2018-2019学年人教A版高中数学必修四课件:第一章 1.3(二) 三角函数的诱导公式(共48张PPT)
2018-2019学年高中数学 第一章 常用逻辑用语 1.3.1 且(and)1.3.2 或(o
1.3.1 且(and)1.3.2 或(or)1.3.3 非(not)1.了解逻辑联结词“且”“或”“非”的含义,会判断含有这类逻辑联结词的命题的真假.2.结合具体实例,在了解“且”“或”“非”含义的基础上,掌握这类联结词的用法.3.在结合实例学习逻辑联结词的过程中,体会用逻辑语言表达数学内容的准确性和简洁性.1.用逻辑联结词构成新命题构成新命题记作读作用联结词“且”把命题p和命题q联结起来,就得到一个新命题p∧q p且q用联结词“或”把命题p和命题q联结起来,就得到一个新命题p∨q p或q对一个命题p全盘否定,就得到一个新命题﹁p 非p或p 的否定对逻辑联结词的理解(1)“且”表示同时的意思,可联系集合中“交集”的概念.(2)“或”表示至少一个,可联系集合中“并集”的概念.(3)“非”表示对原命题否定,可联系集合中“补集”的概念.2.含有逻辑联结词的命题的真假判断p q p∨q p∧q ﹁p真真真真假真假真假假假真真假真假假假假真确定p∧q,p∨q,﹁p真假的记忆口诀如下:p∧q→见假即假,p∨q→见真即真,p与﹁p→真假相反.判断(正确的打“√”,错误的打“×”)(1)逻辑联结词“且”“或”只能出现在命题的结论中.( )(2)“p∨q为假命题”是“p为假命题”的充要条件.( )(3)命题“p∨(﹁p)”是真命题.( )(4)命题的否定与否命题是相同的概念.( )答案:(1)×(2)×(3)√(4)×命题“矩形的对角线相等且互相平分”是( )A.“p∧q”形式的命题B.“p∨q”形式的命题C.“﹁p”形式的命题D.以上说法都不对答案:A若p:正数的平方大于0,q:负数的平方大于0,则p∨q:________________.(用文字语言表述)答案:正数或负数的平方大于0下列命题:①5>4或4>5;②9≥3;③命题“若a>b,则a+c>b+c”;④命题“菱形的两条对角线互相垂直平分”,其中真命题为________.答案:①②③④探究点1 用逻辑联结词构造新命题分别写出由下列命题构成的“p∨q”“p∧q”“﹁p”形式的命题:(1)p:π是无理数;q:e不是无理数;(2)p:三角形的外角等于与它不相邻的两个内角的和;q:三角形的外角大于与它不相邻的任何一个内角.【解】(1)“p∨q”:π是无理数或e不是无理数;“p∧q”:π是无理数且e不是无理数;“﹁p”:π不是无理数.(2)“p∨q”:三角形的外角等于与它不相邻的两个内角的和或大于与它不相邻的任何一个内角;“p∧q”:三角形的外角等于与它不相邻的两个内角的和且大于与它不相邻的任何一个内角;“﹁p”:三角形的外角不等于与它不相邻的两个内角的和.用逻辑联结词构造新命题的两个步骤指出下列命题的形式及构成它的简单命题:(1)96是48与16的倍数; (2)方程x 2-3=0没有有理根;(3)不等式x 2-x -2>0的解集是{x |x >2或x <-1}.解:(1)这个命题是“p ∧q ”的形式,其中p :96是48的倍数,q :96是16的倍数. (2)这个命题是“﹁p ”的形式,其中p :方程x 2-3=0有有理根.(3)这个命题是“p ∨q ”的形式,其中p :不等式x 2-x -2>0的解集是{x |x >2},q :不等式x 2-x -2>0的解集是{x |x <-1}.探究点2 含逻辑联结词的命题的真假判断(1)已知命题p :对任意的x >0,ln(x +1)>0;命题q :若a >b ,则a 2>b 2.下列命题为真命题的是( )A .p ∧qB .p ∧﹁qC .﹁p ∧qD .﹁p ∧﹁q(2)给出两个命题:p :函数y =x 2-x -1有两个不同的零点;q :若1x<1,则x >1.在下列四个命题中,真命题是( )A .(﹁p )∨qB .p ∧qC .(﹁p )∧(﹁q )D .(﹁p )∨(﹁q )【解析】 (1)因为x >0,x +1>1,所以ln(x +1)>0,所以命题p 为真命题;当b <a <0时,a 2<b 2,故命题q 为假命题,由真值表可知B 正确,故选B .(2)对于p ,函数对应的方程x 2-x -1=0的判别式Δ=(-1)2-4×(-1)=5>0,所以函数有两个不同的零点,故命题p 为真命题.对于q ,当x <0时,不等式1x<1恒成立,所以命题q 为假命题.所以命题(﹁p )∨q 、p ∧q 、(﹁p )∧(﹁q )均为假命题,(﹁p )∨(﹁q )为真命题.【答案】 (1)B (2)D判断命题真假的三个步骤(1)明确命题的结构,即命题是“p ∧q ”“p ∨q ”,还是“﹁p ”. (2)对命题p 和q 的真假作出判断.(3)由“p ∧q ”“p ∨q ”“﹁p ”的真假判断方法给出结论.分别写出由下列命题构成的“p ∨q ”“p ∧q ”“﹁p ”形式的命题,并判断其真假.(1)p :3是9的约数,q :3是18的约数;(2)p :矩形的对角线相等,q :矩形的对角线互相垂直. 解:(1)p ∨q :3是9的约数或是18的约数,此命题为真命题.p ∧q :3是9的约数且是18的约数,此命题为真命题.﹁p :3不是9的约数,此命题为假命题.(2)p ∨q :矩形的对角线相等或互相垂直,此命题为真命题.p ∧q :矩形的对角线相等且互相垂直,此命题为假命题.﹁p :矩形的对角线不相等,此命题为假命题.探究点3 利用含逻辑联结词的命题的真假求参数的取值范围已知p :方程x 2+mx +1=0有两个不等的负实数根;q :方程4x 2+4(m -2)x +1=0无实数根,若“p ∨q ”为真命题,且“p ∧q ”是假命题,求实数m 的取值范围.【解】 p :方程x 2+mx +1=0有两个不等的负实数根⇔⎩⎪⎨⎪⎧Δ=m 2-4>0-m <0⇔m >2.q :方程4x 2+4(m -2)x +1=0无实数根⇔Δ=16(m -2)2-16<0⇔1<m <3.所﹁p :m ≤2,﹁q :m ≤1或m ≥3.因为“p ∨q ”为真命题,且“p ∧q ”是假命题, 所以p 为真且q 为假,或p 为假且q 为真. (1)当p 为真且q 为假时, 即p 为真且﹁q 为真,所以⎩⎪⎨⎪⎧m >2m ≤1或m ≥3,解得m ≥3;(2)当p 为假且q 为真时,即﹁p 为真且q 为真,所以⎩⎪⎨⎪⎧m ≤21<m <3,解得1<m ≤2.综上所述,实数m 的取值范围是(1,2]∪[3,+∞).[变条件]若本例条件变为:(﹁p )∨(﹁q )为假命题,其他条件不变,求实数m 的取值范围.解:由例题解析可知p :m >2,q :1<m <3,若“(﹁p )∨(﹁q )”为假命题,即p ∧q 为真命题,所以⎩⎪⎨⎪⎧m >21<m <3,解得2<m <3.所以实数m 的取值范围是(2,3).应用逻辑联结词求参数范围的四个步骤(1)分别求出命题p ,q 为真时对应的参数集合A ,B . (2)由“p 且q ”“p 或q ”的真假讨论p ,q 的真假. (3)由p ,q 的真假转化为相应的集合的运算. (4)求解不等式或不等式组得到参数的取值范围.[注意] 当p ,q 中有假命题时,求参数范围应从求真命题的补集入手,可简化运算,减少出错.已知命题p :|m +1|≤2成立,命题q :方程x 2-2mx +1=0有实数根,若﹁p 为假命题,p ∧q 为假命题,求实数m 的取值范围.解:由|m +1|≤2得-3≤m ≤1, 即命题p :-3≤m ≤1.由方程x 2-2mx +1=0有实数根,得Δ=(-2m )2-4≥0, 即m ≥1或m ≤-1, 即命题q :m ≥1或m ≤-1. 因为﹁p 为假命题,p ∧q 为假命题,所以p 为真命题,q 为假命题,﹁q 为真命题,﹁q :-1<m <1,由⎩⎪⎨⎪⎧-3≤m ≤1,-1<m <1得-1<m <1. 所以m 的取值范围是(-1,1).1.命题“三角形中最多有一个内角是钝角”的否定是( ) A .三角形中有两个内角是钝角 B .三角形中有三个内角是钝角 C .三角形中至少有两个内角是钝角 D .三角形中没有一个内角是钝角解析:选C .三角形有三个内角,“最多有一个内角是钝角”的含义是“有0个或1个内角是钝角”,它的否定是“有2个或3个内角是钝角”,即“至少有两个内角是钝角”,选C .2.设命题p :函数y =sin 2x的最小正周期为π2;命题q :函数y =cos x 的图象关于直线x =π2对称.下列判断正确的是( )A .p 为真B .﹁q 为假C .p ∧q 为假D .p ∨q 为真解析:选C .由函数y =sin 2x 的最小正周期为π可知命题p 是假命题;由函数y =cosx 的图象关于直线x =k π(k ∈Z )对称可知命题q 是假命题,所以p ∧q 是假命题,可知应选C .3.已知p :点P 在直线y =2x -3上,q :点P 在直线y =-3x +2上,则使命题p ∧q 为真命题的一个点P (x ,y )是 ( )A .(0,-3)B .(1,2)C .(1,-1)D .(-1,1)解析:选C .因为p ∧q 为真命题,所以p ,q 均为真命题,即点P 为直线y =2x -3与y=-3x +2的交点,故有⎩⎪⎨⎪⎧y =2x -3,y =-3x +2,解得⎩⎪⎨⎪⎧x =1,y =-1.故选C . 4.分别写出由下列命题构成的“p ∨q ”“p ∧q ”“﹁p ”形式的新命题.(1)p :方程x 2+2x +1=0有两个相等的实数根,q :方程x 2+2x +1=0两根的绝对值相等;(2)p :正△ABC 的三个内角都相等,q :正△ABC 有一个内角是直角. 解:(1)p ∨q :方程x 2+2x +1=0有两个相等的实数根或两根的绝对值相等.p ∧q :方程x 2+2x +1=0有两个相等的实数根且两根的绝对值相等.﹁p :方程x 2+2x +1=0没有两个相等的实数根.(2)p ∨q :正△ABC 的三个内角都相等或有一个内角是直角.p ∧q :正△ABC 的三个内角都相等且有一个内角是直角.﹁p :正△ABC 的三个内角不都相等.知识结构深化拓展1.命题与集合之间可以建立如下的对应关系:命题形式集合运算p 且q A ∩B ={x |x ∈A 且x ∈B } p 或qA ∪B ={x |x ∈A 或x ∈B }非p ∁U P={x|x∈U,x∉P}2.含有逻辑联结词命题的否定“或”“且”联结词的否定形式:“p或q”的否定形式是“﹁p且﹁q”,“p且q”的否定形式是“﹁p或﹁q”,它类似于集合中的“∁U(A∪B)=(∁U A)∩(∁U B),∁U(A∩B)=(∁U A)∪(∁U B)”.[学生用书P93(单独成册)])[A 基础达标]1.已知p:x∈A∩B,则﹁p是( )A.x∈A且x∉B B.x∉A或x∉BC.x∉A且x∉B D.x∈A∪B解析:选B.x∈A∩B,即x∈A且x∈B,故﹁p是x∉A或x∉B.2.已知命题p:若ab=0,则a=0;命题q:若a=0,则ab=0,则( )A.“p或q”为假B.“p且q”为真C.p真q假D.p假q真解析:选D.由条件易知:命题p为假命题,命题q为真命题,故p假q真.从而“p 或q”为真,“p且q”为假.3.设p,q是简单命题,则“‘p且q’为假”是“‘p或q’为假”的( )A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件解析:选A.“p且q”为假,即p和q中至少有一个为假;“p或q”为假,即p和q 都为假.故“‘p且q’为假”是“‘p或q’为假”的必要不充分条件.4.设a,b,c是非零向量.已知命题p:若a·b=0,b·c=0,则a·c=0.命题q:若a∥b,b∥c,则a∥c.则下列命题中真命题是( )A.p∨q B.p∧qC.(﹁p)∧(﹁q) D.p∨(﹁q)解析:选A.取a=c=(1,0),b=(0,1),显然a·b=0,b·c=0,但a·c=1≠0,所以p是假命题.a,b,c是非零向量,由a∥b知a=x b,由b∥c,知b=y c,所以a=xy c,所以a∥c,所以q是真命题.综上知p∨q是真命题,p∧q是假命题.又因为﹁p为真命题,﹁q为假命题,所以(﹁p)∧(﹁q),p∨(﹁q)都是假命题.5.(2018·福建福州长乐一中高二(上)月考)下列各组命题中,满足“p或q”为真,且“非p”为真的是( )A.p:0=∅;q:0∈∅B.p:在△ABC中,若cos 2A=cos 2B,则A=B;q:函数y=sin x在第一象限是增函数C.p:a+b≥2ab(a,b∈R);q:不等式|x|>x的解集为(-∞,0)D.p:圆(x-1)2+(y-2)2=1的面积被直线x=1平分;q:过点M(0,1)且与圆(x-1)2+(y-2)2=1相切的直线有两条解析:选C.A中,p,q均为假命题,故“p或q”为假,排除A;B中,由在△ABC中,cos 2A=cos 2B,得1-2sin2A=1-2sin2B,即(sin A+sin B)(sin A-sin B)=0,所以A-B=0,故p为真,从而“非p”为假,排除B;C中,p为假,从而“非p”为真,q 为真,从而“p或q”为真;D中,p为真,故“非p”为假,排除D.故选C.6.已知命题(﹁p)∨(﹁q)是假命题,则下列结论中:①命题p∧q是真命题;②命题p∧q是假命题;③命题p∨q是真命题;④命题p∨q是假命题.正确的是________(只填序号).解析:由(﹁p)∨(﹁q)是假命题,知﹁p与﹁q均为假命题,所以p,q均为真命题.故p∧q是真命题,p∨q是真命题.答案:①③7.已知命题p:{2}∈{1,2,3},q:{2}⊆{1,2,3},则下列结论:①p或q为真;②p或q为假;③p且q为真;④p且q为假;⑤非p为真;⑥非q为假.其中所有正确结论的序号是________.解析:因为p:{2}∈{1,2,3},q:{2}⊆{1,2,3},所以p假q真,故①④⑤⑥正确.答案:①④⑤⑥8.已知p:x2-x≥6,q:x∈Z.若“p∧q”“﹁q”都是假命题,则x的值组成的集合为________.解析:因为“p∧q”为假,“﹁q”为假,所以q为真,p为假.故⎩⎪⎨⎪⎧x 2-x <6,x ∈Z ,即⎩⎪⎨⎪⎧-2<x <3,x ∈Z . 因此,x 的值可以是-1,0,1,2. 答案:{-1,0,1,2}9.写出由下列命题构成的“p ∧q ”“p ∨q ”“﹁p ”形式的命题,并判断其真假. (1)p :集合中的元素是确定的,q :集合中的元素是无序的; (2)p :梯形有一组对边平行,q :梯形有一组对边相等. 解:(1)p ∧q :集合中的元素是确定的且是无序的,真命题.p ∨q :集合中的元素是确定的或是无序的,真命题.﹁p :集合中的元素不是确定的,假命题.(2)p ∧q :梯形有一组对边平行且有一组对边相等,假命题.p ∨q :梯形有一组对边平行或有一组对边相等,真命题.﹁p :梯形没有一组对边平行,假命题.10.已知命题p :1∈{x |x 2<a },命题q :2∈{x |x 2<a }. (1)若“p 或q ”为真命题,求实数a 的取值范围; (2)若“p 且q ”为真命题,求实数a 的取值范围. 解:若p 为真命题,则1∈{x |x 2<a }, 故12<a ,即a >1;若q 为真命题,则2∈{x |x 2<a }, 故22<a ,即a >4.(1)若“p 或q ”为真命题,则a >1或a >4,即a >1. 故实数a 的取值范围是(1,+∞).(2)若“p 且q ”为真命题,则a >1且a >4,即a >4. 故实数a 的取值范围是(4,+∞).[B 能力提升]11.已知命题p :函数y =2|x -1|的图象关于直线x =1对称;q :函数y =x +1x在(0,+∞)上是增函数.由它们组成的新命题“p 且q ”“p 或q ”“﹁p ”中,真命题有( )A .0个B .1个C .2个D .3个解析:选B .易知命题p 是真命题,y =x +1x在(0,1)上递减,在(1,+∞)上递增,故q 是假命题.因此“p 且q ”假,“p 或q ”真,“﹁p ”假,故选B .12.已知命题p :y =a x(a >0,且a ≠1)是增函数;命题q :对任意的x ∈[2,4],都有a ≤x 成立,若命题p ∧q 为真命题,则实数a 的取值范围是________.解析:当p 真时,a >1,当q 真时,a ≤2.又因为p ∧q 为真时,p ,q 都为真, 所以实数a 的取值范围是1<a ≤2. 答案:(1,2]13.设命题p :a ∈{y |y =-x 2+2x +8,x ∈R },命题q :关于x 的方程x 2+x -a =0有实根.(1)若p 为真命题,求a 的取值范围;(2)若“p ∧q ”为假命题,且“p ∨q ”为真命题,求a 的取值范围. 解:(1)由题意得,y =-x 2+2x +8=-(x -1)2+9∈[0,3],故p 为真命题时,a 的取值范围为[0,3].(2)当q 为真命题时a 的取值范围为a ≥-14,由题意得,p 与q 一真一假,从而当p 真q 假时有⎩⎪⎨⎪⎧0≤a ≤3,a <-14,a 无解; 当p 假q 真时有⎩⎪⎨⎪⎧a <0或a >3,a ≥-14, 所以a >3或-14≤a <0.所以实数a 的取值范围是⎣⎢⎡⎭⎪⎫-14,0∪(3,+∞). 14.(选做题)设p :函数f (x )=⎝ ⎛⎭⎪⎫a -32x是R 上的减函数.q :函数g (x )=x 2-4x +3在[0,a ]上的值域为[-1,3],若“p ∧q ”为假命题,“p ∨q ”为真命题,求a 的取值范围.解:由0<a -32<1得32<a <52.因为g (x )=(x -2)2-1在[0,a ]上的值域为[-1,3], 所以2≤a ≤4.因为“p ∧q ”为假,“p ∨q ”为真, 所以p ,q 为一真一假.若p 真q 假,得32<a <2;若p 假q 真,得52≤a ≤4.综上可知,a 的取值范围是⎝ ⎛⎭⎪⎫32,2∪⎣⎢⎡⎦⎥⎤52,4.。
2018-2019版高中数学人教B版必修四课件:第一单元 1.3.2 余弦函数、正切函数的图象与性质(一)
函数的性质和有界性求最值.
跟踪训练 2
求实数a的值.
已知函数
π π 2 x + 0 , y=acos +3,x∈ 的最大值为 3 2
4,
解
当
π π 4π π π 1 ∵x∈0,2,∴2x+3∈3, 3 ,∴-1≤cos2x+ ≤ . 3 2
最小值-1?余弦函数的周期性如何?
答案 对于余弦函数y=cos x,x∈R有:
当且仅当x=2kπ,k∈Z时,取得最大值1;
当且仅当x=(2k+1)π,k∈Z时,取得最小值-1.
和正弦函数一样,余弦函数也是周期函数,最小正周期为2π.
答案
思考3
观察余弦曲线,余弦函数在哪些区间上是增函数?在哪些
区间上是减函数?如何将这些单调区间进行整合?
π π [- +2kπ, +2kπ](k∈Z) 2 2 在_______________________ π 单调性 [ +2kπ, 2 上单调递增;在___________ 3π +2kπ] (k∈Z)上单调递减 2
最值
π 在 x=2+2kπ (k∈Z) 时,ymax 在 x=2kπ (k∈Z) 时,ymax=1; π 在 x=π+2kπ (k∈Z) 时,ymin =1; 在 x=-2+2kπ (k∈Z) 时, =-1 ymin=-1
类型二 余弦函数的值域或最值
例2 求函数 y=3cos2x-4cos
π 2π x+1,x∈3, 3 的值域.
解
y=3cos x-4cos
2
x+1=3 cos
1 1 x∈-2,2.
2018-2019版高中数学人教B版必修四课件:1.3.2 余弦函数、正切函数的图象与性质(二)
1.3.2 余弦函数、正切函数的图象与性质(二)
7
[预习导引] 函数y=tan x的性质与图象见下表(表中k∈Z)
y=tan x
图象
定义域
π {x|x∈R,且 x≠kπ+2}
8
1.3.2 余弦函数、正切函数的图象与性质(二)
值域 周期
R 最小正周期为 π 奇函数
奇偶性 单调性 对称性 在开区间
π π kπ- ,kπ+ 2 2 kπ 对称中心: ,0 2
k∈Z.
1.3.2 余弦函数、正切函数的图象与性质(二)
15
(2)比较 tan 1、tan 2、tan 3 的大小.
解
∵tan 2=tan(2-π),tan 3=tan(3-π),
π π 又∵2<2<π,∴-2<2-π<0. π π ∵2<3<π,∴-2<3-π<0,
π π 显然-2<2-π<3-π<1<2,
1.3.2 余弦函数、正切函数的图象与性质(二)
14
要点二
例
正切函数的单调性及应用
解
1 π 2 (1)求函数 y=tan-2x+4的单调区间; 1 1 π π y=tan-2x+4=-tan2x-4,
π 1 π π 由 kπ-2<2x-4<kπ+2,k∈Z, π 3 得 2kπ-2<x<2kπ+2π,k∈Z, 1 π π 3 ∴ 函数 y = tan -2x+4 的单调递减区间是 2kπ-2,2kπ+2π ,
当堂训练,体验成功
预习导学
挑战自我,点点落实
[知识链接]
1.正切函数的定义域是什么?用区间如何表示?
高中数学 人教A版必修4 第1章 1.3三角函数的诱导公式(二)
研一研·问题探究、课堂更高效 (2)诱导公式五的推导:
§1.3(二)
π 问题 1 若 α 为任意角,那么 -α 的终边与角 α 的终边有怎 2 样的对称关系? 本 课 π 时 答 角 α 的终边与 -α 的终边关于直线 y=x 对称. 栏 2 目 π 开 问题 2 设角 α 与单位圆交于点 P(x, y), 则 - 2 关
y.
所以,对任意角 α
sin α .
π 都有:sin2-α=
cos α
π ,cos2-α=
研一研·问题探究、课堂更高效
探究点二 诱导公式六
π ,cos2+α=
§1.3(二)
(1)诱导公式六: π sin2 +α= cos α
本 课 时 栏 目 开 关
填一填·知识要点、记下疑难点
§1.3(二)
2.诱导公式五~六的记忆 π π -α, +α 的三角函数值,等于 α 的异名三角函数值, 2 2 本
课 时 栏 目 开 关
前面加上一个把 α 看成锐角时原函数值的符号, 记忆口诀 为“函数名改变,符号看象限”.
研一研·问题探究、课堂更高效
§1.3(二)
α 与单位圆交于点 P′,写出点 P′的坐标.
答 P′(y,x).
研一研·问题探究、课堂更高效
§1.3(二)
问题 3 根据任意角三角函数的定义,完成下列填空:
本 课 时 栏 目 开 关
sin α= y ,cos α= x ;
π sin2 -α=
x
π ,cos2-α=
§1.3(二)
本 课 时 栏 目 开 关
§1.3(二)
【学习要求】 1.掌握诱导公式五、六的推导,并能应用于解决简单的求值、化 简与证明问题. 本 课 时 2.对诱导公式一至六,能作综合归纳,体会出六组公式的共性与 栏 目 个性,培养由特殊到一般的数学推理意识和能力. 开 关 现问题、解决问题的能力.
2018_2019学年高中数学第一章三角函数1.7.1正切函数的定义1.7.2正切函数的图像与性质课件北师大版必修4ppt
• 单击此处编辑母版文本样式
• 单击此处编辑函母数 版文本样式 y=tan x
定义域
___x|_x_∈__R__,__x_≠__π2_+__k_π_,__k_∈__Z___
值域 周期性 奇偶性
单调性
__R__
周期为 kπ(k∈Z,k≠0)
期为_π__
__奇__函__数___
,最小正周
•单击此处编辑母版文本样sin式α
cos α
一
三
二
四
AT
【预习评价】
•
单击此处编辑母版文本样式
1.若角 α 的终边上有一点 P(2x-1,3),且 tan
α=15,则 x 的值为(
)
A.7
B.8
C.15
4 D.5
解析 由正切函数的定义 tan α=2x-3 1=15,解之得 x=8.
• 单击此处编辑母版文本样式
课堂小结 1.作正切曲线简图时,只需先作出一个周期中的两条渐近线 x=
-π2,x=π2,然后描出三个点(0,0),(π4,1),(-π4,-1),用光 滑的曲线连接得到一条曲线,再平移至各个单调区间内即可.
2.正切函数与正弦、余弦函数都是三角函数,但应用它们的性质
时应注意它们的区别.
(1)正弦、余弦函数是有界函数,值域为[-1,1],正切函数是无
①若角 α 是第一象限角,则由 tan α=12,角 α 的终边上必有一 点 P(2,1),
∴r=|OP|= 22+12= 5.
∴sin
α=yr=
1= 5
55,cos
α=xr=
2 =2 5
5
5 .
②若角 α 是第三象限角,则由 tan α=12知,角 α 的终边上必有一点
高中数学人教A版必修4课件:1.3三角函数的诱导公式(一)
3
3
42 8
2.已知cos(α -75°)=- 1 ,且α 为第四象限角,求
3
sin(105°+α )的值. 【解题指南】由于105°+α =180°+(α -75°),故欲求 sin(105°+α ),需利用条件求出sin(α -75°).该三角函 数式只需用平方关系即可求得.
【解析】因为cos(α-75°)=- <1 0,且α为
(3)注意“1”的应用:1=sin2α +cos2α =tan .
4
【拓展延伸】三角函数式化简的思路以及含有kπ ±α 形式的处理方法 (1)总体思路是利用诱导公式将相应角向角α 的三角函 数转化. (2)含有kπ ±α 形式的化简时需对k分是偶数还是奇数 来确定选用的公式.
【变式训练】化简 scio n s(( 4 4 ))scio ns(2 5( ))cso in s2 2(( 3 )).
sin(2m )cos[2m 1 ] sin[2m 1 ]cos(2m )
sin()cos( ) sin(cos) 1. sin( )cos sincos
k为奇数时,设k=2m+1(m∈Z),
原式sin[s2im n(2m 2] c)cooss[ (2m 2m 1)]
提醒:设法消除已知式与所求式之间的种种差异是解决 问题的关键.
【补偿训练】1.已知 sin(-)=1,
3
2
求cos2(α - )·sin ( 2 + ) 的值.
3
3
【解析】cos2()sin(2+ )
33
=cos2[-(-)]sin[-(-)]
3
3
人教版高中数学高一A版必修4 第一章第四节三角函数的图象与性质(第三课时)
第一章第四节三角函数的图象与性质第三课时导入新课思路1.(类比导入)我们在研究一个函数的性质时,如幂函数、指数函数、对数函数的性质,往往通过它们的图象来研究.先让学生画出正弦函数、余弦函数的图象,从学生画图象、观察图象入手,由此展开正弦函数、余弦函数性质的探究.思路2.(直接导入)研究函数就是要讨论函数的一些性质,y=sin x,y=cos x是函数,我们当然也要探讨它们的一些性质.本节课,我们就来研究正弦函数、余弦函数最基本的几条性质.请同学们回想一下,一般来说,我们是从哪些方面去研究一个函数的性质的呢(定义域、值域、奇偶性、单调性、最值)?然后逐一进行探究.推进新课新知探究提出问题①回忆并画出正弦曲线和余弦曲线,观察它们的形状及在坐标系中的位置;②观察正弦曲线和余弦曲线,说出正弦函数、余弦函数的定义域各是什么?③观察正弦曲线和余弦曲线,说出正弦函数、余弦函数的值域各是什么?由值域又能得到什么?④观察正弦曲线和余弦曲线,函数值的变化有什么特点?⑤观察正弦曲线和余弦曲线,它们都有哪些对称?(1)(2)图2活动:先让学生充分思考、讨论后再回答.对回答正确的学生,教师可鼓励他们按自己的思路继续探究,对找不到思路的学生,教师可参与到他们中去,并适时的给予点拨、指导.在上一节中,要求学生不仅会画图,还要识图,这也是学生必须熟练掌握的基本功.因此,在研究正弦、余弦函数性质时,教师要引导学生充分挖掘正弦、余弦函数曲线或单位圆中的三角函数线,当然用多媒体课件来研究三角函数性质是最理想的,因为单位圆中的三角函数线更直观地表现了三角函数中的自变量与函数值之间的关系,是研究三角函数性质的好工具.用三角函数线研究三角函数的性质,体现了数形结合的思想方法,有利于我们从整体上把握有关性质.对问题①,学生不一定画准确,教师要求学生尽量画准确,能画出它们的变化趋势.对问题②,学生很容易看出正弦函数、余弦函数的定义域都是实数集R〔或(-∞,+∞)〕.对问题③,学生很容易观察出正弦曲线和余弦曲线上、下都有界,得出正弦函数、余弦函数的值域都是[-1,1].教师要引导学生从代数的角度思考并给出证明.∵正弦线、余弦线的长度小于或等于单位圆的半径的长度,∴|sin x |≤1,|cos x |≤1,即-1≤sin x ≤1,-1≤cos x ≤1.也就是说,正弦函数、余弦函数的值域都是[-1,1].对于正弦函数y =sin x (x ∈R ),(1)当且仅当x =π2+2k π,k ∈Z 时,取得最大值1. (2)当且仅当x =-π2+2k π,k ∈Z 时,取得最小值-1. 对于余弦函数y =cos x (x ∈R ),(1)当且仅当x =2k π,k ∈Z 时,取得最大值1.(2)当且仅当x =(2k +1)π,k ∈Z 时,取得最小值-1.对问题④,教师可引导、点拨学生先截取一段来看,选哪一段呢?如图3,通过学生充分讨论后确定,选图象上的[-π2,3π2](如图4)这段.教师还要强调为什么选这段,而不选[0,2π]的道理,其他类似.图3图4就是说,函数y =sin x ,x ∈[-π2,3π2]. 当x ∈[-π2,π2]时,曲线逐渐上升,是增函数,sin x 的值由-1增大到1; 当x ∈[π2,3π2]时,曲线逐渐下降,是减函数,sin x 的值由1减小到-1. 类似地,同样可得y =cos x ,x ∈[-π,π]的单调变化情况.教师要适时点拨、引导学生先如何恰当地选取余弦曲线的一段来研究,如图5,为什么选[-π,π],而不是选[0,2π].图5结合正弦函数、余弦函数的周期性可知:正弦函数在每一个闭区间[-π2+2k π,π2+2k π](k ∈Z )上都是增函数,其值从-1增大到1;在每一个闭区间[π2+2k π,3π2+2k π](k ∈Z )上都是减函数,其值从1减小到-1. 余弦函数在每一个闭区间[(2k -1)π,2k π](k ∈Z )上都是增函数,其值从-1增加到1;在每一个闭区间[2k π,(2k +1)π](k ∈Z )上都是减函数,其值从1减小到-1.对问题⑤,学生能直观地得出:正弦曲线关于原点O 对称,余弦曲线关于y 轴对称.在R 上,y =sin x 为奇函数,y =cos x 为偶函数.教师要恰时恰点地引导,怎样用学过的知识方法给予证明?由诱导公式:∵sin(-x )=-sin x ,cos(-x )=cos x ,∴y =sin x 为奇函数,y =cos x 为偶函数.至此,一部分学生已经看出来了,在正弦曲线、余弦曲线上还有其他的对称点和对称轴,如正弦曲线还关于直线x =π2对称,余弦曲线还关于点(π2,0)对称等等,这是由它的周期性而来的.教师可就此引导学生进一步探讨,为今后的学习埋下伏笔.讨论结果:①略.②定义域为R .③值域为[-1,1],最大值都是1,最小值都是-1.④单调性(略).⑤奇偶性(略).当我们仔细对比正弦函数、余弦函数性质后,会发现它们有很多共同之处.我们不妨把两个图象中的直角坐标系都去掉,会发现它们其实都是同样形状的曲线,所以它们的定义域相同,都为R ,值域也相同,都是[-1,1],最大值都是1,最小值都是-1,只不过由于y 轴放置的位置不同,使取得最大(或最小)值的时刻不同;它们的周期相同,最小正周期都是2π;它们的图象都是轴对称图形和中心对称图形,且都是以图象上函数值为零所对应的点为对称中心,以过最值点且垂直于x 轴的直线为对称轴.但是由于y 轴的位置不同,对称中心及对称轴与x 轴交点的横坐标也不同.它们都不具备单调性,但都有单调区间,且都是增、减区间间隔出现,也是由于y 轴的位置改变,使增减区间的位置有所不同,也使奇偶性发生了改变.应用示例思路1例1下列函数有最大值、最小值吗?如果有,请写出取最大值、最小值时的自变量x 的集合,并说出最大值、最小值分别是什么.(1)y =cos x +1,x ∈R ;(2)y =-3sin2x ,x ∈R .活动:通过这道例题直接巩固所学的正弦、余弦的性质.容易知道,这两个函数都有最大值、最小值.课堂上可放手让学生自己去探究,教师适时的指导、点拨、纠错,并体会对应取得最大(小)值的自变量为什么会有无穷多个.解:(1)使函数y =cos x +1,x ∈R 取得最大值的x 的集合,就是使函数y =cos x ,x ∈R 取得最大值的x 的集合{x |x =2k π,k ∈Z };使函数y =cos x +1,x ∈R 取得最小值的x 的集合,就是使函数y =cos x ,x ∈R 取得最小值的x 的集合{x |x =(2k +1)π,k ∈Z }.函数y =cos x +1,x ∈R 的最大值是1+1=2,最小值是-1+1=0.(2)令z =2x ,使函数y =-3sin z ,z ∈R 取得最大值的z 的集合是{z |z =-π2+2k π,k ∈Z }, 由2x =z =-π2+2k π,得x =-π4+k π. 因此使函数y =-3sin2x ,x ∈R 取得最大值的x 的集合是{x |x =-π4+k π,k ∈Z }. 同理,使函数y =-3sin2x ,x ∈R 取得最小值的x 的集合是{x |x =π4+k π,k ∈Z }. 函数y =-3sin2x ,x ∈R 的最大值是3,最小值是-3.点评:以前我们求过最值,本例也是求最值,但对应的自变量x 的值却不唯一,这从正弦函数的周期性容易得到解释.求解本例的基本依据是正弦函数、余弦函数的最大(小)值的性质,对于形如y =A sin(ωx +φ)+B 的函数,一般通过变量代换(如设z =ωx +φ化归为y =A sin z +B 的形式),然后进行求解.这种思想对于利用正弦函数、余弦函数的其他性质解决问题时也适用.例2利用三角函数的单调性,比较下列各组数的大小:(1)sin(-π18)与sin(-π10);(2)cos(-23π5)与cos(-17π4). 活动:学生很容易回忆起利用指数函数、对数函数的图象与性质进行大小比较,充分利用学生的知识迁移,有利于学生能力的快速提高.本例的两组都是正弦或余弦,只需将角化为同一个单调区间内,然后根据单调性比较大小即可.课堂上教师要让学生自己独立地去操作,教师适时地点拨、纠错,对思考方法不对的学生给予帮助指导.解:(1)因为-π2<-π10<-π18<0,正弦函数y =sin x 在区间[-π2,0]上是增函数, 所以sin(-π18)>sin(-π10). (2)cos(-23π5)=cos 23π5=cos 3π5,cos(-17π4)=cos 17π4=cos π4. 因为0<π4<3π5<π,且函数y =cos x ,x ∈[0,π]是减函数, 所以cos π4>cos 3π5,即cos(-23π5)<cos(-17π4). 点评:推进本例时应提醒学生注意,在今后遇到的三角函数值大小比较时,必须将已知角化到同一个单调区间内,其次要注意首先大致地判断一下有没有符号不同的情况,以便快速解题,如本例中,cos π4>0,cos 3π5<0,显然大小立判. 例3求函数y =sin(12x +π3),x ∈[-2π,2π]的单调递增区间. 活动:可以利用正弦函数的单调性来求所给函数的单调区间.教师要引导学生的思考方向:把12x +π3看成z ,这样问题就转化为求y =sin z 的单调区间问题,而这就简单多了. 解:令z =12x +π3.函数y =sin z 的单调递增区间是[-π2+2k π,π2+2k π]. 由-π2+2k π≤12x +π3≤π2+2k π,得-5π3+4k π≤x ≤π3+4k π,k ∈Z .由x ∈[-2π,2π]可知,-2π≤-5π3+4k π且π3+4k π≤2π,于是-112≤k ≤512,由于k ∈Z ,所以k =0,即-5π3≤x ≤π3.而[-5π3,π3]⊂[-2π,2π], 因此,函数y =sin(x 2+π3),x ∈[-2π,2π]的单调递增区间是[-5π3,π3]. 点评:本例的求解是转化与化归思想的运用,即利用正弦函数的单调性,将问题转化为一个关于x 的不等式问题.然后通过解不等式得到所求的单调区间,要让学生熟悉并灵活运用这一数学思想方法,善于将复杂的问题简单化.思路2例1求下列函数的定义域:(1)y =11+sin x;(2)y =cos x . 活动:学生思考操作,教师提醒学生充分利用函数图象,根据实际情况进行适当的指导点拨,纠正出现的一些错误或书写不规范等.解:(1)由1+sin x ≠0,得sin x ≠-1,即x ≠3π2+2k π(k ∈Z ). ∴原函数的定义域为{x |x ≠3π2+2k π,k ∈Z }. (2)由cos x ≥0,得-π2+2k π≤x ≤π2+2k π(k ∈Z ). ∴原函数的定义域为[-π2+2k π,π2+2k π](k ∈Z ). 点评:本例实际上是解三角不等式,可根据正弦曲线、余弦曲线直接写出结果.本例分作两步,第一步转化,第二步利用三角函数曲线写出解集.例2在下列区间中,函数y =sin(x +π4)的单调增区间是( ) A .[π2,π] B .[0,π4] C .[-π,0] D .[π4,π2] 活动:函数y =sin(x +π4)是一个复合函数,即y =sin[φ(x )],φ(x )=x +π4,欲求y =sin(x +π4)的单调增区间,因φ(x )=x +π4在实数集上恒递增,故应求使y 随φ(x )递增而递增的区间.也可从转化与化归思想的角度考虑,即把x +π4看成一个整体,其道理是一样的. 解析:∵φ(x )=x +π4在实数集上恒递增,又y =sin x 在[2k π-π2,2k π+π2](k ∈Z )上是递增的,故令2k π-π2≤x +π4≤2k π+π2. ∴2k π-3π4≤x ≤2k π+π4. ∴y =sin(x +π4)的递增区间是[2k π-3π4,2k π+π4]. 取k =-1、0、1分别得[-11π4,7π4]、[-3π4,π4]、[5π4,9π4], 故选B.答案:B点评:像这类题型,上述解法属常规解法,而运用y =A sin(ωx +φ)的单调增区间的一般结论,由一般到特殊求解,既快又准确,若本题运用对称轴方程求单调区间,则是一种颇具新意的简明而又准确、可靠的方法.当然作为选择题还可利用特殊值、图象变换等手段更快地解出.解题规律:求复合函数单调区间的一般思路是:(1)求定义域;(2)确定复合过程,y =f (t ),t =φ(x );(3)根据函数f (t )的单调性确定φ(x )的单调性;(4)写出满足φ(x )的单调性的含有x 的式子,并求出x 的范围;(5)得到x 的范围,与其定义域求交集,即是原函数的单调区间.知能训练课本本节练习解答:1.(1)(2k π,(2k +1)π),k ∈Z ;(2)((2k -1)π,2k π),k ∈Z ;(3)(-π2+2k π,π2+2k π),k ∈Z ;(4)(π2+2k π,3π2+2k π),k ∈Z . 点评:只需根据正弦曲线、余弦曲线写出结果,不要求解三角不等式,要注意结果的规范及体会数形结合思想方法的灵活运用.2.(1)不成立.因为余弦函数的最大值是1,而cos x =32>1. (2)成立.因为sin 2x =0.5,即sin x =±22,而正弦函数的值域是[-1,1],±22∈[-1,1]. 点评:比较是学习的关键,反例能加深概念的深刻理解.通过本题准确理解正弦、余弦函数的最大值、最小值性质.3.(1)当x ∈{x |x =π2+2k π,k ∈Z }时,函数取得最大值2;当x ∈{x |x =-π2+2k π,k ∈Z }时,函数取得最小值-2.(2)当x ∈{x |x =6k π+3π,k ∈Z }时,函数取得最大值3;当x ∈{x |x =6k π,k ∈Z }时,函数取得最小值1.点评:利用正弦、余弦函数的最大值、最小值性质,结合本节例题巩固正弦、余弦函数的性质,快速写出所给函数的最大值、最小值.4.B点评:利用数形结合思想认识函数的单调性.这是一道选择题,要求快速准确地选出正确答案.数形结合是实现这一目标的最佳方法.5.(1)sin250°>sin260°;(2)cos 15π8>cos 14π9;(3)cos515°>cos530°;(4)sin(-54π7)>sin(-63π8). 点评:解决这类问题的关键是利用诱导公式将它们转化到同一单调区间上研究.6.[k π+π8,k π+5π8],k ∈Z . 点评:关键是利用转化与化归的思想将问题转化为正弦函数的单调性问题,得到关于x 的不等式,通过解不等式求得答案.课堂小结1.由学生回顾归纳并说出本节学习了哪些数学知识,学习了哪些数学思想方法.这节课我们研究了正弦函数、余弦函数的性质.重点是掌握正弦函数的性质,通过对两个函数从定义域、值域、最值、奇偶性、周期性、增减性、对称性等几方面的研究,更加深了我们对这两个函数的理解.同时也巩固了上节课所学的正弦函数,余弦函数的图象的画法.2.进一步熟悉了数形结合的思想方法,转化与化归的思想方法,类比思想的方法及观察、归纳、特殊到一般的辩证统一的观点.作业判断下列函数的奇偶性:(1)f (x )=x sin(π+x );(2)f (x )=-1+sin x +cos 2x 1-sin x. 解答:(1)函数的定义域为R ,它关于原点对称.∵f (x )=x sin(π+x )=-x sin x ,f (-x )=-(-x )sin(-x )=-x sin x =f (x ),∴函数为偶函数.(2)函数应满足1-sin x ≠0,∴函数的定义域为{x |x ∈R 且x ≠2k π+π2,k ∈Z }. ∵函数的定义域关于原点不对称,∴函数既不是奇函数也不是偶函数.设计感想1.本节是三角函数的重点内容,设计的容量较大,指导思想是让学生在课堂上充分探究、大量活动.作为函数的性质,从初中就开始学习,到高中学习了幂函数、指数、对数函数后有了较深的认识,这是高中所学的最后一个基本初等函数.但由于以前所学的函数不是周期函数,所以理解较为容易,而正弦函数、余弦函数除具有以前所学函数的共性外,又有其特殊性,共性中包含特性,特性又离不开共性,这种普通性与特殊性的关系通过教学应让学生有所领悟.2.在讲完正弦函数性质的基础上,应着重引导学生用类比的方法写出余弦函数的性质,以加深他们对两个函数的区别与联系的认识,并在解题中突出数形结合思想,在训练中降低变化技巧的难度,提高应用图象与性质解题的力度.较好地利用图象解决问题,这也是本节课主要强调的数学思想方法.3.学习三角函数性质后,引导学生对过去所学的知识重新认识,例如sin(α+2π)=sin α这个公式,以前我们只简单地把它看成一个诱导公式,现在我们认识到了,它表明正弦函数的周期性,以提升学生的思维层次.备课资料一、近几年三角函数知识的变动情况三角函数一直是高中固定的传统内容,但近几年对这部分内容的具体要求变化较大.1998年4月21日,国家教育部专门调整了高中数学的部分教学内容,其中的调整意见第(7)条为:“对三角函数中的和差化积、积化和差的8个公式,不要求记忆”.1998年全国高考数学卷中,已尽可能减少了这8个公式的出现次数,在仅有的一次应用中,还将公式印在试卷上,以供查阅.而当时调整意见尚未生效(应在1999年生效),这不能不说对和积互化的8个公式的要求是大大降低了.但是,如果认为这次调整的仅仅是8个公式,仅仅是降低了对8公式的要求,那就太表面、太肤浅了.我们知道,三角中的和积互化历来是三角部分的重点内容之一,相当部分的三角题都是围绕它们而设计的,它们也确实在很大程度上体现了公式变形的技巧和魅力.现在要求降低了,有关的题目已不再适合作为例(习)题选用了.这样一来,三角部分还要我们教些什么呢?又该怎样教?立刻成了部分教师心头的一大困惑.有鉴于此,我们认为很有必要重新审视这部分的知识体系,理清新的教学思路,以便真正落实这次调整的意见,实现“三个有利于(有利于减轻学生过重的课业负担,有利于深化普通高中的课程改革,有利于稳定普通高中的教育教学秩序)”的既定目标.1.是“三角”还是“函数”应当说,三角函数是由“三角”和“函数”两部分知识构成的.三角本是几何学的衍生物,起始于古希腊的希帕克,经由托勒玫、利提克思等至欧拉而终于成为一门形态完备、枝繁叶茂的古典数学学科,历史上的很长一段时期,只有《三角学》盛行于世,却无“三角函数”之名.“三角函数”概念的出现,自然是在有了函数概念之后,从时间上看距今不过300余年.但是,此概念一经引入,立刻极大地改变了三角学的面貌,特别是经过罗巴切夫斯基的开拓性工作,致使三角函数可以完全独立于三角形之外,而成为分析学的一个分支,其中的角也不限于正角,而是任意实数了.有的学者甚至认为可将它更名为角函数,这是有见地的,所以,作为一门学科的《三角学》已经不再独立存在.现行中学教材也取消了原来的《代数》《三角》《几何》的格局,将三角并入了代数内容.这本身即足以说明“函数”在“三角”中应占有的比重.从《代数学》的历史演变来看,在相当长的历史时期内,“式与方程”一直是它的核心内容,那时的教材都是围绕着它们展开的,所以,书中的分式变形、根式变形、指数式变形和对数式变形可谓连篇累牍,所在皆是.这是由当时的数学认知水平决定的.而现在,函数已取代了式与方程成为代数的核心内容,比起运算技巧和变形套路来,人们更关注函数思想的认识价值和应用价值.1963年颁布的《数学教学大纲》提出数学三大能力时,首要强调的是“形式演算能力”,1990年的大纲突出强调的则是“逻辑思维能力”.现行高中《代数》课本中,充分阐发了幂函数、指数函数、对数函数的图象和性质及应用,对这三种代数式的变形却轻描淡写.所以,三角函数部分应重在“函数的图象和性质”是无疑的,这也是国际上普遍认可的观点.2.是“图象”还是“变换”现行高中三角函数部分,单列了一章专讲三角函数,这是与数学发展的潮流相一致的.大多数师生头脑中反映出来的,还是“众多的公式,纷繁的变换”,而三角函数的“图象和性质”倒是在其次的,这一点,与前面所述的“幂、指、对”函数有着极大的反差.调整以后,降低这部分的要求,大面积地减少了题量.把“函数”作为关键词,将目光放在“图象和性质”上,应当是正确的选择,负担轻了,障碍小了,这更方便于我们将注意力转移到对函数图象和性质的关注上,这才是“三个有利于”得以贯彻的根本.3.国外的观点及启示下面来看一下美国和德国的观点:美国没有全国统一的教材和《考试说明》,只有一个《课程标准》,在《课程标准》中,他们对三角函数提出了下面的要求:“会用三角学的知识解三角形;会用正弦、余弦函数研究客观实际中的周期现象;掌握三角函数图象;会解三角函数方程;会证基本的和简单的三角恒等式;懂得三角函数同极坐标、复数等之间的联系”.他们还特别指出,不要在推导三角恒等式上花费过多的时间,只要掌握一些简单的恒等式推导就可以了,比较复杂的恒等式就应该完全避免了.德国在10到12年级(相当于中国的高一到高三)每年都有三角内容,10年级要求如下:(1)一个角的弧度;(2)三角函数sin x 、cos x 、tan x 和它们的图象周期性;(3)三角形中角和边的计算;(4)重要关系(特指同角三角函数的平方关系、商数关系和倒数关系).另外,在11年级和12年级的“无穷小分析”中,继续研究三角函数的图象变换、求导、求积分、求极限.从以上罗列,我们可以看出下面的共同点:第一,突出强调三角函数的图象和性质;第二,淡化三角式的变形,仅涉及同角变换,而且要求较低,8个公式根本不予介绍; 第三,明确变换的目的是为了三角形中的实际计算;第四,注意三角函数和其他知识的联系.这带给我们的启示还是很强烈的,美国和德国的中学教育以实用为主,并不太在乎教材体系是否严谨,知识系统是否完整;我国的教材虽作调整,怎样实施且不去细说,有一个意图是可猜到的,那就是要让学生知道教材是严谨与完整的.现在看来严谨的东西,在更高的观点下是否还严谨?在圈内看是完整的,跳出圈子看,是否还完整?在一个小地方钻得太深,在另外更大的地方就可能无暇顾及.人家能在中学学到向量、行列式、微分、积分,我们却热衷于在个别地方穷追不舍,这早已引起行家的注意,从这个意义上说,此次调整应当只是第一步.在中学阶段即试图严谨与完整,其实是受前苏联教育家赞可夫的三高(高速度、高难度、高理论)影响太深的缘故.二、备用习题1.函数y =sin(π3-2x )的单调减区间是( ) A .[2k π-π12,2k π+5π12](k ∈Z ) B .[4k π-5π3,4k π+11π3](k ∈Z ) C .[k π-5π12,k π+11π12](k ∈Z ) D .[k π-π12,k π+5π12](k ∈Z ) 答案:D2.满足sin(x -π4)≥12的x 的集合是( ) A .{x |2k π+5π12≤x ≤2k π+13π12,k ∈Z } B .{x |2k π-π12≤x ≤2k π+7π12,k ∈Z } C .{x |2k π+π6≤x ≤2k π+5π6,k ∈Z } D .{x |2k π≤x ≤2k π+π6,k ∈Z }∪{x |2k π+5π6≤x ≤(2k +1)π,k ∈Z } 答案:A3.求下列函数的定义域和值域:(1)y =lgsin x ;(2)y =2cos3x .答案:解:(1)由题意得sin x >0,∴2k π<x <(2k +1)π,k ∈Z .又∵0<sin x ≤1,∴lgsin x ≤0.故函数的定义域为[2k π,(2k +1)π],k ∈Z ,值域为(-∞,0].(2)由题意得cos3x ≥0,∴2k π-π2≤3x ≤2k π+π2,k ∈Z . ∴2k π3-π6≤x ≤2k π3+π6,k ∈Z . 又∵0≤cos x ≤1,∴0≤2cos3x ≤2.故函数的定义域为[2k π3-π6,2k π3+π6],k ∈Z ,值域为[0,2].。
人教A版高中数学必修4《第一章 三角函数 1.2 任意角的三角函数 阅读与思考 三角学与天文学》_0
“任意角的三角函数”教学设计•数学(4)》(人教A版)。
三角函数是描述周期运动现象的重要的数学模型,有非常广泛的应用.直角三角形简单朴素的边角关系,以直角坐标系为工具进行自然地推广而得到简明的任意角的三角函数定义,紧紧扣住三角函数定义这个宝贵的源泉,自然地导出三角函数线、定义域、符号判断、同角三角函数关系、多组诱导公式、图象和性质。
三角函数定义必然是学好全章内容的关键,如果学生掌握不好,将直接影响到后续内容的学习,由三角函数定义的基础性和应用的广泛性决定了本节教材的重点就是定义本身.二、学情分析在初中学生学习过锐角三角函数。
因此本课的内容对于学生来说,有比较厚实的基础,新课的引入会比较容易和顺畅。
学生要面对的新的学习问题是,角的概念推广了,原先学生所熟悉的锐角三角函数的定义是否也可以推广到任意角呢?通过这个问题,让学生体会到新知识的发生是可能的,自然的。
三、教学方法与手段教学中注意用新课程理念处理教材,采用学生自主探索、动手实践、合作交流、阅读自学,师生互动,教师发挥组织者、引导者、合作者的作用,引导学生主体参与、揭示本质、经历过程.根据本节课内容、高一学生认知特点,本节课采用“启发探索、讲练结合”的方法组织教学.四、教学目标1.掌握任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);2、理解任意角的三角函数不同的定义方法;掌握并能初步运用公式一;树立映射观点,正确理解三角函数是以实数为自变量的函数.3、通过单位圆和角的终边,探讨任意角的三角函数值的求法,最终得到任意角三角函数的定义.根据角终边所在位置不同,分别探讨各三角函数的定义域以及这三种函数的值在各象限的符号.借助有向线段进一步认识三角函数.4、通过任意三角函数的定义,认识锐角三角函数是任意三角函数的一种特例,加深特殊与一般关系的理解。
5、通过三角函数的几何表示,使学生进一步加深对数形结合思想的理解,拓展思维空间。
2018_2019学年高中数学第一讲相似三角形的判定及有关性质二平行线分线段成比例定理课件新人教A版选修4_1
规律方法 通过添加辅助线,构造基本 图形,借图寻找合适的等量关系,再结 合其他知识综合利用,以解决问题.
且 DE∥BC,DF∥AC,则下列等式成立的是( AD DE A.BD=BC DF DE C.AC =BC
解析
AE BF B.EC=FC EC BF D.AC=BC
AD AE BD EC ∵DE∥BC,∴BD=EC,∴AD= AE.①
BD BF 又∵DF∥AC,∴DA=FC.② EC BF EC BF EC BF 由①②知 AE=FC,即 = ,∴AC=BC. AE+EC BF+FC
a∥b∥c,直线 m 分别与 a,b,c 相交于点 A,B, 符号语言 C,直线 n 分别与 a,b,c 相交于点 D,E,F,则 DE AB EF BC=____
图形语言
作用
证明分别在两条直线上的线段成比例
2.推论
文字 平行于三角形一边的直线截其他两边(或两边
比例 语言 的延长线)所得的对应线段成段成比例定理来作
1 图,由于 AC= CB,所以 C 为线段 AB 的三等分 2 点,于是作射线 AK,然后在 AK 上依次截取 AB1 =B1B2=B2B3,连接 B3B.过 B1 作 B1C∥B3B,即得 到点 C.
跟踪演练 1
如图,D,E,F 分别在 AB,AC,BC 上, )
答案 D
要点二 例2
平行线分线段成比例定理及推论的简单应用
2018版高中数学第一章三角函数1.3三角函数的诱导公式(一)课件新人教A版必修4
π π 3 =cos(π+6)=-cos 6=- 2 .
方法二
31π 5π - - 6π + cos =cos 6 6
π π =cosπ-6=-cos6=-
3 . 2
解答
(3)tan(-945°). 解 tan(-945°)=-tan 945°=-tan(225°+2×360°) =-tan 225°=-tan(180°+45°)=-tan 45°=-1.
(3)“角化锐”:用公式二或四将大于90°的角转化为锐角. (4)“锐求值”:得到锐角的三角函数后求值.
跟踪训练1 求下列各三角函数式的值.
(1)sin 1 320°; 解 方法一 sin 1 320°=sin(3×360°+240°)
3 =sin 240° =sin(180° +60° )=-sin 60° =- 2 .
它们的三角函数之间有什么关系?
答案
知识点三
诱导公式四
思考
角π-α的终边与角α的终边有什么关系?角π-α的终边与单位圆
的交点P3(cos(π-α),sin(π-α))与点P(cos α,sin α)有怎样的关系?
它们的三角函之间有什么关系?
答案
梳理
公式一~四都叫做诱导公式,它们分别反映了 2kπ + α(k∈Z) , π + α , -α,π-α的三角函数与 α的三角函数之间的关系,这四组公式的共同
tan2π-αsin-2π-αcos6π-α (1) ; cosα-πsin5π-α
解
sin2π-α · sin-αcos-α cos2π-α 原式= cosπ-αsinπ-α
-sin α-sin αcos α sin α = =-cos α=-tan α. cos α-cos αsin α
高中数学第一章三角函数143正切函数的性质与图象课件新人教A版必修
其中k∈Z;两线为直线x=kπ+
π 2
和直线x=kπ-
π2 ,其中k∈
Z(两线也称为正切曲线的渐近线,即无限接近但不相交).
(2)作简图时,只需先作出一个周期中的两条渐近线,
然后描出三个点,用光滑的曲线连接得到一条曲线,最后平
行移动至各个周期内.
2.下列说法正确的是( ) A.y=tan x是增函数 B.y=tan x在第一象限是增函数 C.y=tan x在某一区间上是减函数 D.y=tan x在区间 kπ-π2,kπ+π2 (k∈Z)上是增函 数 解析:由正切函数的图象可知D正确. 答案:D
3.函数y=tan
x2+π3的单调递增区间是(
定义域 值域 周期
xx∈R,且x≠π2+kπ,k∈Z R π
奇偶性
奇
单调性 在区间-π2+kπ,π2+kπ(k∈Z) 上都是增函数
温馨提示 函数y=tan x的对称中心的坐标是k2π,0, (k∈Z),不是(kπ,0)(k∈Z).
[思考尝试·夯基] 1.思考判断(正确的打“√”,错误的打“×”) (1)正切函数在整个定义域内是增函数.( ) (2)存在某个区间,使正切函数为减函数.( ) (3)正切函数图象相邻两个对称中心的距离为周期 π.( ) (4)函数y=tan x为奇函数,故对任意x∈R都有tan(-x) =-tan x. ( )
②由题意,得tan x≠1,且x≠kπ+π2,k∈Z,
所以函数f(x)的定义域为{x|x≠kπ+
π 2
,且x≠kπ+
π4,k∈Z},其不关于原点对称.
所以函数f(x)既不是奇函数,也不是偶函数.
归纳升华 1.一般地,函数y=Atan(ωx+φ)的最小正周期为T =|ωπ |,常常利用此公式来求周期. 2.判断函数的奇偶性要先求函数的定义域,判断 其是否关于原点对称.若不对称,则该函数无奇偶性; 若对称,再判断f(-x)与f(x)的关系.
2018-2019版高中数学人教B版必修四课件:1.3.2 余弦函数、正切函数的图象与性质(一)
1.1.2 弧度制和弧度制与角度制的换算
10
课堂讲义
重点难点,个个击破
要点一
余弦函数的单调性
π x y=3cos3-2的单调递增区间.
3-2=3cos2-3.
x π 由 2kπ-π≤2-3≤2kπ(k∈Z), 4 2 解得 4kπ-3π≤x≤4kπ+3π(k∈Z), π x 4 2 - ∴函数 y=3cos 3 2 的单调递增区间为[ 4kπ-3π,4kπ+3π] (k∈Z).
1.1.2 弧度制和弧度制与角度制的换算
5
2.观察正弦曲线和余弦曲线的对称性,你有什么发现? 答 正弦函数y=sin x的图象关于原点对称,余弦函数y=cos x的
图象关于y轴对称.
1.1.2 弧度制和弧度制与角度制的换算
6
[预习导引]
正弦函数和余弦函数的图象、性质对比(下表中k∈Z)
函数 y=sin x y=cos x
1.1.2 弧度制和弧度制与角度制的换算
12
跟踪演练 1
解
求函数 y=log
π x cos3-2的单调递增区间.
x π y=cos2-3的
根据复合函数“同增异减”的规律, 即求函数
单调递减区间,
同时 x 应使
x π cos2-3>0.
π x π ∴2kπ≤2-3<2kπ+2(k∈Z).
挑战自我,点点落实 重点难点,个个击破
当堂训练,体验成功
预习导学
挑战自我,点点落实
[知识链接]
1.如何快速做出余弦函数的图象? π 答 (1)依据诱导公式 cos x=sinx+2,要得到 y=cos x 的图象, π 只须把 y=sin x 的图象向左平移2个单位长度即可.余弦函数的图
人教A版高中数学必修四任意角的三角函数教学PPT精品课件
概念拓展
课堂小结
类比
当r=1
情景《引三入角函数概》整念体复设习计 概念探究
【概念再探】
概念形成
概念应用
概念拓展
课堂小结
y
单位圆:
r=1
直角坐标系中,以原点为圆
O
x
心,以单位长为半径的圆。
情景《引三入角函数概》整念体复设习计 概念探究
【概念形成】
概念形成
概念应用
概念拓展
课堂小结
y
O
x
情景《引三入角函数概》整念体复设习计 概念探究
【概念复习】
概念形成
概念应用
概念拓展
课堂小结
直角三角形中 线段比
情景《引三入角函数概》整念体复设习计 概念探究
【概念初探】
概念形成
概念应用
概念拓展
课堂小结
y
y
O
x
线段比--坐标比
情景《引三入角函数概》整念体复设习计 概念探究
【探究发现】
概念形成
概念应用
概念拓展
课堂小结
类比
?
演示,观察 相应的坐标比值。
人教A版必修四第一章
《任意角的三角函数》
情景《引三入角函数概》整念体复设习计 概念探究 概念形成 概念应用 概念拓展 课堂小结
情景《引三入角函数概》整念体复设习计 概念探究 概念形成 概念应用 概念拓展 课堂小结 y
O r=1 P
x
〰〰〰 〰〰〰 〰〰〰 〰〰〰 〰〰〰 〰〰 〰〰 〰〰〰
情景《引三入角函数概》整念体复设习计 概念探究 概念形成 概念应用 概念拓展 课堂小结 y
情景《引三入角函数概》整念体复设习计 概念探究
【探究发现】
高中数学 第一章 三角函数 1.4 三角函数的图象与性质 1.4.3 正切函数的性质与图像习题课件 新人教A版必修4
(2)y=|tanx|=t-antxa,nx,x∈x[∈kπ(,kπkπ-+π2π,2 )kπ(]k(∈kZ∈)Z.).
可作出其图像(如图),由图像知函数 y=|tanx|的单调递减区 π
间 为 (k π - 2 , k π ](k∈Z) , 单 调 递 增 区 间 为 [k π , k π + π 2 )(k∈Z).
π 是[0,+∞);单调递增区间是[kπ,kπ+ 2 )(k∈Z);周期 T=
π.
课后巩固
1.函数
y=ta1nx(-π4
π <x< 4
)的值域是(
)
A.[-1,1]
B.(-∞,-1)∪(1,+∞)
C.(-∞,1]
D.[-1,+∞)
答案 B
2.函数 y=tanx+sinx-|tanx-sinx|在区间(π2 ,3π2 )内的图 像大致是( )
π
⇒kπ-
x≠kπ+ 2 (k∈Z)
2
<x<kπ+
3
,
π
π
∴定义域为(kπ- 2 ,kπ+ 3 )(k∈Z),值域为 R.
题型二 正切函数的奇偶性 例 2 判断下列函数的奇偶性: (1)y=tanx(-π4 ≤x<π4 ); (2)y=xtan2x+x4; (3)y=sinx+tanx.
【思路分析】 先分别求出各个函数的定义域,看是否关于原点
思考题 4 作出函数 y=tanx+|tanx|的图像,并求其定义 域、值域、单调区间及最小正周期.
【解析】 y=tanx+|tanx|= 2tanx,tanx≥0,且x≠kπ+π2 ,k∈Z. 0,tanx<0,且x≠kπ+π2 ,k∈Z.
其图像如图所示,
π