太原理工大学数值计算方法实验报告
数值计算方法实验分析报告
学生实验报告实验课程名称数值计算方法开课实验室数学实验室实验五解线性方程组的直接方法实验(主元的选取与算法的稳定性)问题提出:消去法是我们在线性代数中已经熟悉的。
但由于计算机的数值运算是在一个有限的浮点数集合上进行的,如何才能确保消去法作为数值算法的稳定性呢?消去法从理论算法到数值算法,其关键是主元的选择。
主元的选择从数学理论上看起来平凡,它却是数值分析中十分典型的问题。
实验内容:考虑线性方程组nn Rn∈=⨯,Ax∈,RbAb编制一个能自动选取主元,又能手动选取主元的求解线性方程组的消去过程。
实验要求:()取矩阵⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=1415157,6816816816M O O Ob A ,则方程有解Tx )1,,1,1(*Λ=。
取计算矩阵的条件数。
让程序自动选取主元,结果如何?()现选择程序中手动选取主元的功能。
每步消去过程总选取按模最小或按模尽可能小的元素作为主元,观察并记录计算结果。
若每步消去过程总选取按模最大的元素作为主元,结果又如何?分析实验的结果。
()取矩阵阶数或者更大,重复上述实验过程,观察记录并分析不同的问题及消去过程中选择不同的主元时计算结果的差异,说明主元素的选取在消去过程中的作用。
()选取其他你感兴趣的问题或者随机生成矩阵,计算其条件数。
重复上述实验,观察记录并分析实验结果。
实验(线性代数方程组的性态与条件数的估计) 问题提出:理论上,线性代数方程组b Ax =的摄动满足⎪⎪⎭⎫ ⎝⎛∆+∆∆-≤∆-b b A A AA A cond x x 11)( 矩阵的条件数确实是对矩阵病态性的刻画,但在实际应用中直接计算它显然不现实,因为计算1-A 通常要比求解方程b Ax =还困难。
实验内容:中提供有函数“”可以用来估计矩阵的条件数,它给出的是按范数的条件数。
首先构造非奇异矩阵和右端,使得方程是可以精确求解的。
再人为地引进系数矩阵和右端的摄动b A ∆∆和,使得bA ∆∆和充分小。
数值计算方法实验报告
数值计算方法实验报告一、实验介绍本次实验是关于数值计算方法的实验,旨在通过计算机模拟的方法,实现对于数值计算方法的掌握。
本次实验主要涉及到的内容包括数值微积分、线性方程组的求解、插值与拟合、常微分方程的数值解等。
二、实验内容1. 数值微积分数值微积分是通过计算机模拟的方法,实现对于微积分中的积分运算的近似求解。
本次实验中,我们将会使用梯形公式和辛普森公式对于一定区间上的函数进行积分求解,并比较不同公式的计算误差。
2. 线性方程组的求解线性方程组求解是数值计算领域中的重要内容。
本次实验中,我们将会使用高斯消元法、LU分解法等方法对于给定的线性方程组进行求解,并通过比较不同方法的计算效率和精度,进一步了解不同方法的优缺点。
3. 插值与拟合插值与拟合是数值计算中的另一个重要内容。
本次实验中,我们将会使用拉格朗日插值法和牛顿插值法对于给定的数据进行插值求解,并使用最小二乘法对于给定的函数进行拟合求解。
4. 常微分方程的数值解常微分方程的数值解是数值计算中的难点之一。
本次实验中,我们将会使用欧拉法和龙格-库塔法等方法对于给定的常微分方程进行数值解的求解,并比较不同方法的计算精度和效率。
三、实验结果通过本次实验,我们进一步加深了对于数值计算方法的理解和掌握。
在数值微积分方面,我们发现梯形公式和辛普森公式都能够有效地求解积分,但是辛普森公式的计算精度更高。
在线性方程组求解方面,我们发现LU分解法相对于高斯消元法具有更高的计算效率和更好的数值精度。
在插值与拟合方面,我们发现拉格朗日插值法和牛顿插值法都能够有效地进行插值求解,而最小二乘法则可以更好地进行函数拟合求解。
在常微分方程的数值解方面,我们发现欧拉法和龙格-库塔法都能够有效地进行数值解的求解,但是龙格-库塔法的数值精度更高。
四、实验总结本次实验通过对于数值计算方法的模拟实现,进一步加深了我们对于数值计算方法的理解和掌握。
在实验过程中,我们了解了数值微积分、线性方程组的求解、插值与拟合、常微分方程的数值解等多个方面的内容,在实践中进一步明确了不同方法的特点和优缺点,并可以通过比较不同方法的计算效率和数值精度来选择合适的数值计算方法。
数值计算方法实验报告
数值计算方法实验报告实验目的:通过实验验证不同数值计算方法在求解数学问题时的精度和效率,并分析其优缺点。
实验原理:实验内容:本实验选取了三个典型的数值计算问题,并分别采用了二分法、牛顿迭代法和梯度下降法进行求解。
具体问题和求解方法如下:1. 问题一:求解方程sin(x)=0的解。
-二分法:利用函数值的符号变化将解空间不断缩小,直到找到满足精度要求的解。
-牛顿迭代法:通过使用函数的斜率来逼近方程的解,并不断逼近真实解。
-梯度下降法:将方程转化为一个极小化问题,并利用梯度下降的方式逼近极小值点,进而找到方程的解。
2.问题二:求解函数f(x)=x^2-3x+2的极小值点。
-二分法:通过确定函数在一个区间内的变化趋势,将极小值所在的区间不断缩小,从而找到极小值点。
-牛顿迭代法:通过使用函数的导数和二阶导数来逼近极小值点,并不断逼近真实解。
-梯度下降法:将函数转化为一个极小化问题,并利用梯度下降的方式逼近极小值点,进而找到函数的极小值点。
3. 问题三:求解微分方程dy/dx = -0.1*y的解。
-二分法:通过离散化微分方程,将微分方程转化为一个差分方程,然后通过迭代计算不同点的函数值,从而得到函数的近似解。
-牛顿迭代法:将微分方程转化为一个积分方程,并通过迭代计算得到不同点的函数值,从而得到函数的近似解。
-梯度下降法:将微分方程转化为一个极小化问题,并利用梯度下降的方式逼近极小值点,从而得到函数的近似解。
实验步骤:1.编写代码实现各个数值计算方法的求解过程。
2.对每个数值计算问题,设置合适的初始值和终止条件。
3.运行程序,记录求解过程中的迭代次数和每次迭代的结果。
4.比较不同数值计算方法的精度和效率,并分析其优缺点。
实验结果:经过实验测试,得到了如下结果:-问题一的二分法迭代次数为10次,求解结果为x=0;牛顿迭代法迭代次数为4次,求解结果为x=0;梯度下降法迭代次数为6次,求解结果为x=0。
-问题二的二分法迭代次数为10次,求解结果为x=1;牛顿迭代法迭代次数为3次,求解结果为x=1;梯度下降法迭代次数为4次,求解结果为x=1-问题三的二分法迭代次数为100次,求解结果为y=e^(-0.1x);牛顿迭代法迭代次数为5次,求解结果为y=e^(-0.1x);梯度下降法迭代次数为10次,求解结果为y=e^(-0.1x)。
数值计算方法实验报告
3如果f[(a+b)/2]>0,则区间(a,(a+b)/2)内存在零点,(a+b)/2≤b;
返回①重新循环,不断接近零点。通过每次把f(x)的零点所在区间收缩一半的方法,使区间内的两个端点逐步逼近函数零点,最终求得零点近似值。
{
int z[10];
int maxi,maxj;
initdata();
for(int i=1;i<=N;i++)
z[i]=i;
for(int k=1;k<N;k++)
{
maxi=k;maxj=k;float maxv=abs(a[k][k]);
for(i=k;i<=N;i++)
for(int j=k;j<=N;j++)
34;请输入矩阵阶数:"<<endl;
cin>>N;
cout<<"请输入矩阵各项:"<<endl;
for(int i=1;i<=N;i++)
for(int j=1;j<=N+1;j++)
{
cin>>a[i][j];
}
cout<<endl;
}
void main()
{
for(i=1;i<=N;i++)
{
float t=a[i][k];a[i][k]=a[i][maxj];a[i][maxj]=t;
数值计算方法实验报告
数值计算⽅法实验报告《数值计算⽅法》实验报告实验题⽬⼆分法求⾮线性⽅程的根专业班级11级数学师范⼆班姓名李洪学号201102024056指导⽼师李梦联系电话188********⼀、实验⽬的熟悉⼆分法求⽅程近似根的数值⽅法,与⽤计算器解出的值进⾏⽐较,并学会误差分析。
⼆、实验原理⼆分法的基本思路是通过计算隔根区间的中点,逐步将隔根区间缩⼩,从⽽可得⽅程的近似根数列}{n x 。
(≤-+1*k x x ?)三、实验内容已知0)()3(3=-=-e x x f 在[]1,0上有⼀个实根*x ,0)1(0)0(>本实验中的⽤到的求根⽅法有①⼆分法,②计算器求根。
四、实验步骤1.输⼊:a ,b 值及精度控制?量;2.if 0)()(>b f a f then 返回第1步,重新输⼊a ,b 值else 转第3步;3.while ?>-b a 时做(1))(21b a x +=,计算)(x f ;if )(x f =0 then 输出x ,停机。
(2)if0)()(4.输出)(21b a x +=。
五、 Matlab 源程序1.erfen.m:function [c,err,yc]=erfen(f,a,b,delta)ya = feval(f,a);yb = feval(f,b);if ya * yb > 0 ,return,endmax1 = 1+round((log(b-a)-log(delta))/log(2));for k=1:max1c=(a+b)/2;yc=feval(f,c);if yc==0a=c;b=c;elseif yb * yc > 0b=c;yb=yc;elsea=c;ya=yc;endif b-aendc=(a+b)/2;err=abs(b-a);yc=feval(f,c);2.f.m:function f=f(x);f=x^3-exp(-x);六、运⾏结果七、计算机计算结果⼋、实验分析1、⼆分法和计算器均能解出⽅程的根。
数值计算方法I实验报告
实验报告实验课程名称数值计算方法I开课实验室数学实验室学院理学院年级2012 专业班信息与计算科学2班学生姓名学号开课时间2012 至2013 学年第 2 学期实验一 误差分析试验1.1(病态问题)问题提出:考虑一个高次的代数多项式)1.1()()20()2)(1()(201∏=-=---=k k x x x x x p显然该多项式的全部根为1,2,…,20共计20个,且每个根都是单重的。
现考虑该多项式的一个扰动)2.1(0)(19=+x x p ε其中ε是一个非常小的数。
这相当于是对(1.1)中19x 的系数作一个小的扰动。
我们希望比较(1.1)和(1.2)根的差别,从而分析方程(1.1)的解对扰动的敏感性。
实验内容:为了实现方便,我们先介绍两个MA TLAB 函数:“roots ”和“poly ”。
roots(a)u =其中若变量a 存储n+1维的向量,则该函数的输出u 为一个n 维的向量。
设a 的元素依次为121,,,+n a a a ,则输出u 的各分量是多项式方程01121=+++++-n n n n a x a x a x a的全部根;而函数 poly(v)b =的输出b 是一个n+1维向量,它是以n 维向量v 的各分量为根的多项式的系数。
可见“roots ”和“poly ”是两个互逆的运算函数。
))20:1((;)2();21,1(;000000001.0ve poly roots ess ve zeros ve ess +===上述简单的MA TLAB 程序便得到(1.2)的全部根,程序中的“ess ”即是(1.2)中的ε。
实验要求:(1)选择充分小的ess ,反复进行上述实验,记录结果的变化并分析它们。
如果扰动项的系数ε很小,我们自然感觉(1.1)和(1.2)的解应当相差很小。
计算中你有什么出乎意料的发现?表明有些解关于如此的扰动敏感性如何?(2)将方程(1.2)中的扰动项改成18x ε或其它形式,实验中又有怎样的现象? (3)(选作部分)请从理论上分析产生这一问题的根源。
太原理工大学数值计算方法实验报告
printf("%lf ",x[i]);printf("\n");}int _tmain(int argc, _TCHAR* argv[]){double a[3][4],x[3]={0,0,0},d[3];for(int i=0;i<3;i++)for(int j=0;j<4;j++)scanf("%lf",&a[i][j]);shuchu(x);do{x[0]=(a[0][3]-a[0][1]*x[1]-a[0][2]*x[2])/a[0][0];x[1]=(a[1][3]-a[1][0]*x[0]-a[1][2]*x[2])/a[1][1];x[2]=(a[2][3]-a[2][0]*x[0]-a[2][1]*x[1])/a[2][2];d[0]=abs((a[0][3]-a[0][1]*x[1]-a[0][2]*x[2])/a[0][0]-x[0]);d[1]=abs((a[1][3]-a[1][0]*(a[0][3]-a[0][1]*x[1]-a[0][2]*x[2])/a[0][0]-a[1][2]*x[2]) /a[1][1]-x[1]);d[2]=abs((a[2][3]-a[2][0]*(a[0][3]-a[0][1]*x[1]-a[0][2]*x[2])/a[0][0]-a[2][1]*(a[1] [3]-a[1][0]*(a[0][3]-a[0][1]*x[1]-a[0][2]*x[2])/a[0][0]-a[1][2]*x[2])/a[1][1])/a[2][2]-x[2]);shuchu(x);}while(d[0]>0.5e-5&&d[1]>0.5e-5&&d[2]>0.5e-5);system("pause");return 0;}实验结果与分析1.列主元素消元法2.完全组元素消元法3.LU分解法4.高斯-赛德尔迭代法讨论、心得(可选):了解Gauss消元法、LU分解法、追赶法等线性方程组直接求解的基本方法、基本原理;能够按照工程实际要求,选择适当的算法;通过编写程序,进行算法设计和数值求解,了解雅可比迭代法、高斯-赛德尔迭代法等线性方程组迭代求解的基本方法、基本原理,能够按照工程实际要求,选择适当的算法,通过编写程序,进行算法设计和数值求解。
数值计算方法实验报告
《数值计算方法》实验报告班级数学132班学号201300144402姓名袁媛2016年 1月3日实验报告一1. 实验名称解线性方程组的直接法 2.实验题目用追赶法求解下列方程组⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛101053-001-21-002-31-001-24321x x x x 3.实验目的熟练运用已经学过的方法计算方程组,巩固已经学到的解决方程组的方法,培养使用计算机进行科学计算和解决问题的能力,熟悉了解这样的系数矩阵,能运用追赶法进行方程组的求解。
4.基础理论设A 有如下形式的分解⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=------11......11...............1211122111122211n n n n n n n n n n t t t s r s r s r s b a c b a c b a c b A 其中,i i r s 和i t 为待定常数,则有1,...,3,2,, (3)2,,,111111-===+====-n i t s c n i s t r b r a t s c s b i i i i i i i i i 由可得如下计算公式:1111111,1,...,3,2,/,,/,---==-==-====n n n n n n i i i i i i i i i t r b s a r n i s c t t r b s a r s c t b s 即在A 满足条件的情况下,可以把{}{}i i s r ,和{}i t 完全确定出来,从而实现上面给定形式的LU 分解,且i r 等于),...3,2(n i a i =。
这样,求解三对角阵方程组Ax=f 就等价于求解两个三角形方程组y Ux f Ly ==, 从而得到公式:(1)计算{}i s 和{}i t 的递推公式 ;1, (3)2,/,,/11111---=-==-==n n n n i i i i i i i t a b s n i s c t t a b s b c t (2)求解f Ly = ni s y a f y b f y i i i i i ,...,3,2,/)(,/1111=-==-(3)求解y Ux =1,...,2,1,,1--=-==+n n i x t y x y x i i i i n n通常把计算121...-→→→n t t t 和n y y y →→→...21的过程称为追的过程,而把计算方程组的解11...x x x n n →→→-的过程称为赶的过程,这一方法称为解三角方程组的追赶法。
太原理工大学计算机数值方法实验报告
(1)Gauss消元法:基本思想为:对于n阶线性方程组,只要各步主元素不为0,经过n-1步消元,就可以得到一个等价的的系数矩阵为上三角形矩阵的方程组,然后再利用回代过程即可求得原方程的解。时间复杂度约为O(n3)。
(2)Gauss列主元素消元法:基本思想:在用高斯消元法求解方程组时,用作除法的小主元素可能使舍入误差增加,因此需要考虑依次按列选主元素,然后换行使之变到主元素位置上,再进行消元计算。
m=m+A[i][j]*x0[j];
x1[i]=(A[i][n+1]-m)/A[i][i];
}lf\n",i,x1[i]);
return 0;
}
(2)高斯赛德尔迭代法:
#include<>
#include<>
int main()
{
double e,m,q,A[12][12],x0[12],x1[12];/*x[0]和x[1]分别表示第k次和第k+1次迭代结果,且初始x[0]=0*/
1、实验目的和要求:
(1)实验目的:使用雅可比迭代法或高斯-赛德尔迭代法对下列方程组进行求解。
10X1-X2-2X3=
-X1+10X2-2X3=
-X1-X2+5X3=
(2)实验要求:
1.应用C,C++或JAVA编出通用程序,源程序要有详细的注释和说明;
2.比较计算结果,对不同方法进行比较分析;
3.实验完成,提交实验结果并写出报告,分析计算结果是否符合问题的要求,找出计算成功的原因或计算失败的教训。
(1)实验目的:合理利用Gauss消元法、LU分解法求解下列方程组:
++=
数值计算方法实验报告
一、实验目的1. 熟悉数值计算的基本概念和方法;2. 掌握数值计算的基本原理和算法;3. 提高编程能力和数值计算能力;4. 通过实验,加深对数值计算方法的理解和应用。
二、实验内容1. 矩阵运算2. 线性方程组求解3. 函数求值4. 微分方程求解三、实验步骤1. 矩阵运算(1)编写程序实现矩阵的加法、减法、乘法运算;(2)编写程序实现矩阵的转置运算;(3)编写程序实现矩阵的逆运算。
2. 线性方程组求解(1)编写程序实现高斯消元法求解线性方程组;(2)编写程序实现雅可比迭代法求解线性方程组;(3)编写程序实现高斯-赛德尔迭代法求解线性方程组。
3. 函数求值(1)编写程序实现牛顿迭代法求函数的零点;(2)编写程序实现二分法求函数的零点;(3)编写程序实现割线法求函数的零点。
4. 微分方程求解(1)编写程序实现欧拉法求解一阶微分方程;(2)编写程序实现龙格-库塔法求解一阶微分方程;(3)编写程序实现龙格-库塔-法求解二阶微分方程。
四、实验结果与分析1. 矩阵运算(1)矩阵加法、减法、乘法运算结果正确;(2)矩阵转置运算结果正确;(3)矩阵逆运算结果正确。
2. 线性方程组求解(1)高斯消元法求解线性方程组,结果正确;(2)雅可比迭代法求解线性方程组,结果正确;(3)高斯-赛德尔迭代法求解线性方程组,结果正确。
3. 函数求值(1)牛顿迭代法求函数的零点,结果正确;(2)二分法求函数的零点,结果正确;(3)割线法求函数的零点,结果正确。
4. 微分方程求解(1)欧拉法求解一阶微分方程,结果正确;(2)龙格-库塔法求解一阶微分方程,结果正确;(3)龙格-库塔-法求解二阶微分方程,结果正确。
五、实验总结本次实验通过对数值计算方法的学习和实践,使我对数值计算有了更深入的了解。
以下是我对本次实验的总结:1. 矩阵运算是数值计算的基础,熟练掌握矩阵运算对于解决实际问题具有重要意义;2. 线性方程组求解是数值计算中常见的问题,高斯消元法、雅可比迭代法和高斯-赛德尔迭代法是常用的求解方法;3. 函数求值是数值计算中另一个常见问题,牛顿迭代法、二分法和割线法是常用的求解方法;4. 微分方程求解是数值计算中的难点,欧拉法、龙格-库塔法和龙格-库塔-法是常用的求解方法。
数值计算方法实验报告
数值分析实验报告实验一、解线性方程组的直接方法——梯形电阻电路问题利用追赶法求解三对角方程组的方法,解决梯形电阻电路问题:电路中的各个电流{1i ,2i ,…,8i }须满足下列线性方程组:R V i i =- 22 210 252321=-+-i i i 0 252 432=-+-i i i 0 252 543=-+-i i i 0 252 654=-+-i i i 0 252 765=-+-i i i 0 252 876=-+-i i i 052 87=+-i i设V 220=V ,Ω=27R ,运用追赶法,求各段电路的电流量。
问题分析:上述方程组可用矩阵表示为:⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡--------------00000001481.8522520000002520000002520000002520000002520000002520000002287654321i i i i i i i i问题转化为求解A x b =,8阶方阵A 满足顺序主子式(1,2...7)0i A i =≠,因此矩阵A存在唯一的Doolittle 分解,可以采用解三对角矩阵的追赶法!追赶法a=[0 -2 -2 -2 -2 -2 -2 -2]; b=[2 5 5 5 5 5 5 5];c=[-2 -2 -2 -2 -2 -2 -2 0]; d=[220/27 0 0 0 0 0 0 0];Matlab 程序function x= zhuiganfa( a,b,c,d )%追赶法实现要求:|b1|>|C1|>0,|bi|>=|ai|+|ci| n=length(b); u=ones(1,n); L=ones(1,n); y=ones(1,n); u(1)=b(1); y(1)=d(1); for i=2:nL(i)=a(i)/u(i-1);u(i)=b(i)-c(i-1)*L(i); y(i)=d(i)-y(i-1)*L(i); endx(n)=y(n)/u(n); for k=n-1:-1:1x(k)=(y(k)-c(k)*x(k+1))/u(k); end endMATLAB 命令窗口输入:a=[0 -2 -2 -2 -2 -2 -2 -2]; b=[2 5 5 5 5 5 5 5];c=[-2 -2 -2 -2 -2 -2 -2 0] d=[220/27 0 0 0 0 0 0 0];x= zhuiganfa(a,b,c,d )运行结果为:x =8.1478 4.0737 2.0365 1.0175 0.5073 0.2506 0.1194 0.0477存在问题根据电路分析中的所讲到的回路电流法,可以列出8个以回路电流为独立变量的方程,课本上给出的第八个回路电流方程存在问题,正确的应该是78240i i -+=;或者可以根据电路并联分流的知识,同样可以确定78240i i -+=。
数值计算方法上机实验报告
数值计算方法上机实验报告实验目的:复习和巩固数值计算方法的基本数学模型,全面掌握运用计算机进行数值计算的具体过程及相关问题。
利用计算机语言独立编写、调试数值计算方法程序,培养学生利用计算机和所学理论知识分析解决实际问题的能力。
上机练习任务:利用计算机基本C 语言编写并调试一系列数值方法计算通用程序,并能正确计算给定题目,掌握调试技能。
掌握文件使用编程技能,如文件的各类操作,数据格式设计、通用程序运行过程中文件输入输出运行方式设计等。
一、各算法的算法原理及计算机程序框图1. 列主元高斯消去法算法原理:高斯消去法是利用现行方程组初等变换中的一种变换,即用一个不为零的数乘一个方程后加只另一个方程,使方程组变成同解的上三角方程组,然后再自下而上对上三角方程组求解。
列选住院是当高斯消元到第k 步时,从k 列的kk a 以下(包括kk a )的各元素中选出绝对值最大的,然后通过行交换将其交换到kk a 的位置上。
交换系数矩阵中的两行(包括常数项),只相当于两个方程的位置交换了,因此,列选主元不影响求解的结果。
●源程序:#define N 200#include "stdio.h"#include "math.h"FILE *fp1,*fp2;void LZ(){int n,i,j,k=0,l;double d,t,t1;static double x[N],a[N][N];fp1=fopen("a1.txt","r");fp2=fopen("b1.txt","w");fscanf(fp1,"%d",&n);for(i=0;i<n;++i)for(j=0;j<=n;++j){fscanf(fp1,"%lf",&a[i][j]);}{d=a[k][k];l=k;i=k+1;do{if(fabs(a[i][k])>fabs(d)) /*选主元*/{d=a[i][k];l=i;}i++;}while(i<n);if(d==0){printf("\n输入矩阵有误!\n");}else{ /*换行*/if(l!=k){for(j=k;j<=n;j++){t=a[l][j];a[l][j]=a[k][j];a[k][j]=t;}}}for(j=k+1;j<=n;j++) /*正消*/ a[k][j]/=a[k][k];for(i=k+1;i<n;i++)for(j=k+1;j<=n;j++)a[i][j]-=a[i][k]*a[k][j];k++;}while(k<n);if(k!=0){for(i=n-1;i>=0;i--) /*回代*/ {t1=0;for(j=i+1;j<n;j++)t1+=a[i][j]*x[j];x[i]=a[i][n]-t1;}for(i=0;i<n;i++)fprintf(fp2,"\n 方程组的根为x[%d]=%lf",i+1,x[i]); fclose(fp1); fclose(fp2); }main() { LZ(); }● 具体算例及求解结果:用列选主元法求解下列线性方程组⎪⎩⎪⎨⎧=++=++=-+28x x 23x 2232832321321321x x x x x x 输入3 输出结果:方程组的根为x[1]=6.0000001 2 -3 8 方程组的根为x[2]=4.000000 2 1 3 22 方程组的根为x[3]=2.000000 3 2 1 28● 输入变量、输出变量说明:输入变量:ij a 系数矩阵元素,i b 常向量元素 输出变量:12,,n b b b 解向量元素2. 杜里特尔分解法解线性方程● 算法原理:求解线性方程组Ax b =时,当对A 进行杜里特尔分解,则等价于求解LUx b =,这时可归结为利用递推计算相继求解两个三角形(系数矩阵为三角矩阵)方程组,用顺代,由Ly b =求出y ,再利用回带,由Ux y =求出x 。
数值计算方法实验报告
数值计算方法实验报告一、实验目的本实验旨在通过Python语言编写数值计算方法程序,掌握常见数值计算方法的实现原理及应用。
具体包括:插值法、最小二乘法、数值微积分、数值解方程、数值解微分方程等。
二、实验环境Python编程语言、Jupyter Notebook环境三、实验内容1.插值法(1)代码实现:在Python中使用Scipy库中的Interpolate模块实现拉格朗日插值法和牛顿插值法,并通过数据可视化展示其效果。
(2)实验步骤:- 导入所需库,准备所需数据;- 定义拉格朗日插值法函数;- 定义牛顿插值法函数;- 测试函数并可视化结果。
(3)实验结果:2.最小二乘法(1)代码实现:在Python中使用Numpy库实现最小二乘法,并通过数据可视化展示其效果。
(2)实验步骤:- 导入所需库,准备所需数据;- 定义最小二乘法函数;- 测试函数并可视化结果。
(3)实验结果:3.数值微积分(1)代码实现:在Python中实现梯形法和辛普森法,并通过数据可视化展示其效果。
(2)实验步骤:- 导入所需库,准备所需数据;- 定义梯形法函数和辛普森法函数;- 测试函数并可视化结果。
(3)实验结果:4.数值解方程(1)代码实现:在Python中实现二分法、牛顿法和割线法,并通过数据可视化展示其效果。
(2)实验步骤:- 导入所需库,准备所需数据;- 定义二分法函数、牛顿法函数和割线法函数;- 测试函数并可视化结果。
(3)实验结果:5.数值解微分方程(1)代码实现:在Python中实现欧拉法和龙格-库塔法,并通过数据可视化展示其效果。
(2)实验步骤:- 导入所需库,准备所需数据;- 定义欧拉法函数和龙格-库塔法函数;- 测试函数并可视化结果。
(3)实验结果:四、实验总结通过本次实验,我学习了数值计算方法的常用算法和实现原理,掌握了Python 语言实现数值计算方法的方法,加深了对数值计算方法的理解和应用。
实验中遇到的问题,我通过查找资料和与同学的讨论得到了解决,也更加熟练地掌握了Python语言的使用。
(完整word版)数值计算方法实验报告(含所有)
本科实验报告课程名称:计算机数值方法实验项目:计算机数值方法实验实验地点:虎峪校区致远楼B401专业班级:软件学院1217班学号:201200xxxx 学生姓名:XXX指导教师:xxx2014 年5 月21日太原理工大学学生实验报告、实验目的和要求熟悉使用、迭代法、牛顿法、割线法等方法对给定的方程进行根的求解。
选择上述方法中的两种方法求方程:二分法f(x)=x3+4x2-10=0在[1,2]内的一个实根,且要求满足精度|x*-x n|<0.5 W5二、主要设备笔记本HP ProBook 6470b —台编译软件:VC++6.0三、实验内容和原理函数f(x)在区间(x, y)上连续,先在区间(x, y)确定a与b,若f(a) , f(b) 异号,说明在区间(a , b)内存在零点,然后求f[(a+b)/2]。
假设F(a)<0,F(b)>0,a<b ,①如果f[(a+b)/2]=0 ,该点即为零点;②如果f[(a+b)/2]<0 ,则区间((a+b)/2 ,b)内存在零点,(a+b)/2 > a;③如果f[(a+b)/2]>0 ,则区间(a,(a+b)/2) 内存在零点,(a+b)/2 < b;返回①重新循环,不断接近零点。
通过每次把f(x)的零点所在区间收缩一半的方法,使区间内的两个端点逐步逼近函数零点,最终求得零点近似值。
四、操作方法与实验步骤1. 二分法:#in clude<stdio.h>#in clude<stdlib.h>#in clude<math.h> int mai n(){double a=1.0, b=2.0;实验地点虎峪校区致远楼B401指导教师xx五、实验结果与分析二分法分析:由程序知,使用二分法和割线法均能计算出方程的根,但利用割线法要比二分 法计算的次数少,并且能够较早的达到精度要求。
相比之下,割线法程序代码量较少,精简明了。
数值计算方法实验报告
数值计算方法实验报告实验目的:本次实验的目的是通过对数值计算方法的实践操作,加深对该方法的理解和掌握。
具体来说,本次实验旨在通过使用 MATLAB 软件对一些常见的数值计算问题进行求解,从而掌握和熟练运用一些数值计算方法,如插值、数值微积分、常微分方程数值解等。
实验过程:1.插值(1) Lagrange 插值法(2) Newton 插值法2.数值微积分(1) 梯形公式(2) Simpson 公式3.常微分方程数值解(1) 古典四步 Runge-Kutta 法(2) 改进四步 Runge-Kutta 法实验结果:本次实验中,我们使用 MATLAB 软件对以上数值计算问题进行了求解,成功得到了相应的数值解,并且通过分析和比较不同的数值计算方法的结果,得出了以下结论:1.在插值问题中,Lagrange 插值法和 Newton 插值法的结果相对较为接近,但是 Newton 插值法的计算速度更快。
2.在数值微积分问题中,梯形公式的结果较为精确,但是 Simpson 公式的精度更高。
3.在常微分方程数值解问题中,古典四步 Runge-Kutta 法和改进四步 Runge-Kutta 法均能得到较为准确的结果,但是改进四步Runge-Kutta 法的精度更高,尤其对于复杂的常微分方程求解有更好的效果。
实验结论:本次实验通过对数值计算方法的实践操作,深入理解了该方法的原理和运用,掌握了一些重要的数值计算方法,如插值、数值微积分、常微分方程数值解等,并且通过实验结果的分析比较,得出了相应的结论。
这些知识和技能对于我们在科研和工程实践中的数值计算问题具有非常重要的意义,具有广泛的应用前景。
数值计算方法实验报告
数值计算方法实验报告数值计算方法实验报告引言:数值计算方法是一种通过数学模型和计算机算法来解决实际问题的方法。
在科学研究和工程应用中,数值计算方法被广泛应用于求解方程、优化问题、模拟仿真等领域。
本实验报告将介绍数值计算方法的基本原理和实验结果。
一、二分法求根二分法是一种通过不断折半缩小搜索区间来求解方程根的方法。
在实验中,我们选取了一个简单的方程f(x) = x^2 - 4 = 0来进行求根实验。
通过不断将搜索区间进行二分,我们可以逐步逼近方程的根。
实验结果表明,通过二分法,我们可以得到方程的根为x = 2。
二、牛顿迭代法求根牛顿迭代法是一种通过不断逼近方程根的方法。
在实验中,我们同样选取了方程f(x) = x^2 - 4 = 0进行求根实验。
牛顿迭代法的基本思想是通过对方程进行线性近似,求得近似解,并不断迭代逼近方程的根。
实验结果表明,通过牛顿迭代法,我们可以得到方程的根为x = 2。
三、高斯消元法求解线性方程组高斯消元法是一种通过变换线性方程组的系数矩阵,将其化为上三角矩阵的方法。
在实验中,我们选取了一个简单的线性方程组进行求解实验。
通过对系数矩阵进行行变换,我们可以将其化为上三角矩阵,并通过回代求解得到方程组的解。
实验结果表明,通过高斯消元法,我们可以得到线性方程组的解为x = 1,y = 2,z = 3。
四、插值与拟合插值与拟合是一种通过已知数据点来构造函数模型的方法。
在实验中,我们选取了一组数据点进行插值与拟合实验。
通过拉格朗日插值多项式和最小二乘法拟合,我们可以得到数据点之间的函数模型。
实验结果表明,通过插值与拟合,我们可以得到数据点之间的函数关系,并可以通过该函数模型来进行预测和拟合。
结论:数值计算方法是一种通过数学模型和计算机算法来解决实际问题的方法。
通过本次实验,我们学习了二分法求根、牛顿迭代法求根、高斯消元法求解线性方程组以及插值与拟合的基本原理和应用。
这些方法在科学研究和工程应用中具有广泛的应用前景。
数值计算方法实验报告
数值计算方法实验报告实验目的:本实验的目的是了解数值计算方法的基本原理和应用,掌握数值计算方法的基本步骤和算法,熟练运用数值计算方法解决实际问题。
实验内容:1. 基本数值计算方法的实现,如二分法、牛顿迭代法、弦截法等。
2. 常微分方程数值解法的实现,如欧拉法、龙格-库塔法等。
3. 常微分方程组数值解法的实现,如欧拉法、龙格-库塔法等。
4. 线性方程组数值解法的实现,如高斯消元法、LU分解法等。
5. 插值与拟合的实现,如拉格朗日插值、牛顿插值、最小二乘法等。
实验步骤:1. 根据教材或参考资料,了解数值计算方法的基本原理和应用。
2. 根据实验内容和要求,选择相应的数值计算方法,编写程序实现。
3. 运用编写的程序,解决给定的数值计算问题,分析计算结果。
4. 根据实验结果,总结数值计算方法的优缺点及应用范围。
实验要求:1. 熟练掌握数值计算方法的基本原理和应用,能够灵活运用数值计算方法解决实际问题。
2. 编写程序时,注意代码的简洁性、可读性和可维护性。
3. 实验数据要求准确,计算结果要仔细分析,结果要清晰明了地展示。
4. 实验报告要求格式规范,内容全面、准确、详细,表述清晰,思路流畅,使用正确的数学符号和术语。
结论:数值计算方法是一种重要的数学工具,在很多领域有广泛应用。
本实验通过编写程序,实现了基本数值计算方法、常微分方程数值解法、常微分方程组数值解法、线性方程组数值解法、插值与拟合等方法,通过实例计算,分析了计算结果,总结了数值计算方法的优缺点及应用范围。
此次实验提高了我们的数学计算和编程能力,对我们今后的学习和工作有很大帮助。
数值计算方法实验报告
数值计算方法实验报告一、实验目的本实验旨在通过数值计算方法的实验操作,深入理解数值计算方法的原理与应用,掌握数值计算方法的相关技能,提高数值计算方法的实际应用能力。
二、实验内容1.数值微积分2.数值代数3.数值微分方程4.数值线性代数5.数值优化6.数值统计分析7.数值随机模拟8.数值傅立叶分析9.数值偏微分方程三、实验步骤1.数值微积分:通过不同的数值积分方法,计算给定函数的定积分值,并对不同数值积分方法的误差进行分析。
2.数值代数:通过使用线性代数方法,求解给定的线性方程组,并分析不同线性方程组求解方法的优劣。
3.数值微分方程:通过使用常微分方程数值解法,求解给定的微分方程,并比较不同求解方法的精度和稳定性。
4.数值线性代数:通过使用特征值分解方法,对给定的矩阵进行特征值分解,并分析不同特征值分解方法的优缺点。
5.数值优化:通过使用不同的优化方法,求解给定的优化问题,并比较不同的优化方法的效率和精度。
6.数值统计分析:通过使用不同的统计分析方法,对给定的数据进行统计分析,并分析不同的统计方法的优缺点。
7.数值随机模拟:通过使用随机模拟方法,模拟给定的概率分布,并分析不同随机模拟方法的效率和精度。
8.数值傅立叶分析:通过使用傅立叶分析方法,对给定的信号进行频谱分析,并分析不同的傅立叶分析方法的优缺点。
9.数值偏微分方程:通过使用偏微分方程数值解法,求解给定的偏微分方程,并比较不同求解方法的精度和稳定性。
四、实验结果与分析本实验中,通过对不同的数值计算方法的实验操作,我们可以更深入地理解数值计算方法的原理与应用,并掌握数值计算方法的相关技能,提高数值计算方法的实际应用能力。
同时,通过实验结果的分析,我们可以更好地比较不同数值计算方法的优缺点,为实际应用提供参考依据。
五、实验总结本实验旨在通过数值计算方法的实验操作,深入理解数值计算方法的原理与应用,掌握数值计算方法的相关技能,提高数值计算方法的实际应用能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本科实验报告
课程名称:计算机数值方法
实验项目:方程求根、线性方程组的直接解
法、线性方程组的迭代解法、代数插值和最
小二乘拟合多项式
实验地点:行勉楼
专业班级: ******** 学号: *********
学生姓名: ******** 指导教师:李誌,崔冬华
2016年 4 月 8 日
y = x*x*x + 4 * x*x - 10;
return y;
}
float Calculate(float a,float b)
{
c = (a + b) / 2;
n++;
if (GetY(c) == 0 || ((b - a) / 2) < 0.000005)
{
cout << c <<"为方程的解"<< endl;
return 0;
}
if (GetY(a)*GetY(c) < 0)
{
return Calculate(a,c);
}
if (GetY(c)*GetY(b)< 0)
{
return Calculate(c,b);
}
}
};
int main()
{
cout << "方程组为:f(x)=x^3+4x^2-10=0" << endl;
float a, b;
Text text;
text.Getab();
a = text.a;
b = text.b;
text.Calculate(a, b);
return 0;
}
2.割线法:
// 方程求根(割线法).cpp : 定义控制台应用程序的入口点。
//
#include "stdafx.h"
#include"iostream"
心得体会
使用不同的方法,可以不同程度的求得方程的解,通过二分法计算的程序实现更加了解二分法的特点,二分法过程简单,程序容易实现,但该方法收敛比较慢一般用于求根的初始近似值,不同的方法速度不同。
面对一个复杂的问题,要学会简化处理步骤,分步骤一点一点的循序处理,只有这样,才能高效的解决一个复杂问题。
2.LU分解法:
#include<stdio.h>
#include<math.h>
int i,j,k,r;
double m=0,p=0;
double a[3][3];
void lu(double a[3][3])
{
for(i=1;i<=2;i++)
{
if(a[0][0]!=0)
a[i][0]=a[i][0]/a[0][0];
}
for(k=1;k<=2;k++)
{
for(j=k;j<=2;j++)
{
{
for(r=0;r<=k-1;r++)
for(i=1;i<=2;i++)
{
for(r=0;r<=i-1;r=r+1)
m=m+a[i][r]*c[r];
c[i]=b[i]-m;
m=0;
}
d[2]=c[2]/f[2][2];
for(i=1;i>=0;i=i-1)
{
for(r=2;r>i;r=r-1)
n=n+f[i][r]*d[r];
d[i]=(c[i]-n)/f[i][i];
n=0;
}
printf("所求方程组解为x1=%f, x2=%f, x3=%f",d[0],d[1],d[2]); /*根据LU分解所得两个矩阵及求解步骤计算所求X一组解*/
}
心得体会
对于求解线性方程组的各种直接方法来说各有优缺点,在所有的求解方法中都应该注意其解的精度。
注意不同求解方法的不同误差求法。
编写程序的时候需要一步一步慢慢来,逐步增加自己的算法知识水平和解决问题的能力。
}
return0;
}
心得体会
在编写算法是不熟悉,查阅了很多资料,经过反复研究和试验后实现了题目的要求,使用雅克比迭代法和高斯-赛德尔都可以得到方程的解,但相比之下,高斯-赛德尔的迭代次数要比雅克比的迭代次数少,能够更快的达到所求的解的精度。
l+=y[i]*m;
m=1;
}
printf("结果为%lf",l);
return 0;
}
最小二乘法:
#include "stdio.h"
#include "math.h"
int main()
{double x[7]={0,0.5,0.6,0.7,0.8,0.9,1.0},
y[7]={1,1.75,1.96,2.19,2.44,2.71,3.00},
a0,a1,sum1=0,sum2=0,sum3=0,sum4=0,sum5=0,l,r; int m=6,i,k;
for(i=0;i<7;i++)
{
sum1+=x[i];
sum2+=x[i]*x[i];
sum3+=y[i];
sum4+=x[i]*y[i];
sum5+=y[i]*y[i];
}
l=sum1/(m+1);
a1=(sum4-l*sum3)/(sum2-l*sum1);
a0=(sum3-sum1*a1)/(m+1);
double s=sum3*a0+sum4*a1;
r=sum5-s;
printf("y=a0+a1*x\n");
printf("a0=%f a1=%f\t\n",a0,a1,r);
double q=0.856,p;
p=a0+a1*q;
printf("y=%f\n",p);
return 0;
}。