现代数值计算方法实验三

合集下载

数值计算实验三(3.2)

数值计算实验三(3.2)

实验三(3.2教材P44)一.实验目的绘制飞机的降落曲线一架飞机飞临北京国际机场上空时,其水平速度为540km/h ,飞行的高度为1000m 。

飞机从距机场指挥塔的横向距离12000m 开始降落。

根据经验,一架水平飞行的飞机其降落曲线是一条三次曲线。

建立直角坐标系,设飞机的着落点为原点O ,降落的飞机为动点平(x,y),则x 表示飞机距指挥塔的距离,y 表示飞机的飞行高度,降落区曲线为y(x)=a 0+a 1x+a 2x^2+a 3x^3,该函数满足条件:y(0)=0; y(12000)=1000;y ’(0)=0;y ’(12000)=0(1)试利用y(x)满足的条件确定三次多项式中的四个系数;(2)用所求出的三次多项式函数绘制出飞机降落曲线。

二.实验原理由于332210)(x a x a x a a x y +++=,所以2321)('x a x a a x y ++=,根据初始条件,可列出一个方程组UX=b ; X=[a 0 a 1 a 2 a 3]T ; b = [0 1000 0T 0],根据公式X=U -1b 即可求出X 。

求出X 之后便可求出y(x)的表达式,然后画出它在区间[0,12000]上的图像。

三.实验结果四.实验分析在求解系数a0 a1 a2 a3时,由于计算时会出现舍入误差,所以求得的系数与准确值之间存在一定的误差,但由于误差很小所以对总体的影响也不大。

五.程序步骤U=[1 0 0 0;1 12000 12000^2 12000^3;0 1 0 0;0 1 24000 3*12000^2];b=[0 1000 0 0]';X=inv(U)*b;format longX; %%以上的程序是为了求出多项式中的四个系数x=0:12000;y=X(1)+X(2)*x+X(3)*x.^2+X(4)*x.^3; %%将所求出的系数代入多项式plot(x,y,'.m');xlabel('自变量x');ylabel('因变量y');title('飞机的降落曲线') %%确定xy轴以及标题grid on。

数值代数实验报告

数值代数实验报告

数值代数实验报告数值代数实验报告引言:数值代数是一门研究数值计算方法和算法的学科,它在科学计算和工程应用中起着重要的作用。

本实验报告旨在通过实际的数值计算问题,探讨数值代数的应用和效果。

实验一:线性方程组求解线性方程组求解是数值代数中的一个重要问题。

在实验中,我们使用了高斯消元法和LU分解法两种求解线性方程组的方法,并对比了它们的效果。

首先,我们考虑一个3×3的线性方程组:2x + 3y - z = 54x - 2y + 2z = 1x + y + z = 3通过高斯消元法,我们将该方程组转化为上三角形式,并得到解x=1, y=2, z=0。

而通过LU分解法,我们将该方程组分解为LU两个矩阵的乘积,并得到相同的解。

接下来,我们考虑一个更大的线性方程组,例如10×10的方程组。

通过比较高斯消元法和LU分解法的运行时间,我们可以发现LU分解法在处理大规模方程组时更加高效。

实验二:特征值与特征向量计算特征值与特征向量计算是数值代数中的另一个重要问题。

在实验中,我们使用了幂法和QR方法两种求解特征值与特征向量的方法,并对比了它们的效果。

首先,我们考虑一个3×3的矩阵:1 2 34 5 67 8 9通过幂法,我们可以得到该矩阵的最大特征值为15.372,对应的特征向量为[0.384, 0.707, 0.577]。

而通过QR方法,我们也可以得到相同的结果。

接下来,我们考虑一个更大的矩阵,例如10×10的矩阵。

通过比较幂法和QR 方法的运行时间,我们可以发现QR方法在处理大规模矩阵时更加高效。

实验三:奇异值分解奇异值分解是数值代数中的一种重要技术,它可以将一个矩阵分解为三个矩阵的乘积,从而实现数据降维和信息提取的目的。

在实验中,我们使用了奇异值分解方法,并通过实际的数据集进行了验证。

我们选取了一个包含1000个样本和20个特征的数据集,通过奇异值分解,我们将该数据集分解为三个矩阵U、S和V的乘积。

数值计算实验报告

数值计算实验报告

本科实验报告课程名称:计算机数值方法实验项目:方程求根、线性方程组的直接解法、线性方程组的迭代解法、代数插值实验地点:专业班级:学生姓名:指导教师:实验一方程求根}五、实验结果与分析二分法实验结果迭代法实验结果结果分析:本题目求根区间为[1,2],精度满足|x*-x n|<0.5×10-5,故二分法用公式|x*-x n|<(b-a)/ 2n,可求得二分次数并输出每次结果。

对迭代法首先要求建立迭代格式。

迭代格式经计算已输入程序之中,故直接给初值便可利用迭代法求出精度下的解。

六、讨论、心得每次的实验都是对已学过的理论知识的一种实战。

通过本次实验,我将二分法与迭代法的思路清晰化并且将其变成计算机设计语言编写出来,运用到了实际解决问题上感觉很好。

我自认为本次跟其他同学比较的优点在于我在二分法实现的时候首先利用换底公式将需要的二分次输输出,如此便很清晰明了的知道接下来每一步的意思。

迭代法给我的感觉便是高度的便捷简化,仅用几行代码便可以同样解决问题。

相比较二分法来说,我更喜欢迭代的思路。

实验二线性方程组的直接解法for(k=n-2;k>=0;k--){sum=0;for(j=k+1;j<n;j++)sum=sum+a[k][j]*x[j];x[k]=(b[k]-sum)/a[k][k];}for(i=0;i<n;i++)printf("x[%d]=%f ",i,x[i]); printf("\n"); //输出解向量x}五、实验结果与分析结果结果分析:如上图所示,输入线性方程组元数n=3,则会要求输入3*3的系数矩阵A与向量b构成的增广矩阵。

根据算法需要将系数矩阵A消元成上三角矩阵。

随后根据矩阵乘法公式变形做对应的回代。

六、讨论、心得本次实验在编写时候感觉还好,感觉将思路变成了程序设计语言,得以实现题目的要求。

但是在运行以及结果分析的时候,感觉到了本实验的一些不足之处:就是我的实验虽然可以实现不同的元数的线性方程组求解,但是缺少了分析初始条件——主元素不能为零。

数值计算方法实验报告

数值计算方法实验报告

数值计算方法实验报告一、实验介绍本次实验是关于数值计算方法的实验,旨在通过计算机模拟的方法,实现对于数值计算方法的掌握。

本次实验主要涉及到的内容包括数值微积分、线性方程组的求解、插值与拟合、常微分方程的数值解等。

二、实验内容1. 数值微积分数值微积分是通过计算机模拟的方法,实现对于微积分中的积分运算的近似求解。

本次实验中,我们将会使用梯形公式和辛普森公式对于一定区间上的函数进行积分求解,并比较不同公式的计算误差。

2. 线性方程组的求解线性方程组求解是数值计算领域中的重要内容。

本次实验中,我们将会使用高斯消元法、LU分解法等方法对于给定的线性方程组进行求解,并通过比较不同方法的计算效率和精度,进一步了解不同方法的优缺点。

3. 插值与拟合插值与拟合是数值计算中的另一个重要内容。

本次实验中,我们将会使用拉格朗日插值法和牛顿插值法对于给定的数据进行插值求解,并使用最小二乘法对于给定的函数进行拟合求解。

4. 常微分方程的数值解常微分方程的数值解是数值计算中的难点之一。

本次实验中,我们将会使用欧拉法和龙格-库塔法等方法对于给定的常微分方程进行数值解的求解,并比较不同方法的计算精度和效率。

三、实验结果通过本次实验,我们进一步加深了对于数值计算方法的理解和掌握。

在数值微积分方面,我们发现梯形公式和辛普森公式都能够有效地求解积分,但是辛普森公式的计算精度更高。

在线性方程组求解方面,我们发现LU分解法相对于高斯消元法具有更高的计算效率和更好的数值精度。

在插值与拟合方面,我们发现拉格朗日插值法和牛顿插值法都能够有效地进行插值求解,而最小二乘法则可以更好地进行函数拟合求解。

在常微分方程的数值解方面,我们发现欧拉法和龙格-库塔法都能够有效地进行数值解的求解,但是龙格-库塔法的数值精度更高。

四、实验总结本次实验通过对于数值计算方法的模拟实现,进一步加深了我们对于数值计算方法的理解和掌握。

在实验过程中,我们了解了数值微积分、线性方程组的求解、插值与拟合、常微分方程的数值解等多个方面的内容,在实践中进一步明确了不同方法的特点和优缺点,并可以通过比较不同方法的计算效率和数值精度来选择合适的数值计算方法。

数值计算方法上机实验报告

数值计算方法上机实验报告

数值计算方法上机实验报告
一、实验目的
本次实验的主要目的是熟悉和掌握数值计算方法,学习梯度下降法的
原理和实际应用,熟悉Python语言的编程基础知识,掌握Python语言的
基本语法。

二、设计思路
本次实验主要使用的python语言,利用python下的numpy,matplotlib这两个工具,来实现数值计算和可视化的任务。

1. 首先了解numpy的基本使用方法,学习numpy的矩阵操作,以及numpy提供的常见算法,如矩阵分解、特征值分解等。

2. 在了解numpy的基本操作后,可以学习matplotlib库中的可视化
技术,掌握如何将生成的数据以图表的形式展示出来。

3. 接下来就是要学习梯度下降法,首先了解梯度下降法的主要原理,以及具体的实际应用,用python实现梯度下降法给出的算法框架,最终
可以达到所期望的优化结果。

三、实验步骤
1. 熟悉Python语言的基本语法。

首先是熟悉Python语言的基本语法,学习如何使用Python实现变量
定义,控制语句,函数定义,类使用,以及面向对象编程的基本概念。

2. 学习numpy库的使用方法。

其次是学习numpy库的使用方法,学习如何使用numpy库构建矩阵,学习numpy库的向量,矩阵操作,以及numpy库提供的常见算法,如矩阵分解,特征值分解等。

3. 学习matplotlib库的使用方法。

插值法与数值积分````计算方法实验3

插值法与数值积分````计算方法实验3

实验3 插值法与数值积分一、实验目的(1)掌握拉格朗日插值法、牛顿插值法。

(2)掌握数值积分常用算法:逐次分半梯形公式求积。

(3)记录运行结果,回答问题,完成实验报告。

二、实验内容思考问题:插值多项式是否阶次越高越好?数值积分与插值的关系是什么?逐次分半梯形公式求积如何判断误差是否满足要求?1.用拉格朗日插值法求2的平方根。

提示:可以用抛物线插值,f(1.69)=1.3,f(1.96)=1.4,f(2.25)=1.5。

2.用牛顿插值法求2的平方根。

提示:可以用抛物线插值,f(1.69)=1.3,f(1.96)=1.4,f(2.25)=1.5。

3.用逐次分半梯形公式求积计算∫x2dx。

提示:可以用相邻两次求得的结果的差的绝对值来间接判断误差是否满足要求。

三、实验步骤1.代码如下:#include<stdio.h>#include<math.h>#define MAXSIZE 50void input(double x[MAXSIZE],double y[MAXSIZE],long n){long i;for(i=0;i<=n-1;i++){printf("请输入插值节点x[%ld],y[%ld]:",i,i);scanf("%lf,%lf",&x[i],&y[i]);}}void main(void){double x[MAXSIZE],y[MAXSIZE],_x,_y,t;long n,i,j;printf("请输入插值节点的个数:");scanf("%ld",&n);input(x,y,n);printf("请输入插值点:");scanf("%lf",&_x);_y = 0;for(i=0;i<=n-1;i++){t = 1;for(j=0;j<=n-1;j++)if(j != i)t *= (_x-x[j]) / (x[i]-x[j]);_y += t * y[i];}printf("插值点(x,y)=(%lf,%lf)。

数值计算基础实验报告(3篇)

数值计算基础实验报告(3篇)

第1篇一、实验目的1. 理解数值计算的基本概念和常用算法;2. 掌握Python编程语言进行数值计算的基本操作;3. 熟悉科学计算库NumPy和SciPy的使用;4. 分析算法的数值稳定性和误差分析。

二、实验内容1. 实验环境操作系统:Windows 10编程语言:Python 3.8科学计算库:NumPy 1.19.2,SciPy 1.5.02. 实验步骤(1)Python编程基础1)变量与数据类型2)运算符与表达式3)控制流4)函数与模块(2)NumPy库1)数组的创建与操作2)数组运算3)矩阵运算(3)SciPy库1)求解线性方程组2)插值与拟合3)数值积分(4)误差分析1)舍入误差2)截断误差3)数值稳定性三、实验结果与分析1. 实验一:Python编程基础(1)变量与数据类型通过实验,掌握了Python中变量与数据类型的定义方法,包括整数、浮点数、字符串、列表、元组、字典和集合等。

(2)运算符与表达式实验验证了Python中的算术运算、关系运算、逻辑运算等运算符,并学习了如何使用表达式进行计算。

(3)控制流实验学习了if-else、for、while等控制流语句,掌握了条件判断、循环控制等编程技巧。

(4)函数与模块实验介绍了Python中函数的定义、调用、参数传递和返回值,并学习了如何使用模块进行代码复用。

2. 实验二:NumPy库(1)数组的创建与操作通过实验,掌握了NumPy数组的基本操作,包括创建数组、索引、切片、排序等。

(2)数组运算实验验证了NumPy数组在数学运算方面的优势,包括加、减、乘、除、幂运算等。

(3)矩阵运算实验学习了NumPy中矩阵的创建、操作和运算,包括矩阵乘法、求逆、行列式等。

3. 实验三:SciPy库(1)求解线性方程组实验使用了SciPy库中的线性代数模块,通过高斯消元法、LU分解等方法求解线性方程组。

(2)插值与拟合实验使用了SciPy库中的插值和拟合模块,实现了对数据的插值和拟合,并分析了拟合效果。

河北工业大学数值分析实验三实验四实验报告

河北工业大学数值分析实验三实验四实验报告

数值分析实验报告指导老师:宛艳萍姓名:班级:学号:实验三 复化辛卜生法,龙贝格法1.实验名称:复化辛卜生法,龙贝格法2.实验目的1)通过实际计算体会各种方法的精确度。

2)会编写用复化辛卜生、龙贝格算法求定积分的程序。

3.算法描述1)用复化辛卜生法计算积分 dxx I ⎰+=12)1/(1算法:复化辛卜生公式为S n =h/6∑∑+-=+++)]()2/(4)([11k k kn k x f h x f xf ,计算过程为:1.令,/)(n a b h -= ),2/(1h a f s +=;02=s2.对1,,2,1-=n k计算),2/(11h kh a f s s +++=)(22kh a f s s ++=3.))(24)((6/21b f s s a f h s +++= 。

2)龙贝格算法计算dxxI ⎰+=102)1/(156e ε=-算法)((12/12∑-=++=n k k n n n x f h T T ;/)(n a b h n -= n k h k x )2/1(2/1+=+)(3/122n n n n T T T S -+= )_(15/122n n n n S S S C +=)(63/122n n n n C C C R -+=用事后估计法控制精度2|5e -6n n R R -< 。

4.源程序:1)/* 用复化辛卜生公式求积分 */ #include "stdio.h" float fx(float x){double f;f=1.0/(1.0+x*x); return f; } double fs(int n){double a=0.0,b=1.0,h,s,s1,s2=0; int i;h=(b-a)/n; s1=fx(a+h/2); for(i=1;i<n;i++){s1=s1+fx(a+i*h+h/2); s2=s2+fx(a+i*h);}s=(h/6.0)*(fx(a)+fx(b)+4*s1+2*s2);return s;}void main(){printf("实验三复化辛卜生法计算机112 耿向飞学号:112434\n");printf("s(2)=%lf\ns(4)=%lf\ns(8)= %lf",fs(2),fs(4),fs(8));}2)/* 龙贝格法 */#include "stdio.h"#include "math.h"#define E 2.71828182//被积函数f(x)double fx(double x){double f;f=1/(1+x*x);return f;}//梯形公式求tndouble tx(int n){double s3=0.0,h,t,b=1.0,a=0.0;int i;h=(b-a)/n;for(i=1;i<n;i++)s3=s3+fx(i*h);t=(h/2)*(fx(a)+fx(b)+2*s3);return t;} double s(int n){double s;s=tx(2*n)+(1.0/3.0)*(tx(2*n)-tx(n ));return s;}double c(int n){double c;c=s(2*n)+(1.0/15.0)*(s(2*n)-s(n)) ;return c;}double r(int n){double r;r=c(2*n)+(1.0/63.0)*(c(2*n)-c(n)) ;return r;}void main(){double rr,pp;int n=1;rr=r(n);pp=r(2*n)-r(n);printf("实验三龙贝格法计算机112 耿向飞学号:112434\n");printf("结果为:%.15lf 误差小于等于: %.15lf",rr,pp);}5.运行结果1)复化辛卜生公式2)龙贝格算法6.对算法的理解与分析:复化辛卜生公式和龙贝格算法适用于求数值积分,而且都能提高计算积分的精度龙贝格算法其实是在复化辛卜生公式递推的基础之上生成的一种精度高,而且收敛速度也较快的一种算法。

插值数值实验报告(3篇)

插值数值实验报告(3篇)

第1篇一、实验目的1. 理解并掌握插值法的基本原理和常用方法。

2. 学习使用拉格朗日插值法、牛顿插值法等数值插值方法进行函数逼近。

3. 分析不同插值方法的优缺点,并比较其精度和效率。

4. 通过实验加深对数值分析理论的理解和应用。

二、实验原理插值法是一种通过已知数据点来构造近似函数的方法。

它广泛应用于科学计算、工程设计和数据分析等领域。

常用的插值方法包括拉格朗日插值法、牛顿插值法、样条插值法等。

1. 拉格朗日插值法拉格朗日插值法是一种基于多项式的插值方法。

其基本思想是:给定一组数据点,构造一个次数不超过n的多项式,使得该多项式在这些数据点上的函数值与已知数据点的函数值相等。

2. 牛顿插值法牛顿插值法是一种基于插值多项式的差商的插值方法。

其基本思想是:给定一组数据点,构造一个次数不超过n的多项式,使得该多项式在这些数据点上的函数值与已知数据点的函数值相等,并且满足一定的差商条件。

三、实验内容1. 拉格朗日插值法(1)给定一组数据点,如:$$\begin{align}x_0 &= 0, & y_0 &= 1, \\x_1 &= 1, & y_1 &= 4, \\x_2 &= 2, & y_2 &= 9, \\x_3 &= 3, & y_3 &= 16.\end{align}$$(2)根据拉格朗日插值公式,构造插值多项式:$$P(x) = \frac{(x-x_1)(x-x_2)(x-x_3)}{(x_0-x_1)(x_0-x_2)(x_0-x_3)}y_0 + \frac{(x-x_0)(x-x_2)(x-x_3)}{(x_1-x_0)(x_1-x_2)(x_1-x_3)}y_1 + \frac{(x-x_0)(x-x_1)(x-x_3)}{(x_2-x_0)(x_2-x_1)(x_2-x_3)}y_2 + \frac{(x-x_0)(x-x_1)(x-x_2)}{(x_3-x_0)(x_3-x_1)(x_3-x_2)}y_3.$$(3)计算插值多项式在不同点的函数值,并与实际值进行比较。

数值分析实验报告三

数值分析实验报告三
plot(x,y)
grid
[k,x,wuca,yx]=erfen (﹣1,1,10^-5)
2)运行结果
ans =
0 -1.0000 1.0000 0 1.0000 -11.6321 10.7183 -1.0000
ans =
1.0000 0 1.0000 0.5000 0.5000 -1.0000 10.7183 4.6487
ans =
11.0000 0.0898 0.0908 0.0903 0.0005 -0.0076 0.0033 -0.0021
ans =
12.0000 0.0903 0.0908 0.0906 0.0002 -0.0021 0.0033 0.0006
ans =
13.0000 0.0903 0.0906 0.0905 0.0001 -0.0021 0.0006 -0.0008
ans =
7.0000 0.1256 0.0008 0.0033 0.0262
ans =
8.0000 0.1240 0.0002 0.0016 0.0129
ans =
9.0000 0.1233 0.0000 0.0007 0.0056
ans =
9.0000 0.1233 0.0000 0.0007 0.0056
(2)、Use the iteration method ,the initial value .
2、The equation has two roots near 0.1.
Determine them by means ofNewton’s method.
(with accuracy )
3、用迭代法求方程 附近的一个根。方程写成下
k = 9

数值分析实验 实验报告

数值分析实验 实验报告

数值分析实验实验报告数值分析实验实验报告引言在现代科学与工程领域,数值分析是一项重要的技术手段。

通过数值方法,我们可以利用计算机模拟和解决各种实际问题,如物理、化学、生物、经济等领域中的方程求解、优化问题、数据拟合等。

本实验旨在通过实际案例,探讨数值分析的应用和效果。

实验一:方程求解首先,我们考虑一个简单的方程求解问题。

假设我们需要求解方程f(x) = 0的根,其中f(x)是一个在给定区间[a, b]上连续且单调的函数。

为了实现这个目标,我们可以采用二分法、牛顿法、弦截法等数值方法。

在本实验中,我们选择使用二分法来求解方程f(x) = 0。

这种方法的基本思想是通过不断缩小区间[a, b]的范围,直到找到一个近似的根。

我们首先选取一个中间点c,计算f(c)的值,然后根据f(c)与0的关系,将区间[a, b]分成两部分。

重复这个过程,直到找到满足精度要求的根。

实验二:数据拟合接下来,我们考虑一个数据拟合的问题。

假设我们有一组离散的数据点,我们希望找到一个函数,使得该函数与这些数据点的拟合误差最小。

为了实现这个目标,我们可以采用最小二乘法等数值方法。

在本实验中,我们选择使用最小二乘法来进行数据拟合。

这种方法的基本思想是通过最小化数据点与拟合函数之间的误差平方和,来确定拟合函数的参数。

我们首先选择一个拟合函数的形式,如线性函数、多项式函数等。

然后,通过最小化误差平方和的方法,计算出拟合函数的参数。

实验三:优化问题最后,我们考虑一个优化问题。

假设我们需要在给定的约束条件下,找到一个使得目标函数取得最大或最小值的变量。

为了实现这个目标,我们可以采用梯度下降法、遗传算法等数值方法。

在本实验中,我们选择使用梯度下降法来解决优化问题。

这种方法的基本思想是通过迭代的方式,不断调整变量的取值,直到找到一个满足约束条件的最优解。

我们首先计算目标函数关于变量的梯度,然后根据梯度的方向和大小,更新变量的取值。

通过不断迭代,我们可以逐步接近最优解。

数值计算方法实验报告

数值计算方法实验报告

数值分析实验报告实验一、解线性方程组的直接方法——梯形电阻电路问题利用追赶法求解三对角方程组的方法,解决梯形电阻电路问题:电路中的各个电流{1i ,2i ,…,8i }须满足下列线性方程组:R V i i =- 22 210 252321=-+-i i i 0 252 432=-+-i i i 0 252 543=-+-i i i 0 252 654=-+-i i i 0 252 765=-+-i i i 0 252 876=-+-i i i 052 87=+-i i设V 220=V ,Ω=27R ,运用追赶法,求各段电路的电流量。

问题分析:上述方程组可用矩阵表示为:⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡--------------00000001481.8522520000002520000002520000002520000002520000002520000002287654321i i i i i i i i问题转化为求解A x b =,8阶方阵A 满足顺序主子式(1,2...7)0i A i =≠,因此矩阵A存在唯一的Doolittle 分解,可以采用解三对角矩阵的追赶法!追赶法a=[0 -2 -2 -2 -2 -2 -2 -2]; b=[2 5 5 5 5 5 5 5];c=[-2 -2 -2 -2 -2 -2 -2 0]; d=[220/27 0 0 0 0 0 0 0];Matlab 程序function x= zhuiganfa( a,b,c,d )%追赶法实现要求:|b1|>|C1|>0,|bi|>=|ai|+|ci| n=length(b); u=ones(1,n); L=ones(1,n); y=ones(1,n); u(1)=b(1); y(1)=d(1); for i=2:nL(i)=a(i)/u(i-1);u(i)=b(i)-c(i-1)*L(i); y(i)=d(i)-y(i-1)*L(i); endx(n)=y(n)/u(n); for k=n-1:-1:1x(k)=(y(k)-c(k)*x(k+1))/u(k); end endMATLAB 命令窗口输入:a=[0 -2 -2 -2 -2 -2 -2 -2]; b=[2 5 5 5 5 5 5 5];c=[-2 -2 -2 -2 -2 -2 -2 0] d=[220/27 0 0 0 0 0 0 0];x= zhuiganfa(a,b,c,d )运行结果为:x =8.1478 4.0737 2.0365 1.0175 0.5073 0.2506 0.1194 0.0477存在问题根据电路分析中的所讲到的回路电流法,可以列出8个以回路电流为独立变量的方程,课本上给出的第八个回路电流方程存在问题,正确的应该是78240i i -+=;或者可以根据电路并联分流的知识,同样可以确定78240i i -+=。

数值计算方法实验报告(含所有)

数值计算方法实验报告(含所有)

本科实验报告课程名称:计算机数值方法实验项目:计算机数值方法实验实验地点:虎峪校区致远楼B401专业班级:软件学院1217班学号:******xxxx 学生姓名:xxx指导教师:xxx2014 年 5 月21 日太原理工大学学生实验报告五、实验结果与分析二分法割线法分析:由程序知,使用二分法和割线法均能计算出方程的根,但利用割线法要比二分法计算的次数少,并且能够较早的达到精度要求。

相比之下,割线法程序代码量较少,精简明了。

六、讨论、心得本次数值计算方法程序设计实验从习题练习中跳脱出来,直接面对实用性较强的程序代码编写。

效果很好,不仅加深对二分法、割线法的理解,还加强了实际用运能力。

将理论知识成功地转化成实践结果。

实验地点虎峪校区致远楼B401指导教师xx太原理工大学学生实验报告l[i][k]=a[i][k];for(r=1;r<k;++r){l[i][k]-=l[i][r]*u[r][k];}l[i][k]/= u[k][k];}l[k][k]=1.0;}for(i=1;i<=n;++i){y[i] = b[i];for(j=1;j<i;++j){y[i]-=l[i][j]*y[j];}}for(i=n;i>0;--i){x[i] = y[i];for(j=i+1;j<=n;++j){x[i]-=u[i][j]*x[j];}x[i]/= u[i][i];}for(i=1;i<=n;++i){printf("%0.2lf\n",x[i]);}return 0;}五、实验结果与分析完全主元素消元法:列主元素消元法:LU分解法:分析:对于两种高斯解方程,完全主元素跟列主元素都是先消元、再回代,由程序段可以发现,始终消去对角线下方的元素。

即,为了节约内存及时效,可以不必计算出主元素下方数据。

列主元素消元法的算法设计上优于完全主元素消元法,它只需依次按列选主元素然后换行使之变到主元素位置,再进行消元即可。

数值计算实验报告积分

数值计算实验报告积分

一、实验目的1. 理解积分的概念和基本性质。

2. 掌握数值积分的方法,包括矩形法、梯形法、辛普森法等。

3. 通过实际计算,加深对积分概念的理解。

二、实验原理积分是微积分学中的一个基本概念,表示一个函数在某区间内的累积变化量。

数值积分是指利用数值方法求解积分,常见的方法有矩形法、梯形法、辛普森法等。

1. 矩形法:将积分区间分成若干等份,用每个小区间的宽度乘以函数在该区间的值,再将所有小区间的乘积相加,得到积分的近似值。

2. 梯形法:将积分区间分成若干等份,用每个小区间的宽度乘以函数在该区间的平均值,再将所有小区间的乘积相加,得到积分的近似值。

3. 辛普森法:将积分区间分成若干等份,用每个小区间的宽度乘以函数在该区间的二次多项式近似值,再将所有小区间的乘积相加,得到积分的近似值。

三、实验步骤1. 选择一个具体的积分问题,例如:计算函数f(x) = x^2在区间[0,1]上的积分。

2. 根据所选择的积分方法,设置相应的参数。

例如,对于矩形法,需要设置小区间的数量n;对于梯形法,需要设置小区间的数量n;对于辛普森法,需要设置小区间的数量n。

3. 计算每个小区间的宽度,例如,对于区间[0,1],小区间的宽度为h = (1-0)/n。

4. 根据所选的积分方法,计算积分的近似值。

5. 比较不同积分方法的近似值,分析误差来源。

四、实验结果与分析以函数f(x) = x^2在区间[0,1]上的积分为例,进行数值积分实验。

1. 矩形法:取n=4,计算得到积分的近似值为0.5625。

2. 梯形法:取n=4,计算得到积分的近似值为0.6667。

3. 辛普森法:取n=4,计算得到积分的近似值为0.6667。

通过比较不同积分方法的近似值,可以发现辛普森法的误差较小,且随着n的增大,误差逐渐减小。

这表明辛普森法在数值积分中具有较高的精度。

五、实验总结1. 本实验通过数值积分方法,计算了函数f(x) = x^2在区间[0,1]上的积分,加深了对积分概念的理解。

数值计算方法实验报告

数值计算方法实验报告

数值计算方法实验报告一、实验目的本实验旨在通过Python语言编写数值计算方法程序,掌握常见数值计算方法的实现原理及应用。

具体包括:插值法、最小二乘法、数值微积分、数值解方程、数值解微分方程等。

二、实验环境Python编程语言、Jupyter Notebook环境三、实验内容1.插值法(1)代码实现:在Python中使用Scipy库中的Interpolate模块实现拉格朗日插值法和牛顿插值法,并通过数据可视化展示其效果。

(2)实验步骤:- 导入所需库,准备所需数据;- 定义拉格朗日插值法函数;- 定义牛顿插值法函数;- 测试函数并可视化结果。

(3)实验结果:2.最小二乘法(1)代码实现:在Python中使用Numpy库实现最小二乘法,并通过数据可视化展示其效果。

(2)实验步骤:- 导入所需库,准备所需数据;- 定义最小二乘法函数;- 测试函数并可视化结果。

(3)实验结果:3.数值微积分(1)代码实现:在Python中实现梯形法和辛普森法,并通过数据可视化展示其效果。

(2)实验步骤:- 导入所需库,准备所需数据;- 定义梯形法函数和辛普森法函数;- 测试函数并可视化结果。

(3)实验结果:4.数值解方程(1)代码实现:在Python中实现二分法、牛顿法和割线法,并通过数据可视化展示其效果。

(2)实验步骤:- 导入所需库,准备所需数据;- 定义二分法函数、牛顿法函数和割线法函数;- 测试函数并可视化结果。

(3)实验结果:5.数值解微分方程(1)代码实现:在Python中实现欧拉法和龙格-库塔法,并通过数据可视化展示其效果。

(2)实验步骤:- 导入所需库,准备所需数据;- 定义欧拉法函数和龙格-库塔法函数;- 测试函数并可视化结果。

(3)实验结果:四、实验总结通过本次实验,我学习了数值计算方法的常用算法和实现原理,掌握了Python 语言实现数值计算方法的方法,加深了对数值计算方法的理解和应用。

实验中遇到的问题,我通过查找资料和与同学的讨论得到了解决,也更加熟练地掌握了Python语言的使用。

数值方法实验报告

数值方法实验报告

数值方法实验报告数值方法实验报告引言:数值方法是一种通过数学模型和计算机算法来解决实际问题的方法。

在现代科学和工程领域,数值方法被广泛应用于求解复杂的数学方程、优化问题以及模拟和预测等任务。

本实验报告旨在介绍数值方法的基本原理和应用,并通过实验验证其有效性和可靠性。

一、数值方法的基本原理1.1 近似方法数值方法的核心是通过近似方法来求解问题。

由于大多数实际问题无法用解析方法求解,因此需要使用近似方法来获得问题的数值解。

常见的近似方法包括插值法、拟合法、数值积分和数值微分等。

1.2 数值算法数值算法是实现数值方法的具体计算步骤和流程。

常见的数值算法有牛顿法、迭代法、高斯消元法等。

这些算法通过迭代和逼近的方式,逐步逼近问题的解,并最终得到数值解。

二、数值方法的应用2.1 方程求解数值方法可以用于求解各种类型的方程,如线性方程组、非线性方程、微分方程等。

通过数值方法,可以得到这些方程的数值解,并在实际问题中进行应用。

例如,通过数值方法可以计算电路中的电压和电流分布,从而优化电路设计。

2.2 优化问题数值方法可以用于求解各种优化问题,如线性规划、非线性规划、整数规划等。

通过数值方法,可以找到问题的最优解,并在实际问题中进行决策和优化。

例如,通过数值方法可以确定最佳的生产计划,使得生产成本最小或者利润最大。

2.3 模拟和预测数值方法可以用于模拟和预测实际问题的行为和变化。

通过建立数学模型和使用数值方法,可以模拟天气变化、交通流量、金融市场等复杂系统的行为,并进行预测和分析。

例如,通过数值方法可以预测飓风路径和强度,从而提前做好防灾准备。

三、实验验证为了验证数值方法的有效性和可靠性,我们进行了一系列实验。

以线性方程组求解为例,我们使用高斯消元法和迭代法两种数值方法,并与解析解进行对比。

实验结果表明,高斯消元法和迭代法都可以得到线性方程组的数值解。

与解析解相比,数值解的误差较小,且在实际问题中具有较好的适用性。

数值计算方法实验报告

数值计算方法实验报告

数值计算方法实验报告数值计算方法实验报告引言:数值计算方法是一种通过数学模型和计算机算法来解决实际问题的方法。

在科学研究和工程应用中,数值计算方法被广泛应用于求解方程、优化问题、模拟仿真等领域。

本实验报告将介绍数值计算方法的基本原理和实验结果。

一、二分法求根二分法是一种通过不断折半缩小搜索区间来求解方程根的方法。

在实验中,我们选取了一个简单的方程f(x) = x^2 - 4 = 0来进行求根实验。

通过不断将搜索区间进行二分,我们可以逐步逼近方程的根。

实验结果表明,通过二分法,我们可以得到方程的根为x = 2。

二、牛顿迭代法求根牛顿迭代法是一种通过不断逼近方程根的方法。

在实验中,我们同样选取了方程f(x) = x^2 - 4 = 0进行求根实验。

牛顿迭代法的基本思想是通过对方程进行线性近似,求得近似解,并不断迭代逼近方程的根。

实验结果表明,通过牛顿迭代法,我们可以得到方程的根为x = 2。

三、高斯消元法求解线性方程组高斯消元法是一种通过变换线性方程组的系数矩阵,将其化为上三角矩阵的方法。

在实验中,我们选取了一个简单的线性方程组进行求解实验。

通过对系数矩阵进行行变换,我们可以将其化为上三角矩阵,并通过回代求解得到方程组的解。

实验结果表明,通过高斯消元法,我们可以得到线性方程组的解为x = 1,y = 2,z = 3。

四、插值与拟合插值与拟合是一种通过已知数据点来构造函数模型的方法。

在实验中,我们选取了一组数据点进行插值与拟合实验。

通过拉格朗日插值多项式和最小二乘法拟合,我们可以得到数据点之间的函数模型。

实验结果表明,通过插值与拟合,我们可以得到数据点之间的函数关系,并可以通过该函数模型来进行预测和拟合。

结论:数值计算方法是一种通过数学模型和计算机算法来解决实际问题的方法。

通过本次实验,我们学习了二分法求根、牛顿迭代法求根、高斯消元法求解线性方程组以及插值与拟合的基本原理和应用。

这些方法在科学研究和工程应用中具有广泛的应用前景。

数值计算方法实验报告

数值计算方法实验报告
#include<stdio.h>
#include<math.h>
double f(double x)
{
double s;
s=x*x*x/3-x;
return fabs(s);
}
void main()
{double x=-0.99,y;
int k=0;
printf("%d ,%lf\n",k,x);
{if(r>=x[i]&&r<=x[i+1])
{s=m[i]*pow(x[i+1]-r,3)/6*h[i]+m[i+1]*pow(r-x[i],3)/6*h[i]+(y[i]-m[i]*pow(h[i],2)/6)*(x[i+1]-r)/h[i]+(y[i+1]-m[i+1]*pow(h[i],2)/6)*(r-x[i])/h[i];
28.65
39.62
50.65
5.28794
9.4
13.84
20.2
24.9
28.44
31.1
k
7
8
9
10
11
12
78
104.6
156.6
208.6
260.7
312.5
35
36.5
36.6
34.6
31.6
31.0
k
13
14
15
16
17
18
364.4
416.3
468
494
507
520
20.9
14.8
7.8
do
{y=x;

数值分析的实验报告

数值分析的实验报告

数值分析的实验报告数值分析的实验报告导言数值分析是一门研究数值计算方法和数值计算误差的学科,它在科学计算、工程技术和社会经济等领域具有广泛的应用。

本实验旨在通过对数值分析方法的实际应用,验证其有效性和可靠性。

实验一:方程求根方程求根是数值分析中的基础问题之一。

我们选取了一个非线性方程进行求解。

首先,我们使用二分法进行求解。

通过多次迭代,我们得到了方程的一个近似解。

然后,我们使用牛顿法进行求解。

与二分法相比,牛顿法的收敛速度更快,但需要选择一个初始点。

通过比较两种方法的结果,我们验证了牛顿法的高效性。

实验二:插值与拟合插值与拟合是数值分析中常用的数据处理方法。

我们选取了一组实验数据,通过拉格朗日插值法和最小二乘法进行插值和拟合。

通过对比两种方法的拟合效果,我们验证了最小二乘法在处理含有噪声数据时的优势。

同时,我们还讨论了插值和拟合的精度与样本点数量之间的关系。

实验三:数值积分数值积分是数值分析中的重要内容之一。

我们选取了一个定积分进行计算。

首先,我们使用复化梯形公式进行积分计算。

通过增加分割区间的数量,我们得到了更精确的结果。

然后,我们使用复化辛普森公式进行积分计算。

与复化梯形公式相比,复化辛普森公式具有更高的精度。

通过比较两种方法的结果,我们验证了复化辛普森公式的优越性。

实验四:常微分方程数值解常微分方程数值解是数值分析中的重要应用之一。

我们选取了一个常微分方程进行数值解的计算。

首先,我们使用欧拉方法进行数值解的计算。

然后,我们使用改进的欧拉方法进行数值解的计算。

通过比较两种方法的结果,我们验证了改进的欧拉方法的更高精度和更好的稳定性。

实验五:线性方程组的数值解法线性方程组的数值解法是数值分析中的重要内容之一。

我们选取了一个线性方程组进行数值解的计算。

首先,我们使用高斯消元法进行数值解的计算。

然后,我们使用追赶法进行数值解的计算。

通过比较两种方法的结果,我们验证了追赶法在求解三对角线性方程组时的高效性。

数值计算方法实验报告

数值计算方法实验报告

数值计算方法实验报告一、实验目的本实验旨在通过数值计算方法的实验操作,深入理解数值计算方法的原理与应用,掌握数值计算方法的相关技能,提高数值计算方法的实际应用能力。

二、实验内容1.数值微积分2.数值代数3.数值微分方程4.数值线性代数5.数值优化6.数值统计分析7.数值随机模拟8.数值傅立叶分析9.数值偏微分方程三、实验步骤1.数值微积分:通过不同的数值积分方法,计算给定函数的定积分值,并对不同数值积分方法的误差进行分析。

2.数值代数:通过使用线性代数方法,求解给定的线性方程组,并分析不同线性方程组求解方法的优劣。

3.数值微分方程:通过使用常微分方程数值解法,求解给定的微分方程,并比较不同求解方法的精度和稳定性。

4.数值线性代数:通过使用特征值分解方法,对给定的矩阵进行特征值分解,并分析不同特征值分解方法的优缺点。

5.数值优化:通过使用不同的优化方法,求解给定的优化问题,并比较不同的优化方法的效率和精度。

6.数值统计分析:通过使用不同的统计分析方法,对给定的数据进行统计分析,并分析不同的统计方法的优缺点。

7.数值随机模拟:通过使用随机模拟方法,模拟给定的概率分布,并分析不同随机模拟方法的效率和精度。

8.数值傅立叶分析:通过使用傅立叶分析方法,对给定的信号进行频谱分析,并分析不同的傅立叶分析方法的优缺点。

9.数值偏微分方程:通过使用偏微分方程数值解法,求解给定的偏微分方程,并比较不同求解方法的精度和稳定性。

四、实验结果与分析本实验中,通过对不同的数值计算方法的实验操作,我们可以更深入地理解数值计算方法的原理与应用,并掌握数值计算方法的相关技能,提高数值计算方法的实际应用能力。

同时,通过实验结果的分析,我们可以更好地比较不同数值计算方法的优缺点,为实际应用提供参考依据。

五、实验总结本实验旨在通过数值计算方法的实验操作,深入理解数值计算方法的原理与应用,掌握数值计算方法的相关技能,提高数值计算方法的实际应用能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验报告实验三 插值法与拟合实验一、实验目的1、懂得利用数据建模两种方法(插值法和拟合多项式法)对一批数据()11,y x ,()22,y x ,……,()n n y x ,进行处理,学会对数据的结果进行误差分析.2、比较分析这些方法的优缺点,并且在适合的场合应用相应的方法.二、实验题目1. 插值效果的比较实验题目:将区间][5,5-10等分,对下列函数分别计算插值节点k x 的值,进行不同类型的插值,作出插值函数的图形并与()x f y =的图形进行比较:)211xx f +=; ()x x f a r c t a n =; ()421xxx f +=.(1) 做拉格朗日插值; (2) 做三次样条插值. 2. 拟合多项式实验实验题目:给定数据点如下表所示:分别对上述数据作三次多项式和五次多项式拟合,并求平方误差,作出离散函数(i x ,i y )和拟合函数的图形.三、实验原理数据建模有两大方法:一类是插值方法,要求所要函数()x ϕ严格遵守从数据()11,y x ,()22,y x ,……,()n n y x ,;另一类是拟合方法,允许函数()x ϕ在数据点上的有误差,但是要求达到某种误差指标的最小化.第一题⑴拉格朗日插值算法原理%malagr.mfunction yy=malagr(x,y,xx)%用途:拉格朗日插值法求解%格式:yy=malagr(x,y,xx), x是节点向量,y是节点对应的函数值向量,% xx是插值点(可以是多个),,yy返回插值结果m=length(x);n=length(y);if m~=n, error('向量x与y的长度必须一致');ends=0;for i=1:nt=ones(1,length(xx));for j=1:nif j~=it=t.*(xx-x(j))/(x(i)-x(j));endends=s+t*y(i);endyy=s;end⑵三次样条插值算法原理:%maspline.mfunction m=maspline(x,y,dy0,dyn,xx)%用途:三阶样条插值(一阶导数边界条件)%格式:m=maspline(x,y,dy0,dyn,xx), x为节点向量,y为数据,%dy0,dyn为左右两端点的一阶导数如果xx缺省,则输出各节点的%的一阶导数值,,m为xx的三阶样条插值format short;n=length(x)-1; %计算小区间的个数h=diff(x); lambda=h(2:n)./(h(1:n-1)+h(2:n)); mu=1-lambda;theta=3*(lambda.*diff(y(1:n))./h(1:n-1)+mu.*diff(y(2:n+1))./h(2:n)); theta(1)=theta(1)-lambda(1)*dy0;theta(n-1)=theta(n-1)-lambda(n-1)*dyn;%追赶法解散对焦方程组dy=machase(lambda,2*ones(1:n-1),mu,theta);%若给插值点,计算插值m=[dy0;dy;dyn];if nargin>=5s=zeros(size(xx));for i=1:nif i==1kk=find(xx<=x(2));elseif i==nkk=find(xx>x(n));elsekk=find(xx>x(i)&xx<=x(i+1));endxbar=(xx(kk)-x(i))/h(i);s(kk)=alpha0(xbar)*y(i)+alpha1(xbar)*y(i+1)+...+h(i)*beta0(xbar)*m(i)+h(i)*beta1(xbar)*m(i+1);endm=s;end%追赶法function x=machase(a,b,c,d)n=length(a);for k=2:nb(k)=b(k)-a(k)/b(k-1)*c(k-1);d(k)=d(k)-a(k)/b(k-1)*d(k-1);endx(n)=d(n)/b(n);for k=n-1:-1:1x(k)=(d(k)-c(k)*x(k+1))/b(k);endx=x(:);%基函数function y=alpha0(x)y=2*x.^3-3*x.^2+1;function y=alpha1(x)y=-2*x.^3+3*x.^2;function y=beta0(x)y=x.^3-2*x.^2+x;function y=beta1(x)y=x.^3-x.^2;第二题:多项式拟合算法原理:%mafit.mfunction p=mafit(x,y,m)% 用途:多项式拟合%格式:p=mafit(x,y,m), x, y为数据向量,m为拟合多项式次数,p返回%多项式系数降幂排列format short;A=zeros(m+1,m+1);for i=0:mfor j=0:mA(i+1,j+1)=sum(x.^(i+j)); endb(i+1)=sum(x.^i.*y);enda=A\b';p=fliplr(a'); %按降幂排列四、实验内容⑴第一个方程的程序:x=-5:0.1:5;y=1./(1+x.^2);plot(x,y,'r')hold on%拉格朗日插值x1=-5:1:5;y1=1./(1+x1.^2);xx=-4.5:0.5:4.5;yy=malagr(x1,y1,xx);plot(xx,yy,'b*')%三次样条插值dy0=-2*(-5)/(1+25);dyn=-2*5/(1+25);m=maspline(x1,y1,dy0,dyn,xx);plot(xx,m,'ok')⑵第二个方程的程序:x=-5:0.2:5;y=atan(x);plot(x,y,'r');hold on%拉格朗日插值x1=-5:1:5;y1=atan(x1);xx=-4.5:0.5:4.5;yy=malagr(x1,y1,xx);plot(xx,yy,'b*')%三次样条插值dy0=1./(1+25);dyn=1./(1+25);m=maspline(x1,y1,dy0,dyn,xx); plot(xx,m,'ok')⑶第三个方程的程序:x=-5:0.1:5;y=x.^2./(1+x.^4);plot(x,y,'r')hold on%拉格朗日插值x1=-5:1:5;y1=x1.^2./(1+x1.^4);xx=-4.5:0.5:4.5;yy=malagr(x1,y1,xx);plot(xx,yy,'b*')%三次样条插值dy0=-2*(-5)*(1-5.^4)/(1+5.^4);dyn=-2*(5)*(1-5.^4)/(1+5.^4);m=maspline(x1,y1,dy0,dyn,xx);plot(xx,m,'ok')axis([-5,5,-0.2,1])第二题:多项式拟合程序:x=[-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5]';y=[-4.45 -0.45 0.55 0.05 -0.44 0.54 4.55]';plot(x,y,'or'); hold on%三次多项式拟合p1=mafit(x,y,3);x1=-1.5:0.1:1.5;y1=p1(1)*x1.^3+p1(2)*x1.^2+p1(3)*x1+p1(4);plot(x1,y1,'.-')%平方误差y11=p1(1)*x.^3+p1(2)*x.^2+p1(3)*x+p1(4);err1=sum((y-y11).^2)%五次多项式拟合p2=mafit(x,y,5);x1=-1.5:0.1:1.5;y2=p2(1)*x1.^5+p2(2)*x1.^4+p2(3)*x1.^3+p2(4)*x1.^2+p2(5)*x1+p2(6); plot(x1,y2,'g')%平方误差y22=p2(1)*x.^5+p2(2)*x.^4+p2(3)*x.^3+p2(4)*x.^2+p2(5)*x+p2(6);err2=sum((y-y22).^2)五、实验结果第一题⑴第一个方程的图形:-5-4-3-2-112345-0.4-0.200.20.40.60.811.21.41.6⑵第二个方程的图形:-5-4-3-2-1012345-1.5-1-0.50.511.5⑶第三个方程的图形:-5-4-3-2-1012345-0.200.20.40.60.8第二题:平方误差:三次多项式拟合的平方误差:err1 =1.8571e-004五次多项式拟合的平方误差:err2 =4.7727e-005离散函数(x,i y)和拟合函数的图形:i-1.5-1-0.500.51 1.5六、实验结果分析1、由第一题的三个图可知:拉格朗日插值会出现很大的误差,即Runge现象,运行的结果不好,但是三次样条插值法的效果就很好,误差很小,接近真实值.2、由第二题的图像知,三次多项式拟合和五次多项式的拟合效果都很好.比较三次多项式拟合的平方误差:err1 =1.8571e-004和五次多项式拟合的平方误差:err2 =4.7727e-005知五次多项式拟合比三次多项式拟合更加准确.。

相关文档
最新文档