医脉通指南频道 美国呼吸治疗协会临床实践指南——有创机械通气和无创机械通气时的气道湿化

合集下载

无创和有创机械通气中的湿化

无创和有创机械通气中的湿化

无创通气和有创机械通气中的气体湿化Ruben D Restrepo MD RRT FAARC and Brian K Walsh RRT-NPS FAARC我们在美国国立医学图书馆、护理学数据库、考克兰图书馆的数据库中检索了所有在1990年1月至2010年12月期间发表的文章。

这份临床实践指南的更新基于184个临床实践、系统综述和10份研究无创和有创机械通气中湿化相关的文章。

接下来的建议是遵循推荐分级的评估、制定与评价(GRADE)系统的分级。

1:建议接受有创机械通气的病人均使用湿化;2:建议无创机械通气的病人主动湿化,增加病人的依从性和舒适度;O/L之3:有创呼吸的病人进行主动湿化时,建议提供湿化的装置保证湿度在33-44 mg H2间,气体温度在34℃- 41℃,相对湿度达到100%。

4:有创通气的病人被动湿化时,建议湿热交换器(HME)提供的气体湿度至少要保持在30 mg H2O/L以上。

5:不建议无创机械通气的病人使用被动湿化;6:小潮气量通气的病人给与湿化时,例如:肺保护通气的模式时,不建议使用HME,它会增加额外的无效腔;7:HME不能作为常规预防呼吸机相关肺炎的策略。

关键词:主动湿化,湿热交换器,加温湿化器,疏水性,吸湿冷凝湿化,被动湿化。

HMV1.0综述:当有创机械通气跨越了上呼吸道的生理性加温加湿,气体的湿化成为了预防低体温、气道上皮细胞破坏、支气管痉挛、肺不张、气道阻塞的关键。

在许多案例中,浓缩的气道分泌物会引起气管导管的闭塞1。

对于没有跨越上呼吸道通气的病人气体加温加湿是否必要,尽管目前仍没有明确的共识,例如无创机械通气(NIV),主动湿化在临床上还是高度建议,以增加病人的舒适性2-7两种系统:主动湿化通过加热湿化器(HH)进行主动加温加湿;被动湿化器则通过湿热交换器(HME)来达到气体的加温和湿化,再输送给机械通气的病人。

湿热交换器(HME)又被称为人工鼻,目前有三种不同的型号:防水式、吸湿式、过滤式。

有创呼吸机和无创呼吸机气道湿化指南要点

有创呼吸机和无创呼吸机气道湿化指南要点

有创呼吸机与无创呼吸机气道湿化指南要点一、气道湿化的种类(主动湿化、被动湿化)两种湿化装置可以用于有创通气患者吸入气体的加热湿化,主动湿化就是指通过加热湿化器进行主动加温加湿;被动湿化就是通过热湿交换器(人工鼻)来进行的。

目前有三种类型的热湿交换器(人工鼻):疏水型、亲水型与过滤功能型。

二、气道湿化原理主动加热湿化器通过对吸入气体加温并增加水蒸气的含量来进行加温、加湿。

被动加热湿化器(人工鼻)的工作原理就是指通过储存患者呼出气体中的热量与水分来对吸入气体进行加热湿化。

三、指南推荐1、有创通气患者均应进行气道湿化。

2、主动湿化可以增加无创通气患者的依从性与舒适度。

有创通气时因上呼吸道被旁路,湿化对于预防低体温、呼吸道上皮组织的破坏、支气管痉挛、肺不张以及气道阻塞有着至关重要的作用。

某些严重情况下,气道分泌物的过于黏稠,可导致气管插管阻塞。

然而,目前仍无明确观点表明额外的加热、加湿对于无创通气具有明确的必要性,但就是湿化的确可以增加无创通气患者的舒适度。

3、有通气患者进行主动湿化时,建议湿度水平在33-44mgH2O /L之间,Y型接头处气体温度在34~41℃之间,相对湿度达100%。

4、有创通气患者进行被动湿化时,建议热湿交换器提供的吸入气湿度至少达到30mgH2O/L。

5、不主张无创通气患者进行被动湿化。

6、对于小潮气量患者,例如应用肺保护性策略时,不推荐使用热湿交换器进行气道湿化,因为这样会导致额外死腔的产生,增加通气需求及PaCO2。

7、不建议应用热湿交换器(人工鼻)以预防呼吸机相关性肺炎的发生。

四、机械通气气道湿化适应症与禁忌症适应症:气管插管或者气管切开的患者进行机械通气时,需强制地对其吸入气体加温加湿,而无创机械通气患者可选择性应用。

禁忌证:1、对机械通气患者吸入气体进行湿化属于生理替代,无禁忌证。

2、人工鼻(HME)的使用有禁忌证,如下:(1)有明显血性痰液,痰液过于黏稠而且痰量过多的患者(2)呼出潮气量低于吸入潮气量70%的患者(例如:存在较大支气管胸膜瘘的患者;人工气道的气囊功能障碍;气囊缺失的患者)(3)对于小潮气量通气患者的气道湿化,例如应用肺保护性策略,不主张应用 HME,因为该做法会增加额外死腔,增加通气需求与 PaCO2水平。

无创正压机械通气在临床的应用详解演示文稿

无创正压机械通气在临床的应用详解演示文稿

于预先设定的水平。吸气相压力设定后,吸气所需的气流速
度由呼吸系统阻力和病人的吸气用力程度共同决定,吸气初
流速较大,以迅速达到预设压力,为了维持压力不变,吸气流
速自然递减,呈减速波型。“定压”通气时潮气量仍然为气流与
时间的积分, 与“定容”通气不同的是, 此时潮气量是无法直

控制的。
因此,所谓“定容”通气就是以潮气量为目标控制气流,而
和正弦波
第十页,共46页。
3.NIPPV模式、参数
第十一页,共46页。
3.NIPPV模式、参数
1. 容量控制
在现代呼吸机中并无可储存一定容量的结构(如风箱),因此
不可能预先存贮一定量的气体输送给病人,也就不存在字面
意义上的“定容”通气。呼吸机是通过对气流和时间的控制来
实现“定容”的,因为输送的气体流速与送气时间的积分就是所
点,即呼吸机何时开始送气,称之为触发( trigger);
其次要确定呼吸机在高压相采用何种方式调控气流,
即如何送气,称之为控制( control);最后需确定何时
从高压相转为低压相,即何时停止送气,在大多数情
况下这也是由吸气转为呼气的时间点,称之为切换
( cycle)。不难发现,通气模式可简单地理解为触发、
无创正压机械通气在临床
的应用详解演示文稿
第一页,共46页。
优选无创正压机械通气在
临床的应用
第二页,共46页。
1.机械通气简介
► 有创
第三页,共46页。
无创
有创
有创—无创序贯
无创机械通气的类型
负压通气
正压通气
高频通气
第四页,共46页。
各种躯体通气机(铁肺、胸甲式、

55个机械通气核心知识点

55个机械通气核心知识点

55个机械通气核心知识点1机械通气概念机械通气为重症呼吸衰竭患者临床支持治疗的手段之一。

它是通过机械装置,代替、控制或辅助患者的自主呼吸运动。

2机械通气分类机械通气按照是否创伤分为:有创机械通气和无创正压通气。

3无创正压通气(NIPPV)无创正压通气(NIPPV)是指不需要侵入性或有创性的气管插管或气管切开,只是通过鼻罩、口鼻罩、全面罩或头罩等方式将患者与呼吸机相连接进行正压辅助通气的技术。

4两种通气模式的工作原理区别5机械通气的基本过程机械通气的过程包括:吸气触发、吸气、吸气呼吸转换、呼气四个基本过程。

6机械通气吸气触发有几种方式吸气触发指的是关闭呼气阀、打开吸气阀,完成呼气向吸气的转化,方式有:自主触发、时间触发、人工触发。

7如何理解吸气触发中的自主触发患者的吸气努力被呼吸机感知后,呼吸机送气,这称为自主触发。

呼吸机可通过管路中的压力变化或流速变化来明确患者的吸气努力情况。

触发所需的流速或压力变化的大小称为触发灵敏度。

灵敏度越高,触发压力或流量越小。

压力触发一般为1-2cmH20,流量触发一般为1-3L/min。

8如何理解吸气的时间触发当患者没有自主呼吸或自主呼吸无法触发送气的时候,呼吸机会依照时间变化,自行送气,这种触发为时间触发。

9机械通气吸气向呼气转化的方式吸气向呼气转化有以下方式:时间切换(吸气达到一定时间后自行切换为呼气)、流速切换(气道内流速下降到一定程度后切换为呼气,一般25%)、容量切换(达到预定潮气量后开始切换为呼气)、压力切换(已很少使用)。

10有创机械通气的目的(1)纠正急性呼吸性酸中毒:通过改善肺泡通气使PaCO2和pH得以改善。

通常应使PaCO2和pH维持在正常水平。

(2)纠正低氧血症:通过改善肺泡通气、提高吸入氧浓度、增加肺容积和减少呼吸功耗等手段以纠正低氧血症。

机械通气改善氧合的基本目标是PaO2>60mmHg或SaO2>90%。

(3)降低呼吸功耗,缓解呼吸肌疲劳:由于气道阻力增加、呼吸系统顺应性降低和内源性呼气末正压(PEEPi)的出现,呼吸功耗显著增加,严重者出现呼吸肌疲劳。

有创机械通气和无创机械通气时的气道湿化 ppt课件

有创机械通气和无创机械通气时的气道湿化 ppt课件

C
试验中测得的数据和厂家提供的数据之间的 差值为3.0±2.7mg H2O/L,其中最大差值 为8.9mg H2O/L
d
36%的HME测得的差值高于4mg H2O/L
HH的风险
• 电击伤 • 被烫伤 •气道灼伤
•湿化罐加水过多、 冷凝水积聚导致气 道灌洗 •冷凝水过多可能造 成人机不协调
风险
• 温度设置过低或 湿化水平低于标 准水平,湿化不 足
改变的影响。对于应用小潮气量的ARDS患者,存在高碳酸血症者应避免HME的应用。 应用肺保护性策略的患者避免应用HME可以有效减少死腔及PaCO2水平,并增加pH值。 急性呼吸衰竭患者,HME会显著增加分钟通气量、呼吸驱动和呼吸功耗。 体温低于32℃的患者。 自主分钟通气量过高(>10L/min)的患者。 当将雾化器连接于呼吸机管路上进行雾化吸入治疗时,HME必须转变为雾化旁路模式
•有创通气主动湿化:湿度33mg H2O/L~44mg H2O/L •温度在34℃~41℃之间 •相对湿度达100%来保证人工气道内分泌物的有效排出
有通气患者进行 主动湿化时 建议湿度水平在 33~44mg H2O/L 之间,Y 型接头处气体温 度在 34~41℃之 间 相对湿度达 100%(2B)
→ 人力资源的重要性
人工鼻(HME)的禁忌证
有明显血性痰液,痰液过于黏稠而且痰量过多的患者 呼出潮气量低于吸入潮气量70%的患者(例如:存在较大支气管胸膜瘘的患者;人工
气道的气囊功能障碍;气囊缺失的患者) 对于小潮气量通气患者的气道湿化,例如应用肺保护性策略,不主张应用HME,因为
该做法会增加额外死腔,增加通气需求和PaCO2水平 人工气道死腔的减少可以降低PaCO2水平,PaCO2水平的降低不受呼吸系统力学指标

无创机械通气

无创机械通气

吸气相IPAP设置过高


送气气流大、潮气量大 氧浓度低 影响耐受性 影响氧合
吸气相IPAP过低

送气量小、潮气量低 氧浓度可高 也不能改善氧合
所以IPAP设置范围10-18cmH2O,保障潮气量。
呼气相EPAP

克服气道助力 a 克服外源性人工管道助力 b 克服病人内源性气道助力(1-2cmH2O)
a+b助力设置=EPAP大于4cmH2O 内源性PEEP偏大的病人EPAP更大于 4cmH2O
BiPAP呼吸机调节

模式种类:S T S/T S模式(同步模式):采用流量触发,机器提供的 吸气压力和呼气压力的转换是由病人呼吸气流控 制,通过调整吸气触发灵敏度和呼气触发灵敏度 达到较好的人机同步 T模式(时间模式):当监测频率低于设定值时, 呼吸机按备用频率进行控制(即检测时间大于备 用频率,一般设为4—6次)
痰液窒息和呕吐物误吸原因及防治


FMMV初期咳痰量增加 -FMMV对呼吸道分泌物引流的影响是双向的 原因: 营养不良和电解质紊乱
昏迷或昏睡 痰量较多 上消化道出血 胃肠严重胀气

防治:
饭后采用半卧位 如病情许可饭后0.5~1小时暂停FMMV 留置胃管胃肠减压 密切监护、及时发现呕吐并予处理
胃肠胀气原因及防治


经鼻面罩BiPAP:双水平气道正压通气(一种病人触发, 流量切换模式通气) 经气管导管BiPAP:双向气道正压通气(一种压力控制, 时间切换模式通气),基本方式是连续气道正压水平,且 在连续正压的高低压之间切换,病人在一个高压水平周期 或者一个低压水平周期内自由的进行若干切换,直至呼吸, 利用P high切换至P low时功能残气量减少,增加呼出气量,提供通

美国呼吸治疗协会临床实践指南——有创机械通气和无创机械

美国呼吸治疗协会临床实践指南——有创机械通气和无创机械

美国呼吸治疗协会临床实践指南——有创机械通气和无创机械通气时的气道湿化:2012AARC Clinical Practice Guideline:Respir Care, 2012, 57(5):782–788.译者:中日友好医院ICU 孙菁夏金根1.有创通气患者均应进行气道湿化。

2.主动湿化可以增加无创通气患者的依从性和舒适度。

3.有创通气患者进行主动湿化时,建议湿度水平在33~44mg H2O/L之间,Y型接头处气体温度在34~41℃之间,相对湿度达100%。

4.有创通气患者进行被动湿化时,建议热湿交换器提供的吸入气湿度至少达到30mg H2O/L。

5.不主张无创通气患者进行被动湿化。

6.对于小潮气量患者,例如应用肺保护性策略时,不推荐使用热湿交换器进行气道湿化,因为这样会导致额外死腔的产生,增加通气需求及PaCO2 。

7.不建议应用热湿交换器以预防呼吸机相关性肺炎。

HMV 1.0 概述有创通气时因上呼吸道被旁路,湿化对于预防低体温、呼吸道上皮组织的破坏、支气管痉挛、肺不张以及气道阻塞有着至关重要的作用。

某些严重情况下,气道分泌物的过于黏稠可导致气管插管阻塞。

然而,目前仍无明确观点表明额外的加热、加湿对于无创通气具有明确的必要性,但是湿化的确可以增加无创通气患者的舒适度。

两种湿化装置可以用于有创通气患者吸入的气体的加热湿化,主动湿化是指通过加热湿化器进行主动加温加湿,被动湿化是通过热湿交换器(人工鼻)来进行的。

目前有三种类型的热湿交换器或者人工鼻:疏水型、亲水型和过滤功能型。

主动加热湿化器通过对吸入气体加温并增加水蒸气的含量来进行加温、加湿。

被动加热湿化器(人工鼻)的工作原理是指通过储存患者呼出气体中的热量和水分来对吸入气体进行加热湿化。

上呼吸道可提供75%的热量和水分给肺泡。

当上呼吸道不能对吸入气体进行加温湿化时,湿化器就需要补偿丢失的这部分热量和水分。

比如说,总的水分需求吸收量是44mg/L,湿化器需要补偿的部分就等于0.75*44mg/L = 33mg/L。

【医脉通指南频道】美国呼吸治疗协会临床实践指南——有创机械通气和无创机械通气时的气道湿化:2012 (1)

【医脉通指南频道】美国呼吸治疗协会临床实践指南——有创机械通气和无创机械通气时的气道湿化:2012 (1)

美国呼吸治疗协会临床实践指南——有创机械通气和无创机械通气时的气道湿化:2012AARC Clinical Practice Guideline:Respir Care, 2012, 57(5):782–788.译者:中日友好医院ICU 孙菁夏金根1.有创通气患者均应进行气道湿化。

2.主动湿化可以增加无创通气患者的依从性和舒适度。

3.有创通气患者进行主动湿化时,建议湿度水平在33~44mg H2O/L之间,Y型接头处气体温度在34~41℃之间,相对湿度达100%。

4.有创通气患者进行被动湿化时,建议热湿交换器提供的吸入气湿度至少达到30mg H2O/L。

5.不主张无创通气患者进行被动湿化。

6.对于小潮气量患者,例如应用肺保护性策略时,不推荐使用热湿交换器进行气道湿化,因为这样会导致额外死腔的产生,增加通气需求及PaCO2 。

7.不建议应用热湿交换器以预防呼吸机相关性肺炎。

HMV 1.0 概述有创通气时因上呼吸道被旁路,湿化对于预防低体温、呼吸道上皮组织的破坏、支气管痉挛、肺不张以及气道阻塞有着至关重要的作用。

某些严重情况下,气道分泌物的过于黏稠可导致气管插管阻塞。

然而,目前仍无明确观点表明额外的加热、加湿对于无创通气具有明确的必要性,但是湿化的确可以增加无创通气患者的舒适度。

两种湿化装置可以用于有创通气患者吸入的气体的加热湿化,主动湿化是指通过加热湿化器进行主动加温加湿,被动湿化是通过热湿交换器(人工鼻)来进行的。

目前有三种类型的热湿交换器或者人工鼻:疏水型、亲水型和过滤功能型。

主动加热湿化器通过对吸入气体加温并增加水蒸气的含量来进行加温、加湿。

被动加热湿化器(人工鼻)的工作原理是指通过储存患者呼出气体中的热量和水分来对吸入气体进行加热湿化。

上呼吸道可提供75%的热量和水分给肺泡。

当上呼吸道不能对吸入气体进行加温湿化时,湿化器就需要补偿丢失的这部分热量和水分。

比如说,总的水分需求吸收量是44mg/L,湿化器需要补偿的部分就等于0.75*44mg/L = 33mg/L。

气道湿化指南

气道湿化指南

2012气道湿化指南2014-02-08呼吸重症美国呼吸治疗协会临床实践指南——有创机械通气和无创机械通气时的气道湿化:2012 AARC Clinical Practice Guideline:Respir Care, 2012, 57(5):782–788.译者:中日友好医院ICU 孙菁夏金根1.有创通气患者均应进行气道湿化。

2.主动湿化可以增加无创通气患者的依从性和舒适度。

3.有创通气患者进行主动湿化时,建议湿度水平在33~44mg H2O/L之间,Y型接头处气体温度在34~41℃之间,相对湿度达100%。

4.有创通气患者进行被动湿化时,建议热湿交换器提供的吸入气湿度至少达到30mg H2O/L。

5.不主张无创通气患者进行被动湿化。

6.对于小潮气量患者,例如应用肺保护性策略时,不推荐使用热湿交换器进行气道湿化,因为这样会导致额外死腔的产生,增加通气需求及PaCO2 。

7.不建议应用热湿交换器以预防呼吸机相关性肺炎。

HMV 1.0 概述有创通气时因上呼吸道被旁路,湿化对于预防低体温、呼吸道上皮组织的破坏、支气管痉挛、肺不张以及气道阻塞有着至关重要的作用。

某些严重情况下,气道分泌物的过于黏稠可导致气管插管阻塞。

然而,目前仍无明确观点表明额外的加热、加湿对于无创通气具有明确的必要性,但是湿化的确可以增加无创通气患者的舒适度。

两种湿化装置可以用于有创通气患者吸入的气体的加热湿化,主动湿化是指通过加热湿化器进行主动加温加湿,被动湿化是通过热湿交换器(人工鼻)来进行的。

目前有三种类型的热湿交换器或者人工鼻:疏水型、亲水型和过滤功能型。

主动加热湿化器通过对吸入气体加温并增加水蒸气的含量来进行加温、加湿。

被动加热湿化器(人工鼻)的工作原理是指通过储存患者呼出气体中的热量和水分来对吸入气体进行加热湿化。

上呼吸道可提供75%的热量和水分给肺泡。

当上呼吸道不能对吸入气体进行加温湿化时,湿化器就需要补偿丢失的这部分热量和水分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

美国呼吸治疗协会临床实践指南——有创机械通气和无创机械通气时的气道湿化:2012AARC Clinical Practice Guideline:Respir Care, 2012, 57(5):782–788.译者:中日友好医院ICU 孙菁夏金根1.有创通气患者均应进行气道湿化。

2.主动湿化可以增加无创通气患者的依从性和舒适度。

3.有创通气患者进行主动湿化时,建议湿度水平在33~44mg H2O/L之间,Y型接头处气体温度在34~41℃之间,相对湿度达100%。

4.有创通气患者进行被动湿化时,建议热湿交换器提供的吸入气湿度至少达到30mg H2O/L。

5.不主张无创通气患者进行被动湿化。

6.对于小潮气量患者,例如应用肺保护性策略时,不推荐使用热湿交换器进行气道湿化,因为这样会导致额外死腔的产生,增加通气需求及PaCO2 。

7.不建议应用热湿交换器以预防呼吸机相关性肺炎。

HMV 1.0 概述有创通气时因上呼吸道被旁路,湿化对于预防低体温、呼吸道上皮组织的破坏、支气管痉挛、肺不张以及气道阻塞有着至关重要的作用。

某些严重情况下,气道分泌物的过于黏稠可导致气管插管阻塞。

然而,目前仍无明确观点表明额外的加热、加湿对于无创通气具有明确的必要性,但是湿化的确可以增加无创通气患者的舒适度。

两种湿化装置可以用于有创通气患者吸入的气体的加热湿化,主动湿化是指通过加热湿化器进行主动加温加湿,被动湿化是通过热湿交换器(人工鼻)来进行的。

目前有三种类型的热湿交换器或者人工鼻:疏水型、亲水型和过滤功能型。

主动加热湿化器通过对吸入气体加温并增加水蒸气的含量来进行加温、加湿。

被动加热湿化器(人工鼻)的工作原理是指通过储存患者呼出气体中的热量和水分来对吸入气体进行加热湿化。

上呼吸道可提供75%的热量和水分给肺泡。

当上呼吸道不能对吸入气体进行加温湿化时,湿化器就需要补偿丢失的这部分热量和水分。

比如说,总的水分需求吸收量是44mg/L,湿化器需要补偿的部分就等于0.75*44mg/L = 33mg/L。

正常呼吸时,气管内的湿度应该在36mg/L~40mg/L之间,气体到达隆突时的最佳湿度水平是44mg/L(相对湿度100%,气体温度37℃)。

对有创通气患者进行主动湿化时,湿化装置需要达到33mg H2O/L~44mg H2O/L的湿度水平,气体温度在34℃~41℃之间,相对湿度达100%来保证人工气道内分泌物的有效排出。

尽管目前的主动湿化装置可以保证Y型管处的气体温度达到41℃,但是我们建议Y 型管处的最高气体温度是37℃,相对湿度是100%。

ISO组织认为:传送的气体温度持续在41℃以上会对患者带来潜在的热损伤,并把43℃作为热损伤的高温报警临界点。

如果吸入气体温度高于37℃,相对湿度100%,将会形成冷凝水,使得黏液粘稠度降低并增加细胞周围的液体流动。

过低的黏液粘稠度以及过多的细胞周围液体会导致纤毛与黏液无法进行充分接触,进而会造成黏液过多无法经过纤毛的正常运动将其顺利排出。

因此,黏膜纤毛的转运速度将会降低。

过多的冷凝水需要被黏膜细胞清除掉,同时过多的热量也会引起细胞的凋亡。

如果湿度水平低于25mg/L达1小时或者低于30mg/L达24小时或更久,将导致气道黏膜的功能障碍。

因此,我们主张建立人工气道的患者应至少保持33mg H2O/L的湿度。

人工鼻生产商提供的数据说明是根据ISO9360的方法,按照体外的湿度排出测量方法来提出的。

然而,人工鼻在体内的湿度测量和商家所提供的说明是有区别的。

美国标准协会推荐:绝对湿度≥30mg H2O/L;AARC(美国呼吸治疗协会)主张绝对湿度水平≥30mg H2O/L,然而ISO认为绝对湿度应≥33mg H2O/L。

对于有正常清除气道分泌物能力的患者,人工鼻提供26~29mg H2O/L的湿度水平即可。

人工鼻提供的绝对湿度不可低于26mg H2O/L。

我们主张人工鼻提供的绝对湿度至少在30mg H2O以上,这将会降低气管插管或气切套管堵塞的发生率。

HMV 2.0 适用于以下情况2.1危重病的护理2.2入院患者的急救2.3手术室2.4医疗保健和专业的护理服务机构2.5家庭护理2.6转运途中HMV 3.0 适用症气管插管或者气管切开的患者进行机械通气时,需强制地对其吸入气体加温加湿,而无创机械通气患者可选择性应用HMV 4.0 禁忌证对机械通气患者吸入气体进行湿化属于生理替代,无禁忌证。

但在某些情况下,人工鼻(HME)的使用有禁忌证;4.1有明显血性痰液,痰液过于黏稠而且痰量过多的患者4.2 呼出潮气量低于吸入潮气量70%的患者(例如:存在较大支气管胸膜瘘的患者;人工气道的气囊功能障碍;气囊缺失的患者)4.3 对于小潮气量通气患者的气道湿化,例如应用肺保护性策略,不主张应用HME,因为该做法会增加额外死腔,增加通气需求和PaCO2水平4.3.1 人工气道死腔的减少可以降低PaCO2水平,PaCO2水平的降低不受呼吸系统力学指标改变的影响。

对于应用小潮气量的ARDS患者,存在高碳酸血症者应避免HME的应用。

4.3.2 应用肺保护性策略的患者避免应用HME可以有效减少死腔及PaCO2水平,并增加pH值。

4.3.3 急性呼吸衰竭患者,HME会显著增加分钟通气量、呼吸驱动和呼吸功耗。

4.4体温低于32℃的患者。

4.5自主分钟通气量过高(>10L/min)的患者。

4.6 当将雾化器连接于呼吸机管路上进行雾化吸入治疗时,HME必须转变为雾化旁路模式或撤离于患者呼吸回路。

4.7 HME所产生的死腔和气道阻力会降低无创正压通气效果,并增加额外的呼吸做功。

4.8面罩漏气量过多的无创通气患者,因为降低的呼出潮气量不能为HME提供足够的热量和水分,因而难以对吸入气体进行有效的温湿化。

4.9 HME会增加死腔量以及PaCO2水平,因而可能会增加机械通气患者的通气需求。

HMV 5.0风险和并发症两种湿化装置可能出现的风险和并发症。

5.1 加热湿化器(HH)可导致电击伤。

5.2应用HH时温度设置过低或湿化水平低于标准水平,HME的不合理应用可导致湿化不足。

5.3 HH可导致气道灼伤;使用与HH不相匹配的加热导丝环路或呼吸管路时可能会导致患者气道灼伤和管路熔化。

5.4应用HH或HME时,若湿度水平低于26mg H2O/L,可导致湿化不足以及黏液分泌物的排出不畅。

5.5应用HH或HME时,气道内黏液的堵塞可导致通气不足和/或肺泡内气体陷闭。

5.6应用HH或HME时,气道内黏液的堵塞可导致呼吸阻力功耗的增加。

5.7 应用HH或HME时可能会增加来自湿化器的呼吸阻力功耗,而HH可导致气道压力过高及人机不同步。

5.8应用HME时,由于死腔量的增加而出现的高碳酸血症可导致通气不足。

5.9应用HH时,不经意的湿化灌加水过多或者回路内冷凝水积聚过多,均可导致气道灌洗。

5.10 应用HH或HME时,当湿化器与患者脱开时,呼吸机在病人回路中产生的高速气流可能会使污染的冷凝水发生雾化效果,而增加患者和临床工作者发生院内交叉感染的风险。

5.11 应用HH时,医护工作者有可能被烫伤。

5.12 应用HH时,呼吸机管路内冷凝水过多可能会造成人机不协调以及呼吸机性能异常。

5.13 HME与呼吸回路断开时,因HME的阻力会出现无效的气道低压报警。

5.14 应用HH或HME时,压缩性的通气量丢失会导致有效潮气量测量的不准确(如果未进行校准),并且会降低呼吸机反应的灵敏度。

5.15 应用HH时,如果按照患者的体温来设定湿化温度会导致气道脱水,相对湿度会过低。

HMV 6.0 两种方式的局限性6.1一些HME装置可能无法提供有效的温化和湿化,从而会产生如HMV 5.0中提到的风险和并发症。

6.1.2最近一项关于一些HME的评估表明,仅37.5%的HME满足AARC和ISO 的标准(低于30mg H2O/L),而25%的HME产生的湿度水平低于25mg H2O/L。

试验中测得的数据和厂家提供的数据之间的差值为3.0±2.7mg H2O/L,其中最大差值为8.9mg H2O/L,然而36%的HME测得的差值高于4mg H2O/L。

6.2HH不能进行有效的加热湿化时亦可能会产生一些如HMV 5.0中提到的并发症。

6.2.1 温度设定不合理。

尽管温度不能看作是判断输送气体湿度的较好指标,但它仍然可以作为一个监测和测量的简便指标。

6.2.2温度是预设的,不能根据临床评估来调节。

6.2.3未能正确使用加热导丝6.2.3.1带有加热导丝的呼吸机管路常用于预防冷凝水的积聚。

然而,应该注意的是,为控制冷凝水的形成,湿化灌出口处与Y型接口之间的气体会被加热,这样就会减少输送气体的相对湿度。

下降的幅度取决于湿化灌出口处、患者和当时治疗环境之间的温度梯度。

6.2.3.2相对湿度的降低可能会导致气管插管内分泌物的粘稠,进而增加导管阻塞的风险。

6.2.4湿化灌内的水位线未达到厂家建议的水位线。

6.2.5 HME未按照患者的身材和潮气量的大小进行选择。

HMV 7.0 需求评估对所有建立人工气道的机械通气患者均须进行气道湿化。

患者吸入气体的温度和湿度可以通过HME或HH进行调节和控制。

7.1 HME更适合于患者的短期(≤96小时)治疗和转运过程7.2对于具有HME禁忌症的患者,推荐使用HH。

此外,从最近的关于HME与HH间比较的荟萃分析中可得出以下结论:7.3对于机械通气患者,HME与HH在降低患者病死率和预防其他并发症等方面无明显差异。

7.4 HME与HH在预防呼吸机相关性肺炎方面亦无显著性差异。

7.5 亲水型HME与疏水型HME的差异,以及HME在儿童和新生儿中使用的价值需进一步的研究。

HMV 8.0临床效果评价在常规的仔细检查条件下,若患者未出现HMV5.0中提及的风险和并发症,即可认为气道湿化合适。

在气管套管连接处形成冷凝水则提示气体相对湿度为100%。

HMV 9.0所需的设备和人员9.1设备应该选用合适的加热加湿装置对患者的吸入气体进行有效的湿化。

这些设备包括以下装置,但又不限于以下装置:9.1.1 湿化装置9.1.2一种可以监测吸入气体温度,并且当温度达不到预设范围时可出现报警的湿化系统(HH)9.1.3 HH使用的灭菌注射用水9.1.4 符合常规安全预警的配件9.2应仔细检查湿化装置性能的说明,确保在呼吸机输送预设的吸气峰流速和分钟通气量时,患者能得到充足的气体温化和湿化。

选用的HH应该满足ISO提出的标准9.3 专业人士。

持有执照或已取得专业认证的呼吸治疗师,或已通过专业培训获得相关认证的人士(如临床医生或注册护士)。

他们可以准确评估机械通气中的湿化情况,评估患者—人机系统,并具备准确的临床判断能力。

HMV 10.0 监测尽管呼吸机管路内冷凝水的出现意味着患者得到了有效湿化,但是当周围气体温度过高时,冷凝水的出现并不能成为判断湿化效果好坏的可靠指标。

相关文档
最新文档