胆机电路调试要点

合集下载

【转】胆机的调整

【转】胆机的调整

【转】胆机的调整胆机的调整一、栅负压电路调整胆管的工作点时,经常会涉及到栅负压,因此首先将栅负压电路说一下。

电子管是电压控制元件,三大主要电极(灯丝、栅极和屏极)是要供给适当电压的,供给灯丝的称甲电,供给栅极的称丙电,供给屏极的称乙电。

栅极电压一般是接的负压,习惯上称“栅负压”或“栅偏压”。

为了使胆管工作稳定,栅负压必须用直流电来供给。

按胆管的工作类别不同,栅负压的供给有二种方法:一种是利用电子管屏流(或屏流+帘栅流)流经阴极电阻所产生的电压降,使栅极获得负压,则称自给式栅负压,一般用在屏流较稳定的甲类放大电路上。

另一种是在电源部分设一套负压整流电路,供给栅负压,称作固定栅负压,主要用于屏极电流变化大的甲乙2类或乙类功率放大级。

使用自给式栅负压,胆管比较安全,采用固定式栅负压时,当负压整流电路发生故障,胆管失去栅负压后,屏流会上升过高而烧坏胆管,因此没有自给式栅负压工作可靠。

自给式栅负压产生的过程如下:图1表示电路中电流的流经过程,当电子管工作时,屏极和帘栅极吸收电子,电流从电源高压的负极经阴极电阻RK、屏极、输出变压器初级线圈和帘栅极的电流一起到高压的正极,成为一个负荷回路,当电流流过RK时,RK就产生一个电压降,RK两端的电压,在地线的一端为负极,在阴极的一端为正极。

这样,阴极和地线间就有了RK所产生的电位差,栅极电阻R1将栅极和地线连接,所以栅极和阴极间也就有了RK所产生的电位差。

由于不同的电子管所需要的栅负压不同,阴极电阻的阻值也不同,如6V6的阴极电阻300Ω,而6L6的阴极电阻170Ω。

阴极电阻的阻值可用欧姆定律求得:阴极电阻=栅负压/放大管电流(屏极电流+帘栅极电流)。

当栅极输入信号时,屏流立即被控制而波动,阴极电阻上的电流也就是波动的,所产生的电位差也是波动的,阴极电阻上电压波动的相位恰巧和输入的信号相反,因而减弱了输入信号,这种情况通常称本级电流负反馈,这种作用减低了本级放大增益。

胆机倒相电路的业余调试技巧

胆机倒相电路的业余调试技巧

R 的阻值之和 同 阻值 相等或基本相等 。R 的一部 :
分 又 是 V 的栅 极 电 阻 。这 样 电 路 就 使 V 与 V 工 作 : 条 件 相 同 ,其放 大倍 数 也 相 同 。
这种倒相 电路 , R 、:R 的阻值选择要求较高 , 对 R 、 业 余制作者计算 R 与 R 的分压值 比较麻 烦 ,电阻都
《 音响技术 》
2 1 . 0 14
号 电压就多 ,直 到使 V 和 v 输入 的信号电压大小差
不 多 为 止 。这 样 R 起 到 自动 调 整 V 管输 人 信 号 电 压 :
大小的作用 ,使推挽两管达到平衡 的 目的 ,所 以称这
基 础 知 识 V ̄I l响t ” It技n co Ac D 音 I 术
表 的情 况 下 也 可 进 行 调 整 。虽 然 用 万 用 电表 测 量 音 频 电压 有 一 定 误 差 ,作 为 平 衡 对 比 ,仍 能 达 到 比较 满 意
的效 果 。
极负载 电阻分相等 的两半 ,将其 中的一半接于 阴极 电
路 。 1 R 是 V 的屏 极 负 载 电 阻 ,1 R(K是 V 的 阴 / 2 。 / ) 2 R
数 , 即 在 图 4 ) 与 R 串 人 一 只 可 调 电 阻 R( 般 ( 中 b 一 选 用 2 Q 、3 以上 的 丝 绕 电 位 器 ) 微 调 ,调 整 0 K w 作
对 v 来 说是负反馈 电压 , v 来说是输入信号 电压 。 对 此输 入信号 电压 经 v 放大后 ,屏 流将 随 v 的屏流 一 : 样 的变化 ,流过 R 时产生 的电压 降 ,就是 v 输 出信 :
2 分 压 式 倒 相 电路 的 调 试
分 压 式 倒 相 电 路 的调 试 如 图 2 示 ,V 和 V 是 所 : 性 能 相 同 的 两 只 三 极 管 或 双 三 极 管 ,从 电路 中 看 出 v 与 V 组 成 两 个 阻 容 耦 合 放 大 器 。V 与 V 是 两 只 , , 性 能 相 同 的 功 率 放 大 管 ,并 组 成 推 挽 功 率 放 大 电路 。 v 为 推 动 管 , 它 将 前 级 的输 出信 号 放 大 后 推 动 V 工 ,

电子管功放的调整

电子管功放的调整

电子管功放的调整电子管功放(胆机)的线路比晶体管机简单,容易制作成功,并且有较好的音乐重播效果,特别是在感情表达方面更是专长,所以胆机复起以后很受发烧友的青睐。

胆机最重要的特点就是胆味,阁下所焊的胆机是否也具有温暖、醇厚、顺滑、甜美的胆味呢?如果没有,声底和晶体管机差不多,或比晶体管机还硬、还干涩,或自制的胆前级、缓冲器接入放音系统中,放音系统音色的改变并不像媒体所说的那样“立杆见影”时,就应该测量一下各管的工作点,是否工作在最佳状态上,否则就要进行认真、仔细地调整。

只有各电子管工作在最佳工作状态,才能发挥线路和每只胆管的魅力,达到满意的放音效果。

工作点未调好的胆机,除了音色表现不佳以外,还有音量轻和失真的现象出现。

一台放大器音质的好坏,影响的因素虽然很多,但最终还是决定于制作的水平。

发烧友在制作器材时,一般是根据手中积攒的胆管和元件,再选择优秀的线路或按照名机的线路按图索骥,进行焊接,元件的规格、数值虽然与线路图上的要求相差不大,但由于元件的排位,走线的长短、焊接的质量,或其它方面的差异,如B+电压的高低等原因,都会影响到放音的表现,所以焊出的胆机,不一定是胆味浓浓的。

没有胆味不要紧,只要通过适当、合理地调整、校验,使放大器各级胆管工作在最佳状态,便能达到放音的要求。

胆机调整工作的内容,除了将噪声降低至可以接受的程度和更换输入、输出耦合电容的牌号或容量,以改变音色以外,最重要的是调整屏压、屏流和栅负压,使胆管工作在合适的工作点上,使放音系统放出好声,而这一点正是一些文章中谈得较少或用很简单的二句描述带过去了,要不就是“不需任何调整”就可以工作。

如果胆管没有进入工作状态,再换名牌电容,胆味也不会出来。

调整胆机时,要根据电子管手册上提供的数据,作为电路的依据,无电子管手册时,要尊重线路图中所给的参数数值或附加的胆管资料进行。

三极管的工作点由屏压和栅负压决定,屏压确定后可调整栅负压来调工作点,束射管或五极管的屏压升高到一定程度后,帘栅压的变压会对工作点有较大的影响,因此可调整帘栅压和栅负压来选定工作点。

怎样将胆机放音系统调得更靓声

怎样将胆机放音系统调得更靓声

一套刚组合好的放音系统,或刚焊好的胆前级放大器、功放机接入放音系统,试听效果若不理想,其中原因很多。

如线材素质、音箱摆位、听音环境;新焊接组装的胆机,本身调校方面的原因,如电子管放大电路的屏流大小不适当。

当屏流较大时,声音厚实,但细致度差;若屏流小则乐声的厚润度不够。

并且电压放大管的屏极负载电阻阻值的大小对音效也有明显的影响。

如当负载电阻阻值很大时,高频响应变差,且由于直流压降过大,会引起动态范围减小,所以放大管的负载电阻阻值要适当。

再一个原因是放音系统器材之间的阻抗匹配问题,尤其是胆前级放大器与功率放大器之间的阻抗匹配等。

放音系统要放出好声,器材之间的匹配很重要,阻抗匹配得宜才能使器材充分发挥内在的潜质,才会放出靓丽的乐声。

最熟悉不过的是音箱和功放机的搭配。

功放机输出端设有4 Ω、8 Ω、16 Ω的输出插孔,分别配4 Ω、8 Ω、16 Ω的音箱,这是众所周知的。

然而,胆前级与后级功放之间的阻抗匹配又是最重要的。

功率放大器的输入阻抗也有要求。

一般商品机的说明书上均标有输入阻抗的数值,如有的是470 kΩ,有的是100 kΩ。

一般情况下,同厂制造的前级放大器与后级功放相配,出靓声的机会较多。

这是因为,著名的商品机的前、后级在设计时都考虑到了阻抗匹配问题。

不同厂家制造的前、后级搭配时,若音效表现不如人意,则便是阻抗匹配问题了。

通常,现代器材多是高输入阻抗的,古董的功放机多是低输入阻抗。

所以DIY者应注意阻抗匹配的正确,否则阻抗不匹配,就是仿名机线路、再配用发烧级元件焊机,也不一定能放出好声。

因此有高手称,玩音响就是玩器材匹配。

通常对胆前级放大器的要求是,输入阻抗愈高愈好,输出阻抗愈低愈好。

这主要原因是与其他器材相互搭配时的匹配性能较高。

因为输入阻抗高,所需要的输入信号电流较小,对输入端信号线品质的要求可以降低。

较低的输出阻抗,有较大的电流输出能力,也容易和一些低输入阻抗的后级功放机达到较完美的匹配。

业余爱好者胆机安装调整经验

业余爱好者胆机安装调整经验

业余爱好者胆机安装调整经验(原创)我是接触胆机4年的初学者也是国内一个小品牌的制造者,讲如何调试胆机有点话说大了在这里只是随便侃侃一些我调试机器的经验与朋友探讨。

对于刚入行的人我想最大的愿望就是自己动手装响一部胆机放大器来享受DIY的乐趣。

多半人动手之前都会先到网络上胡乱的选一些图纸,在盲目的去找很多人来推荐那张更好。

其实我也走过这个阶段,结果是肯定的推荐的图纸会说法不一。

其实初学者我还是建议选择一部厂机线路或一部古典名机的图纸前提是必须要有各个管子的明确工作点也就是静态电压值这样后期调试会简单些。

开始制作是选择推挽机还是单端,我建议还是选择好驱动的四,五极电子管单端比较合适如6V6.6L6.EL34等。

这些简单的机型做好了自然才有基础做更高难度的机型,我也是这样学习的。

言归正传开始谈机器的调整,咱们以一部单端2A3为例子。

2A3是声音比较全面的古典直热管,不过要想让它出好声并不容易,我的经验功率越小的管子越难做因为小胆玩的就是细节而其还要出来力度不能是一个面蛋失去动态,记得初学时去深圳听300B我希望开大点音量一开就失真服务员说你听过300B 吗?这管子就是不能开大音量现在想起很是可笑。

那如何去驾驭这个管子那首先就是要了解这个管子知道它的基本特性,如灯丝电流和电压、屏极极限电压’屏极极限功率,屏极电流、这个管子原设计的推荐工作点即屏压和屏流(通常屏压都是指屏极到阴极的实际电压)以及这个条件小的输出功率和失真度。

当了解功率管以后就可以找一张相对简单的图纸来实验,我的言论是尽可能使用最少的推动级数完成整机放大,待做好后根据效果在决定是否增加更多的放大级数。

一旦确定图纸就要同样方法来了解图纸上每个管子的工作特性,说白了就是要在后期调整时让管子工作的更舒服,胆机就是这样电子管工作的不舒服你的耳朵也不会舒服。

下一步就是来时准备材料了,先安图纸找到最基本的材料注意要品质可靠的新品未必最贵的先不要迷信进口古董,不是古董不好是你要自问能否用好这些古董再出手。

胆机知识与调整

胆机知识与调整

胆机知识与调整胆,就是指电子管,大家常说的胆机,指的是用电子管的放大器等~ 电子管有的用于放大,有的用于润色~~ 胆机有他独特的“胆味”,声音温暖耐听,音乐感好,氛围好~石机,指的是用晶体管(运放)的放大器等,石机的声音素质很高,解析高,声音层次好,速度快,但是声音比较生硬,不如胆机有味道~胆机(电子管功放):它是音响业界最古老而又经久不衰的长青树,其显著的优点是声音甜美柔和、自然关切,尤其动态范围之大,线性之好,绝非其他器件所能轻易替代。

在晶体管产生后,由于其体积小,耗电省很快便取代了电子管,技术的进步,导致电子管从兴旺走向衰败,令人大有“无可奈何花落去”之感,但是由于近年来人们对电声技术的提高发现电子管放大器能够发出晶体管所不能比拟的音色,所以时至今日电子管在音频领域又迅速走红。

由于电子管是电压控制放大器件,其失真成分绝大多数均为偶次失真,这在音乐表现上刚好是倍频程谐音,故而即使用仪器实测谐波失真较大(一般在2%以上),听起来非但没有生硬刺耳的失真感,反而有一种黄玫瑰般温柔厚实、甜腻动人的韵味,特别适合于播放田园诗般舒缓优雅的古典乐和中国民乐。

尤其在表现如(高山流水)、“渔舟唱晚”,“胡笳十八拍” 、“平沙落雁”等古筝古琴的空灵、通透、饱满、飘逸上,确有一种超凡脱俗、纤尘不染,甚至靓到不食人间烟火而返朴归真的感觉。

随着现代科技的进步,电子管(特别是一些老牌子电子管厂如长沙曙光、北京、PHILIPS以及前苏联生产的优质名管)的寿命得以数倍延长,更使得听厌了冷硬、干涩的数码的老一辈发烧友对电子管那种久违了的甜润柔美倍加怀念。

加上众多生产厂家的因势利导、推波助澜,终于使这个已有大半个世纪生命的耄耋老人重振五十年代的赫赫声威!胆机常识一、胆机与晶体机比较胆机与晶体机的比较,这里只谈以下两个问题,即性能价格比和音质特点,在一千元人民币(每台)以下的价格,因胆机无法用此价格生产,人们也不可能用此价格买到好的胆机产品,在此价格虽然能买到晶体机,但也很难买到很好的产品。

胆机电路调试要点

胆机电路调试要点

胆机电路调试要点胆机电路调试要点胆机电路调试要点(曾发表于2004《电子报》合订本副刊)一、胆机电路的基本组成:1,电源供给:(1)电源变压器是一种通过电磁的作用把交流电压升高或降低的器件,它担负着整机电源能量的供给。

要求它:所供给每级负载的电压值要准确、稳定,允许偏差不得超过所需值的5% ,带负载的能力要强,电源内阻要小,即使负载工作在峰值状态时电压也应该保持不变或基本不变。

在长时间工作时,不得有过热、振动或其他异常现象。

电源变压器在整机担负着重要使命,它的品质优劣直接影响了放大器的安全性稳定度以及信躁比、动态范围的指标。

使用在胆机中的电源变压器,大多以环型、E I型、C 型等种类,这几种铁芯对功率的转换效率有所不同,在设计和运用时应加以注意。

(2)整流器是利用二极管的单向导电特性,把交流电压转换为脉动的直流电。

它可分为电子管整流和晶体管整流。

电子管整流分为半波整流(图 1 .1 )和全波整流(图 1 .2 )。

电子管全波整流需要两个高压绕组,还要一组电流较大的整流管灯丝电压,这样增加了变压器的功耗;半波整流器效率低,在胆机电路里只适用于电流波动较小的栅极电路里。

由于电子管自身的特性(内阻较大、热损消耗大),所以现在商品机大多不采用。

当然也有追求纯胆(无半导体器件)放大器的发烧友仍在使用。

晶体管整流则分为半波整流(图1.3),全波整流(图1.4 ),桥式整流(图 1.5)及倍压整流(图1.6 )。

桥式整流和全波整流则以效率高(输出的电压是交流电压有效值的0.9 倍)、内阻小(压降0.7 伏)、反应速度快,桥式整流只需一个高压绕组等优点。

目前使用较为广泛。

(3)滤波器是把经过整流后的脉动直流电变为较平稳的直流电。

它的电路组成有;单只电容式又称C 型滤波器(图2 .1);即在负载两端并联一只容量较大的电容器,这种滤波器的滤波效果与电容器的容量、负载电流大小有关,容量越大它所储存的电荷能量就越大,释放给负载的能量越大;相反,电容量越小,加在负载两端的脉动成分越大。

胆前级电路调音方法

胆前级电路调音方法

胆前级电路调音方法胆前级电路是调音领域中一个非常重要的组成部分,它承担着信号放大和音频处理的关键任务。

透过胆前级电路,我们能够对音频信号进行精确调节,以获得所需的音质效果。

在胆前级电路中,最常见的设计是采用真空管作为放大元件。

与晶体管相比,真空管具有更加温暖和柔和的音色,能够为音频信号增添一些特殊的韵味。

因此,在调音过程中,经常会使用胆前级电路来赋予音频信号更为丰富和动听的表现效果。

要想正确地调音胆前级电路,首先需要明确自己的音频需求和目标。

不同的音频设备和音乐风格都有不同的调音要求,因此在调整胆前级电路之前,我们必须清楚地知道自己想要实现的目标音色是什么样的。

这个目标音色可能是明亮、温暖、柔和或者是具有特定的音乐性能。

接下来,我们可以根据实际情况对胆前级电路的一些参数进行调整。

首先是增益调节。

通过控制真空管的工作点以及电压和电流的调节,可以实现不同的信号放大倍数。

选择适当的增益值可以确保信号能够得到恰当的放大,既不会导致过载和失真,也不会使信号过弱影响音质。

其次是音色调节。

胆前级电路中的一些电容和电阻元件可以影响音频信号的频率响应,从而改变音色特征。

通过调整这些元件的数值或者更换不同的元件,可以实现音色的微调,满足自己对音质的要求。

此外,胆前级电路还可加入一些特殊的电路组件,以实现一些特殊的音效处理。

例如,可以加入限幅器或压缩器电路来调节动态范围;加入EQ电路来调节频率平衡;加入混响电路来增加深度和空间感等等。

这些特殊的电路组件都可以根据实际需求进行调整和配置,以获得所需的音效效果。

总之,胆前级电路调音是一个需要充分理解音频需求和具备一定技术知识的过程。

通过了解自己的音频目标,调整增益和音色参数,以及加入适当的音效处理,我们可以获得高品质、个性化的音质效果。

对于音频爱好者和专业人士来说,精确调音胆前级电路是提升音频质量的重要一环。

胆机电路组成安装调试要点

胆机电路组成安装调试要点

胆机电路组成安装调试要点(上)(曾发表于2004《电子报》合订本副刊)随着近几年来数码音源的普及,电子管放大器从昔日的悄悄隐退,发展到至今最适合播放数码音源的“知音”,使得它今日再显辉煌。

目前,介绍胆机基础理论知识资料比较少,使得胆机新手对于电子管电路知识较为缺乏,往往是找一电路图依葫芦画瓢,最后的成功率、满意率很低,也浪费了许多精力、财力,同时也降低了对制作胆机的爱好和兴趣。

对此,本文将对胆机的组成部分、装配调试要点、维修方法以及对电子管电路经常使用的部分术语加以解释同时对于一些常用电子管性能基本参数及代换列表以供参考。

电子管放大器的特点:优点是:电子管热稳定性好,不会在瞬间击穿;瞬态互调失真极小,无须很深的负反馈;信号过载能力强,不需要很大的功率储备;放大器是*输出变压器偶合,有无保护电路均可;对推挽配对管要求不高,一般使用军品J(尽量使用同一批号的产品)即可。

缺点是:体积大,重量大,承受的机械冲击能力差,电源的热损功率消耗大,能量转换效率低。

胆机和石机相比有着明显的优势它具有:开环增益小、非线性失真小、性能稳定、电路简单、制作容易等。

一台设计合理、元器件质量上乘的胆机甚至可以不用负反馈,这就大大提高了胆机放声的保真度。

虽然电子管放大器的总体指标不如晶体管,但胆机有着自身独有温暖、质厚的放声韵味,声音耐听并具更大众化被人们所接受。

晶体管放大器与电子管放大器的根本区别在于:这两种管子的工作方式是不同的。

晶体管放大是一种电流驱动工作方式,电子管则是一种电压驱动工作方式。

一、胆机电路的基本组成:1)电源供给:(1)电源变压器是一种通过电磁的作用把交流电压升高或降低的器件,它担负着整机电源能量的供给。

要求它:所供给每级负载的电压值要准确、稳定,允许偏差不得超过所需值的5% ,带负载的能力要强,电源内阻要小,即使负载工作在峰值状态时电压也应该保持不变或基本不变。

在长时间工作时,不得有过热、振动或其他异常现象。

EL34胆机原理、制作及调试

EL34胆机原理、制作及调试
对于晶体管整流、电子管功放电路混用来说,本机的高、低压电源开关是分别设置的。开机时,先开低压灯丝电源开关,对电子管灯丝先预热3~5分钟后.再开启高压电源开关。关机时.则先关高压开关,待音乐听不到才关低压开关.这有助于电解电容放电、延时电子管的使用寿命。有人认为高、低压采用一个开关,同时开、关机.本人不敢苟同。电源供给电路如图1所示。
(1)将本级的屏极与阴极,栅极与阴极回路的所有接地元件可能就近焊接在一个接地点上。
(2)按信号传输方向,把输入级,倒相推动级、末级功放的接地点,串联接地,这三级的信号地都与底盘相绝缘。
(3)“一点接地”设置在末级功放接地点上,它包括信号地、屏蔽地、电源整流、滤波地、底盘地四种地,汇接到“一点接地”上灯丝地需经试验设置在前置级接地点上。
改变超线性接法位置,可以获取不同的帘栅负反馈量的大小。通过试听,确定出超线性最佳抽头SG1、SG2位置。本机EL34屏流调到33mA,其屏压均为240V,输出变压器初级SG1、SG2抽头在6-7端子上,试听起来胆昧很好。
(四)大环路负反馈的调整
第一级SRPP电路的阴极分压电阻与末级输出变压器的输出一端之间,增加R17=5.1K 0.25W,则是大环负反馈电阻。因为电子管放大电路反馈的是电压,负反馈量不宜过大,一般为6dB左右,本机负反馈量调到4.7dB。整机有了大环负反馈后,会减少谐波失真,使频响展宽,听感较好。调整方法,主要是改变负反馈电阻R17阻值大小。反馈量的大小,根据放音效果如音场、定位、人声的甜美、音乐感来确定,以耳听满意为准。
(三)末级超线性推挽电路的调试
推挽放大电路调整目的,是使EL34两只推挽功放管要平衡,两只功放管的栅偏压和屏流要相等。
如果两管栅偏压不相等,可以调整栅极电阻R12、R13的大小;如果屏流不一样,可以调整两管阴极电阻R14、R15阻值的大小。屏流的大小要适当.屏流小对电子管的寿命有利。

EL34推挽机制作与调试文档

EL34推挽机制作与调试文档

EL34推挽机制作与调试文档EL34胆机原理、制作及调试一、电路设计EL34胆机电路如图1所示。

第一级电压放大采用SRPP单端推挽电路,第二级采用长尾式倒相兼推动电路,末级则采用超线性接法推挽输出电路。

三级放大电路均为阴极自给栅偏压。

EL34胆机选作甲类工作状态和放大特性,电路的特性是由管内、外两个条件共同确定的。

因此,要求各级电子管上的屏压与屏流,既要符合电子管的特性曲线,又要配合外围电路。

(一)SRPP 电压放大电路图1第一级使用的是6N11组成的SRPP电路。

V1a和V1b上、下管的直流通路串联。

V1a 构成三级管共阴电压放大电路,栅偏压是自给形式,由R2 、R3阴级电阻通过阴级电流产生。

不设阴级电容,栅偏压会随放大工作变动,故本级有电流负反馈。

V1b构成阴极输出电路,且作为V1a的恒流负载。

恒流值由R4的阴级电阻所偏置。

输入信号由V1a的屏极提供,然后由V1b的阴极输出。

由于阴极跟随器的电压放大倍数接近1。

所以SLPP电压放大取决于V1a。

要求R2+R3和R4选用相同阻值。

第一级灯丝绕组中心必须接地,目的是防止灯丝电压引起交流声。

SRPP电路上下两管,是串联供电。

上管阴极带有一半电源电压。

阴极与灯丝之间存在着约100V的电位差,该电压过高,将造成阴极与灯丝之间击穿短路。

因此,选用SRPP做第一级放大电路时,必须注意电子管阴极与灯丝之间的耐压。

SRPP电路相当优秀,它频带宽、失真低,尤其是高频特性更为突出,作为前级电压放大,其声音特点是解析力高,声底清爽顺滑(二)倒相、推动级第二级使用的6N8P组成的长尾倒相、推动电路。

上下两只管子是阴极耦合。

上管为共阴电路.信号从栅极输入;下管栅极通过0.22uF电容接地,为共栅电路,信号从阴极输入。

上管共阴电路,栅、屏极信号反相180度,而栅、阴极信号同相。

下管共栅电路,阴、屏极信号同相。

因此,上管屏极与下管屏极信号反相180度,当上下两管屏极电压调整相等时,上下两管上屏极输出的信号电压,是相位相反,输出幅度相等的放大信号。

EL34胆机原理、制作及调试

EL34胆机原理、制作及调试
(1)将本级的屏极与阴极,栅极与阴极回路的所有接地元件可能就近焊接在一个接地点上。
(2)按信号传输方向,把输入级,倒相推动级、末级功放的接地点,串联接地,这三级的信号地都与底盘相绝缘。
(3)“一点接地”设置在末级功放接地点上,它包括信号地、屏蔽地、电源整流、滤波地、底盘地四种地,汇接到“一点接地”上灯丝地需经试验设置在前置级接地点上。
改变超线性接法位置,可以获取不同的帘栅负反馈量的大小。通过试听,确定出超线性最佳抽头SG1、SG2位置。本机EL34屏流调到33mA,其屏压均为240V,输出变压器初级SG1、SG2抽头在6-7端子上,试听起来胆昧很好。
(四)大环路负反馈的调整
第一级SRPP电路的阴极分压电阻与末级输出变压器的输出一端之间,增加R17=5.1K 0.25W,则是大环负反馈电阻。因为电子管放大电路反馈的是电压,负反馈量不宜过大,一般为6dB左右,本机负反馈量调到4.7dB。整机有了大环负反馈后,会减少谐波失真,使频响展宽,听感较好。调整方法,主要是改变负反馈电阻R17阻值大小。反馈量的大小,根据放音效果如音场、定位、人声的甜美、音乐感来确定,以耳听满意为准。
对于晶体管整流、电子管功放电路混用来说,本机的高、低压电源开关是分别设置的。开机时,先开低压灯丝电源开关,对电子管灯丝先预热3~5分钟后.再开启高压电源开关。关机时.则先关高压开关,待音乐听不到才关低压开关.这有助于电解电容放电、延时电子管的使用寿命。有人认为高、低压采用一个开关,同时开、关机.本人不敢苟同。电源供给电路如图1所示。
EL34胆机选作甲类工作状态和放大特性,电路的特性是由管内、外两个条件共同确定的。因此,要求各级电子管上的屏压与屏流,既要符合电子管的特性曲线,又要配合外围电路。
(一)SRPP电压放大电路

胆机调试注意事项.

胆机调试注意事项.

胆机调试注意事项检查电路焊接有无质量问题,焊接工艺有无不当之处。

地线及排线是否合理,是提高调试胆机成功率及提高胆机质量的重要因素。

1通电前的测量直流高压电源对地(高压电路两端)电阻,数值应接近或等于泄放电阻的阻值。

测量交流进电电路与地之间的阻值,数值应该无穷大。

测量输出有无开路(阻值无穷大)或短路(阻值约为零),正常数值应接近负载的直流电阻。

测量电压放大级、推动级电源对地电阻,数值应大于泄放电阻。

2通电后的测量不插功检查电路焊接有无质量问题,焊接工艺有无不当之处。

地线及排线是否合理,是提高调试胆机成功率及提高胆机质量的重要因素。

1 通电前的测量直流高压电源对地(高压电路两端)电阻,数值应接近或等于泄放电阻的阻值。

测量交流进电电路与地之间的阻值,数值应该无穷大。

测量输出有无开路(阻值无穷大)或短路(阻值约为零),正常数值应接近负载的直流电阻。

测量电压放大级、推动级电源对地电阻,数值应大于泄放电阻。

2 通电后的测量不插功放管通电后,测量供给功放级阳极的直流电压值,空载数值应是交流电压有效值的1.2~1.4倍。

测量次高压电压,空载直流电压应接近或等于阳极电压(用稳压电路应等于稳压器输出值)。

测量供给功放管栅极偏压(使用固定偏压),数值应接近预定电压值。

同时应将每只功放管的栅极负压调至最大值(负)。

测量供给电压放大级、推动级电压值,每级阳极电压应接近或等于设置的工作电压值。

调整功放管静态电流,插上功放管接好音箱。

断开环路负反馈电路。

通电开机,将直流电压表接在功放管的阴极上(将黑表笔插在机箱的螺丝孔内红表笔接阴极),调整固定栅偏压可调电阻,边调边观察电压读数。

这个过程中一定要细心,动作要慢,每次调整电位器的幅度一定要小。

用电压表的读数除以阴极电阻值,即是管子的静态电流。

特别要注意的是,调试电子管放大器时不得使用假负载(改变晶体管电路使用假负载的传统观念),应接上音箱。

因为使用假负载时,正反馈啸叫会使较强的超声频率振荡得不到及时发现,在很短的时间内会引起功放管阳极电流急剧增大,导致输出变压器初级绕组过流而烧毁,同时功放管也因超过最大阳极耗散功率导致阳极发红。

胆机电路

胆机电路

在家庭温馨的卧室里听音乐,声音不必开得很大,有2W的声功率已足够,但对音质的要求却很高。

笔者根据手头现有元件,自制了一款双声道6P3P三极管接法的小胆机,声音柔和纤细,声底十分宁静,取得了较好的效果,电路如图。

第一级和第二级均采用SRPP电路,线性好,高频响应佳。

我们知道音乐中除了基波外,还包含大量丰富的高次谐波,通常称作泛音,它的存在使声音听起来甜美有音乐感,如果这些泛音大量丢失或变形,声音听起来就发干发硬,音色差,无个性。

而SRPP电路的高频失真小。

第一级电路采用12AU7电子管,电路放大倍数10倍。

如果第一级采用常见的小信号放大管如6N2、6N9P等,它们的栅负压绝对值都很小,信号输入范围很窄。

现在的CD机输出信号高达2V以上,容易出现严重的过载失真,必须在最前面加一个音量电位器控制,这样一来,被衰减的全是有用信号,第一级管子的内部热噪声却没有被衰减,信噪比出现恶化。

12AU7管子的栅负压绝对值是8.5V,信号输入范围宽,为音量电位器放在第一级之后创造了条件。

音量被衰减N倍,噪声同比例衰减N倍,信噪比提高。

本机的功率级采用大众化的6P3P管,物美价廉。

采用三级管接法虽然放大倍数大大降低,输出功率减少很多,但失真也减少很多,阻尼系数得到改善,在屏压250V,屏流40mA左右,栅负压17V,输出变压器5k情况下,可得到1.5W以上功率。

满足小卧室听音。

第二级选12AX7低噪声管,电路放大倍数倡倍左右,因功率级放大倍数降低较多,加这级作些补偿,提高了整机灵敏度,有利于驳接家庭数字电视机顶盒输出的立体声信号或调频立体声广播信号。

笔者对电源一向很重视,本机电源略显复杂。

电源变压器250W,整流滤波选择许多发烧友爱用的前石后胆方式。

晶体二极管整流可配大容量电解电容滤波,高压绕组无需抽头,如用电子管整流,高压绕组要有中心抽头。

根据电子管手册,整流管对电解电容容量有限制,避免冲击管子,要取得好的滤波效果必须加一个足够大电感量的扼流圈,不仅重量增加,价格也高。

业余爱好者胆机安装调整经验

业余爱好者胆机安装调整经验

业余爱好者胆机安装调整经验(原创)我就是接触胆机4年得初学者也就是国内一个小品牌得制造者,讲如何调试胆机有点话说大了在这里只就是随便侃侃一些我调试机器得经验与朋友探讨、ﻫ对于刚入行得人我想最大得愿望就就是自己动手装响一部胆机放大器来享受D IY得乐趣。

多半人动手之前都会先到网络上胡乱得选一些图纸,在盲目得去找很多人来推荐那张更好。

其实我也走过这个阶段,结果就是肯定得推荐得图纸会说法不一。

其实初学者我还就是建议选择一部厂机线路或一部古典名机得图纸前提就是必须要有各个管子得明确工作点也就就是静态电压值这样后期调试会简单些、开始制作就是选择推挽机还就是单端,我建议还就是选择好驱动得四,五极电子管单端比较合适如6V6。

6L6。

EL34等。

这些简单得机型做好了自然才有基础做更高难度得机型,我也就是这样学习得。

ﻫ言归正传开始谈机器得调整,咱们以一部单端2A3为例子。

2A3就是声音比较全面得古典直热管,不过要想让它出好声并不容易,我得经验功率越小得管子越难做因为小胆玩得就就是细节而其还要出来力度不能就是一个面蛋失去动态,记得初学时去深圳听300B我希望开大点音量一开就失真服务员说您听过300B不?这管子就就是不能开大音量现在想起很就是可笑。

那如何去驾驭这个管子那首先就就是要了解这个管子知道它得基本特性,如灯丝电流与电压、屏极极限电压’屏极极限功率,屏极电流、这个管子原设计得推荐工作点即屏压与屏流(通常屏压都就是指屏极到阴极得实际电压)以及这个条件小得输出功率与失真度、当了解功率管以后就可以找一张相对简单得图纸来实验,我得言论就是尽可能使用最少得推动级数完成整机放大,待做好后根据效果在决定就是否增加更多得放大级数。

一旦确定图纸就要同样方法来了解图纸上每个管子得工作特性,说白了就就是要在后期调整时让管子工作得更舒服,胆机就就是这样电子管工作得不舒服您得耳朵也不会舒服。

下一步就就是来时准备材料了,先安图纸找到最基本得材料注意要品质可靠得新品未必最贵得先不要迷信进口古董,不就是古董不好就是您要自问能否用好这些古董再出手。

电子管功放的调整

电子管功放的调整
经过上述方法的调整,各电子管已经进入最佳的工作状态,再放熟悉的唱片,放音效果一定会不同,胆味会增加不少
电子管功放的调整
电子管功放(胆机)的线路比晶体管机简单,容易制作成功,并且有较好的音乐重播效果,特别是在感情表达方面更是专长,所以胆机复起以后很受发烧友的青睐。胆机最重要的特点就是胆味,阁下所焊的胆机是否也具有温暖、醇厚、顺滑、甜美的胆味呢?如果没有,声底和晶体管机差不多,或比晶体管机还硬、还干涩,或自制的胆前级、缓冲器接入放音系统中,放音系统音色的改变并不像媒体所说的那样“立杆见影”时,就应该测量一下各管的工作点,是否工作在最佳状态上,否则就要进行认真、仔细地调整。只有各电子管工作在最佳工作状态,才能发挥线路和每只胆管的魅力,达到满意的放音效果。
二、 电压放大级的调整
电压放大级担负全机的主要放大任务,不能有失真,所以要求工作在甲类状态。甲类状态时,它的工作点在栅压-屏流特性曲线的线性段的中间,此时,栅负压是放大管最大栅负压的一半,工作电流应在放大管最大屏流的30%~60%之间为宜,不应过小。
调整方法很简单,只要调整阴极电阻的阻值即可,首先将电流表(最大量程稍大于该管最大屏极电流,如6SN7屏流为8mA,可用10mA的电流表)串在阴极回路中,电流表正极接阴极电阻,负极接底盘,若阴极电阻无旁路电容,为了避免电流表和接线对该级工作状态不发生影响,最好在电流表两端并联一只100μ/50V的电解电容,若阴极电阻RK有旁路电容,也可以将电流表串入屏极电路中。然后改变RK的阻值或V1的屏压,使V1的工作点达到最佳状态。也可以用测量阴极电阻RK两端电压的方法,再用欧姆定律(.A=V/R.算出电流。
自给式栅负压产生的过程如下:当电子管工作时,屏极和帘栅极吸收电子,电流从电源高压的负极经阴极电阻RK、屏极、输出变压器初级线圈和帘栅极的电流一起到高压的正极,成为一个负荷回路,当电流流过RK时,RK就产生一个电压降,RK两端的电压,在地线的一端为负极,在阴极的一端为正极。这样,阴极和地线间就有了RK所产生的电位差,栅极电阻将栅极和地线连接,所以栅极和阴极间也就有了RK所产生的电位差。由于不同的电子管所需要的栅负压不同,阴极电阻的阻值也不同,如6V6的阴极电阻300Ω,而6L6的阴极电阻170Ω。阴极电阻的阻值可用欧姆定律求得:阴极电阻=栅负压/放大管电流(屏极电流+帘栅极电流)。当栅极输入信号时,屏流立即被控制而波动,阴极电阻上的电流也就是波动的,所产生的电位差也是波动的,阴极电阻上电压波动的相位恰巧和输入的信号相反,因而减弱了输入信号,这种情况通常称本级电流负反馈,这种作用减低了本级放大增益。引起阴极上电压波动成份是音频交流成份,所以一般在阴极电阻上并联一只大容量的电解电容,将交流成分旁路,阴极电阻的直流电压就比较稳定了。

电子管功放的调整

电子管功放的调整

降低胆机噪音和更换耦合电容调整音色的方法,一些文章已有介绍,本文不再重复,这里就调整胆管工作点的方法谈一谈体会。
一、 栅负压电路
调整胆管的工作点时,经常会涉及到栅负压,因此首先将栅负压电路说一下。电子管是电压控制元件,三大主要电极(灯丝、栅极和屏极)是要供给适当电压的,供给灯丝的称甲电,供给栅极的称丙电,供给屏极的称乙电。栅极电压一般是接的负压,习惯上称“栅负压”或“栅偏压”。为了使胆管工作稳定,栅负压必须用直流电来供给。按胆管的工作类别不同,栅负压的供给有二种方法:一种是利用电子管屏流(或屏流+帘栅流)流经阴极电阻所产生的电压降,使栅极获得负压,则称自给式栅负压,一般用在屏流较稳定的甲类放大电路上。另一种是在电源部分设一套负压整流电路,供给栅负压,称作固定栅负压,主要用于屏极电流变化大的甲乙2类或乙类功率放大级。使用自给式栅负压,胆管比较安全,采用固定式栅负压时,当负压整流电路发生故障,胆管失去栅负压后,屏流会上升过高而烧坏胆管,因此没有自给式栅负压工作可靠。
调整胆机时,要根据电子管手册上提供的数据,作为电路的依据,无电子管手册时,要尊重线路图中所给的参数数值或附加的胆管资料进行。三极管的工作点由屏压和栅负压决定,屏压确定后可调整栅负压来调工作点,束射管或五极管的屏压升高到一定程度后,帘栅压的变压会对工作点有较大的影响,因此可调整帘栅压和栅负压来选定工作点。
自给式栅负压产生的过程如下:图1表示电路中电流的流经过程,当电子管工作时,屏极和帘栅极吸收电子,电流从电源高压的负极经阴极电阻RK、屏极、输出变压器初级线圈和帘栅极的电流一起到高压的正极,成为一个负荷回路,当电流流过RK时,RK就产生一个电压降,RK两端的电压,在地线的一端为负极,在阴极的一端为正极。这样,阴极和地线间就有了RK所产生的电位差,栅极电阻R1将栅极和地线连接,所以栅极和阴极间也就有了RK所产生的电位差。由于不同的电子管所需要的栅负压不同,阴极电阻的阻值也不同,如6V6的阴极电阻300Ω,而6L6的阴极电阻170Ω。阴极电阻的阻值可用欧姆定律求得:阴极电阻=栅负压/放大管电流(屏极电流+帘栅极电流)。当栅极输入信号时,屏流立即被控制而波动,阴极电阻上的电流也就是波动的,所产生的电位差也是波动的,阴极电阻上电压波动的相位恰巧和输入的信号相反,因而减弱了输入信号,这种情况通常称本级电流负反馈,这种作用减低了本级放大增益。引起阴极上电压波动成份是音频交流成份,所以一般在阴极电阻上并联一只大容量的电解电容,将交流成分旁路,阴极电阻的直流电压就比较稳定了。

简单有效巧法调整并联功率管工作状态

简单有效巧法调整并联功率管工作状态

简单有效巧法调整并联功率管工作状态发烧友们在制作胆机时可能会遇到“电子管并联使用,两管工作状态不一致”的情况,笔者在装机时,尝试采用以下方法进行调整:调整分为静态调整和动态调整。

以FU19为例,两屏极各串一只取样电阻。

先调整静态。

选屏流较小的那只管子栅极接到R4上,调整R4阻值,使两管屏流相等即可。

上图只为突出功率管部分。

还有一级12AU7,两级电压放大作推动。

再来调整动态。

选放大系数较大的那只管子,栅极串一只可变R3,输入幅度合适的交流信号,功率管两屏极间接上毫伏表,或无条件输入50HZ的工频信号,两屏极间接万用表也可以。

调整R3,使电压表的交流读数最小即可。

关于动态调整。

实际上是减小放大系数较高的那只管子的输入电压值,利用R3与栅极电阻分压,使输入电压得到衰减。

输入电压幅值在最大输出功率的50--70%较为合适。

胆管并联,在业余情况下,不可能有大量的胆管供挑选配对,很难使并联的两管同步工作。

因此,在电路中加以调整,便可以使两个参数不太一致的胆管很好的并联工作。

电路是以一个供阴极的FU19为例的,如果不是共阴极的管并联,静态调整就更简单了,只要改变各自的阴极电阻值就可以了。

而动态调整方法与楼上一致。

只要明白原理,几分钟就搞定了。

并联的两管协调一致的工作,可以大幅度减小谐波失真。

有朋友讲并管后声音变粗,其实就是两管工作状态不一致。

我在FU19三极管接法做了实验,选了一只内部两管静态误差在30%的管子。

做调整和不做调整,然后分别试听,感觉很明显,做了并联调整的一声道明显比另一没有做调整的声道的声音又实又细腻。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

胆机电路调试要点胆机电路调试要点(曾发表于2004《电子报》合订本副刊)一、胆机电路的基本组成:1,电源供给:(1)电源变压器是一种通过电磁的作用把交流电压升高或降低的器件,它担负着整机电源能量的供给。

要求它:所供给每级负载的电压值要准确、稳定,允许偏差不得超过所需值的5% ,带负载的能力要强,电源内阻要小,即使负载工作在峰值状态时电压也应该保持不变或基本不变。

在长时间工作时,不得有过热、振动或其他异常现象。

电源变压器在整机担负着重要使命,它的品质优劣直接影响了放大器的安全性稳定度以及信躁比、动态范围的指标。

使用在胆机中的电源变压器,大多以环型、E I型、C 型等种类,这几种铁芯对功率的转换效率有所不同,在设计和运用时应加以注意。

(2)整流器是利用二极管的单向导电特性,把交流电压转换为脉动的直流电。

它可分为电子管整流和晶体管整流。

电子管整流分为半波整流(图 1 .1 )和全波整流(图1 .2 )。

电子管全波整流需要两个高压绕组,还要一组电流较大的整流管灯丝电压,这样增加了变压器的功耗;半波整流器效率低,在胆机电路里只适用于电流波动较小的栅极电路里。

由于电子管自身的特性(内阻较大、热损消耗大),所以现在商品机大多不采用。

当然也有追求纯胆(无半导体器件)放大器的发烧友仍在使用。

晶体管整流则分为半波整流(图1.3),全波整流(图1.4 ),桥式整流(图1.5)及倍压整流(图1.6 )。

桥式整流和全波整流则以效率高(输出的电压是交流电压有效值的0.9 倍)、内阻小(压降0.7 伏)、反应速度快,桥式整流只需一个高压绕组等优点。

目前使用较为广泛。

(3)滤波器是把经过整流后的脉动直流电变为较平稳的直流电。

它的电路组成有;单只电容式又称C 型滤波器(图2 .1);即在负载两端并联一只容量较大的电容器,这种滤波器的滤波效果与电容器的容量、负载电流大小有关,容量越大它所储存的电荷能量就越大,释放给负载的能量越大;相反,电容量越小,加在负载两端的脉动成分越大。

它还和负载电阻的大小有关,负载电阻越大滤波效果越好。

由于电容容抗的原因,纹波频率高(电容器充放电的次数增加)滤波效果就好。

但电容器的容量并不是可以无限的增大,过大的容量会造成在开机的瞬间因电容器充电电流过大损坏整流管或变压器绕组,况且电容器储存的电荷到达一定程度时,再增加容量已无任何实际意义了。

阻流圈(扼流圈)输入式滤波器又称L - C 型滤波器(图2 .2 ),这种滤波器由阻流圈与负载串联,电容与负载并联组成的。

由于电容积累电流的波动,电感阻滞电流波动。

加入了阻流圈后电感对交流所呈现的感抗甚大,使整流后的脉动成分大部分被阻流圈分取,同时在电容的作用下,输出给负载两端的电压较为纯净。

[size=4]电容输入式滤波器又称Π型滤波器也称CLC型滤波器(图2.3 );它是前两个滤波器的合成,这种滤波器吸收了C 型,L-C 型的优点,滤波效果好,它输出的直流电压大约是输入交流电压有效值的1.2 倍左右。

由于电感抗及电感线圈内阻的作用下,输出的电压比较稳定,所以,是目前在胆机放大器中,使用最多的一种滤波器。

电感的感抗越大滤波效果越好同时阻流圈的体积、重量也同样增加,内阻也会随着增加,取值应在8 -10 H 较好。

阻容式滤波器(图2.4 );由于电阻对交流电和直流电的阻力一样,电阻在此很难起到阻交流成分的作用。

否则,就要加大电阻值,这样,电阻两端的电压降就大,同时增加的负载内阻。

这种电路适合于使用电流较小的前置放大器电路。

(4)稳压器是能够将电源输出电压保持的数值不随负载电流的变化而变化。

可以通过调整它的基准电压为负载提供所需的电压值。

稳压器可分为电子管稳压器、晶体管稳压器。

电子管稳压器(图3 .1)使用的是冷阴极充气式稳压管。

所谓冷阴极,就是不需灯丝为阴极加热,无热损功耗。

工作时,稳压管内会产生紫红色的辉光并随着输出电流的大小而闪烁。

它的使用也较灵活,既可以单只或多只串联(图3 .2)以达到负载所需电压值,也可以并联(图3.3)向负载提供两稳压管之和的电流。

电子稳压管有品种型号较少、体积大、稳定电流小等缺点。

(图3.4)是晶体管简单的串联型稳压器。

它是在单管稳压的基础上增加了一只电压调整扩流管。

它有输出的纹波系数小、内阻小、输出电流较大、体积小、电路简单使用方便等优点。

在胆机电路里,稳压器主要供给电压放大和推动倒相及功率管屏栅极等电路里。

不过,在目前商品机中使用稳压器的极少(可能是由于增加了半导体器件会缺少“胆”味)。

(5)灯丝电路同样非常重要使用不当会引起50赫兹的交流声,图4.1、4.2、4.3、是处理交流灯丝噪音的几种通用接法。

图4.4是直流灯丝电路,主要用在前放放大管电路,虽然它能有效的克服由灯丝产生的交流声,但由于使用了一套直流电源电路则容易出现直流转换速率慢,使用不当还容易出现100赫兹的交流声或由于增加了电源电路的元件引起噪音。

(6)高压延时保护器它是为了让放大管在得到了充分预热状态下,才接通高压。

在刚开机时,阴极没有得到充分的预热而阳极就开始吸收电子,这样会加速电子管的老化。

由于胆机机箱内的温度较高,尽量不要使用象555 时基控制电路,它的可*性较差。

在使用继电器延时,因为触点打火或自然氧化会引起触点电阻增大或接触不良,这样对高压的传导更为不利。

在实际应用中,使用旁热式阴极功率管的放大器无需加延时器,实在有必要,非用不可时不如直接将高压、低压用开关分别控制。

如果碍于面板美观,可不设低压开关,则更方便、可靠。

为了提高放大器的部分性能指标,改善胆机的解析力,在前置电路也可以使用开关电源供电。

现在市场上有21 寸彩电用的开关电源出售,价格低、体积小、重量轻只要将开关变压器线圈匝数稍加改动即可。

这种高频电源的特点是:电压波动小、纹波小、反映速度快、能量的转换效率高。

缺点是:声音不及使用工频电源更具音乐化,可*性较低。

但信噪比高,作为一种新的尝试有动手能力的朋友不妨一试。

报刊杂志上曾介绍过一些无高压变压器的电路,它是通过220 伏的电源经整流、滤波后直接使用于放大器高压电路。

由于无电源变压器隔离,在使用时,为了安全必须将220 伏的地端接机壳地。

这种形式初看上去是省缺了较大体积和较高成本的高压变压器又无变压器的自损,减小的机箱体积、重量;但它对于人体存在着极大的安全隐患,一旦电源相位发生变化或空气潮湿、漏电轻则被电击重则会危及操作者的生命。

况且,无变压器的胆机电源污染大,信躁比低,声音干、硬、涩。

这种做法实在不值得提倡。

2,电压放大器是将微弱的信号电压按一定倍数放大到下一级所需的信号电压推动值。

电压放大器在设计、选管、调试时,是绝对不可敷衍的,它直接影响了整机的性能指标。

放大电路应工作在甲类状态,工作点Q应选在栅压—屏流特性曲线线性段的中间,视其不同放大管工作时的阳极静态阳流30%-60%之间以杜绝产生交越失真。

现在使用比较好的电路有:单管共阴极电压放大器(图5.1)和并联推挽的SRPP 电压放大器(图5.2)。

这两种电路都具有:输入阻抗高,输出阻抗低,线路简单、动态范围大、控制力强、失真小、解析力强好等特点,目前被广泛应。

电压放大器对于输入信号按一定倍数放大时不加重原输入信号的非线性失真是很容易做到的但在信号无失真的同时,想不随信号混入噪音则很难做到(电路分布电容,电子管本身噪音等)所以对于这一级选管非常严格,选取正确时可达到“事半功倍“的效果,应选用:高跨导(Ma/V):改善信噪比、提高解析力;放大系数(U)适中:减小由电子管自身产生的噪音同时只需要引用少量负反馈或无负反馈以增强声场的动态范围;阳极电压(Ua)低:可以减小在高压下电子热运动产生的热噪音;阳流(Ia)适中:是为了设置工作点方便;由于五极管自身的噪音及热噪音比三极管大很多,所以还应该注意选用低噪声、宽频带、高频电压放大三极管。

常用的国产双三极管6N11、6N3等,单三极管有6C3、6C4、6C12、6C16等。

前置电压放大部分如果选管不当,即使使用的材料优质上乘,声音的表现也不会好到那里去,把好这一关就象电子管栅极控制阳流的能力要比阳压控制阳流的能力大百倍。

所以在仿制这类电路时,电路里使用低频、高U、高压电压放大管时一定要慎重一旦忽视了这个概念,最后很有可能连问题出在那也不知道(当然这也失去了发烧的意义了)。

3,推动(激励)倒相器:将一个全波电信号分成幅值相等而相位相反的两个半波信号,分别推动两只推挽管交替工作。

倒相电路的形式有:电容长尾式倒相、屏阴分割式倒相、减生式倒相、变压器输入式倒相、分压式倒相。

在推挽电路中大多使用电容长尾式到相(图6.1)等和屏阴分割式倒相器(图6.2)。

这两种电路有失真小、稳定性好、推动电压较高等特点。

变压器倒相器,则大多运用于阴极直热式三极管的甲类电路和一些右特性阴极直热式三极管的乙类放大器里。

由于推动变压器的绕制复杂、制作难度大、成本高,所以在左特性的束射四极电子管放大器里极少使用。

为了保证末级能够得到足够大的激励电压及信号在大动态时波形不被削顶失真,在选用电子管时要求:阳极电压高、阳极电流大、内阻低、跨导适中、中放大系数的双三极管。

常用的国产双三极管有:6N1、6N8、6N10等。

4,阴极输出器(图6.3):是将输入较高的信号电压通过放大管的作用转换为输出较大的信号功率。

也就是将较高输入阻抗(电压)通过放大管的作用在阴极输出较低的输出阻抗(功率)。

它主要用于,末级功率管多只并联推挽电路和阴极直热式三极管栅极电路的激励尤其是右特性阴极直热式三极管栅极需要功率驱动的电路里。

阴极输出器基本上无增益或增益很小,对管子的使用则要求:阳极电流要大、阳极电压要高、内阻要小。

常使用的电子管有:6N6、6N8(也可以双管并联)、6P14、6P3P、EL34等。

5,功率(末级)放大器:是将输入的信号电压通过功率管的作用把电源供给的直流电功率的一部分转换为随信号电压变化的音频电功率。

与其它放大电路不同的是,它既要输出较高的音频电压还要输出较大的音频电流,它们的大小是由功率管自身特性及功率管的工作条件所决定。

功率放大的工作状态有甲类放大、乙类放大、和甲乙类放大。

甲乙类放大又分为甲乙1类放大、甲乙2类放大。

由于这几种放大类型工作在不同的放大状态,对于声音的表现、输出功率、失真度等一些指标差别较大。

所以在不同的使用场合,应选不同类型的放大器。

(1)甲类放大也称甲1类、A类或A1 类放大(注脚1 则表示功率管工作在无栅极电流状态即,Ug<0)。

甲类放大的工作点Q是选在动态特性曲线左负区的直线部分中点。

控制栅极输入信号的强度限定在正半波时不产生栅流,负半波时不进入动转线的非线性部分。

放大器工作在栅压—阳流的线性范围之内。

所以,功率管在整个信号周期内阳极回路均有阳流即,静态阳流大于或等于动态阳流。

相关文档
最新文档