二次根式知识点归纳总结
二次根式知识点总结
二次根式知识点总结1. 二次根式的定义和性质二次根式是指具有形式√a的数,其中a是非负实数。
以下是二次根式的一些重要性质:•非负性:对于任何非负实数a,√a也是一个非负实数。
•平方性:对于任何非负实数a,(√a)2=a。
•唯一性:每个非负实数都有唯一的平方根。
2. 化简和计算二次根式化简和计算二次根式是处理二次根式的基本操作。
下面是一些常见的规则和方法:•合并同类项:如果两个或多个二次根式具有相同的根指数并且根下的值相同,则可以合并它们。
•分解因子:对于某些特定的二次根式,可以将其分解为更简单的形式,例如√ab=√a⋅√b。
•有理化分母:当一个二次根式出现在分母中时,可以通过乘以适当的形式来有理化分母,例如√2=√22。
•乘法和除法规则:二次根式可以与其他数进行乘法和除法运算,例如√a⋅√b=√ab和√a√b =√a√b⋅√b√b=√abb。
3. 二次根式的性质和定理二次根式具有许多重要的性质和定理,这些性质和定理可以帮助我们解决各种问题。
以下是一些常见的性质和定理:•无理数性质:对于大多数非完全平方数a,√a是一个无理数。
•比较大小:对于两个非负实数a和b,如果a<b,那么√a<√b。
•平方根的加法公式:√a+√b不能化简为一个更简单的形式,除非a和b 存在某种特殊关系(例如互为有理数倍)。
•平方根的乘法公式:√a⋅√b=√ab,其中a和b可以是任意非负实数。
4. 解二次根式的方程和不等式解二次根式的方程和不等式是应用二次根式知识的重要方面。
以下是一些解决这类问题的方法:•方程:将方程两边进行平方操作,然后化简为二次根式形式,最后解得方程的解。
•不等式:根据二次根式的性质,可以比较大小或使用其他方法来解决不等式。
5. 与其他数学概念的关系二次根式与其他数学概念之间存在着密切的关系。
以下是一些与二次根式相关的重要概念:•平方数:对于某个非负实数a,如果存在另一个非负实数b,使得b2=a,那么a就是一个平方数。
二次根式知识点总结及其应用
二次根式知识点及其应用一、二次根式的概念:(1)形如 的式子叫做二次根式.(2)二次根式有意义的条件:被开方数大于或等于零。
二、二次根式化简:1、最简二次根式:满足下列两个条件的二次根式,叫做最简二次根式。
①被开方数不含分母;②被开方数中不含能开得尽方的因数或因式;2、同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同, 那么这几个二次根式叫做同类二次根式。
3、分母有理化:(1)有理化因式:两个含有二次根式的代数式相乘,如果他们的积不含有二次根式,那么这两个代数式叫做互为有理化因式。
(2)分母有理化:在分母含有根号的式子中,把分母中的根号化去。
方法:①分子与分母同乘以分母的有理化因式例如:②分子或分母分解因式,约去分母中含有二次根式的因式例如:三、二次根式的性质:(1) 非负性0()a ≥0 2(2)(0)a = ≥ 0()a ≥0(00)0,0,)a b a b a b ==≥>==≥≥≠ ,0,0)0,0)x y x y ==>>==>>四、二次根式的运算:二次根式乘法法则二次根式除法法则二次根式的加减:(1)将每个二次根式化为最简二次根式;(2)找出其中的同类二次根式;(3)合并同类二次根式。
五、二次根式的应用1.对二次根式的认识1.一个自然数的算术平方根为()0a a >,则与这个自然数相邻的两个自然数的算术平方根为( )(A )1,1a a -+(BCD )221,1a a -+2.若21x +的平方根是5±_____=.3.a 的被开方数相同,则_____ab +=.4.若xy____x =,_____y =.5=,且0x y <<,则满足上式的整数对(),x y 有_____.2、根据二次根式有意义的条件确定未知数的值:1有意义的x 的取值范围=(0,0)a b = ≥ ≥(00)a b = ≥>(0,0)a b = ≥≥(0,0)a b = ≥>2.若2)(11y x x x +=-+-,则y x -=_____________。
(完整版)第十六章二次根式知识点总结大全
二次根式【知识回顾】1.二次根式:式子a (a ≥0)叫做二次根式。
2.最简二次根式:必须同时满足下列条件: ⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。
3.同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。
4.二次根式的性质:(1)(a )2=a (a ≥0); (2)==a a 25.二次根式的运算:(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术平方根代替而移到根号外面;如果被开方数是代数和的形式,那么先分解因式,变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.(a≥0,b≥0);=(b≥0,a>0). (4)有理数的加法交换律、结合律,乘法交换律及结合律,乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.a (a >0)a -(a <0)0 (a =0);【典型例题】1、概念与性质例1、下列各式1)-,其中是二次根式的是_________(填序号).例2、求下列二次根式中字母的取值范围(1)xx--+315;(2)22)-(x例3、在根式1) ,最简二次根式是()A.1) 2) B.3) 4) C.1) 3) D.1) 4)例4、已知:的值。
求代数式22,211881-+-+++-+-=xyyxxyyxxxy例5、已知数a,b,若=b-a,则( )A. a>bB. a<bC. a≥bD. a≤b2、二次根式的化简与计算例1. 将根号外的a 移到根号内,得 ( )A. ;B. -;C. -;D.例2. 把(a -b )-1a -b 化成最简二次根式例3、计算:例4、先化简,再求值:11()b a b b a a b ++++,其中a=512,b=512.例5、如图,实数a 、b 在数轴上的位置,化简 :222()a b a b ---4、比较数值 (1)、根式变形法当0,0a b >>时,①如果a b >>a b <<例1、 比较与(2)、平方法当0,0a b >>时,①如果22a b >,则a b >;②如果22a b <,则a b <。
二次根式知识点归纳
二次根式知识点归纳定义:一般的,式子a (a ≥0)叫做二次根式。
其中“”叫做二次根号,二次根号下的a 叫做被开方数。
性质:1、2≥0,等于a;a<0,等于-a3、45612789一.1.【05A.25 B.52 C.542.【05南京】9的算术平方根是(???).A.-3B.3C.±3D.813.【05南通】已知2x <,的结果是(???).A 、2x -B 、2x +C 、2x --D 、2x -4.【05泰州】下列运算正确的是(???).A .a 2+a 3=a 5B .(-2x)3=-2x 3C .(a -b)(-a +b)=-a 2-2ab -b 2D =5.【05无锡】下列各式中,与y x 2是同类项的是()A 、2xyB 、2xyC 、-y x 2D 、223y x6.【05武汉】若a ≤1,则化简后为(???). A.??B. C.???D.7.【05绵阳】化简时,甲的解法是:==,乙的解法是:,以下判断正确的是(???).A.甲的解法正确,乙的解法不正确B.甲的解法不正确,乙的解法正确C.甲、乙的解法都正确D.甲、乙的解法都不正确8.【05(A)a >9.【05A.8 10.【05A.2411.【05A.(-1)312.【05A 、x 213.【05A .114.【05 A 15.【05A .aa b ++b a b +=1B .1÷b a ×a b =1 C .21()a b +·22a b a b --=1a b +二、填空题1.【05连云港】计算:)13)(13(-+=.2.【05南京】10在两个连续整数a 和b 之间,a<10<b,那么a,b 的值分别是。
3.【05上海】计算:)11=4.【05嘉兴5.【05丽水】当a ≥0.6.【05南平=.7.【05漳州,2,(第n 个数).8.【05曲靖】在实数-2,31,0,-1.2,2中,无理数是. 9.【05黄石】若最简根式b a a +3与b a 2+是同类二次根式,则ab =.10.【05太原】将棱长分别为a cm 和bcm 的两个正方体铝块熔化,制成一个大正方体铝块,这个大正方体的棱长为.(不计损耗)11.【05黄岗】立方等于–64的数是。
二次根式知识点总结
二次根式知识点总结王亚平1. 二次根式的概念二次根式的定义: 形如)0(≥a a 的式子叫二次根式,其中叫被开方数,只有当是一个非负数时,才有意义.2. 二次根式的性质1。
非负性:)0(≥a a 是一个非负数. 注意:此性质可作公式记住,后面根式运算中经常用到.2.)0()(2≥=a a a注意:此性质既可正用,也可反用,反用的意义在于,可以把任意一个非负数或非负代数式写成完全平方的形式:)0()(2≥=a a a3。
⎩⎨⎧<-≥==)0()0(2a a a a a a 注意:(1)字母不一定是正数. (2)能开得尽方的因式移到根号外时,必须用它的算术平方根代替.3. 最简二次根式和同类二次根式1、最简二次根式:(1)最简二次根式的定义:①被开方数是整数,因式是整式;②被开方数中不含能开得尽方的数或因式;分母中不含根号.2、同类二次根式(可合并根式):几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫做同类二次根式,即可以合并的两个根式4. 二次根式计算--分母有理化1.分母有理化定义:把分母中的根号化去,叫做分母有理化. 2.有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,就说这两个代数式互为有理化因式。
有理化因式确定方法如下:①单项二次根式:利用a a a =⋅来确定,如:与,b a +与b a +,b a -与b a -等分别互为有理化因式。
②两项二次根式:利用平方差公式来确定。
如b a +与b a -,b a +与b a -,y b x a +与y b x a -分别互为有理化因式。
3.分母有理化的方法与步骤:①先将分子、分母化成最简二次根式;②将分子、分母都乘以分母的有理化因式,使分母中不含根式;5. 二次根式计算——二次根式的乘除1.积的算术平方根的性质:积的算术平方根,等于积中各因式的算术平方根的积。
)0,0(≥≥⋅=b a b a ab2.二次根式的乘法法则:两个因式的算术平方根的积,等于这两个因式积的算术平方根.)0,0(≥≥=⋅b a ab b a3.商的算术平方根的性质:商的算术平方根等于被除式的算术平方根除以除式的算术平方根 。
二次根式的知识点归纳
二次根式的知识点归纳
二次根式的知识点主要有以下几点:
1、定义:二次根式是一种特殊的多项式,其定义为ax²+bx+c=0,其中a≠0。
2、判断:二次根式可以通过相应的判断条件来判断是否有解,即判断b²-4ac的值是否大于等于0,若大于等于0,则表明此二次方程有解;若小于0,则表明此二次方程无解。
3、解法:当判断出此二次方程有解时,可以使用相应的解法来求解,如利用一元二次方程的判别式求解法、利用一元二次方程的因式分解法等。
4、应用:二次根式在数学中有广泛的应用,如根据二次函数的性质,可以用来求解相关问题;又如可以利用它来求解最佳拟合方程等。
二次根式的知识点的总结
二次根式的知识点的总结二次根式是高中数学中重要的一个内容,也是学习代数的基础。
在学习二次根式时,需要了解其定义、性质、运算法则等知识点。
下面是对二次根式知识的总结:一、二次根式的定义和性质:1. 定义:对于非负实数a,b,如果存在非负实数x使得$x^2=a$,则称x为a的平方根,记作$x=\sqrt{a}$。
简记作$\sqrt{a}$,a称为二次根式的被开方数。
2.性质:(1)非负实数的平方根是唯一的。
即对于非负实数a,其平方根也是非负实数且唯一(2)非负实数a的平方根如果记作±$\sqrt{a}$,则规定非负实数a的平方根仅指称为非负实数$\sqrt{a}$。
(3)非负实数a的平方根的平方等于a。
即$(\sqrt{a})^2=a$。
(4)非负实数的平方根存在且非负。
即对于非负实数a,总是存在非负实数x使得$x^2=a$,且x唯一(5)相等的二次根式具有相等的平方根。
即如果$\sqrt{a}=\sqrt{b}$,则有a=b。
(6)平方根的运算:$\sqrt{ab}=\sqrt{a}\sqrt{b}$、$\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$。
二、二次根式的化简:1. 因式分解法:将二次根式的被开方数进行因式分解,然后利用性质$\sqrt{ab}=\sqrt{a}\sqrt{b}$和$\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$对二次根式进行简化,最后利用性质$\sqrt{a^2}=,a,$化简。
2. 合并同类项法:对于同根号的二次根式,可以合并同类项进行简化。
如$\sqrt{2}+\sqrt{3}+\sqrt{2}=\sqrt{2}+\sqrt{2}+\sqrt{3}=2\sqrt{2}+\sqrt{3}$。
3.有理化法:对于含有分母的二次根式,可以通过有理化的方法将其化简为一个无理数。
三、二次根式的比大小:1. 利用性质$\sqrt{a^2}=,a,$,我们可以对二次根式的大小进行比较。
最新人教版八年级数学下册 二次根式知识点归纳及题型总结
最新人教版八年级数学下册二次根式知识点归纳及题型总结二次根式知识点归纳和题型归类一、知识框图二、知识要点梳理知识点一、二次根式的主要性质:1.二次根式的定义:形如$\sqrt{a}$($a\geq 0$)的式子叫做二次根式。
2.二次根式的双重非负性:$\sqrt{a}\geq 0$,即一个非负数的算术平方根是一个非负数。
3.二次根式的同底同指数相加减:$\sqrt{a}+\sqrt{b}=\sqrt{a+b}$,$\sqrt{a}-\sqrt{b}=\sqrt{a-b}$。
4.积的算术平方根的性质:$\sqrt{ab}=\sqrt{a}\cdot\sqrt{b}$。
5.商的算术平方根的性质:$\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$($b\neq 0$)。
6.若$a\geq 0$,则$\sqrt{a^2}=|a|$。
知识点二、二次根式的运算1.二次根式的乘除运算1) 运算结果应满足以下两个要求:①应为最简二次根式或有理式;②分母中不含根号。
2) 注意每一步运算的算理。
3) 乘法公式的推广:$(\sqrt{a}\pm\sqrt{b})^2=a+b\pm2\sqrt{ab}$。
2.二次根式的加减运算:先化简,再运算。
3.二次根式的混合运算1) 明确运算的顺序,即先乘方、开方,再乘除,最后算加减,有括号先算括号里。
2) 整式、分式中的运算律、运算法则及乘法公式在二次根式的混合运算中也同样适用。
例题:1.下列各式中一定是二次根式的是()。
A。
$-3$;B。
$x$;C。
$x^2+1$;D。
$x-1$2.$x$取何值时,下列各式在实数范围内有意义。
1)$\sqrt{-15+x}$;(2)$\frac{1}{\sqrt{x+4}}$3)$\sqrt{x+4}+\sqrt{2x+1}$;(4)$\sqrt{x+1}-\sqrt{x}$5)$3-\sqrt{x+1}$;(6)$\frac{2x}{\sqrt{x+1}}$7)若$x(x-1)=\frac{1}{4}$,则$x$的取值范围是()。
二次根式经典总结
1.二次根式:一般地,式子)0a (,a ≥叫做二次根式.注意:(1)若0a ≥这个条件不成立,则 不是二次根式;(2)是一个重要的非负数,即;≥0.2.重要公式:(1))0a (a )a (2≥=,(2)⎩⎨⎧<-≥==)0a (a )0a (a a a 2 ;注意使用)0a ()a (a 2≥=。
3.积的算术平方根:)0b ,0a (b a ab ≥≥⋅=,积的算术平方根等于积中各因式的算术平方根的积;注意:本章中的公式,对字母的取值范围一般都有要求。
4.二次根式的乘法法则:)0b ,0a (ab b a ≥≥=⋅.5.二次根式比较大小的方法:(1)利用近似值比大小;(2)把二次根式的系数移入二次根号内,然后比大小;(3)分别平方,然后比大小.6.商的算术平方根:)0b ,0a (ba b a >≥=,商的算术平方根等于被除式的算术平方根除以除式的算术平方根.7.二次根式的除法法则:(1))0b ,0a (b a b a>≥=; (2))0b ,0a (b a b a >≥÷=÷;(3)分母有理化:化去分母中的根号叫做分母有理化;具体方法是:分式的分子与分母同乘分母的有理化因式,使分母变为整式。
8.常用分母有理化因式:a a 与,b a b a +-与, b n a m b n a m -+与,它们也叫互为有理化因式。
9.最简二次根式:(1)满足下列两个条件的二次根式,叫做最简二次根式,① 被开方数的因数是整数,因式是整式,② 被开方数中不含能开的尽的因数或因式;(2)最简二次根式中,被开方数不能含有小数、分数,字母因式次数低于2,且不含分母;(3)化简二次根式时,往往需要把被开方数先分解因数或分解因式;(4)二次根式计算的最后结果必须化为最简二次根式。
10.二次根式化简题的几种类型:(1)明显条件题;(2)隐含条件题;(3)讨论条件题.11.同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式.12.二次根式的混合运算:(1)二次根式的混合运算包括加、减、乘、除、乘方、开方六种代数运算,以前学过的,在有理数范围内的一切公式和运算律在二次根式的混合运算中都适用;(2)二次根式的运算一般要先把二次根式进行适当化简,例如:化为同类二次根式才能合并;除法运算有时转化为分母有理化或约分更为简便;使用乘法公式等.形如)0a (,a ≥的式子,叫做二次根式(1)二次根式中,被开方数必须是非负数。
二次根式的知识点汇总
二次根式的知识点汇总二次根式是指含有平方根(开方)的代数式。
学习和掌握二次根式的知识点,对于进一步理解和应用高等数学和物理学等学科内容至关重要。
以下是二次根式的知识点汇总:一、基本概念与性质:1.平方根与二次根式的概念:平方根的定义及其在代数中的性质,二次根式的定义与示例。
2.约分与化简:二次根式的约分、化简及约分规则。
3. 同类二次根式的合并与分解:同类二次根式的合并与分解法则,如$\sqrt{a} \pm \sqrt{b} = \sqrt{(\pm \sqrt{a})^2 + (\pm\sqrt{b})^2}$。
二、四则运算:1. 加减法:同类二次根式的加减法规则,如$\sqrt{a} \pm \sqrt{b} = \sqrt{(\pm \sqrt{a})^2 + (\pm \sqrt{b})^2}$。
2. 乘法:二次根式的乘法规则,如$(a+b)(c+d)=ac+ad+bc+bd$。
3. 除法:二次根式的除法规则,如$\frac{a+b}{c+d}=\frac{(a+b)(c-d)}{(c+d)(c-d)}$。
4.有理化方法:如分子、分母都有二次根式时的有理化方法,分别是乘以共轭式和有理化因式。
三、二次根式的化简与证明:1.合并同类项:在二次根式的化简中,将同类项合并为一个二次根式。
2.分解因式:在二次根式的化简中,将二次根式分解为若干个二次根式相乘的形式。
3.公因式提取:在二次根式的化简中,提取公因式使其化简为整数或其他形式。
四、二次根式的应用:1.代数方程的解:使用二次根式求解一元二次方程。
2.几何意义:二次根式在几何中的应用,例如计算三角形的边长、面积等。
3.物理问题:通过建立代数模型和运用二次根式,解决物理问题,如自由落体、速度、力等。
五、常见的二次根式:1. $\sqrt{a^2}=,a,$,其中$a$表示任意实数。
2. $\sqrt{a}\sqrt{b}=\sqrt{ab}$,其中$a$和$b$分别表示任意非负实数。
二次根式知识点总结
二次根式知识点总结1. 二次根式的定义二次根式是指形如√a的数式,其中a是一个非负实数。
在二次根式中,a被称为被开方数,√a被称为二次根号。
二次根式可以是完全平方数,也可以是非完全平方数。
2. 二次根式的化简化简二次根式的目的是将其写成最简形式。
对于完全平方数,化简的过程比较简单,只需要将√a的值直接提取出来即可。
而对于非完全平方数,需要用到分解质因数的方法来化简。
比如对于√18,可以分解质因数得到√(2×3×3),然后将成对的质因数提取出来得到3√2。
3. 二次根式的运算(1)二次根式的加减法二次根式的加减法遵循着类似项相加的原则。
即对于同一次幂的二次根式,可以进行加减运算。
比如√8 + √32,可以将8和32分解质因数得到√(2×2×2) + √(2×2×2×2×2),然后将相同的项加在一起得到2√2 + 4√2,再进行合并得到6√2。
(2)二次根式的乘法二次根式的乘法用到了平方根的性质,即√a×√b=√(a×b)。
对于二次根式的乘法,可以直接将被开方数相乘再提取出来即可。
比如(√5 + √3)×(√5 - √3),可以将其展开得到√5×√5 - √5×√3 +√3×√5 - √3×√3,再合并得到5 - 3=2。
(3)二次根式的除法二次根式的除法也用到了平方根的性质,即√a/√b=√(a/b)。
对于二次根式的除法,可以直接将被开方数相除再提取出来即可。
比如(√12 + √3)/(√3),可以将其展开得到√12/√3 + √3/√3,再化简得到2√3 + 1。
4. 二次根式的化简与支配数在二次根式的运算中,有时候会出现需要化简的情况。
这就需要用到支配数的概念。
支配数是指对于一个二次根式,可以找到一个更小的数,使得原二次根式是这个数的倍数。
比如对于√75,可以找到√25×3,这里25就是√75的支配数。
二次根式概念知识点总结
二次根式概念知识点总结一、二次根式的概念1. 二次根式的定义二次根式是一种形如√a的代数式,其中a为一个实数,且a≥0。
在二次根式中,√称为根号,a称为被开方数。
被开方数a的平方根就是等于a的正实数。
2. 二次根式的特点- 被开方数a必须是非负实数,即a≥0。
- 二次根式可以是整数、小数、分数或无理数。
- 二次根式可以化简为最简形式,即根号下的被开方数不含有平方因子。
3. 二次根式的分类根据被开方数的性质,二次根式可以分为完全平方数根式和非完全平方数根式两种情况。
完全平方数根式是指被开方数是一个完全平方数的二次根式,非完全平方数根式则是指被开方数是一个非完全平方数的二次根式。
二、二次根式的化简1. 化简方法对于二次根式的化简,主要有以下几种方法:- 求被开方数的因式分解,将根号下的一些平方因子化简出来。
- 利用完全平方公式,将二次根式化为一个完全平方根式。
- 使用等价变形的方法,将二次根式化为最简形式。
2. 化简步骤(1)对于完全平方数根式,只需将根号下的被开方数进行因式分解,并将平方因子提出来,即可将二次根式化为最简形式。
例如:√100=√(2²×5²)=2×5=10(2)对于非完全平方数根式,可以利用完全平方公式将二次根式化为最简形式。
例如:√50=√(25×2)=√25×√2=5√2(3)对于一般的二次根式,可以利用等价变形的方法进行化简。
例如:√72=√(36×2)=√36×√2=6√2三、二次根式的运算1. 二次根式的加减对于二次根式的加减运算,主要是要求二次根式的根号下的被开方数相同,然后分别将二次根式的系数进行加减运算。
例如:√18+2√18=3√182. 二次根式的乘除对于二次根式的乘除运算,可以利用分配律和乘法公式进行运算。
例如:(3√5)×(4√5)=123. 二次根式的混合运算对于二次根式的混合运算,可以根据运算法则依次进行加、减、乘、除等运算,最终得到最简形式的结果。
二次根式知识点总结大全
二次根式知识点总结大全二次根式是含有平方根的代数表达式,在高中数学中,学习和掌握二次根式的相关知识点是非常重要的。
下面是二次根式的知识点总结:一、二次根式的定义与性质1.定义:二次根式是形如√a的代数式,其中a为非负实数。
2.平方根的性质:a)非负实数的平方根是唯一的。
b)负实数不能作为平方根。
3.二次根式的性质:a)如果a≥0,则√a≥0。
即非负数的平方根是非负数。
b)如果a≥b≥0,则√a≥√b。
c)如果a>b≥0,则√a>√b。
二、二次根式的化简与运算1.化简二次根式:a) 利用化简公式√(ab) = √a · √b,可以将二次根式中的因数分解为二个较简单的二次根式。
b)利用化简公式√(a/b)=√a/√b,可以将二次根式中的因式进行有理化,即分子或分母有理化。
2.二次根式的四则运算:a)加减:对于同根号下的项,进行加减运算,其他项保持不变。
b)乘法:将同根号下的对应项相乘,其他项保持不变。
c)除法:将被除数和除数分别有理化后进行除法运算。
三、二次根式的大小比较1.二次根式的大小比较:a)在同号的情况下,二次根式的大小比较与内部的实数部分大小比较一致。
b)在异号的情况下,二次根式的大小比较与内部的实数部分的大小关系相反。
2. 已知ab≥0,√a ≥ √b的条件:a)若a≥0,b≥0,则√a≥√b。
b)若a<0,b<0,则√a≤√b。
c)若a<0,b≥0,则√a≤√b。
d)若a≥0,b<0,则√a≥√b。
四、求二次根式的值1.简单二次根式的值:如求√4的值等,可以直接得到结果。
2.复杂二次根式的值:如求√(2+√3)的值等,可以通过有理化的方法,先进行化简,再进行求值。
五、二次根式的应用1.几何应用:二次根式可以用来计算各种几何图形的边长、面积、体积等。
2.物理应用:在物理学中,二次根式可以用来求解力、速度、加速度等物理量。
3.经济应用:在经济学中,二次根式可以用来描述成本、效益等经济指标。
二次根式知识点
二次根式知识点一、二次根式的定义形如\(\sqrt{a}(a\geq0)\)的式子叫做二次根式。
其中,\(a\)叫做被开方数。
需要注意的是,二次根式有意义的条件是被开方数为非负数。
例如,\(\sqrt{5}\),\(\sqrt{16}\),\(\sqrt{x^2 +1}\)(其中\(x\)为任意实数)都是二次根式。
而\(\sqrt{-5}\)就不是二次根式,因为被开方数\(-5\)是负数,不符合定义。
二、二次根式的性质1、\(\sqrt{a^2} =|a|\)当\(a\geq0\)时,\(\sqrt{a^2} = a\);当\(a<0\)时,\(\sqrt{a^2} = a\)。
例如,\(\sqrt{3^2} = 3\),\(\sqrt{(-5)^2} = 5\)。
2、\((\sqrt{a})^2 = a\)(\(a\geq0\))这一性质表明,先开方再平方,结果就是被开方数本身,但前提是被开方数必须是非负的。
比如,\((\sqrt{7})^2 = 7\)。
3、\(\sqrt{ab} =\sqrt{a} \cdot \sqrt{b}\)(\(a\geq0\),\(b\geq0\))这意味着,两个非负实数的积的算术平方根等于这两个数的算术平方根的积。
例如,\(\sqrt{12} =\sqrt{4 \times 3} =\sqrt{4} \times \sqrt{3} = 2\sqrt{3}\)4、\(\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}\)(\(a\geq0\),\(b>0\))这表示,非负实数的商的算术平方根等于被除数和除数的算术平方根的商。
比如,\(\sqrt{\frac{8}{2}}=\frac{\sqrt{8}}{\sqrt{2}}=\frac{2\sqrt{2}}{\sqrt{2}}= 2\)三、二次根式的化简1、把被开方数分解质因数,将能开得尽方的因数移到根号外。
初中数学二次根式知识点总结
初中数学二次根式知识点总结一、二次根式的定义和性质1.二次根式:形如√a(其中a≥0)的数叫做二次根式,其中a叫做被开方数。
2.平方数:一些数的平方的结果叫做平方数,如1、4、9等。
平方数的平方根是有理数。
3.二次根式化简:将二次根式中含有相同因式的项合并,并将二次根式的指数化简为最简整数。
4.二次根式的乘除法:二次根式的乘除法可以通过对被开方数和指数进行运算和化简来进行。
二、二次根式的运算1.二次根式的加减法:a)加法:将两个二次根式的被开方数相加,并将其指数化简。
b)减法:将两个二次根式的被开方数相减,并将其指数化简。
2.二次根式的乘法:a)二次根式的乘法使用分配律,将被开方数和指数分别相乘,并将结果进行化简。
b)若二次根式与实数相乘,则可将实数与二次根式的被开方数相乘,并将指数进行化简。
3.二次根式的除法:a)二次根式的除法可以通过将分子和分母的被开方数相除,并将指数进行化简来进行。
b)若二次根式除以实数,可以将实数除以二次根式的被开方数,并将指数进行化简。
三、二次根式的化简1.二次根式化简的基本方法:a)将被开方数分解成素数的乘积。
b)将二次根式的指数约分为最简整数。
c)将二次根式的含有相同因式的项合并。
2.平方根的化简:a)平方根下的分数:将分子和分母分别进行开方,然后化简。
b)分数的平方根:将分子和分母分别进行开方,然后化简。
c)同解式的平方根:可以适用平方根的基本性质将二次根式进行化简。
四、二次根式的应用1.几何意义:二次根式可以表示一些图形的边长或斜边的长度。
a)两点间的距离:利用两点间的距离公式可以将二次根式化简为实数。
b)直角三角形的斜边:利用勾股定理可以将二次根式化简为实数。
2.分数的运算:在分数运算中,往往会出现二次根式,需要将二次根式进行化简并进行运算。
3.实际问题的应用:解决实际问题时,需利用已知条件建立方程,通过方程的求解,将二次根式进行化简。
综上所述,初中数学二次根式是重要的基础知识点,掌握二次根式的运算和化简方法,了解二次根式的几何意义和实际应用,在解决问题中能熟练运用二次根式的相关知识,将有助于提高数学解题能力。
二次根式知识点归纳
二次根式知识点归纳二次根式是指含有平方根的式子,一般形式为√a,其中a为非负实数。
下面将对二次根式的知识点进行归纳:1. 二次根式的定义:二次根式是指形如√a的式子,a为非负实数。
2. 简化二次根式:对于二次根式√a,如果a可以写成两个数的乘积,其中一个因数的平方是a,那么就可以将二次根式简化为这个因数。
3. 二次根式的运算:- 加减法:只有当二次根式的根数相同才能相加或相减。
即√a ± √b = √a ±√b。
- 乘法:二次根式的乘法可以按照分配律进行计算,即√a * √b = √(a * b)。
- 除法:二次根式的除法可以借助有理化的方法进行计算,即√a / √b = √(a / b)。
4. 二次根式的合并:- 同根式的合并:当两个二次根式的根数相同且系数相同时,可以合并为一个二次根式。
例如:3√2 + 2√2 = 5√2。
- 合并同类项:当两个二次根式的根数和系数都相同时,可以合并为一个二次根式。
5. 化简含有二次根式的表达式:- 分解因式法:对于含有二次根式的表达式,可以利用分解因式的方法将其化简为乘积的形式。
- 有理化法:利用有理化的方法将含有二次根式的分母有理化,即将分母中的二次根式去除。
6. 二次根式的平方与立方:- 二次根式的平方:(√a)^2 = a。
- 二次根式的立方:(√a)^3 = a * √a。
7. 二次根式的应用:- 几何意义:二次根式可以用来表示一些几何问题中的长度或面积,例如表示一个正方形的对角线长度。
- 物理意义:在物理问题中,二次根式可以用来表示某些量的大小,例如速度的大小。
以上是关于二次根式的一些基本知识点的归纳总结。
掌握这些知识点,可以帮助我们更好地理解和运用二次根式。
算术平方根(二次根式)知识点汇总
算术平方根(二次根式)知识点汇总知识点一: 二次根式的概念: (0a ≥)的式子叫做二次根式。
注:在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以0a ≥知识点二:取值范围1.二次根式有意义的条件:由二次根式的意义可知,当a ≧0是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。
2.二次根式无意义的条件:因负数没有算术平方根,所以当a ﹤0没有意义。
0a ≥)的非负性0a ≥)表示a 的算术平方根,0a ≥)是一个非负数,0(0)a ≥≥注:(0a ≥)表示a 的算术平方根,而正数的算术平方根是正数,0的算术平方根是0,所以非负数(0a ≥0(0)a ≥≥这个性质也就是非负数的算术平方根的性质,和绝对值、偶次方类似。
这个性质在解答题目时应用0=,则a=0,b=00b =,则a=0,b=020b =,则a=0,b=0。
知识点四:二次根式2的性质 :2(0)a a =≥文字语言叙述为:一个非负数的算术平方根的平方等于这个非负数。
注:二次根式的性质公式2(0)a a =≥是逆用平方根的定义得出的结论。
上面的公式也可以反过来应用:若,则2a =,如:22=,212=.知识点五:二次根式的性质 a =文字语言叙述为:一个数的平方的算术平方根等于这个数的绝对值。
注: 1、一定要弄明白被开方数的底数a 是正数还是负数,若是正数或0,则等于a 本身,即a a ==(0)a ≥;若a 是负数,则等于a 的相反数-a,即(0)a a a ==-≤;2a 的取值范围可以是任意实数,即不论a 取何值,一定有意义;3a ,再根据绝对值的意义来进行化简。
知识点六:21、不同点:2与2表示一个正数a 的算术平方根的平a 的平方的算术平方根;在2中,0a ≥a 可以是正实数,0,负实数。
但2与20≥0≥.2、相同点:当被开方数都是非负数,即当0a≤时,2无意a≥时,20=-.a。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次根式的知识点归纳总结知识点一:二次根式的概念形如()的式子叫做二次根式。
注:在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以是为二次根式的前提条件,如,,等是二次根式,而,等都不是二次根式。
知识点二:取值范围1.二次根式有意义的条件:由二次根式的意义可知,当a≧0时,有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。
2.二次根式无意义的条件:因负数没有算术平方根,所以当a﹤0时,没有意义。
知识点三:二次根式()的非负性()表示a的算术平方根,也就是说,()是一个非负数,即0()。
注:因为二次根式()表示a的算术平方根,而正数的算术平方根是正数,0的算术平方根是0,所以非负数()的算术平方根是非负数,即0(),这个性质也就是非负数的算术平方根的性质,和绝对值、偶次方类似。
这个性质在解答题目时应用较多,如若,则a=0,b=0;若,则a=0,b=0;若,则a=0,b=0。
知识点四:二次根式()的性质()文字语言叙述为:一个非负数的算术平方根的平方等于这个非负数。
注:二次根式的性质公式()是逆用平方根的定义得出的结论。
上面的公式也可以反过来应用:若,则,如:,.知识点五:二次根式的性质文字语言叙述为:一个数的平方的算术平方根等于这个数的绝对值。
注:1、化简时,一定要弄明白被开方数的底数a是正数还是负数,若是正数或0,则等于a本身,即;若a是负数,则等于a的相反数-a,即;2、中的a的取值范围可以是任意实数,即不论a取何值,一定有意义;3、化简时,先将它化成,再根据绝对值的意义来进行化简。
知识点六:与的异同点1、不同点:与表示的意义是不同的,表示一个正数a的算术平方根的平方,而表示一个实数a的平方的算术平方根;在中,而中a 可以是正实数,0,负实数。
但与都是非负数,即,。
因而它的运算的结果是有差别的,,而2、相同点:当被开方数都是非负数,即时,=;时,无意义,而.二次根式测试题(一)1. 下列式子一定是二次根式的是( )A .2--xB .xC .22+xD .22-x 2.若b b -=-3)3(2,则( )A .b>3B .b<3C .b ≥3D .b ≤3 3.若13-m 有意义,则m 能取的最小整数值是( ) A .m=0 B .m=1 C .m=2 D .m=34.若x<0,则xx x 2-的结果是( )A .0B .—2C .0或—2D .2 5.下列二次根式中属于最简二次根式的是( ) A .14 B .48 C .baD .44+a 6.如果)6(6-=-⋅x x x x ,那么( )A .x ≥0B .x ≥6C .0≤x ≤6D .x 为一切实数7.小明的作业本上有以下四题:①24416a a =;②a a a 25105=⨯; ③a aa a a=⋅=112;④a a a =-23。
做错的题是( ) A .① B .② C .③ D .④8.化简6151+的结果为( )A .3011 B .33030 C .30330D .1130 9.若最简二次根式a a 241-+与的被开方数相同,则a 的值为( )A .43-=aB .34=a C .a=1 D .a= —110.化简)22(28+-得( )A .—2 B .22- C .2 D . 224-11.①=-2)3.0( ;②=-2)52( 。
12.二次根式31-x 有意义的条件是 。
13.若m<0,则332||m m m ++= 。
14.1112-=-⋅+x x x 成立的条件是 。
15.比较大小:16.=⋅y xy 82 ,=⋅2712 。
17.计算3393aa a a-+= 。
18.23231+-与的关系是 。
19.若35-=x ,则562++x x 的值为 。
20.化简⎪⎪⎭⎫ ⎝⎛--+1083114515的结果是 。
21.求使下列各式有意义的字母的取值范围: (1)43-x (2)a 831- (3)42+m (4)x1-22.化简:(1))169()144(-⨯- (2)22531- (3)5102421⨯- (4)n m 21823.计算:(1)21437⎪⎪⎭⎫ ⎝⎛- (2)225241⎪⎪⎭⎫⎝⎛-- (3))459(43332-⨯(4)⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-126312817 (5)2484554+-+ (6)2332326--24.若x ,y 是实数,且2111+-+-<x x y ,求1|1|--y y 的值。
二次根式测试题(二)1.下列说法正确的是( )A .若a a -=2,则a<0B .0,2>=a a a 则若C .4284b a b a =D . 5的平方根是5 2.二次根式13)3(2++m m 的值是( )A .23B .32C .22D .0 3.化简)0(||2<<--y x x y x 的结果是( )A .x y 2-B .yC .y x -2D .y - 4.若ba是二次根式,则a ,b 应满足的条件是( ) A .a ,b 均为非负数 B .a ,b 同号 C .a ≥0,b>0 D .0≥ba 5.已知a<b ,化简二次根式b a 3-的正确结果是( )A .ab a --B .ab a -C .ab aD .ab a -6.把mm 1-根号外的因式移到根号内,得( ) A .m B .m - C .m -- D .m -7.下列各式中,一定能成立的是( )A .22)5.2()5.2(=-B .22)(a a =C .1-x 122=+-x xD .3392+⋅-=-x x x8.若x+y=0,则下列各式不成立的是( )A .022=-y x B .033=+y x C .022=-y x D .0=+y x9.当3-=x 时,二次根7522++x x m 式的值为5,则m 等于( ) A .2 B .22 C .55 D .510.已知1018222=++x x xx ,则x 等于( ) A .4 B .±2 C .2 D .±4 11.若5-x 不是二次根式,则x 的取值范围是12.已知a<2,=-2)2(a13.当x= 时,二次根式1+x 取最小值,其最小值为 14.计算:=⨯÷182712 ;=÷-)32274483( 15.若一个正方体的长为cm 62,宽为cm 3,高为cm 2,则它的体积为3cm16.若433+-+-=x x y ,则=+y x17.若3的整数部分是a ,小数部分是b ,则=-b a 3 18.若3)3(-⋅=-m m m m ,则m 的取值范围是19.若=-⎪⎪⎭⎫ ⎝⎛-=-=y x y x 则,432311,13220.已知a ,b ,c 为三角形的三边,则222)()()(a c b a c b c b a -++--+-+= 2121418122-+- 223)154276485(÷+- 23x x x x 3)1246(÷-2421)2()12(18---+++ 250)13(27132--+-26已知:132-=x ,求12+-x x 的值。
27已知:的值。
求代数式22,211881-+-+++-+-=xyy x x yy x x x y28.阅读下面问题:12)12)(12()12(1211-=-+-⨯=+; ;23)23)(23(23231-=-+-=+25)25)(25(25251-=-+-=+试求:⑴671+的值;⑵17231+的值;⑶n n ++11(n 为正整数)的值。
43244112234112123-=+-+=+++二次根式(一)1.C 2.D 3.B 4.D 5.A 6.B 7.D 8.C 9.C 10.A 11.①0.3 ②25- 12.x ≥0且x ≠9 13.—m 14.x ≥1 15.< 16.x y 4 18 17.a 3 18.相等 19.1 20.33165315++21.(1)34≥x (2)241<a (3)全体实数 (4)0<x 22.解:(1)原式=1561312169144169144=⨯=⨯=⨯;(2)原式=51531-=⨯-; (3)原式=51653221532212-=⨯-=⨯-;(4)原式=n m n m 232322=⨯⨯。
23.解:(1)原式=49×21143=;(2)原式=25125241=-; (3)原式=345527315)527(41532-=⨯-=-⨯;(4)原式=2274271447912628492=⨯=⨯=⨯;(5)原式=225824225354+=+-+;(6)原式=265626366-=--。
24.解:∵x —1≥0, 1—x ≥0,∴x=1,∴y<21.∴1|1|--y y =111-=--y y.二次根式(二)1.C 2.B 3.B 4.D 5.A 6.C 7.A 8.D 9.B 10.C 11.x<5 12.2-a 13.—1 0 14.22;6312- 15.12 16.7 17.1 18.m ≥3 19.348-- 20.c b a ++21.解:原式=232222322222423)12(2+=-++=⨯-++;22.解:原式=5423)15432(3)154336345(+=÷+=÷+⨯-⨯; 23.解:原式=313)23(=÷-x x x ;24.解:原式=25.解:原式=3413313=-++; 26.解: ,13)13)(13()13(2+=+-+=x3361133241)13()13(2-=++--=+--+=∴原式27.解:8101881,018,081=∴=-=-∴≥-≥-x x x x x ,∴21=y 。
∴ 原式=123254942524142441281212181281212181=-=-=-+-++=-+-++ 28.解:登山者看到的原水平线的距离为581n d =,现在的水平线的距离为5282nd =29 ⑴671+=67- ⑵17231+=1723- ⑶nn ++11=n n -+1。