工程测试技术知识点
机械工程测试技术基础知识点总结
![机械工程测试技术基础知识点总结](https://img.taocdn.com/s3/m/d0e4c25d26d3240c844769eae009581b6bd9bd9b.png)
机械工程测试技术基础知识点总结一、引言机械工程测试技术是机械工程领域中非常重要的一部分,它主要涉及到对机械产品进行各种测试和评估的技术方法和手段。
本文将从以下几个方面对机械工程测试技术的基础知识点进行总结。
二、测试目的与方法1. 测试目的:机械工程测试的目的是为了评估机械产品的性能、可靠性和安全性,以确保其符合设计要求和使用需求。
2. 测试方法:机械工程测试可以采用静态测试、动态测试、功能测试、环境测试等多种方法。
其中静态测试主要用于评估机械产品的结构强度和刚度,动态测试用于评估机械产品的振动、噪声和动力性能,功能测试用于评估机械产品的功能是否正常,环境测试用于评估机械产品在不同环境条件下的性能。
三、测试设备与工具1. 测试设备:机械工程测试需要使用各种测试设备,如力传感器、位移传感器、压力传感器、温度传感器等。
这些设备用于测量机械产品在测试过程中产生的各种物理量。
2. 测试工具:机械工程测试还需要使用各种测试工具,如测量仪器、测试仪器、数据采集仪等。
这些工具用于对测试设备进行校准、数据采集和分析。
四、测试流程与方法1. 测试准备:机械工程测试前需要进行测试准备工作,包括制定测试计划、选择测试方法和设备、清洁测试环境等。
2. 测试执行:根据测试计划,进行具体的测试操作,包括设置测试参数、采集测试数据、记录测试结果等。
3. 测试分析:对测试数据进行分析和处理,评估机械产品的性能指标是否符合要求,找出可能存在的问题和改进方向。
4. 测试报告:根据测试结果,编制测试报告,包括测试目的、测试方法、测试数据、测试结论等内容,供相关人员参考和决策。
五、常见测试指标与评估方法1. 结构强度:通过静态测试和有限元分析等方法,评估机械产品的结构是否能承受设计载荷,并满足安全要求。
2. 动力性能:通过动态测试和数学模型仿真等方法,评估机械产品的加速度、速度、位移等动力性能指标是否符合设计要求。
3. 噪声与振动:通过振动测试和噪声测试等方法,评估机械产品在运行过程中产生的噪声和振动是否超过限制值,是否对人体健康造成影响。
测试技术基础知识点总结大全
![测试技术基础知识点总结大全](https://img.taocdn.com/s3/m/f1921756b6360b4c2e3f5727a5e9856a561226e0.png)
测试技术基础知识点总结大全1. 软件测试基础知识1.1 测试概述•什么是软件测试?•测试的目的和重要性•测试的原则和准则1.2 测试过程•测试计划和策略•测试用例设计与执行•缺陷管理与跟踪1.3 测试分类•黑盒测试和白盒测试•静态测试和动态测试•功能测试和非功能测试1.4 测试技术•边界值分析和等价类划分•决策表测试•递归测试•循环测试2. 软件开发生命周期2.1 瀑布模型•阶段划分及特点•优点和缺点2.2 增量模型•阶段划分及特点•优点和缺点2.3 迭代模型•阶段划分及特点•优点和缺点2.4 敏捷开发•Scrum•XP•敏捷开发原则3. 软件测试类型3.1 单元测试•概念和目标•优点和缺点•测试工具:JUnit3.2 集成测试•概念和目标•优点和缺点•测试工具:Jenkins3.3 系统测试•概念和目标•优点和缺点•测试工具:Selenium3.4 验收测试•概念和目标•优点和缺点•测试工具:Robot Framework 4. 软件测试设计方法4.1 等价类划分法•原理和应用场景•划分方法和注意事项4.2 边界值分析法•原理和应用场景•划分方法和注意事项4.3 图论法•基本概念和应用场景•图的表示方法和遍历算法4.4 正交实验设计•原理和应用场景•正交表的构建方法和使用方式5. 软件测试管理5.1 测试计划•编制目的和内容•关键要素和注意事项5.2 缺陷管理•缺陷的定义和分类•缺陷管理流程•缺陷跟踪工具5.3 测试评估和报告•测试评估指标•测试报告内容和格式•测试报告的编写和分发以上是测试技术的基础知识点总结大全,包括软件测试基础知识、软件开发生命周期、软件测试类型、软件测试设计方法和软件测试管理等内容。
希望对您的学习和工作有所帮助!。
测试技术复习资料
![测试技术复习资料](https://img.taocdn.com/s3/m/07c581ab8e9951e79a892796.png)
测试技术复习资料测试技术复习资料200题第1章绪论一、考核知识点与考核要求1. 测试的含义识记:测试的基本概念;测量的定义;试验的含义。
领会:直接比较法和间接比较法的基本概念;测量和测试的概念及区别。
2. 测试基本原理及过程识记:电测法的基本概念;电测法的优点。
领会:典型非电量电测法测量的工作过程;信号检测与信号处理的相互关系。
3. 测试技术的典型应用领会:测试技术在工程技术领域的典型应用。
4.测试技术的发展动态识记:物理性(物性型)传感器的基本概念;智能化传感器的组成。
领会:计算机技术对测试技术发展的作用。
二、本章重点、难点典型非电量电测法测量的工作过程;信号检测与信号处理的作用。
三、复习题(一)填空1.按传感器能量传递方式分类,属于能量转换型的传感器是(压电式传感器)。
2.压电式传感器属于(能量转换型传感器)。
3.利用光电效应的传感器属于(物性型)。
4.电参量式传感器又称为(能量控制型)传感器。
5.传感器开发有两方面的发展趋势:物理型传感器、(集成化和智能化)传感器的开发。
(二)名词解释(三)简答题1.测试技术的发展趋势是什么?答:测试技术的发展趋势是在不断提高灵敏度、精确度和可靠性的基础上,向小型化、非接触化、多功能化、智能化和网络化方向发展。
2.简述测试的过程和泛指的两个方面技术。
答:测试就是对信号的获取、加工、处理、显示记录及分析的过程。
测试泛指测量和试验两个方面的技术,是具有试验性质的测量,是测量和试验的综合。
测试是主动的、涉及过程动态的、系统记录与分析的操作,并通过对被研究对象的试验数据作为重要依据。
第2章测试系统的基本特性一、考核知识点与考核要求1. 测试系统基本概念识记:测试系统的概念;理想测试系统的特性:迭加性、比例特性、微分特性、积分特性和频率不变性。
领会:测试系统组成的基本概念;测试系统的输入、输出与测试系统的特性关系。
2. 测试系统的静态特性识记:测试系统静态特性的定义;测试系统的静态传递方程;测试系统静态特性的主要定量指标:精确度、灵敏度、非线性度、回程误差、重复性、分辨率、漂移、死区;测试系统绝对误差、相对误差和引用误差的定义。
机械工程测试技术基础知识点
![机械工程测试技术基础知识点](https://img.taocdn.com/s3/m/4d33207fd1f34693dbef3eb7.png)
第一章绪论1、测试的概念目的:获取被测对象的有用信息。
测试是测量和试验的综合。
测试技术是测量和试验技术的统称。
2、静态测量及动态测量静态测量:是指不随时间变化的物理量的测量。
动态测量:是指随时间变化的物理量的测量。
3、课程的主要研究对象研究机械工程中动态参数的测量4、测试系统的组成5、量纲及量值的传递6、测量误差系统误差、随机误差、粗大误差7、测量精度和不确定度8、测量结果的表达第二章信号分析及处理一、信号的分类及其描述1、分类2、描述时域描述:幅值随时间的变化频域描述:频率组成及幅值、相位大小二、求信号频谱的方法及频谱的特点1、周期信号数学工具:傅里叶级数方法:求信号傅里叶级数的系数频谱特点:离散性谐波性收敛性(见表1-2)周期的确定:各谐波周期的最小公倍数基频的确定:各谐波频率的最大公约数2、瞬变信号(不含准周期信号)数学工具:傅里叶变换方法:求信号傅里叶变换频谱特点:连续性、收敛性3、随机信号数学工具:傅里叶变换方法:求信号自相关函数的傅里叶变换频谱特点:连续性三、典型信号的频谱1、δ(t)函数的频谱及性质△(f)=1 频率无限,强度相等,称为“均匀谱”采样性质:积分特性:卷积特性:2、正、余弦信号的频谱(双边谱)欧拉公式把正、余弦实变量转变成复指数形式,即一对反向旋转失量的合成。
解决了周期信号的傅里叶变换问题,得到了周期信号的双边谱,使信号的频谱分析得到了统一。
3、截断后信号的频谱频谱连续、频带变宽(无限)四、信号的特征参数1、均值:静态分量(常值分量)正弦、余弦信号的均值?2、均方值:强度(平均功率)均方根值:有效值3、方差:波动分量4、概率密度函数:在幅值域描述信号幅值分布规律五、自相关函数的定义及其特点1、定义:2、特点3、自相关图六、互相关函数的定义及其特点1、定义2、特点3、互相关图七、相关分析的应用八、相关系数及相干函数相关系数、相关函数在时域描述两变量之间的相关关系;相干函数在频域描述两变量之间的相关关系。
测试技术考试知识点总结
![测试技术考试知识点总结](https://img.taocdn.com/s3/m/b09459b865ce0508763213f9.png)
1仪器测量的主要性能指标:精确度、恒定度、灵敏度、灵敏度阻滞、指示滞后时间。
2测量误差可分:系统误差、随机(偶然)误差、过失误差。
系统误差的分类:仪器误差、安装误差、环境误差、方法误差、操作误差、动态误差。
3随机误差的四个特性为:单峰性、对称性、有限性、抵偿性。
4热电偶性质的四条基本定律:均质材料定律、中间导体定律、中间温度定律、标准电极定律。
5造成温度计时滞的因素:感温元件的热惯性和指示仪表的机械惯性。
6流量计可分为:容积型流量计、速度型流量计、质量型流量计。
7扩大测功机量程的方法:采用组合测功机、采用变速器。
8现代常用的测速技术:除利用皮托管测量流速外,热线(热膜)测速技术、激光多普勒测速技术(LDV )、粒子图像测速技术。
温度、压力、流量、功率、转速等。
按照得到最后结果的过程不同,测量方法分三类:直接测量(直读法、差值法、替代法、零值法)间接测量、组合测量10任何测量仪器都应包括感受件,中间件和效用件。
11测量误差按照产生误差因素的出现规律以及它们对测量结果的影响程度来区分可以将测量误差分为系统误差,随机误差和过失误差。
12系统误差的综合包括:代数综合法、算数综合法和几何综合法。
消除系统误差的方法:消除产生系统误差的根源、用修正方法消除系统误差、 常用消除系统误差的具体方法:交换低消法、替代消除法、预检法。
16使用较多的温标:热力学温标、国际实用温标、摄氏温标和华氏温标。
17热力学温标T 和摄氏温标t 的转换关系T=t+273.1519流量计的类型:容积型流量计、速度型流量计和质量型流量计。
21可疑测量数据剔除的准则:莱依特准则、格拉布斯准则、t 检验准则、狄克逊准则、肖维涅准则。
取压设备、后面的直管段三部分组成。
孔板取压有:角接取压、法兰取压、径距取压。
23常用的压力传感器有:应变式、压电式、压阻式、电感式和电容式等型式。
24热电阻测温常采用“三线制”接法,其目的在于消除连接导线电阻造成的附加误差 。
测试技术 知识点归纳
![测试技术 知识点归纳](https://img.taocdn.com/s3/m/e30ce712227916888486d7e4.png)
测试技术一、填空。
(30×1)1、静态标定:在规定条件下,利用一定准确度等级的标准设备产生已知标准的静态量作为测试系统的输入量,用实验方法对测试系统进行多次重复测量,从而得到输出量的过程。
动态标定:以经过校准的动态标准信号作为传感器或测试系统的输入,从而测量输出-输入的关系曲线的过程。
2、测试系统四要素:被测对象、计量单位、测量方法、和测量误差。
3、传感器组成:敏感元件、转换元件、调理电路和辅助电源。
※原理:敏感元件直接感受被测物理量,并对被测量进行转换输出;转换元件将敏感元件的输出转换成便于传输和测量的电参量或电信号;调理电路则对转换元件输出的信号进行放大、滤波、运算、调制等,以便于实现远距离传输、显示、记录和控制;辅助电源为调理电路和转换元件提供稳定的工作电源。
※分类:按能量关系分为能量控制型和能量转换型;按工作机理分为结构型和物性型;按输出信号分为模拟型和数字型。
※①电阻式传感器原理:将被测量变化转换为电阻变化;②应变式传感器原理:电阻应变效应;③压阻式传感器原理:压阻效应;④电位器式传感器原理:由电阻元件和电刷两部分组成,可将直线位移或角位移转换为与其成一定函数关系的电阻或电压输出;⑤热电阻传感器原理:热阻效应。
电容式传感器原理:将被测量变化转换为电容量变化。
电感式传感器原理:基于电磁感应原理,将被测量变化转换为电感量变化。
※①压电式传感器原理:压电效应;②磁电式传感器原理:电磁感应;③热电偶传感器原理:热电效应。
4、热电偶零点温度补偿:热电势修正法、电桥补偿法、补偿导线法和0℃恒温法。
5、区别:能量控制型是直接将被测量转换为电信号;能量控制型:先将被测量转换为电参量,在外部辅助电源作用下才能输出电信号。
6、光栅传感器原理:指示光栅与标尺光栅叠放在一起,中间留有适当的微小间隙,并使两块光栅的刻线之间保持一很小的夹角口,两块光栅的刻线相交,当在诸多相交刻线的垂直方向有光源照射时,光线就从两块光栅刻线重和处的缝隙通过,于是就形成了明暗条纹,这些条文成为莫尔条纹。
测试技术知识点汇总
![测试技术知识点汇总](https://img.taocdn.com/s3/m/36f0d0fe64ce0508763231126edb6f1aff007182.png)
测试技术知识点汇总测试技术作为软件开发生命周期的重要环节之一,起着保障软件质量的关键作用。
在测试过程中,测试人员需要掌握一系列的技术知识点,以提高测试效率和准确性。
本文将汇总一些常见的测试技术知识点,包括测试方法、测试工具和测试策略等。
1. 测试方法1.1 黑盒测试黑盒测试是一种测试方法,它将被测试的软件视为一个黑箱,只关注输入和输出,而忽略内部实现。
黑盒测试注重测试功能完整性、易用性和稳定性等方面。
常见的黑盒测试方法包括等价类划分、边界值分析和决策表等。
1.2 白盒测试白盒测试是一种测试方法,它基于对被测试软件内部结构的了解,设计测试用例以覆盖代码的各个分支和路径。
白盒测试注重测试代码的覆盖率和逻辑正确性等方面。
常见的白盒测试方法包括语句覆盖、分支覆盖和路径覆盖等。
1.3 灰盒测试灰盒测试是介于黑盒测试和白盒测试之间的一种测试方法。
它既关注被测试软件的功能和接口,又关注其内部的结构和代码。
常见的灰盒测试方法包括代码审查、逆向工程和静态分析等。
2. 测试工具2.1 自动化测试工具自动化测试工具可以自动执行测试用例,提高测试效率和准确性。
常见的自动化测试工具有Selenium、Appium和JUnit等。
Selenium可以模拟用户的操作,进行Web应用的自动化测试;Appium可以进行移动应用的自动化测试;JUnit是Java语言常用的单元测试框架。
2.2 性能测试工具性能测试工具用于测试软件在不同负载下的性能表现。
常见的性能测试工具有LoadRunner、JMeter和Gatling等。
LoadRunner可以模拟大量用户并发访问系统,测试系统的负载能力;JMeter可以模拟网络请求并进行性能监控;Gatling是用Scala语言编写的现代化性能测试工具。
2.3 缺陷管理工具缺陷管理工具用于记录、跟踪和管理测试过程中发现的缺陷。
常见的缺陷管理工具有JIRA、Bugzilla和Redmine等。
机械工程测试技术基础知识点总结
![机械工程测试技术基础知识点总结](https://img.taocdn.com/s3/m/2ef2ce7e326c1eb91a37f111f18583d049640fec.png)
机械工程测试技术基础知识点总结一、测试的定义和作用1.1 测试的定义:测试是通过模拟实际工作条件和环境,对机械设备进行性能、功能、可靠性等方面的评估和验证的过程。
1.2 测试的作用:测试可以帮助发现机械设备的问题和缺陷,提高产品质量,降低故障率,保证设备的可靠性和安全性。
二、测试的基本原则2.1 客观性原则:测试结果应客观、真实、可靠,不能受个人主观因素的影响。
2.2 全面性原则:测试应涵盖机械设备的各个方面,包括性能、功能、可靠性等。
2.3 可重复性原则:测试应具备可重复性,即在相同条件下进行多次测试,结果应保持一致。
2.4 系统性原则:测试应按照一定的方法和步骤进行,以保证测试的系统性和有效性。
三、测试的分类3.1 功能测试:测试机械设备是否能够按照设计要求完成各项功能。
3.2 性能测试:测试机械设备在不同工作条件下的性能表现,包括速度、力量、转速等。
3.3 可靠性测试:测试机械设备在长时间工作或恶劣环境下的可靠性和稳定性。
3.4 安全性测试:测试机械设备在正常使用过程中是否存在安全隐患,以及对操作人员的安全保护措施是否有效。
四、测试的方法和技术4.1 实验法:通过搭建实验平台,对机械设备进行各项测试,并记录实验数据进行分析和评估。
4.2 检测法:利用各种检测仪器和设备对机械设备进行各项测试,如测力计、测速仪等。
4.3 数学统计法:通过对大量数据进行统计分析,评估机械设备的性能和可靠性。
4.4 模拟仿真法:利用计算机软件对机械设备进行虚拟仿真,评估其性能和功能。
4.5 试验法:在实际工作场景中对机械设备进行测试,观察和记录其表现和工作状态。
五、测试的关键要素5.1 测试计划:明确测试的目标、范围、方法和步骤,制定详细的测试计划。
5.2 测试环境:提供符合实际工作条件的测试环境,确保测试的真实性和可靠性。
5.3 测试数据:收集和记录测试过程中的数据,包括测试结果、故障信息等。
5.4 测试工具:选择适当的测试工具和设备,如测力计、测速仪等。
《机械工程测试技术基础》知识点总结
![《机械工程测试技术基础》知识点总结](https://img.taocdn.com/s3/m/f05a56056bd97f192279e974.png)
《机械工程测试技术基础》知识点总结1. 测试是测量与试验的概括,是人们借助于一定的装置,获取被测对象有相关信息的过程。
测试工作的目的是为了最大限度地不失真获取关于被测对象的有用信息。
分为:静态测试,被测量(参数)不随时间变化或随时间缓慢变化。
动态测试,被测量(参数)随时间(快速)变化。
2. 基本的测试系统由传感器、信号调理装置、显示记录装置三部分组成。
传感器:感受被测量的变化并将其转换成为某种易于处理的形式,通常为电量(电压、电流、电荷)或电参数(电阻、电感、电容)。
信号调理装置:对传感器的输出做进一步处理(转换、放大、调制与解调、滤波、非线性校正等),以便于显示、记录、分析与处理等。
显示记录装置对传感器获取并经过各种调理后的测试信号进行显示、记录、存储,某些显示记录装置还可对信号进行分析、处理、数据通讯等。
3. 测试技术的主要应用:1. 产品的质量检测2.作为闭环测控系统的核心3. 过程与设备的工况监测4. 工程实验分析。
4. 测试技术是信息技术的重要组成部分,它所研究的内容是信息的提取与处理的理论、方法和技术。
现代科学技术的三大支柱:能源技术材料技术信息技术。
信息技术的三个方面:计算机技术、传感技术、通信技术。
5. 测试技术的发展趋势:(1) 1. 传感技术的迅速发展智能化、可移动化、微型化、集成化、多样化。
(2)测试电路设计与制造技术的改进(3)计算机辅助测试技术应用的普及(4)极端条件下测试技术的研究。
6. 信息:既不是物质也不具有能量,存在于某种形式的载体上。
事物运动状态和运动方式的反映。
信号:通常是物理、可测的(如电信号、光信号等),通过对信号进行测试、分析,可从信号中提取出有用的信息。
信息的载体。
噪声:由测试装置本身内部产生的无用部分称为噪声,信号中除有用信息之外的部分。
(1)信息和干扰是相对的。
(2)同一信号可以反映不同的信息,同一信息可以通过不同的信号来承载。
7.测试工作的实质(目的任务):通过传感器获取与被测参量相对应的测试信号,利用信号调理装置以及计算机分析处理技术,最大限度地排除信号中的各种干扰、噪声,最终不失真地获得关于被测对象的有关信息。
机械工程测试技术基础知识点总结
![机械工程测试技术基础知识点总结](https://img.taocdn.com/s3/m/7159851e974bcf84b9d528ea81c758f5f61f294b.png)
第一章 信号及其描述(一)填空题1、 测试的基本任务是获取有用的信息,而信息总是蕴涵在某些物理量之中,并依靠它们来传输的。
这些物理量就是 信号 ,其中目前应用最广泛的是电信号.2、 信号的时域描述,以 时间t 为独立变量;而信号的频域描述,以 频率f 为独立变量。
3、 周期信号的频谱具有三个特点: 离散性 , 谐波性 , 收敛性 。
4、 非周期信号包括 准周期 信号和 瞬态非周期 信号。
5、 描述随机信号的时域特征参数有 均值 、 均方值 、 方差 。
6、 对信号的双边谱而言,实频谱(幅频谱)总是 偶 对称,虚频谱(相频谱)总是 奇对称。
(二)判断对错题(用√或×表示)1、 各态历经随机过程一定是平稳随机过程。
( Y )2、 信号的时域描述与频域描述包含相同的信息量。
( Y )3、 非周期信号的频谱一定是连续的。
( X )4、 非周期信号幅频谱与周期信号幅值谱的量纲一样。
( X )5、 随机信号的频域描述为功率谱。
( Y )(三)简答和计算题1、 求正弦信号t x t x ωsin )(0=的绝对均值μ|x|和均方根值x rms .2、 求正弦信号)sin()(0ϕω+=t x t x 的均值x μ,均方值2x ψ,和概率密度函数p(x)。
3、 求指数函数)0,0()(≥>=-t a Ae t x at 的频谱。
4、 求被截断的余弦函数⎩⎨⎧≥<=T t T t t t x ||0||cos )(0ω的傅立叶变换。
5、 求指数衰减振荡信号)0,0(sin )(0≥>=-t a t et x at ω的频谱. 第二章 测试装置的基本特性 (一)填空题1、 某一阶系统的频率响应函数为121)(+=ωωj j H ,输入信号2sin )(t t x =,则输出信号)(t y 的频率为=ω ,幅值=y ,相位=φ 。
2、 试求传递函数分别为5.05.35.1+s 和2224.141n n n s s ωωω++的两个环节串联后组成的系统的总灵敏度。
工程测试考试知识点最新(1)
![工程测试考试知识点最新(1)](https://img.taocdn.com/s3/m/da2533149e31433238689333.png)
第一章1.测试是测量和试验的综合。
2.机械工业中,测试的非电物理量主要有位移,摩擦力,长度,速度,加速度,力,温度,压力,流量,质量,液位,频率。
3.典型的测试系统主要由传感器、调理电路、信号分析处理、信号显示记录。
4.测试技术在机械工业中的应用主要包括产品开发与性能试验、质量控制与生产监督、机械故障诊断。
5.什么是测量?什么是测试?测量:把被测物体的属性度量出来。
测试:把被测对象中的某种信息人为的激发出来6.什么是电测法?电测法将被测物体非电量信号转换成电信号的方法。
传感器:直接用于被测量,并能按一定规律将被测量转换成电信号量输出。
信号调理:把来自传感器的信号转换成更适合于传输和处理的形式。
信号分析:接受来自条理的信号,并进行各种运算、滤波、分析。
信号显示:显示测量的结果,或将结果进行存储。
简述测试技术与信号处理的基本内容和在机械工业中的重要性。
在工程领域,它贯穿于产品的设计开发、制造加工、使用和售后服务全过程,产生巨大的经济和社会效益。
特别是当今处于“自动化时代”,就更离不开测试技术。
第二章1.煤矿提升机的承载钢丝绳突然断裂,其断裂时的应力信号属于瞬变信号。
2.周期信号的频谱特点包括离散性、谐波性和收敛性。
3.模拟信号进行数字化的过程依次包括采样、量化、编码。
4.平稳随机信号的统计特征是不变的。
5.周期与非周期信号的频谱有何特点?请详细说明。
分类:按其随时间变化的特点分为确定性信号和非确定性信号(随机信号),确定性信号又分为周期信号和非周期信号,周期信号分为正(余)弦信号、多谐复合信号、伪随机信号。
非周期信号分为准周期信号和瞬变信号。
非确定性信号(随机信号)分为平稳信号和非平稳随机信号,平稳信号分为各态历经信号和非各态历经信号。
描述方法:分为时域描述、频域描述、幅值域描述和时延域描述。
6.周期与非周期信号的频谱有何特点?请详细说明。
周期信号:谱线成离散性,间隔相等,等于基波频率整数倍。
非周期信号:频谱是连续的,含从0到正无穷的所有频率成分且频谱具有收敛性。
测试的基本知识点
![测试的基本知识点](https://img.taocdn.com/s3/m/92e3b6d050e79b89680203d8ce2f0066f533648f.png)
测试的基本知识点1.测试基础知识:
-测试定义
-测试目的
-测试过程
-测试策略和方法
-测试文档和测试计划
-测试用例设计
2.软件开发生命周期:
-瀑布模型
-敏捷开发
-迭代开发
-增量开发
3.软件测试的类型:
-黑盒测试
-白盒测试
-灰盒测试
-功能测试
-性能测试
-安全性测试
4.测试的阶段和活动:
-单元测试
-集成测试
-系统测试
-验收测试
-开发者测试
-用户测试
- Alpha测试和Beta测试5.测试工具和技术:
-自动化测试工具
-性能测试工具
-缺陷管理工具
-测试管理工具
-静态测试方法
-动态测试方法
-API测试
6.测试的度量和评估:
-测试覆盖率
-缺陷密度
-成功率
-运行时间和消耗资源
-迭代次数和缺陷修复时间7.软件质量保证:
-质量标准和规范
-质量评估和审核
-缺陷预防和缺陷管理
-流程改进和质量管理体系
8.测试团队组织和角色:
-测试经理
-测试工程师
-自动化测试工程师
-高级测试工程师
-测试分析师
9.问题追踪和缺陷管理:
-缺陷追踪和记录
-缺陷分类和优先级
-缺陷修复和验证
-缺陷报告和跟踪
10.测试的挑战和解决方案:-时间和资源限制
-复杂性和兼容性
-环境和配置管理
-高质量的测试设计和执行。
测试技术主要内容
![测试技术主要内容](https://img.taocdn.com/s3/m/85cc145e8762caaedc33d418.png)
测试技术主要内容本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March机械工程测试技术主要知识点绪论1)测试系统的组成第一章信号的描述2)信号的分类什么是确定信号,什么是周期信号什么是非周期信号什么是准周期信号什么是非确定性信号确定性信号:能用明确的数学关系式或图像表达的信号称为确定性信号非确定性信号:不能用数学关系式描述的信号周期信号(period signal):依一定的时间间隔周而复始、重复出现;无始无终。
一般周期信号:(如周期方波、周期三角波等)由多个乃至无穷多个频率成分(频率不同的谐波分量)叠加所组成,叠加后存在公共周期。
准周期信号(quasi-periodic signal):也由多个频率成分叠加而成,但不存在公共周期。
(实质上是非周期信号)3)离散信号和连续信号能量信号和功率信号什么是能量(有限)信号—总能量是有限的什么是功率(有限)信号信号在有限区间(t1, t2)上的平均功率是有限的4)时域信号和频域信号以时间为独立变量,描述信号随时间的变化特征,反映信号幅值与时间的函数关系以频率为变量建立信号幅值、相位与频率的函数关系5)一般周期信号可以利用傅里叶展开成频域信号6)傅里叶级数展开和傅里叶变换的定义和公式傅里叶变换的主要性质傅里叶变换:傅里叶变换:性质:对称性:X(t) x(-f )尺度改变性频移特性1)把时域信号变换为频域信号,也叫做信号的频谱分析。
2)求方波和三角波的频谱,做出频谱图,分别用三角函数展开式和傅里叶级数展开式傅里叶变换……3)非周期信号的频谱分析通过傅里叶变换4)周期信号和非周期信号的频谱的主要区别周期信号的频谱是离散的,非周期信号的频谱是连续的求单边指数衰减函数的傅里叶变换(频谱)5)随机信号的描述,可分成足什么条件在随机信号的实际测试工作中,为什么要证明随机过程是各态历经的随机信号必须采用概率和统计的方法进行描述工程中绝大多数随机过程假定符合各态历经过程,则可用测得的有限样本记录来代表总体过程,否则理论上要测量无穷个样本才能描述该过程6)脉冲函数的频谱什么是脉冲函数的筛选性质矩形窗函数平稳随机过程和非平稳随机过程,平稳随机过程又可分为各态历经和非各态历经两类,各态历经随机过程的统计特征参数满的频谱sinc函数的定义单边指数函数的频谱单位阶跃函数的频谱δ函数具有等强度、无限宽广的频谱,这种频谱常称为“均匀谱”。
机械工程测试技术基础知识点整合
![机械工程测试技术基础知识点整合](https://img.taocdn.com/s3/m/ff26db6576232f60ddccda38376baf1ffc4fe3d5.png)
机械工程测试技术基础知识点整合第一章:测试概述测试是一种获取被测对象有用信息的方法,是测量和试验技术的综合。
测试可以分为静态测量和动态测量两种类型。
本课程主要研究机械工程中动态参数的测量,测试系统的组成包括量纲及量值的传递,测量误差,测量精度和不确定度,以及测量结果的表达。
第二章:信号分析与处理信号可以根据其描述方式分为时域描述和频域描述。
时域描述是指幅值随时间的变化,而频域描述则是指频率组成及幅值、相位大小。
对于周期信号,可以使用XXX级数来求其频谱,其特点为离散性、谐波性和收敛性。
瞬变信号可以使用傅里叶变换求其频谱,其特点为连续性和收敛性。
随机信号也可以使用傅里叶变换求其频谱,其特点为连续性。
信号的特征参数包括均值、均方值、方差和概率密度函数等。
自相关函数和互相关函数可以用来描述两个信号之间的相关性。
相关系数和相干函数在时域和频域描述两个变量之间的相关关系。
自功率谱密度函数和互功率谱密度函数可以用来反映信号的频域结构。
数字信号处理是对信号进行数字化处理的一种方法。
时域采样定理规定了采样频率必须大于信号最高频率的两倍,即fs。
2fh。
而混叠是因为采样频率过低(即Ts过大)或信号频率过宽,导致信号在fs/2处折叠。
为了避免混叠,需要进行抗混叠滤波或提高采样频率。
量化误差是由于量化步长造成的,减小量化步长可以降低误差。
泄漏是由于加窗截断处理引起的,合理选择窗函数可以减小泄漏。
对于周期信号,可以进行整周期截断处理。
频域采样会出现栅栏效应,需要进行插值处理。
测量装置的基本特征包括静态特性和动态特性。
静态特性包括线性度、灵敏度、回程误差和分辨力等参数。
线性系统具有叠加性、比例性、微分性、积分性和频率保持性等特性。
频率响应函数描述了系统在简谐信号激励下,稳态输出对输入的幅值比、相位差随激励频率变化的特性。
求取频率响应函数的方法包括微分方程、拉普拉斯变换、傅里叶变换和实验法等。
系统不失真的条件包括时域不失真和频域不失真条件。
《机械工程测试技术基础》知识点总结
![《机械工程测试技术基础》知识点总结](https://img.taocdn.com/s3/m/41844f6082c4bb4cf7ec4afe04a1b0717fd5b32f.png)
《机械工程测试技术基础》知识点总结引言机械工程测试技术是机械工程领域中的重要组成部分,它涉及到对机械系统的性能、参数和状态进行测量、分析和评估。
随着科技的发展,测试技术在提高产品质量、优化设计、降低成本和保障安全等方面发挥着越来越重要的作用。
第一部分:测试技术概述1.1 测试技术的定义测试技术是指利用各种仪器和方法对机械系统进行定量或定性的测量,以获取系统的性能参数和状态信息。
1.2 测试技术的重要性质量控制:确保产品符合设计标准和用户需求。
故障诊断:及时发现并解决机械故障,延长设备使用寿命。
性能优化:通过测试数据对机械系统进行优化设计。
第二部分:测试技术基础2.1 测量的基本概念测量单位:国际单位制(SI)和常用单位。
测量误差:系统误差、随机误差和测量不确定度。
2.2 传感器原理电阻式传感器:利用电阻变化来测量物理量。
电容式传感器:基于电容变化来测量。
电感式传感器:基于电感变化来测量。
光电传感器:利用光电效应来测量。
2.3 信号处理技术模拟信号处理:滤波、放大、模数转换。
数字信号处理:FFT、数字滤波、谱分析。
2.4 数据采集系统硬件组成:数据采集卡、接口、传感器。
软件功能:数据采集、处理、存储和分析。
第三部分:机械性能测试3.1 力和扭矩测试力测试:静力测试和动力测试。
扭矩测试:静态扭矩和动态扭矩的测量。
3.2 振动测试振动类型:随机振动、谐波振动、冲击振动。
振动测量:加速度计、速度计和位移计的使用。
3.3 温度测试接触式温度测量:热电偶、热电阻。
非接触式温度测量:红外测温技术。
3.4 流体特性测试压力测试:压力传感器的应用。
流量测试:流量计的选择和使用。
3.5 材料特性测试硬度测试:布氏硬度、洛氏硬度和维氏硬度。
疲劳测试:循环加载下的应力-应变关系。
第四部分:测试技术的应用4.1 机械系统的故障诊断故障信号的采集:振动、声音、温度等。
故障特征的提取:频域分析、时域分析。
故障诊断方法:专家系统、神经网络、模糊逻辑。
机械工程测试技术基础知识点
![机械工程测试技术基础知识点](https://img.taocdn.com/s3/m/cfe897ed581b6bd97f19eae2.png)
机械工程测试技术基础知识点第一章绪论1. 测试技术是测量和试验技术的统称。
2. 工程测量可分为静态测量和动态测量。
3. 测量过程的四要素分别是被测对象、计量单位、测量方法和测量误差。
4. 基准是用来保存、复现计量单位的计量器具5. 基准通常分为国家基准、副基准和工作基准三种等级。
6. 测量方法包括直接测量、间接测量、组合测量。
7. 测量结果与被测量真值之差称为测量误差。
8. 误差的分类:系统误差、随机误差、粗大误差。
第二章信号及其描述1. 由多个乃至无穷多个不同频率的简单周期信号叠加而成,叠加后存在公共周期的信号称为一般周期信号。
2. 周期信号的频谱是离散的,而非周期信号的频谱是连续的。
1.信号的时域描述,以时间为独立变量。
4.两个信号在时域中的卷积对应于频域中这两个信号的傅里叶变换的乘积。
5信息传输的载体是信号。
6一个信息,有多个与其对应的信号;一个信号,包含许多信息。
7从信号描述上:确定性信号与非确定性信号。
8从信号幅值和能量:能量信号与功率信号。
9从分析域:时域信号与频域信号。
10从连续性:连续时间信号与离散时间信号。
11从可实现性:物理可实现信号与物理不可实现信号。
12可以用明确数学关系式描述的信号称为确定性信号。
13不能用数学关系式描述的信号称为随机信号。
14周期信号。
按一定时间间隔周而复始出现的信号15一般周期信号:由多个乃至无穷多个不同频率的简单周期信号叠加而成,叠加后存在公共周期的信号。
16准周期信号:由多个简单周期信号合成,但其组成分量间无法找到公共周期。
或多个周期信号中至少有一对频率比不是有理数。
17瞬态信号(瞬变非周期信号):在一定时间区间内存在,或随着时间的增加而幅值衰减至零的信号。
18非确定性信号:不能用数学式描述,其幅值、相位变化不可预知,所描述物理现象是一种随机过程。
19一般持续时间无限的信号都属于功率信号。
20一般持续时间有限的瞬态信号是能量信号(可以理解成能量衰减的过程)。
工程测试技术知识点总结
![工程测试技术知识点总结](https://img.taocdn.com/s3/m/ead172ca84254b35eefd34ff.png)
y(t) [ A* x(t )] cos(2 ft )
调频 (FM) : y(t ) A cos(2 [ f0 x(t)] * t ) 调相 (PM) : y(t ) Acos(2 ft [ 0 x(t )])
信号解调的种类:幅度解调、频率解调、相位解调。
4 幅度调制与解调的原理 ? 答:幅度调制与解调的原理:幅值调制是将一个高频载波信号与被测信号相乘,使高频信号的幅值随被测 信号的变化而变化;幅值解调是只运用各种解调方法(同步解调、整流检波解调或相敏检波解调)从调幅 波中将原测量信号恢复出来。
-数( A/D )转换过程;反之,则称为数 -模( D/A )
转换过程。 A/D 转换过程包括了采样、量化,编码。采样也称为抽样,是利用采样脉冲序列
p(t) ,从连续时
间信号 x(t)中抽取一系列离散样值,使之成为采样信号的过程。量化也称为幅值量化,是把采样信号经过
舍入的方法变为只有有限个有效数字的数的过程。 编码是将离散幅值经过量化以后变为二进制数字的过程。
信号可分为连续信号和离散信号,而连续信号可分为模拟信号和一般连续信号,离散信号可分为一般离散
信号和数字信号。
2、 A/D 转换、 D/A 转换、 A/D 转转换的步骤有哪些? 答:把模拟信号转换为与其相对应的数字信号的过程,称为 步骤有采样、量化、编码。
A/D 转换,反之则称为 D/A 转换; A/D 转换的
,实际测量信号仍可能会包含高于
奈奎斯特频率的高频信号分量。 这些频率分量可能会混迭到正确的低频信号中, 从而导致错误的测量结果。
为了确保输入信号的频率成分确实是受限的,在采样和
AD 变换之前增加了一个低通滤波器。这个滤波器
就是抗混迭滤波器,因为通过抑制高频信号(高于奈奎斯特频率的信号成分)可以防止采样引入混迭信号。
工程测试技术知识点总结
![工程测试技术知识点总结](https://img.taocdn.com/s3/m/8e1920e4700abb68a982fb31.png)
填空 工程测试分为静态测试和动态测试。
测量四要素:被测对象,计量单位,测量方法,测量误差。
测量方法:直接,间接,组合 非周期信号的频谱是连续的,但准周期信号的是离散的。
周期信号是个简谐成分的频率比是有理数,若不是有理数则是准周期信号。
周期信号的强度以峰值,绝对均值,有效值和平均功率来表述。
⎰⎰⎰===00002002000)(1)(1)(1T av T rms T x dt t x T P dt t x T x dt t x T 平均功率有效值绝对均值μ 测量装置的静态特性:五个特性动态特性:三个函数 传递函数的分母取决于系统的结构。
分母中s 的最高幂次代表系统微分方程的阶数。
影响二阶系统动态特性的参数有:固有频率和阻尼比。
一阶的是时间常数。
输出等于输入和系统脉冲响应函数的的卷积。
波形不失真的条件。
测量装置动态特性的测量方法。
两种物性型传感器和结构型传感器各依靠什么来实现信号变换机械式传感器的优点:电阻应变片式传感器可以用于测量哪些参数半导体应变片的工作原理是:热电式传感器分为热电偶和热电阻。
调幅信号的解调方法有:三个滤波器的特征参数:六个电桥的分类 直流交流单自由度系统 质量块m 在外力f (t )的作用下的运动方程测振传感器的分类选择傅里叶变换的主要性质:奇偶虚实性,对称性,传递函数和频率响应函数的并联和串联:传串乘并加,频串幅乘相加。
电阻式传感器原理:变阻式,电阻与电阻丝长度,电阻率成正比,与电阻丝横截面积成反比。
电容式传感器原理:电容与极板面积成正比,与极板间距离成反比。
电感式传感器原理:自感L 与空气隙成反比,与气隙导磁截面积成正比。
当面积固定时,L 与气隙非线性。
直流电桥的平衡,单臂,半桥,全桥。
和差效应。
三种电桥输出电压与灵敏度交流电桥平衡时需要满足的条件,电容 电感电桥LC 滤波器的构成方法 识图 L T π型基本放大电路三种识图轴向拉伸或压缩载荷下应变测试的应变片的布置和接桥方法 表格名词解释:1、测量,试验,测试概念与区别2、信号,模拟信号,数字信号3、准周期信号与瞬变非周期信号4、信号的时域描述和频域描述5、负载效应6、频率响应函数7、传感器和敏感元件8、压阻效应 压电效应与逆压电效应(线性的)9、霍尔效应,磁阻效应,热敏效应10、调制与解调11、电桥是什么12、采样和截断计算一阶系统的频响函数简答1、信号的分类;⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧非平稳随机信号非各态历经信号各态历经信号平稳随机信号非确定性信号一般非周期信号准周期信号非周期信号一般周期信号谐波信号周期信号确定性信号2、周期信号的频谱具有三个特点:3、各态历经随机函数的主要特征参数:四条4、传递函数:四个特点,第一和第四是重点。
测试与计量技术基础知识点汇总
![测试与计量技术基础知识点汇总](https://img.taocdn.com/s3/m/2be505153a3567ec102de2bd960590c69ec3d8a8.png)
测试与计量技术基础知识点汇总1. 测试与计量技术简介测试与计量技术是指通过观测、测量和分析来评估、验证和控制系统、设备、产品或过程的性能、质量和可靠性的技术领域。
在现代工程和科学领域中,测试与计量技术的应用非常广泛,涉及到各个行业和领域。
2. 基本概念2.1 测试与计量技术的定义测试与计量技术是一种用来测量、评估和控制系统、设备、产品或过程性能、质量和可靠性的技术。
它通过观测和测量来收集数据,并通过分析数据来得出结论和做出决策。
2.2 测试与计量技术的分类根据不同的应用领域和目的,测试与计量技术可以分为以下几类:•物理量测量技术:用于测量物理量,如长度、重量、温度等。
•电气量测量技术:用于测量电气信号,如电压、电流、电阻等。
•化学量测量技术:用于测量化学物质的性质和含量。
•工程量测量技术:用于测量工程结构的性能和参数。
•自动化测量技术:用于自动化系统和设备的测量和控制。
•数据分析与处理技术:用于处理和分析测试数据,提取有用的信息。
3. 测试与计量技术的应用3.1 工业制造在工业制造过程中,测试与计量技术被广泛应用于产品质量控制、工艺参数监测和设备可靠性评估等方面。
通过对关键参数、材料和工艺的测量和分析,可以提高产品的一致性和可靠性,降低缺陷率和生产成本。
3.2 科学研究在科学研究中,测试与计量技术是获取实验数据和验证理论模型的重要手段。
科学家们可以通过测量和观测来验证和推翻假设,并通过数据分析来揭示事物的规律和机理。
3.3 医疗诊断测试与计量技术在医疗诊断中发挥着关键作用。
医生们通过测量和分析患者的生理参数,如体温、血压、心率等,来判断患者的健康状况,并作出诊断和治疗方案。
3.4 环境保护测试与计量技术在环境保护中起着重要作用。
通过测量和监测环境中各种污染物的含量和分布,可以评估环境的质量和健康状况,并采取相应的措施进行治理和保护。
4. 测试与计量技术的挑战与发展方向4.1 复杂性与精确性的平衡现代系统和设备越来越复杂,对测试与计量技术的要求也越来越高。
机械工程测试技术基础重要知识点补丁包(邱艳版)
![机械工程测试技术基础重要知识点补丁包(邱艳版)](https://img.taocdn.com/s3/m/feb1235377232f60ddcca1de.png)
一.填空1.按测量值获得的方法进行分类:把测量分为:1)直接测量2)间接测量3)组合测量。
2.信号的分类:1)确定性信号2)随机信号;确定性信号又分为周期信号和非周期信号;非周期信号包括准周期信号和瞬变非周期信号。
3.当时间尺度压缩(K>1)时,频谱的频带加宽,幅值降低;当时间尺度扩展(K<1)时,其频谱变窄,幅值增高。
4.一个信号的时域描述和频域描述依靠傅里叶变换来确立彼此一一对应的关系。
5.测量装置的单位脉冲响应等于其传递函数的拉普拉斯逆变换。
6.静态特性有:(1)线性度(2)灵敏度(3)回程误差(4)分辨率(5)零点漂移和灵敏度漂移。
7.影响二阶系统动态特性的参数是:(1)固有频率(2)阻尼比。
8.若要求装置的输出波形不失真,则其幅频和相频特性应分别满足:(1)A(ω)=A0=常数;(2))(ωϕ=—tω;A(ω)不等于常数时所引起的失真称为幅值失真,)(ωϕ与ω之间的非线性关系所引起的失真称为相位失真。
9.确定测量装置动态特性的测量方法有:(1)频率响应法(2)阶跃响应法。
10.电阻式传感器是一种把被测量转换为电阻变化的传感器。
按其工作原理可分为:变阻器式和电阻应变式两类。
变阻器式传感器的后接电路,一般采用电阻分压电路。
11.电阻应变式传感器可分为:金属电阻应变片式和半导体应变片式两类;金属电阻应变片的工作原理基于应变片发生机械变形时,其电阻值发生变化。
半导体应变片的工作原理是基于半导体材料的压阻效应。
12.电容器可分为:(1)极距变化型(2)面积变化型(3)介质变化型三类。
13.在测试中常用的电桥连接形式有:(1)单臂电桥连接(2)半桥连接(3)全桥连接。
14.根据滤波器的选频方式一般可将其分为:(1)低通滤波器(2)高通滤波器(3)带通滤波器(4)陷波或带阻滤波器四种类型。
15.位移测量是线位移和角位移测量的统称。
16.应变片式位移传感器的测量原理:利用一弹性元件把位移量转换成应变量,而后用应变片,应变仪等测量记录。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.测试技术:测量技术与实验技术的综合2. 测试技术的发展:古老测量方法——机械测量方法——非电量的电测方法——计算机测试技(CAT )3.测试技术的发展趋势:1)、 量程范围更加宽广2)、传感器向新型、微型、智能型发展3)、测量仪器向高精度和多功能发展4)、参数测量与数据处理项自动化发展通过直接测量与被测参数有已知函数关系的其他量而得到该被测参数量值的测量。
5. 要使测量具有普遍科学意义的条件:1)、作比较的标准必须是精确已知的,得到公认的;2)、进行比较的测量系统必须工作稳定,经得起检验。
6. 非电量测量的基本思想:首先要将输入物理量转换成电量,然后再进行必要的调节、转换、运算,最后以适当的形式输出。
7.测量系统的组成:8.传感器的组成:敏感元件 : 将被测非电量预先变换为另一种易于变换成电量的非电量,传感元件 : 凡是能将感受到的非电量(如力、压力、温度梯度等)直接变换为电量的器件称为传感元件 9.10. 展成指数形式的傅里叶级数:1)幅度谱以成偶对称,相位谱成奇对称2)1)谱线的密度只与周期T),谐波系数An=0的点,由 τ值决定)当τ一定时,周期T 4)当T 一定时,脉宽 τ 11. 周期信号的傅里叶谱有三个特点:a 、离散性:频谱由一条条不连续的谱线组成,是离散的,相邻谱线的间距是 ;b 、谐波性:各频率分量符合谐波关系,是基波的整数倍;c 、收敛性:谐波分量的幅值有随其阶数的增高而逐渐减小的总趋势 12. 著名的海森博格“测不准原理”。
13.dt e t x j x t j ωω-∞∞-⋅=⎰)()(傅里叶变换14. 周期信号与时限信号的异同点:1、相同点: 周期信号频谱的包络线与时限信号频谱的包络线相似2、不同点:a. 时限信号的频谱是连续谱,周期信号的频谱是离散谱b. 周期信号用功率谱表示;时限信号用能量谱表示。
C.周期信号幅值谱纵坐标表示相应的谐波分量的幅值;时限信号幅值谱纵坐标表示幅值谱密度;d.周期信号采用傅立叶级数(FS )分析; 时限信号采用傅立叶积分分析。
15.平稳随机过程:(自相关函数Rx,均值μx ) 非平稳随机过程:16. 对于各态历经的随机过程,可以用三方面进行描述。
①幅值域: 概率密度,联合概率密度。
②时间域:自相关,互相关函数等。
③频率域:自功率谱,互功率谱,相干函数等。
17.标定:用已知的标准校正仪器或测量系统的过程称为标定。
静态标定:就是将原始基准器,或比被标定系统准确度高的各级标准器或已知输入源作用于测量系统,得出测量系统的激励-响应关系的实验操作。
18. 静态标定的主要作用:①确定仪器或测量系统的输入-输出关系,赋予仪器或测量系统分度值;②确定仪器或测量系统的静态特性指标;③消除系统误差,改善仪器或测量系统的正确度19.静态特性曲线的参考直线的选用方案:①端点连线 ②端点平移线 ③最小二乘直线 ④过零最小二乘直线20.静态特性指标:灵敏度S :是仪器在静态条件下响应量的变化△y 和与之相对应的输入量变化△x 的比值。
量程:测量上限值与下限值的代数差称为量程。
测量范围:测量系统能测量的最小输入量(下限)至最大输入量(上限)之间的范围称为测量范围。
非线性:通常也称为线性度,是指测量系统的实际输入输出特性曲线对于参考线性输入输出特性的接近或偏离程度,用实际输入-输出特性曲线对参考线性输入-输出特性曲线的最大偏差量与满量程的百分比来表示。
即%100ΔFS max L ⨯=Y L δ 迟滞:亦称滞后量、滞后或回程误差,表征测量系统在全量程范围内,输入量由小到大(正行程)或由大到小(反行程)两者静态特性不一致的程度。
显然,Hδ 越小,迟滞性能越好%100max⨯∆=FSH y H δ 重复性:表示测量系统在同一工作条件下,按同一方向作全量程多次(三次以上)测量时,对于同一个激励量其测量结果的不一致程度。
分辨率:是指测量系统能测量到输入量最小变化的能力,即能引起响应量发生变化的最小激励变化量,用△x 表示。
漂移:外界干扰下,输出量发生与输入量无关的变化。
21. 线性时不变系统有两个十分重要的性质,即叠加性和频率不变性。
根据叠加性质,当一个系统有n 个激励同时作用时,那么它的响应就等于这n 个激励单独作用的响应之和。
频率不变性表明,当线性系统的输入为某一频率时,则系统的稳态响应也为同一频率的信号。
22. 减小动态误差的方法:1) 一阶系统:一般的讲,时间常数 τ越小越好 2)二阶系统:ξ、n ω两参数要正确、合理的选择,一般地, n ω要尽可能大,ξ选择在0.6~0.8之间23. 无失真测试条件:理想的测量系统的幅频特性应当是常数,相频特性应当是线性关系,否则就要产生失真。
幅值失真:)(ωA 不等于常数所引起的失真。
相位失真 :)(ωφ 与ω 不是线性关系所引起的失真。
24. 自动测试系统的组成由五部分组成:①控制器;②程控仪器、设备;③总线与接口;连接控制器与各程控仪器④测试软件;⑤被测对象25. IEEE-488.1是一种数字式8位并行通信接口,其数据传输速率可达1Mbps 。
采用负逻辑,任一根线上都以零逻辑代表“真”条件,这样做的重要原因之一是负逻辑方式能提高对噪声的抗御能力。
26. 1)控者: 控者指明谁是讲者,谁是听者(如PC )2) 讲者:产生指令及数据器件,3)听者:接收指令及数据器件.26. 产生误差的主要因素:①工具误差:它包括试验装置、测量仪器所带来的误差;②方法误差:方法引起的,这种误差亦称为原理误差或理论误差;③环境误差:在测量过程中,因环境条件的变化而产生的误差。
④人员误差:测量者生理特性和操作熟练程度的优劣引起的误差称为人员误差。
27.误差的分类:随机误差;系统误差;粗大误差T πω2=∆τ1=f B 1=⋅τfB x i R t x i t μτ与无关,与无关仅与有关的随机过程x i R t x i t μτ与有关,与及均有关的随机过程22,,x x x u σϕ表征测量结果质量的指标:常用正确度(正确度表示测量结果中系统误差大小的程度)、精密度(精密度表示测量结果中随机误差大小的程度)、准确度(准确度表示测量结果中系统误差与随机误差综合大小的程度,即测量结果与被测真值偏离的程度)、不确定度(不确定度表示合理赋予被测量之值的分散性,与测量结果相联系的参数。
不确定度越小,测量结果可信度越高)等来描述测量的可信度。
29.有关不确定度的术语: 1)、标准不确定度:以标准差表示的测量不确定度。
2)、 A 类不确定度评定:用对观测列进行统计分析的方法来评定标准不确定度。
3)、B 类不确定度评定:用不同于观测列进行统计分析的方法来评定标准不确定度4)、合成标准不确定度:当测量结果是由若干个其它量的值求得时,按其它各量的方和协方差算得标准不确定度。
5)、扩展不确定度:确定测量结果区间的量,合理赋予被测量之值分布的大部分可望含于此区间,有时也称为展伸不确定度或范围不确定度。
30. 标准不确定度的A 类评定:( X 在重复性条件或复现性条件下进行n 次独立重复观测)算术平均值∑==n i i x n x 11单次测量的实验标准差1)()(2--=∑n x x x s ii 平均值的实验标准值nx s x s i )()=(31. B 类不确定度的评定方法: (当被测量X 的估计值不是由重复观测得到,其标准不确定度可用的可能变化的有关信息或资料来评定) ka x u =)((a ——置信区间半宽; k ——对应置信水准的包含因子)或U/K (扩展不确定度U 和包含因子k )或p p i k U x u =)((扩展不确定度和置信水准p 的正态分布)或)()(eff νp p i t U x u =(扩展不确定度 p U 以及置信水准p 与有效自由度f e f ν的t 分布) 32. 根据滤波器的选频作用,一般分为低通、高通、带通、带阻滤波器。
33. 实际滤波器:通带中幅频特性也并非常数,所以其主要参数有纹波幅度、截止频率(幅频特性值等于2/0A 所对应的频率称为滤波器的截止频率)、带宽(上、下两截止频率之间的频率范围称为滤波器带宽)、品质因素(把中心频率 0f 和带宽B 之比称为滤波器的品质因素Q )以及倍频程选择性等。
34.低通(RC =τ, 11)()()(+==s s e s e s H x yτ ,2)π2(11|)(|)(τf f H f A +==)高通(1)(+=s s s H ττ,2)π2(1π2)(ττf f f A +=)35. 调幅:是将一个高频正弦信号(载波)与测试信号相乘,使载波信号幅值随测试信号的变化而变化。
由傅里叶变换的性质知,时域中两信号相乘,则对应在频域这两个信号进行卷积,)()()()(f Z f X t z t x *⇔⋅)(21)(21π2cos Z Z Z f f f f t f ++-⇔δδ一个函数与单位脉冲函数卷积的结果,就是将其图形由坐标原点平移至该脉冲函数处36. 上述调制方法是将调制信号x(t)直接与载波信号z(t)相乘,这种调幅波具有极性变化,即在信号过零线时,其幅值发生由正到负或由负到正的突然变化,此时调幅波的相位(相对于载波)也相应地发生的相位变化。
这种调制方法称为抑制调幅。
抑制调幅需采用同步解调,才能反映出原信号的幅值和极性。
若把调制信号x(t)进行偏置,叠加一个直流分量A ,使偏置后的信号都具有正电压, 该调制方法为非抑制调幅或偏置调幅。
其调幅波的包络线具有原符号形状如下图所示,对于非抑制调幅波,一般进行整流、滤波后,就可恢复原信号。
37. 调频:是利用信号的幅值调制载波的频率,或者说,调频波是一种随信号的电压幅值而变化的疏密不同的等幅波38.采样:由连续的模拟信号变成离散模拟信号,然后再通过模/数转换为数字信号。
采样定理:保为确采样后的离散信号能恢复原来的连续信号,要遵守采样定理,否则将出现信号的严重畸变。
设对信号采样周期为T s ,采样频率为f =1/T s 。
采样频率必须大于或等于信号最高频率的两倍,此即采样定理,也称奈奎斯特定理。
39. 电阻应变片的工作原理:基于金属的应变效应金属的电阻应变效应:金属丝的电阻随着它所受的机械变形(拉伸或压缩)的大小而发生相应的变化的现象。
40. x S K RRε=∆电桥输出公式(直流电桥、交流电桥均适合) sr 41sc 4231U R R R R R R R R U ⋅⎪⎭⎫ ⎝⎛∆-∆-∆+∆⋅=:28. τπ21τπ21212141. 半导体应变片 工作原理:压阻效应 。
压阻效应:半导体材料的电阻率随作用应力而变化。
●优点:尺寸、横向效应、机械滞后都很小,灵敏系数大,输出大,可不需放大器连接,使得测量系统简化 ●缺点:电阻值和灵敏系数的温度稳定性差;测量较大应变时非线性严重;灵敏系数随受拉或压而变,且分散度大 。