,-1),所以MN ⋅n =-12×1+-32×(-3)+1×(-1)=0,又MN 不在平面A 1CP 内即MN ⎳平面A 1CP ;(2)如图,连接PM ,由(1)得PM =(0,0,-2),则MN ⋅PM =-2,MN =2,PM =2,所以点P 到直线MN 的距离为d =PM 2-MN ⋅PMPM2= 3.2(2024·安徽合肥·二模)如图,在四棱锥P -ABCD 中,底面ABCD 是边长为2的菱形,∠BAD =60°,M 是侧棱PC 的中点,侧面PAD 为正三角形,侧面PAD ⊥底面ABCD .(1)求三棱锥M -ABC 的体积;(2)求AM 与平面PBC 所成角的正弦值.【答案】(1)12(2)3311.【分析】(1)作出辅助线,得到线线垂直,进而得到线面垂直,由中位线得到M 到平面ABCD 的距离为32,进而由锥体体积公式求出答案;(2)证明出BO ⊥AD ,建立空间直角坐标系,求出平面的法向量,进而由法向量的夹角余弦值的绝对值求出线面角的正弦值.【详解】(1)如图所示,取AD 的中点O ,连接PO .因为△PAD 是正三角形,所以PO ⊥AD .又因为平面PAD ⊥底面ABCD ,PO ⊂平面PAD ,平面PAD ∩平面ABCD =AD ,所以PO ⊥平面ABCD ,且PO =3.又因为M 是PC 的中点,M 到平面ABCD 的距离为32,S △ABC =12×2×2×sin 2π3=3,所以三棱锥M -ABC 的体积为13×3×32=12.(2)连接BO ,BD ,因为∠BAD =π3,所以△ABD 为等边三角形,所以BO ⊥AD ,以O 为原点,OA ,OB ,OP 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则P 0,0,3 ,A 1,0,0 ,B 0,3,0 ,C -2,3,0 ,所以M -1,32,32 ,AM =-2,32,32,PB =0,3,-3 ,BC =-2,0,0 .设平面PBC 的法向量为n=x ,y ,z ,则PB ⋅n =0BC ⋅n =0,即3y -3z =0-2x =0 ,解得x =0,取z =1,则y =1,所以n=0,1,1 .设AM 与平面PBC 所成角为θ,则sin θ=cos AM ,n =AM ⋅nAM ⋅n=-2,32,32 ⋅0,1,14+34+34×1+1=3311.即AM 与平面PBC 所成角的正弦值为3311.3(2023·福建福州·模拟预测)如图,在三棱柱ABC -A 1B 1C 1中,平面AA 1C 1C ⊥平面ABC ,AB =AC =BC =AA 1=2,A 1B =6.(1)设D 为AC 中点,证明:AC ⊥平面A 1DB ;(2)求平面A 1AB 1与平面ACC 1A 1夹角的余弦值.【答案】(1)证明见解析;(2)55【分析】(1)根据等边三角形的性质得出BD ⊥AC ,根据平面ACC 1A 1⊥平面ABC 得出BD ⊥平面ACC 1A 1,BD ⊥A 1D ,利用勾股定理得出AC ⊥A 1D ,从而证明AC ⊥平面A 1DB ;(2)建立空间直角坐标系,利用坐标表示向量,求出平面A 1AB 1的法向量和平面ACC 1A 1的一个法向量,利用向量求平面A 1AB 1与平面ACC 1A 1的夹角余弦值.【详解】(1)证明:因为D 为AC 中点,且AB =AC =BC =2,所以在△ABC 中,有BD ⊥AC ,且BD =3,又平面ACC 1A 1⊥平面ABC ,且平面ACC 1A 1∩平面ABC =AC ,BD ⊂平面ABC ,所以BD ⊥平面ACC 1A 1,又A 1D ⊂平面ACC 1A 1,则BD ⊥A 1D ,由A 1B =6,BD =3,得A 1D =3,因为AD =1,AA 1=2,A 1D =3,所以由勾股定理,得AC ⊥A 1D ,又AC ⊥BD ,A 1D ∩BD =D ,A 1D ,BD ⊂平面A 1DB ,所以AC ⊥平面A 1DB ;(2)如图所示,以D 为原点,建立空间直角坐标系D -xyz ,可得A (1,0,0),A 1(0,0,3),B (0,3,0),则AA 1 =-1,0,3 ,AB=-1,3,0 ,设平面A 1AB 1的法向量为n=(x ,y ,z ),由n ⋅AA 1=-x +3z =0n ⋅AB=-x +3y =0,令x =3,得y =1,z =1,所以n=3,1,1 ,由(1)知,BD ⊥平面ACC 1A 1,所以平面ACC 1A 1的一个法向量为BD=(0,-3,0),记平面A 1AB 1与平面ACC 1A 1的夹角为α,则cos α=|n ⋅BD ||n ||BD |=35×3=55,所以平面A 1AB 1与平面ACC 1A 1夹角的余弦值为55.4(2024·山西晋中·三模)如图,在六面体ABCDE 中,BC =BD =6,EC ⊥ED ,且EC =ED =2,AB 平行于平面CDE ,AE 平行于平面BCD ,AE ⊥CD .(1)证明:平面ABE ⊥平面CDE ;(2)若点A 到直线CD 的距离为22,F 为棱AE 的中点,求平面BDF 与平面BCD 夹角的余弦值.【答案】(1)证明见解析(2)10535【分析】(1)设平面ABE 与直线CD 交于点M ,使用线面平行的性质,然后用面面垂直的判定定理即可;(2)证明BE ⊥平面CDE ,然后构造空间直角坐标系,直接用空间向量方法即可得出结果.【详解】(1)设平面ABE 与直线CD 交于点M ,连接ME ,MB ,则平面ABE 与平面CDE 的交线为ME ,平面ABE 与平面BCD 的交线为MB ,因为AB 平行于平面CDE ,AB ⊂平面ABE ,平面ABE 和平面CDE 的交线为ME ,所以AB ∥ME .同理AE ∥MB ,所以四边形ABME 是平行四边形,故AE ∥MB ,AB ∥ME .因为CD ⊥AE ,AE ∥MB ,所以CD ⊥MB ,又BC =BD =6,所以M 为棱CD 的中点在△CDE 中,EC =ED ,MC =MD ,所以CD ⊥ME ,由于AB ∥ME ,故CD ⊥AB .而CD ⊥AE ,AB ∩AE =A ,AB ,AE ⊂平面ABE ,所以CD ⊥平面ABE ,又CD ⊂平面CDE ,所以平面ABE ⊥平面CDE .(2)由(1)可知,CD ⊥平面ABME ,又AM ⊂平面ABME ,所以CD ⊥AM .而点A 到直线CD 的距离为22,故AM =2 2.在等腰直角三角形CDE 中,由EC =ED =2,得CD =2,MC =MD =ME =1.在等腰三角形BCD 中,由MC =MD =1,BC =BD =6,得BM = 5.在平行四边形ABME 中,AE =BM =5,AB =EM =1,AM =22,由余弦定理得cos ∠MEA =EM 2+AE 2-AM 22EM ·AE=-55,所以cos ∠BME =55,所以BE =BM 2+EM 2-2BM ·EM cos ∠BME =2.因为BE 2+ME 2=22+12=5 2=BM 2,所以BE ⊥ME .因为平面ABME ⊥平面CDE ,平面ABME 和平面CDE 的交线为ME ,BE 在平面ABME 内.所以BE ⊥平面CDE .如图,以E 为坐标原点,EC ,ED ,EB 分别为x ,y ,z 轴正方向,建立空间直角坐标系.则E 0,0,0 ,C 2,0,0 ,D 0,2,0 ,B 0,0,2 ,A -22,-22,2 ,F -24,-24,1.所以CD =-2,2,0 ,DB =0,-2,2 ,FB =24,24,1 .设平面BCD 的法向量为m=x 1,y 1,z 1 ,则m ⋅CD=0m ⋅DB =0,即-2x 1+2y 1=0-2y 1+2z 1=0 .则可取x 1=2,得m=2,2,2 .设平面BDF 的法向量为n =x 2,y 2,z 2 ,则n ⋅FB =0n ⋅DB=0,即24x 2+24y 2+z 2=0-2y 2+2z 2=0.取z 2=1,则n=-32,2,1 .设平面BDF 与平面BCD 的夹角为θ,则cos θ=m ⋅n m ⋅n =-3210×21=10535.所以平面BDF 与平面BCD 夹角的余弦值为10535.5(2024·辽宁·二模)棱长均为2的斜三棱柱ABC -A 1B 1C 1中,A 1在平面ABC 内的射影O 在棱AC 的中点处,P 为棱A 1B 1(包含端点)上的动点.(1)求点P 到平面ABC 1的距离;(2)若AP ⊥平面α,求直线BC 1与平面α所成角的正弦值的取值范围.【答案】(1)23913;(2)25,104.【分析】(1)以O 为原点建立空间直角坐标系,求出平面ABC 1的法向量,再利用点到平面距离的向量求法求解即得.(2)由向量共线求出向量AP的坐标,再利用线面角的向量求法列出函数关系,并求出函数的值域即可.【详解】(1)依题意,A 1O ⊥平面ABC ,OB ⊥AC (底面为正三角形),且A 1O =OB =3,以O 为原点,OB ,OC ,OA 1的方向分别为x ,y ,z 轴的正方向,建立空间直角坐标系,如图,则O (0,0,0),A (0,-1,0),B (3,0,0),C (0,1,0),A 1(0,0,3),C 1(0,2,3),AC 1 =(0,3,3),BC 1 =(-3,2,3),AA 1 =(0,1,3),由A 1B 1⎳AB ,A 1B 1⊄平面ABC 1,AB ⊂平面ABC 1,则A 1B 1⎳平面ABC 1,即点P 到平面ABC 1的距离等于点A 1到平面ABC 1的距离,设n =(x ,y ,z )为平面ABC 1的一个法向量,由n ⋅AC 1=3y +3z =0n ⋅BC 1=-3x +2y +3z =0,取z =3,得n=(1,-3,3),因此点A 1到平面ABC 1的距离d =|AA 1 ⋅n||n |=2313=23913,所以点P 到平面ABC 1的距离为23913.(2)设A 1P =λA 1B 1 ,λ∈[0,1],则AP =AA 1 +A 1P =AA 1 +λAB=(0,1,3)+λ(3,1,0)=(3λ,1+λ,3),由AP ⊥α,得AP为平面α的一个法向量,设直线BC 1与平面α所成角为θ,则sin θ=|cos ‹BC 1 ,AP ›|=|BC 1 ⋅AP||BC 1 ||AP |=|5-λ|10⋅3λ2+(1+λ)2+3=5-λ25⋅2λ2+λ+2,令t =5-λ,则λ=5-t ,t ∈[4,5],则sin θ=t 25⋅2(5-t )2+(5-t )+2=t25⋅2t 2-21t +57=125⋅2-21t+57t 2=125571t-7382+576,由t ∈[4,5],得1t ∈15,14 ,于是571t -738 2+576∈225,516,25⋅571t -738 2+576∈2105,52 ,则sin θ∈25,104,所以直线BC 1与平面α所成角的正弦值的取值范围是25,104.6(2024·重庆·模拟预测)在如图所示的四棱锥P -ABCD 中,已知AB ∥CD ,∠BAD =90°,CD =2AB ,△PAB 是正三角形,点M 在侧棱PB 上且使得PD ⎳平面AMC .(1)证明:PM =2BM ;(2)若侧面PAB ⊥底面ABCD ,CM 与底面ABCD 所成角的正切值为311,求二面角P -AC -B 的余弦值.【答案】(1)证明见解析;(2)1010.【分析】(1)连接BD 与AC 交于点E ,连接EM ,由已知得AB CD=EBED ,由线面平行的性质得PD ∥EM ,根据三角形相似可得EB ED =BM PM=12,即PM =2BM(2)设AB 的中点O ,首先由已知得PO ⊥底面ABCD ,在△PAB 中过点M 作MF ∥PO 交AB 于点F ,得MF ⊥底面ABCD ,则∠MCF 为CM 与底面ABCD 所成角,在底面ABCD 上过点O 作OG ⊥AC 于点G ,则∠PGO 是二面角P -AC -B 的平面角,根据条件求解即可【详解】(1)证明:连接BD 与AC 交于点E ,连接EM ,在△EAB 与△ECD 中,∵AB ∥CD ,∴AB CD=EBED ,由CD =2AB ,得ED =2EB ,又∵PD ⎳平面AMC ,而平面PBD ∩平面AMC =ME ,PD ⊂平面PBD ,∴PD ∥EM ,∴在△PBD 中,EB ED =BM PM=12,∴PM =2BM ;(2)设AB 的中点O ,在正△PAB 中,PO ⊥AB ,而侧面PAB ⊥底面ABCD ,侧面PAB ∩底面ABCD =AB ,且PO ⊂平面PAB ,∴PO ⊥底面ABCD ,在△PAB 中过点M 作MF ⎳PO 交AB 于点F ,∴MF ⊥底面ABCD ,∴∠MCF 为CM 与底面ABCD 所成角,∴MF CF=311,设AB =6a ,则MF=3a,∴CF=11a,BF=MF3=a,则在直角梯形ABCD中,AF=5a,而CD=12a,则AD=11a2-12a-5a2=62a,在底面ABCD上过点O作OG⊥AC于点G,则∠PGO是二面角P-AC-B的平面角,易得OA=3a,AC=66a,在梯形ABCD中,由OAOG=ACAD⇒3aOG=66a62a,得OG=3a,在Rt△POG中,PG=30a,∴cos∠PGO=OGPG=1010.7(2024·安徽·模拟预测)2023年12月19日至20日,中央农村工作会议在北京召开,习近平主席对“三农”工作作出指示.某地区为响应习近平主席的号召,积极发展特色农业,建设蔬菜大棚.如图所示的七面体ABG-CDEHF是一个放置在地面上的蔬菜大棚钢架,四边形ABCD是矩形,AB=8m,AD=4m,ED=CF=1m,且ED,CF都垂直于平面ABCD,GA=GB=5m,HE=HF,平面ABG⊥平面ABCD.(1)求点H到平面ABCD的距离;(2)求平面BFHG与平面AGHE所成锐二面角的余弦值.【答案】(1)4(2)413【分析】(1)取AB,CD的中点M,N,证得平面ADE⎳平面MNHG,得到AE⎳GH,再由平面ABG⎳平面CDEHG,证得AG⎳EH,得到平行四边形AGHE,得到GH=AE,求得HN=4,结合HN⊥平面ABCD,即可求解;(2)以点N为原点,建立空间直角坐标系,分别求得平面BFHG和平面AGHE的法向量n =(1,3,4)和m =(1,-3,4),结合向量的夹角公式,即可求解.【详解】(1)如图所示,取AB,CD的中点M,N,连接GM,MN,HN,因为GA=GB,可得GM⊥AB,又因为平面ABG⊥平面ABCD,且平面ABG∩平面ABCD=AB,GM⊂平面ABG,所以GM⊥平面ABCD,同理可得:HN⊥平面ABCD,因为ED⊥平面ABCD,所以ED⎳HN,又因为ED⊄平面MNHG,HN⊂平面MNHG,所以ED⎳平面MNHG,因为MN⎳AD,且AD⊄平面MNHG,MN⊂平面MNHG,所以AD⎳平面MNHG,又因为AD∩DE=D,且AD,DE⊂平面ADE,所以平面ADE⎳平面MNHG,因为平面AEHG与平面ADE和平面MNHG于AE,GH,可得AE⎳GH,又由GM⎳HN,AB⎳CD,且AB∩GM=M和CD∩HN=N,所以平面ABG⎳平面CDEHG,因为平面AEHG与平面ABG和平面CDEHF于AG,EH,所以AG⎳EH,可得四边形AGHE 为平行四边形,所以GH =AE ,因为AE =AD 2+DE 2=42+12=17,所以GH =17,在直角△AMG ,可得GM =GB 2-AB 22=52-42=3,在直角梯形GMNH 中,可得HN =3+17-42=4,因为HN ⊥平面ABCD ,所以点H 到平面ABCD 的距离为4.(2)解:以点N 为原点,以NM ,NC ,NH 所在的直线分别为x ,y ,z 轴,建立空间直角坐标系,如图所示,则E (0,-4,1),F (0,4,1),G (4,0,3),H (0,0,4),可得HE =(0,-4,-3),HF =(0,4,-3),HG=(4,0,-1),设平面BFHG 的法向量为n=(x ,y ,z ),则n ⋅HG=4x -z =0n ⋅HF=4y -3z =0,取z =4,可得x =1,y =3,所以n=(1,3,4),设平面AGHE 的法向量为m=(a ,b ,c ),则m ⋅HG=4a -c =0m ⋅HE=-4b -3c =0,取c =4,可得a =1,b =-3,所以m=(1,-3,4),则cos m ,n =m ⋅n m n=1-9+161+9+16⋅1+9+16=413,即平面BFHG 与平面AGHE 所成锐二面角的余弦值413.8(2024·重庆·模拟预测)如图,ACDE 为菱形,AC =BC =2,∠ACB =120°,平面ACDE ⊥平面ABC ,点F 在AB 上,且AF =2FB ,M ,N 分别在直线CD ,AB 上.(1)求证:CF ⊥平面ACDE ;(2)把与两条异面直线都垂直且相交的直线叫做这两条异面直线的公垂线,若∠EAC =60°,MN 为直线CD ,AB 的公垂线,求ANAF的值;(3)记直线BE 与平面ABC 所成角为α,若tan α>217,求平面BCD 与平面CFD 所成角余弦值的范围.【答案】(1)证明见解析(2)AN AF=913(3)528,255 【分析】(1)先通过余弦定理及勾股定理得到CF ⊥AC ,再根据面面垂直的性质证明;(2)以C 为原点,CA 的方向为x 轴正方向,建立如图所示空间直角坐标系C -xyz ,利用向量的坐标运算根据MN ⋅CD =0MN ⋅AF =0,列方程求解即可;(3)利用向量法求面面角,然后根据tan α>217列不等式求解.【详解】(1)AB 2=AC 2+BC 2-2AC ⋅BC ⋅cos ∠ACB =12,AB =23,AF =2FB ,所以AF =433,CF=13CA +23CB ,CF 2=19CA 2+49CB 2+49CA ⋅CB =43,AC 2+CF 2=4+43=163=AF 2,则CF ⊥AC ,又因为平面ACDE ⊥平面ABC ,平面ACDE ∩平面ABC =AC ,CF ⊂面ABC ,故CF ⊥平面ACDE ;(2)以C 为原点,CA 的方向为x 轴正方向,建立如图所示空间直角坐标系C -xyz ,由∠EAC =60°,可得∠DCA =120°,DC =2,所以C 0,0,0 ,D -1,0,3 ,A 2,0,0 ,F 0,233,0 所以AF =-2,233,0 ,CD =-1,0,3 ,设AN =λAF =-2λ,233λ,0 ,则N 2-2λ,233λ,0 ,设CM =μCD ,则M -μ,0,3μ ,MN =2-2λ+μ,233λ,-3μ ,由题知,MN ⋅CD=0MN ⋅AF =0 ⇒2λ-2-μ-3μ=04λ-4-2μ+43λ=0 ,解得λ=913,μ=-213,故AN AF=913;(3)B -1,3,0 ,设∠EAC =θ,则E 2-2cos θ,0,2sin θ ,BE=3-2cos θ,-3,2sin θ ,可取平面ABC 的法向量n=0,0,1 ,则sin α=cos n ,BE=n ⋅BEn ⋅BE =2sin θ 3-2cos θ 2+3+4sin 2θ=sin θ4-3cos θ,cos α=4-3cos θ-sin 2θ4-3cos θ,则tan α=sin θ4-3cos θ-sin 2θ>217,整理得10cos 2θ-9cos θ+2<0,故cos θ∈25,12,CF =0,23,0,CD =-2cos θ,0,2sin θ ,CB =-1,3,0 ,记平面CDF 的法向量为n 1 =x ,y ,z ,则有n 1 ⋅CD =0n 1 ⋅CF =0 ⇒-2x cos θ+2z sin θ=023y =0,可得n 1=sin θ,0,cos θ ,记平面CBD 的法向量为n 2 =a ,b ,c ,则有n 2 ⋅CD=0n 2 ⋅CB =0 ⇒-2a cos θ+2c sin θ=0-a +3b =0,可得n 2=3sin θ,sin θ,3cos θ ,记平面BCD 与平面CFD 所成角为γ,则cos γ=cos n 1 ,n 2 =33+sin 2θ,cos θ∈25,12 ,所以sin 2θ∈34,2125 ,3+sin 2θ∈152,465 ,故cos γ=33+sin 2θ∈528,255 .9(2024·安徽·二模)将正方形ABCD 绕直线AB 逆时针旋转90°,使得CD 到EF 的位置,得到如图所示的几何体.(1)求证:平面ACF ⊥平面BDE ;(2)点M 为DF上一点,若二面角C -AM -E 的余弦值为13,求∠MAD .【答案】(1)证明见解析(2)∠MAD =45°【分析】(1)根据面面与线面垂直的性质可得BD ⊥AF ,结合线面、面面垂直的判定定理即可证明;(2)建立如图空间直角坐标系,设∠MAD =α,AB =1,利用空间向量法求出二面角C -AM -E 的余弦值,建立方程1-sin αcos α1+sin 2α1+cos 2α=13,结合三角恒等变换求出α即可.【详解】(1)由已知得平面ABCD ⊥平面ABEF ,AF ⊥AB ,平面ABCD ∩平面ABEF =AB ,AF ⊂平面ABEF ,所以AF ⊥平面ABCD ,又BD ⊂平面ABCD ,故BD ⊥AF ,因为ABCD 是正方形,所以BD ⊥AC ,AC ,AF ⊂平面ACF ,AC ∩AF =A ,所以BD ⊥平面ACF ,又BD ⊂平面BDE ,所以平面ACF ⊥平面BDE .(2)由(1)知AD ,AF ,AB 两两垂直,以AD ,AF ,AB 所在直线分别为x ,y ,z 轴,建立空间直角坐标系,如图.设∠MAD =α,AB =1,则A 0,0,0 ,M cos α,sin α,0 ,C 1,0,1 ,E 0,1,1 ,故AM =cos α,sin α,0 ,AC =1,0,1 ,AE =0,1,1设平面AMC 的法向量为m =x 1,y 1,z 1 ,则m ⋅AC =0,m ⋅AM=0故x 1+z 1=0x 1cos α+y 1sin α=0,取x 1=sin α,则y 1=-cos α,z 1=-sin α所以m=sin α,-cos α,-sin α设平面AME 的法向量为n =x 2,y 2,z 2 ,n ⋅AE =0,n ⋅AM=0故y 2+z 2=0x 2cos α+y 2sin α=0,取x 2=sin α,则y 2=-cos α,z 2=cos α所以n=sin α,-cos α,cos α ,所以cos m ,n =1-sin αcos α1+sin 2α1+cos 2α,由已知得1-sin αcos α1+sin 2α1+cos 2α=13,化简得:2sin 22α-9sin2α+7=0,解得sin2α=1或sin2α=72(舍去)故α=45°,即∠MAD =45°.10(2024·安徽黄山·二模)如图,已知AB 为圆台下底面圆O 1的直径,C 是圆O 1上异于A ,B 的点,D 是圆台上底面圆O 2上的点,且平面DAC ⊥平面ABC ,DA =DC =AC =2,BC =4,E 是CD 的中点,BF =2FD .(1)证明:DO 2⎳BC ;(2)求直线DB 与平面AEF 所成角的正弦值.【答案】(1)证明见解析(2)68585【分析】(1)取AC 的中点O ,根据面面垂直的性质定理,可得DO ⊥平面ABC ,即可求证DO 2⎳OO 1,进而可证矩形,即可根据线线平行以及平行的传递性求解.(2)建系,利用向量法,求解法向量n =1,-12,3 与方向向量DB =(-1,4,-3)的夹角,即可求解.【详解】(1)证明:取AC 的中点为O ,连接DO ,OO 1,O 1O 2,∵DA =DC ,O 为AC 中点,∴DO ⊥AC ,又平面DAC ⊥平面ABC ,且平面DAC ∩平面ABC =AC ,DO ⊂平面DAC ,∴DO ⊥平面ABC ,∴DO ⎳O 1O 2,DO =O 1O 2,故四边形DOO 1O 2为矩形,∴DO 2⎳OO 1,又O ,O 1分别是AC ,AB 的中点,∴OO 1⎳BC ,∴DO 2⎳BC ;(2)∵C 是圆O 1上异于A ,B 的点,且AB 为圆O 1的直径,∴BC ⊥AC ,∴OO 1⊥AC ,∴如图以O 为原点建立空间直角坐标系,由条件知DO =3,∴A (1,0,0),B (-1,4,0),C (-1,0,0),D (0,0,3),∴E -12,0,32 ,设F (x ,y ,z ),∴BF =(x +1,y -4,z ),FD=(-x ,-y ,3-z ),由BF =2FD ,得F -13,43,233 ,∴AF =-43,43,233 ,∴DB =(-1,4,-3),AE =-32,0,32 ,设平面AEF 法向量为n=(x 1,y 1,z 1),则n ⋅AE=-32x 1+32z 1=0n ⋅AF =-43x 1+43y 1+233z 1=0,取n =1,-12,3 ,设直线BD 与平面AEF 所成角为θ,则sin θ=|cos <n ,DB>|=625⋅172=68585∴直线BD 与平面AEF 所成角的正弦值为68585.11(2024·黑龙江哈尔滨·一模)正四棱台ABCD -A 1B 1C 1D 1的下底面边长为22,A 1B 1=12AB ,M 为BC 中点,已知点P 满足AP =1-λ AB +12λ⋅AD +λAA 1,其中λ∈0,1 .(1)求证D 1P ⊥AC ;(2)已知平面AMC 1与平面ABCD 所成角的余弦值为37,当λ=23时,求直线DP 与平面AMC 1所成角的正弦值.【答案】(1)证明见解析(2)241391【分析】(1)方法一运用空间向量的线性运算,进行空间位置关系的向量证明即可.方法二:建立空间直角坐标系,进行空间位置关系的向量证明即可.(2)建立空间直角坐标系,利用线面角的向量求法求解即可.【详解】(1)方法一:∵A 1B 1=12AB ,∴AA 1 ⋅AB =AA 1 ⋅AD =22×22=2.∵D 1A =-12AD-AA 1∴D 1P =D 1A +AP =1-λ AB +12λ-12AD+λ-1 AA 1∴D 1P ⋅AC =1-λ AB +12λ-12AD +λ-1 AA 1 ⋅AB +AD =1-λ AB 2+12λ-12 AD2+λ-1 AB ⋅AA 1 +λ-1 AD ⋅AA 1=81-λ +812λ-12+4λ-1 =0.∴D 1P ⊥AC ,即D 1P ⊥AC .方法二:以底面ABCD 的中心O 为原点,以OM 方向为y 轴,过O 点平行于AD 向前方向为x 轴,以过点O 垂直平面ABCD 向上方向为z 轴,建立如图所示空间直角坐标系,设正四棱台的高度为h ,则有 A 2,-2,0 ,B 2,2,0 ,C -2,2,0 ,D -2,-2,0 ,A 122,-22,h ,C 1-22,22,h ,D 1-22,-22,h ,M 0,2,0 ,AC =-22,22,0AP =1-λ 0,22,0 +12λ-22,0,0 +λ-22,22,0 =-322λ,22-322λ,λhD 1A =322,-22,-h ,D 1P =D 1A +AP =-322λ+322,-322λ+322,λh -h .故AC ⋅D 1P=0,所以D 1P ⊥AC .(2)设平面ABCD 的法向量为n=0,0,1 ,设平面AMC 1的法向量为m =x ,y ,z ,AM =-2,22,0 ,AC 1 =-322,322,h ,则有AM ⋅m=0AC 1 ⋅m=0 ,即-2x +22y =0-322x +322y +hz =0,令x =22h ,则m=22h ,2h ,3 .又题意可得cos m ,n =38h 2+2h 2+9=37,可得h =2.因为λ=23,经过计算可得P 0,0,43 ,D 1-22,-22,2 ,D 1P =2,2,43.将h =2代入,可得平面AMC 1的法向量m=42,22,3 .设直线DP 与平面AMC 1所成角的为θsin θ=cos DP ,m =8+4+42+2+16932+8+9=241391.12(2024·辽宁·三模)如图,在三棱柱ABC -A 1B 1C 1中,侧面ACC 1A 1⊥底面ABC ,AC =AA 1=2,AB =1,BC =3,点E 为线段AC 的中点.(1)求证:AB 1∥平面BEC 1;(2)若∠A 1AC =π3,求二面角A -BE -C 1的余弦值.【答案】(1)证明见详解(2)-22【分析】(1)连接BC 1,交B 1C 于点N ,连接NE ,利用线面平行的判定定理证明;(2)由已知可知,△AA 1C 为等边三角形,故A 1E ⊥AC ,利用面面垂直的性质定理可证得A 1E ⊥底面ABC ,进而建立空间直角坐标系,利用向量法即可求二面角余弦值.【详解】(1)连接BC 1,交B 1C 于点N ,连接NE ,因为侧面BCC 1B 1是平行四边形,所以N 为B 1C 的中点,又因为点E 为线段AC 的中点,所以NE ⎳AB 1,因为AB 1⊄面BEC 1,NE ⊂面BEC 1,所以AB 1⎳面BEC 1.(2)连接A 1C ,A 1E ,因为∠A 1AC =π3,AC =AA 1=2,所以△AA 1C 为等边三角形,A 1C =2,因为点E 为线段AC 的中点,所以A 1E ⊥AC ,因为侧面ACC 1A 1⊥底面ABC ,平面ACC 1A 1∩平面ABC =AC ,A 1E ⊂平面ACC 1A 1,所以A 1E ⊥底面ABC ,过点E 在底面ABC 内作EF ⊥AC ,如图以E 为坐标原点,分布以EF ,EC ,EA 1 的方向为x ,y ,z 轴正方向建立空间直角坐标系,则E 0,0,0 ,B 32,-12,0 ,C 10,2,3 ,所以EB =32,-12,0 ,EC 1 =0,2,3 ,设平面BEC 1的法向量为m=x ,y ,z ,则m ⋅EB =32x -12y =0m ⋅EC 1=2y +3z =0,令x =1,则y =3,z =-2,所以平面BEC 1的法向量为m=1,3,-2 ,又因为平面ABE 的法向量为n=0,0,1 ,则cos m ,n =-21+3+4=-22,经观察,二面角A -BE -C 1的平面角为钝角,所以二面角A -BE -C 1的余弦值为-22.13(2024·广东广州·一模)如图,在四棱锥P -ABCD 中,底面ABCD 是边长为2的菱形,△DCP 是等边三角形,∠DCB =∠PCB =π4,点M ,N 分别为DP 和AB 的中点.(1)求证:MN ⎳平面PBC ;(2)求证:平面PBC ⊥平面ABCD ;(3)求CM 与平面PAD 所成角的正弦值.【答案】(1)证明见解析;(2)证明见解析;(3)33.【分析】(1)取PC 中点E ,由已知条件,结合线面平行的判断推理即得.(2)过P 作PQ ⊥BC 于点Q ,借助三角形全等,及线面垂直的判定、面面垂直的判定推理即得.(3)建立空间直角坐标系,利用线面角的向量求法求解即得.【详解】(1)取PC 中点E ,连接ME ,BE ,由M 为DP 中点,N 为AB 中点,得ME ⎳DC ,ME =12DC ,又BN ⎳CD ,BN =12CD ,则ME ⎳BN ,ME =BN ,因此四边形BEMN 为平行四边形,于是MN ⎳BE ,而MN ⊄平面PBC ,BE ⊂平面PBC ,所以MN ⎳平面PBC .(2)过P 作PQ ⊥BC 于点Q ,连接DQ ,由∠DCB =∠PCB =π4,CD =PC ,QC =QC ,得△QCD ≌△QCP ,则∠DQC =∠PQC =π2,即DQ ⊥BC ,而PQ =DQ =2,PQ 2+DQ 2=4=PD 2,因此PQ ⊥DQ ,又DQ ∩BC =Q ,DQ ,BC ⊂平面ABCD ,则PQ ⊥平面ABCD ,PQ ⊂平面PBC ,所以平面PBC ⊥平面ABCD .(3)由(2)知,直线QC ,QD ,QP 两两垂直,以点Q 为原点,直线QC ,QD ,QP 分别为x ,y ,z 轴建立空间直角坐标系,则C (2,0,0),P (0,0,2),D (0,2,0),M 0,22,22,A (-2,2,0),CM =-2,22,22,AD =(2,0,0),DP =(0,-2,2),设平面PAD 的一个法向量n =(x ,y ,z ),则n ⋅AD=2x =0n ⋅DP=-2y +2z =0,令y =1,得n=(0,1,1),设CM 与平面PAD 所成角为θ,sin θ=|cos ‹CM ,n ›|=|CM ⋅n||CM ||n |=23⋅2=33,所以CM 与平面PAD 所成角的正弦值是33.14(2024·广东梅州·二模)如图,在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,底面ABCD 为直角梯形,△PAD 为等边三角形,AD ⎳BC ,AD ⊥AB ,AD =AB =2BC =2.(1)求证:AD ⊥PC ;(2)点N 在棱PC 上运动,求△ADN 面积的最小值;(3)点M 为PB 的中点,在棱PC 上找一点Q ,使得AM ⎳平面BDQ ,求PQQC的值.【答案】(1)证明见解析(2)2217(3)4【分析】(1)取AD 的中点H ,连接PH ,CH ,依题意可得四边形ABCH 为矩形,即可证明CH ⊥AD ,再由PH ⊥AD ,即可证明AD ⊥平面PHC ,从而得证;(2)连接AC 交BD 于点G ,连接MC 交BQ 于点F ,连接FG ,即可得到CG AG=12,再根据线面平行的性质得到CF FM =12,在△PBC 中,过点M 作MK ⎳PC ,即可得到MKCQ=2,最后由PQ =2MK 即可得解.【详解】(1)取AD 的中点H ,连接PH ,CH ,则AH ⎳BC 且AH =BC ,又AD ⊥AB ,所以四边形ABCH 为矩形,所以CH ⊥AD ,又△PAD 为等边三角形,所以PH ⊥AD ,PH ∩CH =H ,PH ,CH ⊂平面PHC ,所以AD ⊥平面PHC ,又PC ⊂平面PHC ,所以AD ⊥PC .(2)连接HN ,由AD ⊥平面PHC ,又HN ⊂平面PHC ,所以AD ⊥HN ,所以S △ADH =12AD ⋅HN =HN ,要使△ADN 的面积最小,即要使HN 最小,当且仅当HN ⊥PC 时HN 取最小值,因为平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,PH ⊂平面PAD ,所以PH ⊥平面ABCD ,又HC ⊂平面ABCD ,所以PH ⊥HC ,在Rt △HPC 中,CH =2,PH =3,所以PC =CH 2+PH 2=7,当HN ⊥PC 时HN =PH ⋅CH PC =237=2217,所以△ADN 面积的最小值为2217.(3)连接AC 交BD 于点G ,连接MC 交BQ 于点F ,连接FG ,因为AD ⎳BC 且AD =2BC =2,所以△CGB ∽△AGD ,所以CG AG =BC AD=12,因为AM ⎳平面BDQ ,又AM ⊂平面ACM ,平面BDQ ∩平面ACM =GF ,所以GF ⎳AM ,所以CF FM =CG AG=12,在△PBC 中,过点M 作MK ⎳PC ,则有MK CQ =MF CF=2,所以PQ =2MK ,所以PQ =2MK =4CQ ,即PQQC=415(2024·广东广州·模拟预测)如图所示,圆台O 1O 2的轴截面A 1ACC 1为等腰梯形,AC =2AA 1=2A 1C 1=4,B 为底面圆周上异于A ,C 的点,且AB =BC ,P 是线段BC 的中点.(1)求证:C 1P ⎳平面A 1AB .(2)求平面A 1AB 与平面C 1CB 夹角的余弦值.【答案】(1)证明见解析(2)17【分析】(1)取AB 的中点H ,连接A 1H ,PH ,证明四边形A 1C 1PH 为平行四边形,进而得C 1P ⎳A 1H ,即可证明;(2)建立空间直角坐标系,求两平面的法向量,利用平面夹角公式求解.【详解】(1)取AB 的中点H ,连接A1H ,PH ,如图所示,因为P 为BC 的中点,所以PH ⎳AC ,PH =12AC .在等腰梯形A 1ACC 1中,A 1C 1⎳AC ,A 1C 1=12AC ,所以HP ⎳A 1C 1,HP =A 1C 1,所以四边形A 1C 1PH 为平行四边形,所以C 1P ⎳A 1H ,又A 1H ⊂平面A 1AB ,C 1P ⊄平面A 1AB ,所以C 1P ⎳平面A 1AB .(2)因为AB =BC ,故O 2B ⊥AC ,以直线O 2A ,O 2B ,O 2O 1分别为x ,y ,z 轴,建立空间直角坐标系,如图所示,在等腰梯形A 1ACC 1中,AC =2AA 1=2A 1C 1=4,此梯形的高为h =AA 21-AC -A 1C 122= 3.因为A 1C 1=12AC ,A 1C 1⎳AC ,。

高考数学立体几何知识点梳理

高考数学立体几何知识点梳理

高考数学立体几何知识点梳理关键信息:1、立体几何基本概念与公理点、线、面的位置关系三公理及推论2、直线与平面的位置关系直线与平面平行直线与平面垂直3、平面与平面的位置关系平面与平面平行平面与平面垂直4、空间几何体棱柱棱锥棱台圆柱圆锥圆台球5、空间几何体的表面积与体积表面积公式体积公式6、空间向量在立体几何中的应用空间向量的坐标表示空间向量的数量积利用空间向量证明位置关系利用空间向量求空间角11 立体几何基本概念与公理111 点、线、面的位置关系点是空间中最基本的元素,线是由无数个点组成的,面是由无数条线组成的。

点动成线,线动成面。

直线与平面的位置关系有:直线在平面内、直线与平面平行、直线与平面相交。

平面与平面的位置关系有:平行、相交。

112 三公理及推论公理 1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内。

公理 2:过不在一条直线上的三点,有且只有一个平面。

公理 3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。

推论 1:经过一条直线和这条直线外一点,有且只有一个平面。

推论 2:经过两条相交直线,有且只有一个平面。

推论 3:经过两条平行直线,有且只有一个平面。

21 直线与平面的位置关系211 直线与平面平行判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

性质定理:一条直线与一个平面平行,如果过该直线的平面与此平面相交,那么该直线与交线平行。

212 直线与平面垂直定义:如果一条直线与平面内任意一条直线都垂直,那么这条直线与这个平面垂直。

判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。

性质定理:垂直于同一个平面的两条直线平行。

31 平面与平面的位置关系311 平面与平面平行判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。

性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行。

312 平面与平面垂直定义:两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直。

高三《立体几何》专题复习

高三《立体几何》专题复习

高三《立体几何》专题复习一、常用知识点回顾1、三视图。

正侧一样高,正俯一样长,侧府一样宽,看不到的线画虚线。

2、常用公式与结论。

(1)圆柱、圆锥、圆台的侧面展开图及侧面积公式;(2)空间几何体的表面积与体积公式;(3)全品高考复习方案(听课手册)105页的常用结论3、两条异面直线所成的角;直线与平面所成的角。

4、证明两条直线平行的常用方法;直线与平面平行的判定与性质;面面平行的判定与性质。

5、证明两条直线垂直的常用方法;直线与平面垂直的判定与性质;两个平面垂直的判定与性质。

二、题型训练题型一:三视图的运用,求几何体的体积、表面积例1、如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为()(A)18+(B)54+(C)90(D)81【练习1】某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()C.3D.2【练习2】如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A.90πB.63πC.42πD.36π【练习3】如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )(A )20π(B )24π(C )28π(D )32π例2、在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( )(A )4π (B )9π2 (C )6π (D )32π3变式1:在封闭的直三棱柱ABC-A1B1C1内有一个体积为V的球.若AB⊥BC,AB=6,BC=8,AA1=5,则V的最大值是变式2:在封闭的长方体ABCD-A1B1C1D1内有一个体积为V的球.若AB=BC=6,AA1=3,则V的最大值是变式3:(1)长方体的长、宽、高分别为3,2,1,其顶点都在球O的球面上,则球O的表面积为(2)体积为8的正方体的顶点都在同一球面上,则该球面的表面积为变式4:【练习1】已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为()A. B.12π C. D.10π【练习3】已知圆锥的顶点为S,母线SA,SB互相垂直,SA与圆锥底面所成角为30°,若SAB的面积为8,则该圆锥的体积为_______题型二:平行问题例1、如图,四棱锥P-ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(I)证明MN∥平面PAB; (II)求四面体N-BCM的体积.【练习1】如图,四棱锥P-ABCD中,侧面PADAD,为等边三角形且垂直于底面ABCD,AB=BC=12∠BAD=∠ABC=90°。

2024年高考数学立体几何知识点总结

2024年高考数学立体几何知识点总结

2024年高考数学立体几何知识点总结____年高考数学立体几何知识点总结(____字)一、立体几何的基本概念1. 立体几何的研究对象:立体物体。

2. 立体物体的特征:具有长度、宽度和高度三个方向的物体。

3. 立体几何的基本概念:点、线、面。

- 点:没有任何维度,没有长度、宽度和高度。

在立体几何中用大写字母表示,如A、B、C。

- 线:由一串无限多个点组成,具有长度但没有宽度和高度。

用小写字母表示,如a、b、c。

- 面:由无限多条线组成,具有长度和宽度但没有高度。

用大写字母表示,如A、B、C。

- 空间:由无限多个面组成,具有长度、宽度和高度。

用字母S表示。

二、立体几何的基本性质1. 垂直关系:- 垂直平面:两个平面的法线互相垂直。

- 垂直线:两个线互相垂直。

2. 平行关系:- 平行线:在同一个平面上没有交点的两条线。

- 平行平面:在空间中没有交线的两个平面。

3. 点、线、面的关系:- 点在线上:一个点在一条线上。

- 线在平面上:一条线在一个平面上。

- 点在平面上:一个点在一个平面上。

- 线垂直于平面:一条线与一个平面垂直。

4. 空间几何图形的投影:- 平面的投影:一个空间几何图形在一个平面上的投影。

- 线的投影:一条线在一个平面上的投影是线段。

- 点的投影:一个点在一个平面上的投影是一个点。

- 面的投影:一个面在一个平面上的投影是一个面。

三、平行于坐标轴的立体图形1. 长方体的概念和性质:- 长方体的定义:由6个矩形面围成的立体几何图形。

- 长方体的性质:相对的面是平行的,相对的边是相等的。

2. 正方体的概念和性质:- 正方体的定义:所有边长相等的长方体。

- 正方体的性质:正方体的六个面是相等的正方形。

3. 正方柱、正交柱的概念和性质:- 正方柱:底面是正方形的柱体。

- 正交柱:底面和轴垂直的柱体。

- 正方柱和正交柱的性质:底面的对边平行且相等。

四、平行四边形的性质1. 平行四边形的定义:两对对边平行的四边形。

2024年高考数学立体几何知识点总结

2024年高考数学立体几何知识点总结

2024年高考数学立体几何知识点总结(____字)一、空间几何体的基本概念和性质1. 点、线、面的定义和性质2. 各类多面体的定义和性质,如正多面体、柱面、棱锥等3. 空间角的定义和性质,包括平面角、空间角的比较大小等4. 体积和表面积的计算,包括球体、圆柱体、圆锥体、棱柱体、棱锥体等的计算公式二、立体几何的投影问题1. 平行投影和中心投影的性质和应用2. 空间几何体在平行投影和中心投影下的变换关系和性质三、立体几何的位置关系和判定方法1. 点与平面的位置关系判定,如点在平面上、点在平面外等2. 点与直线的位置关系判定,如点在线上、点在线段上等3. 直线与平面的位置关系判定,如直线在平面上、直线与平面相交等4. 空间几何体的位置关系判定,如两个平面的相交、两个直线的关系等四、等腰三角形与正弦定理、余弦定理的应用1. 等腰三角形的性质和判定方法2. 正弦定理和余弦定理的概念和应用,如求解三角形的边长、角度等五、平面与空间直线的交点、平面与空间直线的位置关系1. 平面与空间直线的交点的判定和求解方法2. 平面与空间直线的位置关系的判定方法,如平面与直线相交、平面与直线平行、平面与直线垂直等六、球与平面的交线和球与直线的位置关系1. 球与平面的交线的判定和性质,如球与平面相切、相离等2. 球与直线的位置关系的判定和性质,如球与直线相切、相离、相交等七、向量的应用1. 向量的定义和基本性质2. 向量的共线与共面的判定方法3. 向量的投影和数量积的应用,如求解多边形的面积、平行四边形的面积等八、平面直角坐标系和空间直角坐标系的应用1. 平面直角坐标系的建立和使用方法2. 空间直角坐标系的建立和使用方法3. 平面直角坐标系和空间直角坐标系的转化九、解析几何与立体几何的综合应用1. 点、线、面方程的求解和应用2. 几何图形的平移、旋转和对称变换的解析几何表示方法3. 空间几何体的投影和旋转的解析几何表示方法以上就是2024年高考数学立体几何的知识点总结。

2024年高考数学立体几何知识点总结

2024年高考数学立体几何知识点总结

2024年高考数学立体几何知识点总结高考数学中的立体几何,是考查考生对空间图形的认识和理解,以及解决问题的能力。

以下是2024年高考数学立体几何的主要知识点总结:一、立体几何的基本概念1. 空间直角坐标系:了解三维空间的坐标系,掌握在空间直角坐标系下求两点之间距离和判定点与多面体关系的方法。

2. 几何体的分类与特征:了解各种几何体的定义、特征和性质,包括点、直线、平面、多面体等,熟悉各种几何体的命名和常见几何体的特征。

二、多面体与球的性质1. 正多面体:熟悉正多面体的定义、性质和相关定理,如正四面体、正六面体、正八面体等的性质,掌握计算正多面体的体积和表面积的方法。

2. 欧拉定理:了解欧拉定理的内容和证明思路,应用欧拉定理求解相应问题。

3. 球的性质:了解球的定义、性质和相关定理,如球面上的点和圆应用球的性质进行计算。

三、立体空间的位置关系1. 空间几何体的位置关系:了解空间几何体之间的位置关系,包括平行与垂直关系、相交与平面关系、点在立体内部与外部的关系等。

2. 空间向量的应用:熟悉空间向量的概念、性质和运算,掌握使用空间向量判断几何体的位置关系的方法。

四、立体几何中的投影1. 投影的概念与性质:了解投影的基本概念和性质,包括平行投影和斜投影的性质,熟悉使用投影解决几何问题的方法。

2. 截痕法与截面应用:掌握截痕法求解几何问题的基本思路和方法,熟练运用截痕法和截面方法解决立体几何问题。

五、向量运算在立体几何中的应用1. 向量投影的应用:了解向量投影的概念和性质,应用向量投影解决立体几何中的相关问题。

2. 向量混合积和向量积的应用:掌握向量混合积和向量积的定义和性质,应用向量混合积和向量积求解相关问题。

六、空间坐标系中的方向余弦与方向角1. 方向余弦的概念与性质:了解方向余弦的概念和性质,掌握方向余弦在立体几何中的应用方法。

2. 方向角的概念与计算:了解方向角的定义和计算方法,熟练求解立体几何中与方向角相关的问题。

2025届新高考一轮复习特训---立体几何初步(含解析)

2025届新高考一轮复习特训---立体几何初步(含解析)

2025届新高考一轮复习特训 立体几何初步一、选择题1.平行六面体1111ABCD A B C D -中,底面ABCD 为正方形,11A AD A AB ∠=∠=11AA AB ==,E 为11C D 的中点,则异面直线BE 和DC 所成角的余弦值为( )2.已知正方体1111ABCD A B C D -的棱长为2,E ,F ,G 分别是AB ,1BB ,11B C 的中点,则过这三点的截面面积是( )A.3.已知平面α,β,γ,l αβ= ,则“l γ⊥”是“αγ⊥且βγ⊥”的( )A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件4.如图,某车间生产一种圆台形零件,其下底面的直径为4cm ,上底面的直径为8cm ,高为4cm ,已知点P 是上底面圆周上不与直径AB 端点重合的一点,且AP BP =,O 为上底面圆的圆心,则OP 与平面ABC 所成的角的正切值为( )5.已知长方体的一条棱长为2,体积为16,则其外接球表面积的最小值为( )A.5πB.12πC.20πD.80π6.如图,在棱长为1的正方体1111ABCD A B C D -中,E 为线段1DD 的中点,F 为线段1BB 的中点.直线1FC 到平面1AB E 的距离为( ).7.在三棱柱111ABC A B C -中,AB BC AC ==,侧棱1AA ⊥底面ABC ,若该三棱柱的所有顶点都在同一个球O 的表面上,且球O 的表面积的最小值为4π,则该三棱柱的侧面积为( )A.8.设A ,B ,C ,D 是同一个半径为4的球的球面上的四点,ABC △为等边三角形且其面积为D ABC -体积的最大值为( )A. C.二、多项选择题9.在ABC △中,AC BC ==2AB =,ABD △是有一个角是30°的直角三角形,若二面角D AB C --是直二面角,则DC 的长可以是( )10.如图,P 为矩形ABCD 所在平面外一点,矩形对角线的交点为O ,M 为PB 的中点,则下列结论成立的是( )A.//OM 平面PCDB.//OM 平面PDAC.//OM 平面PBAD.平面PBC11.如图,正方体1111ABCD A B C D -的棱长为1,动点P 在对角线1BD 上,过P 作垂直于1BD 的平面α,记平面α与正方体1111ABCD A B C D -的截面多边形(含三角形)的周长为L,面积为S ,BP x =,(x ∈,下面关于函数()L x 和()S x 的描述正确的是( )A.(S x B.()L x 在x=C.()L x 在⎛⎝上单调递增,在上单调递减;D.()S x 在⎛⎝上单调递增,在上单调递减三、填空题12.如图一个正六棱柱的茶叶盒,底面边长为10cm ,高为20cm ,则这个茶叶盒的表面积为______2cm .13.已知正三棱柱111ABC A B C-的各棱长都等于2,点E 是11A B 的中点,则异面直线AE 与1BC 所成角的余弦值为________.14.底面边长为4的正四棱锥被平行于其底面的平面所截,截去一个底面边长为2,//OM高为3的正四棱锥,所得棱台的体积为____________.四、解答题15.如图,在三棱锥A BCD -中,BCD △是边长为2的等边三角形,AB AC =,O 是BC 的中点,OA CD ⊥.(1)证明:平面ABC ⊥平面BCD .(2)若点E 是棱AC 上的一点,则从①2CE EA =,②二面角E BD C --的大小为60︒,③三棱锥A BCD -成立.16.如图,垂直于梯形ABCD 所在平面,,F 为线段PA 上一点,112ABAD CD ===,四边形为矩形.(1)若F 是PA 的中点,求证:平面DEF ;(2)求直线与平面BCP 所成角的正弦值;(3)若点F 到平面的长.17.如图,P 为圆锥的顶点,O 为圆锥底面的圆心,AC 为底面直径,ABD △为底面四O 的内接正三角形,且△PC 上,且AE =1CE =.PD 90ADC BAD ∠∠==︒PD =PDCE //AC AE(1)求证:BD AE ⊥,并求三棱锥P BDE -的体积;(2)若点M 为线段PO 上的动点,当直线DM 与平面ABE 所成角的正弦值最大时,求此时点M 到平面ABE 的距离.18.如图,在多面体ABCDEF 中,已知四边形ABCD 是菱形,AF ⊥平面ABCD .(1)证明:平面BDE ⊥平面ACF ;(2)若4AD =,6AF =,3DE =,//DE AF ,AE 与平面BDE 三棱锥F CDE -的体积.19.如图所示,已知正方形ABCD 和矩形ACEF 所在的平面互相垂直,AB =1AF =,M 是线段EF 的中点.求证:(1)//AM 平面BDE ;(2)AM ⊥平面BDF .参考答案1.答案:A解析:由题意,11π11cos 3AA AB AA AD ⋅=⋅=⨯⨯= 0AB AD ⋅= ,又DC AB = ,1111112BE AE AB AA A D D E AB AA AD AB =-=++-=+-,所以111100222BE DC AA AD AB AB ⎛⎫⋅=+-⋅=+-= ⎪⎝⎭,即有BE DC ⊥ ,故选:A.2.答案:D解析:如图所示,分别取11C D ,1DD ,AD 的中点H ,M ,N ,连接GH ,HM ,MN ,NE ,在正方体1111ABCD A B C D -中,可得//GH NE ,//HM EF ,//MN FG ,所以经过点E,F ,G 的截面为正六边形EFGHMN ,又因为正方体1111ABCDA B C D -的棱长为2,在直角BEF△中,可得EF==所以截面正六边形的面积为26=故选:D.3.答案:C解析:由于l αβ= ,所以l α⊂,l β⊂,若l γ⊥,则αγ⊥,βγ⊥,故充分性成立,若αγ⊥,βγ⊥,设m αγ= ,n βγ= ,则存在直线,a γ⊂使得a m ⊥,所以a α⊥,由于l ⊂α,故a l ⊥,同理存在直线,b γ⊂使得b n ⊥,所以b β⊥,由于l β⊂,故b l ⊥,由于a ,b 不平行,所以a ,b 是平面γ内两条相交直线,所以l γ⊥,故必要性成立,故选:C.4.答案:A解析:设O '为下底面圆的圆心,连接OO ',CO '和CO ,因为AP BP =,所以AB OP ⊥,又因为AB OO ⊥',OP OO O '= ,OP ,OO '⊂平面OO P ',所以AB ⊥平面OO P ',因为PC 是该圆台的一条母线,所以O ,O ',C ,P 四点共面,且//O C OP ',又AB ⊂平面ABC ,所以平面ABC ⊥平面POC ,又因为平面ABC 平面POC OC =,所以点P 在平面ABC 的射影在直线OC 上,则OP 与平面ABC 所成的角即为POC OCO ∠=∠',过点C 作CD OP ⊥于点D ,因为4cm OP =,2cm O C '=,所以tan tan 2OO POC OCO O C∠=''∠=='.故选:A.5.答案:C解析:设长方体的长、宽、高分别为a ,b ,2,所以长方体的体积为216V ab ==,解得:8ab =,设长方体的外接球的半径为R ,所以2R =22242420R a b ab =++≥+=,即R ≥b ==所以min R =所以其外接球表面积的最小值为24π20πS R ==.故选:C.6.答案:D解析:1//AE FC ,1FC ⊂/平面1AB E ,AE ⊂平面1AB E ,1//FC ∴平面1AB E ,因此直线1FC 到平面1AB E 的距离等于点1C 到平面1AB E 的距离,如图,以D 点为坐标原点,DA 所在的直线为x 轴,DC 所在的直线为y 轴,1DD 所在的直线为轴,建立直角坐标系.则(1,0,0)A ,1(1,1,1)B ,1(0,1,1)C ,10,0,2E ⎛⎫ ⎪⎝⎭,11,1,2F ⎛⎫ ⎪⎝⎭,,,,,设平面的法向量为,则,令,则设点到平面1AB E 的距离为d ,则1113n C B d n⋅==故直线1FC 到平面1ABE 故选:D.7.答案:B解析:如图:设三棱柱上,下底面中心分别为1O ,2O ,则12OO 的中点为O ,111,0,2FC ⎛⎫=- ⎪⎝⎭ 11,0,2AE ⎛⎫=- ⎪⎝⎭ 1(0,1,1)AB =11(1,0,0)C B = 1AB E (,,)n x y z =11020n AE x z n AB y z ⎧⋅=-+=⎪⎨⎪⋅=+=⎩2z =(1,2,2)n =- 1C设球O 的半径为R ,则OA R =,设AB BC AC a ===,1AA h =,则212OO h =,223O A AB ==,则在2Rt OO A △中,222222*********R OA OO O A h a h ==+=+≥⨯=,当且仅当h =时,等号成立,所以24π4πS R =≥球4πah =,所以ah =所以该三棱柱的侧面积为3ah =故选:B.8.答案:B解析:如图,设点O 为球心,点M 为三角形ABC 的中心,E 为AC 的中点,连接OB ,DM ,且DM 过球心O ,连接BE ,且BE 过点M ,当DM ⊥平面ABC 时,三棱锥D ABC -的体积最大.2ABC S AB == △6AB =.又 点M 为三角形ABC 的中心,23BM BE ∴==,在Rt OMB △中,2OM ==,426DM OD OM ∴=+=+=,∴三棱锥D ABC -体积的最大6=9.答案:ACD 解析:如图①,当60ADB ∠=︒且90DBA ∠=︒时,二面角D AB C --是直二面角,故平面ABD ⊥平面ABC ,且平面ABD 平面ABC AB =,DB ⊂平面ABD ,故DB ⊥平面ABC ,所以DB BC ⊥,因为tan AB DB ADB ==∠==同理可得,当30ADB ∠=︒且90DBA ∠=︒时,DB ⊥平面ABC ,所以DB BC ⊥,因为tan ABDB ADB==∠==当90ADB ∠=︒且30DAB ∠=︒时,如图②,过点D 作DE AB ⊥,垂足为E ,连接CE ,因为平面ABD ⊥平面ABC ,且平面ABD 平面ABC AB =,DE ⊂平面ABD ,故DE ⊥平面ABC ,所以DE CE ⊥,此时cos DA AB DAB =∠=,sin DE DA DAB =∠=cos AE AD DAB =∠===所以DC ==当90ADB ∠=︒且60DAB ∠=︒时,同理可得,sinDE DA DAB=∠====故选:ACD.10.答案:AB解析:矩形ABCD 的对角线AC 与BD 交于点O ,所以点O 为BD 的中点,在△PBD 中,因为点M 是PB 的中点,所以OM 是的中位线,,平面PCD ,平面PCD ,平面PCD ,故A 正确;PD ⊂平面PDA ,平面PDA ,平面PDA ,故B 正确;因为M ∈PB ,O ∉平面PBC ,O ∉平面PAB ,所以OM 与平面PAB ,平面PBC 相交,故CD 错误;故选:AB.11.答案:AD解析:当x ⎛∈⎝时,截面为等边三角形,如图:因为BP x =,所以EF =,所以:()L x =,()2S x x =,x ⎛∈ ⎝.此时()L x ,()S x 在上单调递增,且当时截面为六边形,如图:PBD △//OM PD PD ⊂OM ⊄//OM ∴OM⊄//OM ∴⎛ ⎝()L x ≤()x ≤x ∈设AE t =,则11AE AF CG CH B N B M t======所以六边形EFGHMN 的周长为:)1t +-=为定值;做1NN ⊥平面ABCD 于1N ,1MM ⊥平面ABCD 于1M .设平面EFGHMN 与平面ABCD 所成的角为α,则易求cos α=所以11cos EFDHMN FAN M CG S S α⋅=,所以()22111122EFDHMN S t t ⎡⎤=---⎢⎥⎣⎦212t t ⎫=+-⎪⎭,在10,2t ⎛⎤∈ ⎥⎝⎦上递增,在1,12t ⎡⎫∈⎪⎢⎣⎭上递减,111224⎫+-=⎪⎭=x =所以()S x 在上递增,在上递减.x =()x当x ∈时,易得:())L x x =,())2S x x=-此时()L x ,()S x 在上单调递减,()L x <()x <综上可知:AD 是正确的,BC 错误.故选:AD12.答案:300(4解析:由题设,一个底面的面积为21161010sin 602S =⨯⨯⨯⨯︒=,一个侧面矩形面积为22102020c 0m S =⨯=,所以茶叶盒的表面积为22126300(4c mS S +=+.故答案为:300(4解析:连结1A B ,交AE 于点M ,作1//MN BC ,交11A C 于点N ,连结EN ,异面直线AE 与1BC 所成的角为EMN ∠或其补角,因为1//A E AB ,且,所以1::1:2EM MA A M MB ==,所以113BC ==,EN ==中,222cos 2ME MN EN EMN ME MN +-∠==⋅14.答案:28=(44)6⨯⨯=(22)34⨯⨯=,所以棱台的体积为32428-=.112A E AB =13ME AE ==123A N =EMN △3(16428⨯++=.故答案为28.15.答案:(1)证明见解析(2)见解析解析:(1)证明:因为AB AC =,O 是BC 的中点,所以OA BC ⊥.又因为OA CD ⊥,BC CD C = ,,BC CD ⊂平面BCD ,所以OA ⊥平面BCD .因为OA ⊂平面ABC ,所以平面ABC ⊥平面BCD .(2)如图,连接OD .因为BCD △是边长为2的等边三角形,所以DO BC ⊥.由(1)知,OA ⊥平面BCD ,所以AO ,BC ,DO 两两互相垂直.以O 为坐标原点,分别以OB ,OD ,OA 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系.设||(0)OA m m =>,则(0,0,0)O ,(0,0,)A m ,(1,0,0)B ,(1,0,0)C -,D .若选①②作为条件,证明③成立.因为2CE EA =,所以2CE EA = ,所以12,0,33m E ⎛⎫- ⎪⎝⎭.易知平面BCD 的一个法向量为(0,0,1)=n ,42,0,33m BE ⎛⎫=- ⎪⎝⎭,(BD =-.设(,,)x y z =m 是平面BDE 的法向量,则0,0,BE BD ⎧⋅=⎪⎨⋅=⎪⎩m m 所以420,330.m x z x ⎧-+=⎪⎨⎪-=⎩令1x =,则y =z =2m ⎛⎫= ⎪ ⎪⎝⎭.由二面角EBD C --的大小为60||60||||⋅︒===m n m n 3m =.所以三棱锥A -1232⨯=若选①③作为条件,证明②成立.因为三棱锥A -122m ⨯=3=,即(0,0,3)A .又因为2CE EA =,所以1,0,23E ⎛⎫- ⎪⎝⎭.易知平面BCD 的一个法向量为(0,0,1)=n ,4,0,23BE ⎛⎫=- ⎪⎝⎭,(BD =-.设(,,)x y z =m 是平面BDE 的法向量,则0,0,BE BD ⎧⋅=⎪⎨⋅=⎪⎩ m m 即420,30.x z x ⎧-+=⎪⎨⎪-=⎩令1x =,则y =z =23⎛⎫= ⎪ ⎪⎝⎭.设二面角E BD C --的大小为θ,则|||cos |||||θ⋅===m n m n BD C --的大小为60︒.若选②③作为条件,证明①成立.又(1,0,0)C -,所以(1,0,3)AC =--.设(,,)E x y z .不妨设(01)AE AC λλ=≤≤,则(,,3)(1,0,3)x y z λ-=--,所以(,0,33)E λλ--+.易知平面BCD 的一个法向量为(0,0,1)=n ,(1,0,33)BE λλ=---+ ,(BD =-.设(,,)x y z =m 是平面BDE 的法向量,则0,0,BE BD ⎧⋅=⎪⎨⋅=⎪⎩ m m 即(1)(33)0,0.x z x λλ--+-=⎧⎪⎨-+=⎪⎩当1λ=时,二面角E BD C --的大小为0︒,不合题意,所以01λ≤<.令1x =,则y=z =133λλ⎛⎫+= ⎪ ⎪-⎝⎭.设二面角E BD C --的大小为θ,则|||cos |||||θ⋅===m n m n 解得3λ=(舍去)或λ=所以2CE EA =.16.答案:(1)证明见解析;;解析:(1)设CP DE G = ,连接, 四边形为矩形,∴G 为中点,又F 为PA 中点,,又FG ⊂平面,AC ⊄平面,//AC ∴平面.(2)以D 为坐标原点,DA ,,DP正方向为x ,y ,z 轴,可建立如图所示空间直角坐标系,FG PDCE PC //AC FG ∴DEF DEF DEF DC则,()1,1,0B ,,(P ,()1,1,0BC ∴=-,,(1,AE =-设平面BCP 的法向量,20BC n x y CP n y ⎧⋅=-+=⎪∴⎨⋅=-+=⎪⎩,令,解得:1x=,(n = ;设直线与平面BCP 所成角为,sin cos ,AE n AE n AE n θ⋅∴===⋅则直线与平面(3)(1,0,PA =,设,[]0,1λ∈由平面的法向量(n =,点F 到平面的距离2PF n d nλ⋅===解得,13PA = 解析:(1)设AC BD F = ,连接EF ,ABD △为底面圆O 的内接正三角形,2AC ∴==,F 为BD 中点,又AF ==322CF ∴=-=312AO AF ==;()1,0,0A ()0,2,0C (0,E (0,CP =- (),,n x y z =1y =z =AE θAE (),0,PF PA λλ==BCP BCP 13λ=AE = 1=,222AE CE AC ∴+=,AE EC ∴⊥,AF AE =AEF ACE ∽△△,AFE AEC ∠∠∴=,EF AC ∴⊥,;PO ⊥ 平面ABD ,PO ⊂平面PAC ,∴平面PAC ⊥平面ABD ,平面PAC 平面ABD AC =,EF ⊂平面PAC ,EF ∴⊥平面ABD ,又BD ⊆面ABD ,EF BD ⊥,又BD AC ⊥,EF AC F = ,BD ⊥面AEC ,又AE ⊂面AEC ,所以BD AE⊥又PO ⊥平面ABD ,//EF PO ∴,PO ⊄ 平面BDE ,EF ⊂平面BDE ,//PO ∴平面BDE ;F 为BD 中点,AF BD ∴⊥,即OF BD ⊥,又EF ⊥平面ABD ,平面,,OF BD ⊂平面ABD ,EF OF ∴⊥,EF BD ⊥,EF BD F = ,,EF BD ⊂平面BDE ,OF ∴⊥平面BDE ,EF === BD ⊥,1122BDE S BD EF ∴=⋅==△又12OF AF ==//平面BDE ,11313342P BDE O BDE BDE V V S OF --∴==⋅=⨯⨯=△(2)OF CF ==F 为OC 中点,又//PO EF ,∴E 为PC 中点,2PO EF =,PO ∴=2=,以F 为坐标原点,FB ,FC ,FE正方向为x ,y ,z 轴,可建立如图所示空间直角坐标系,则30,,02A ⎛⎫-⎪⎝⎭,B ⎫⎪⎪⎭,E ⎛⎝,D ⎛⎫ ⎪ ⎪⎝⎭,10,,02O ⎛⎫- ⎪⎝⎭,10,2P ⎛-⎝,3,02AB ⎫∴=⎪⎪⎭ ,30,2AE ⎛=⎝ ,(OP =,1,02DO ⎫=-⎪⎪⎭ ,3,02DA ⎫=-⎪⎪⎭ ,设()()01OMOP λλ==≤≤,12DM DO OM ⎫∴=+=-⎪⎪⎭ ;设平面ABE 的法向量(),,n x y z =,则302ABn x y ⋅=+= 则302AE n y z ⋅=+=令1y =-,解得:x =z =n =-,设直线DM 与平面ABE 所成角为θ,sin DM n DM n θ⋅∴===⋅令32t λ=+,则[]2,5t ∈,λ∴=2222222(2)1314717431(32)33t t t t t t t λλ-++-+⎛⎫∴===-+ ⎪+⎝⎭,111,52t⎡⎤∈⎢⎥⎣⎦,∴=即λ=22min 3131449(32)4λλ+⎤+==⎥+⎦max (sin )1θ∴==,此时12DM =- ,0,1,MA DA DM ⎛∴=-=- ⎝,∴点M 到平面ABE的距离MA n d n ⋅=== 18.答案:(1)证明见解析;(2)解析:(1)如图,设AC 与BD 交于点O .因为四边形ABCD 是菱形,所以AC BD ⊥.因为AF ⊥平面ABCD ,BD ⊂平面ABCD ,所以AF BD ⊥.因为AF AC A = ,AF AC ⊂、平面ACF ,所以BD ⊥平面ACF.又因为BD ⊂平面BDE ,所以平面BDE ⊥平面ACF .(2)因为AF ⊥平面ABCD ,//DE AF ,所以DE ⊥平面ABCD ,因为AC ⊂平面ABCD ,所以DE AC ⊥.又因为AC BD ⊥,DE BD D = ,,DE BD ⊂平面BDE ,所以AC ⊥平面BDE .连接OE ,AEO ∠即为AE 与平面BDE 所成的角,所以sin AO AEO AE ∠==因为4AD =,3DE =,所以5AE =,所以2AO =,所以24AC AO ==,所以ACD △是等边三角形.因为//DE AF ,DE ⊂平面BDE ,AF ⊄平面BDE ,所以//AF 平面BDE,所以111443332F CDE A CDE E ACD ACD V V V S DE ---===⋅=⨯⨯⨯=△19.答案:(1)见解析;(2)见解析解析:(1)建立如图所示的空间直角坐标系,设AC BD N = ,连结NE .则N ⎫⎪⎪⎭,()0,0,1E ,)A,M ⎫⎪⎪⎭.∴NE ⎛⎫ ⎪ ⎪⎝=⎭,AM ⎛⎫ =⎪ ⎪⎝⎭ .∴//AM NE 且NE 与AM 不共线.∴//NE AM . NE ⊂平面BDE ,AM ⊄平面BDE ,∴//AM 平面BDE .(2)由(1)知AM ⎛⎫ =⎪⎪⎝⎭ ,)D,)F ,∴()DF = ,∴0DF AM ⋅= ,∴AM DF ⊥.同理.又,平面.AM BF ⊥DF BF F = ∴AM ⊥BDF。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三数学专题立体几何复习教案
一、教学目标
1、掌握以三视图为命题载体,熟悉一些典型的几何体模型,如长(正)方体、三棱柱、三棱锥等几何体的三视图,与学生共同研究空间几何体的结构特征(数量关系、位置关系).
2、外接球问题关键是找到球与多面体的联系元素,如球心与截面圆心的关系即“心心相映法”,线面垂直的多面体可补成直棱柱再找外接球球心即“补体法”,进而构建球半径R 、截面圆半径r 、球心到截面距离d 三者之间的勾股定理。

3、在三视图与直观图的互换过程中,培养学生养成构建长方体为“母体”的解题意识,通过寻找外接球球心问题,引导学生更好地理解球与多面体的关系,培养学生的分割与补形的解题意识,特别是将立体几何问题转化为平面几何问题的思想意识和方法,并提高空间想象能力、推理能力、计算能力和动手操作能力,体现化归与转化的基本思想.. 二、学情分析
立体几何是培养学生空间想象力的数学分支,根据学生实际学情,依据考纲依靠课本,在立体几何的复习过程中要想办法让学生建立起完整的知识网络,要突出这门学科的主干,让学生多一点思考,少一点计算。

高考立体几何试题一般是两小题一大题, 其中三视图与直观图、多面体与球相关的外接与内切问题是高考命题的热点,要注意重视空间想象,会识图会画图会想图,提高识图、理解图、应用图的能力,解题时应多画、多看、多想,这样才能提高空间想象能力和解决问题的能力,突出转化、化归的基本思想. 三、重点: 三视图与直观图的数量、位置的转化;多面体与球相关的外接与内切问题;
难点:化归思想,特别是将立体几何问题转化为平面几何问题的思想意识和方法; 四、教学方法: 问题引导式 五、教学过程
专题:立体几何
问题1:三视图
1.一个锥体的主视图和左视图如图所示,下面选项中,不可能是该锥体的俯视图的是( )
2.某几何体的三视图如图所示,则该几何体的体积是
3.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为( )
D. 3
问题2:球与多面体
4.(2016厦门3月质检15)已知四棱锥P ABCD
-的底面ABCD是边长为a的正方形,其外接球的表面积为28π,△PAB是等边三角形,平面PAB⊥平面ABCD,则a=▲.
延伸1:已知四棱锥P ABCD
-的底面ABCD是边长为a的正方形,其外接球的表面积为π
24,平面PAB⊥平面ABCD,△PAB是等腰直角三角形,PA⊥AB,则a=▲.
延伸2:已知四棱锥P ABCD
-的底面ABCD是边长为a的正方形,其外接球的表面积为π
24,平面PAB⊥平面ABCD,△PAB是等腰直角三角形,PA⊥PB,则a=▲.
延伸3:已知四棱锥P ABCD
-的底面ABCD是边长为a的正方形,其外接球的表面积为240π,△PAB 是等腰三角形,PA=PB=2a,平面PAB⊥平面ABCD,则a=▲.
延伸4:已知四棱锥P ABCD
-的底面ABCD是边长为a的正方形,其外接球的表面积为π
24,平面PAB⊥平面ABCD,△PAB中,PA = 2a,PB= a2,则a=▲.
延伸5::已知四棱锥P ABCD
-,底面ABCD是AB=a,BC=2a的矩形,其外接球的表面积为28π,△PAB 是等边三角形,平面PAB⊥平面ABCD,则a=▲.
延伸6:在三棱锥P ABC -
中,PA =2PC =
,AB =,3BC =,2
ABC π
∠=
,则三棱锥P ABC -外接球的表面积为()
问题3:立体几何与空间向量
1.平行垂直的证明主要利用线面关系的转化 线∥线线∥面面∥面
判定线⊥线线⊥面面⊥面性质线∥线线⊥面面∥面
←→−←→−−→−−←→−←→
−←−−−←→−←→−
2.空间向量在几何中的应用
1.线线角:设直线a ,b 的方向向量为a ,b ,其夹角为θ,则
22
22
22
21
21
2
1
2
12121cos cos z
y x z y x z z y y x x a ++∙++++
=
=
<=θ
2.线面角:设直线
l 的方向向量为, 平面α的法向量为n ,直线l 与平面a 所成的角为θ,则有
22
22
22
21
21
21
2
12121cos sin z
y x z y x z z y y x x AB ++∙++++=
=
<=θ
3.面面角:平面α的法向量为1
n ,平面β的法向量为2n ,平面α与平面β的夹角为θ,则有
2
2
2222212121
2
121211cos cos z y x z y x z z y y x x
n ++∙++++=
=
<=θ
4.点面距离:
22
22
22
2
12121cos z
y x z z y y x x d ++++=
=
<∙=
5.如图,四棱锥
P-ABCD 中,底面ABCD 是边长为2的菱形,且︒=∠60DAB ,侧面
PAD 为等边三角形,且与底面ABCD 垂直,M 为PC 的中点. (1)求证:PA||平面BDM (2)求证:AD ⊥PB ;
(3)求直线AB 与平面BDM 所成角的正弦值. (4)求二面角A -BD -M 的余弦值
题目背景变换为以下几种,如何建立坐标系?
延伸1: 如图,四棱锥P-ABCD 中,底面ABCD 是梯形,AB||CD,AB=4,CD=2,︒=∠60DAB ,侧面PAD 为边长为2的等边三角形,且与底面ABCD 垂直.
延伸2: 如图,四棱锥P-ABCD 中,底面ABCD 是平行四边形,AB=4,AD=2,且︒=∠60DAB ,侧面PAD 为等边三角形,且与底面ABCD 垂直.
限时训练
1.某几何体三视图如图一所示,则该几何体的体积为( )
A .8-2π
B .8-π
C .8-π2
D .8-π
4
2.已知三棱锥P ABC -的四个顶点都在半径为2的球面上,且PA ⊥平面ABC ,若2AB =
,AC 2
BAC π
∠=,则棱PA 的长为( )
A .
3
2
B
C .3
D .9 3.一块石材表示的几何体的三视图如图所示,将该石材切削、打磨,加工成球,则
能得到的最大球的半径等于( ) A .1 B .2 C .3 D .4 4.若三棱锥S A B C 的底面是以AB 为斜边的等腰直角三角形,2AB SA SB SC ====,则该三棱锥的外接球的表面积为( ) A .
83π B
C .43π
D .163
π
A
图一
5.已知某几何体的三视图如图所示,则该几何体的体积为________.
6.如图,长方体ABCD —A 1B 1C 1D 1中,AB = 16,BC = 10,AA 1 = 8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E = D 1F = 4,过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形。

(1)在图中画出这个正方形(不必说明画法和理由); (2)求直线AF 与平面α所成的角的正弦值。

D
D 1
C 1
A 1 E
F
A B
C
B 1。

相关文档
最新文档