通电螺线管的磁场_教案

合集下载

12.3通电螺线管的磁场

12.3通电螺线管的磁场

新知学习
二、通电螺线管周围的磁场
学生实验:探究通电螺线管外部磁场的方向
问题与猜想:
通电导线周围的磁场方向与通电电流的方向有关,通电螺线管周围的磁
场方向是否也与通电电流的方向有关?
电流方向
电流方向
新知学习
二、通电螺线管周围的磁场
学生实验:探究通电螺线管外部磁场的方向
设计实验: 1.用铜导线穿过一块硬板绕成螺线管(螺线管内可放入小磁针), 将小磁针放在硬板的不同位置,然后给螺线管通电,分别记录下 小磁针在各个位置静止时N极的指向。
1820年丹麦物理学家奥斯特 终于用实验证实通电导体的 周围存在着磁场,成为揭示 电与磁之间联系的第一人。
新知学习
一、电流的磁效应
实验
如图所示,闭合开关,当电流通过导线(导线需南北方向放置)时, 观察小磁针的偏转情况;断开开关,观察小磁针的偏转情况;将电 源的正、负极对调,闭合开关,当电流通过导线时,观察小磁针的
偏转情况。
新知学习
一、电流的磁效应
当导线通电时,可看到小磁针的指向发生了偏转,这说明导线中 的电流在周围的空间产生了磁场。断开开关后,小磁针回到原位。 改变电流的方向,小磁针的偏转方向也会改变,这说明电流产生 的磁场方向跟电流的方向有关。
通电
断电
改变电流方向
通电导线周围存在磁场,这一现象叫做电流的磁效应。
新知学习向
设计实验: 改变电流的方向,观察小磁针的偏转情况。
N
S
S
N
新知学习
二、通电螺线管周围的磁场
学生实验:探究通电螺线管外部磁场的方向
设计实验: 2.在硬板上均匀地撒上一些铁屑,给螺线管通电后,轻轻敲击硬板, 观察铁屑地排列情况

初中物理《电生磁》教案

初中物理《电生磁》教案

初中物理《电生磁》教案教学目标:1. 知识与技能目标:学生能够理解电流的磁效应,知道通电导体周围存在磁场;学生能够理解通电螺线管的磁场与条形磁铁相似,掌握电磁铁的特性和工作原理。

2. 过程与方法目标:学生通过观察和体验通电导体与磁体间的相互作用,初步了解电和磁之间的联系;学生通过探究通电螺线管外部磁场的方向和影响电磁铁磁性强弱的因素,提高实验操作能力和问题解决能力。

3. 情感态度与价值观目标:通过认识电与磁之间的相互联系,培养学生乐于探索自然界的奥秘,培养学生的学习热情和求是态度。

教学重点:通电螺线管的磁场和电磁铁特性。

教学难点:通电螺线管磁场的极性与电流方向间的关系的得出;电磁铁特性的得出。

教学准备:直导线、干电池、螺线管、小磁针、导线、铁芯、电磁铁、图钉、条形磁铁、蹄行磁铁、多媒体课件、实物投影仪、开关等。

教学过程:一、导入新课1. 教师通过展示奥斯特实验的图片,引导学生观察并提问:当直导线通电时,你们看到了什么现象?磁针发生了什么变化?这说明了什么?2. 学生回答后,教师总结:这个实验揭示了电流的磁效应,即通电导体周围存在磁场。

二、新课内容1. 教师通过展示通电螺线管的图片,引导学生观察并提问:你们认为通电螺线管的磁场是怎样的?它与条形磁铁有什么相似之处?2. 学生回答后,教师总结:通电螺线管的磁场与条形磁铁相似,它们的极性都与电流的方向有关。

三、实验探究1. 教师引导学生分组进行实验,观察通电螺线管的磁场方向和电流方向的关系。

2. 学生通过实验发现,当改变电流方向时,通电螺线管的磁场方向也会改变。

3. 教师引导学生分析实验结果,得出通电螺线管磁场的极性与电流方向的关系。

四、电磁铁特性1. 教师展示电磁铁的图片,引导学生观察并提问:你们认为电磁铁是如何工作的?它的磁性强弱与哪些因素有关?2. 学生回答后,教师总结:电磁铁的工作原理是基于通电螺线管的磁场,它的磁性强弱与电流的大小和线圈的匝数有关。

北京版-物理-九年级全一册-三、通电螺线管的磁场 教案

北京版-物理-九年级全一册-三、通电螺线管的磁场 教案

三、通电螺线管的磁场教学目标1、知识与技能(1)认识电流的磁效应,初步了解电和磁之间的联系。

(2)知道通电导体周围存在磁场,磁场方向与电流方向有关。

(3)知道通电螺线管的磁场与条形磁体相似,会用右手螺旋定则判断通电螺线管的磁场方向。

2、过程与方法(1)通过观察通电直导线磁场和通电螺线管磁场的实验,进一步发展空间想象力。

(2)通过将通电螺线管的磁场跟条形磁体的磁场加以对比,得出通电螺线管也有两个磁极,体会类比法的应用。

3、情感、态度与价值观通过物理学史的介绍,培养学生的科学态度和科学精神,通过电与磁关系的发现,使学生乐于探索自然界的奥妙,培养学习热情和求实态度,初步领会探索物理规律的方法。

教学内容分析教学内容分析本节是在前面学习了电,本章又了解了简单的磁现象之后,让学生通过观察奥斯特实验发现电流周围产生磁场,紧接着让学生通过实验探究通电螺线管周围的磁场分布,最后又介绍右手螺旋定则。

这样的顺序既遵循了物理学的发展过程,也符合学生的认知过程。

电流磁效应的发现在电磁学的发展史中意义重大,所以在教学过程中要渗透物理学史的教育,让学生感受到科学家的发现对科技的推动作用,科技的发展及应用对社会和生活作用,从中领悟到科学、技术与社会之间的关系,提高学生对科学的求知欲。

学情分析学生情况分析通过本章前两节的学习,学生了解了有关磁现象的知识,知道了一些磁场的分布特征,也学会了借用小磁针或铁屑来研究磁场的方法,这为本节探究电流的磁场打好了基础,但学生对电磁之间的联系生活经验很少,所以要做好奥斯特实验,让学生从实验中发现电磁之间的联系。

另外,理解右手螺旋定则需要一定的空间想象能力,有些孩子比较困难,在此可以借助于课件演示立体螺线管的电流方向和磁极方向的关系,或者借助于纸筒和纸条来模拟螺线管,帮助学生学会使用定则。

重点难点1.教学重点观察通电导线产生的磁场,认识电流的磁效应。

2.教学难点会用右手螺旋定则判断通电螺线管的磁场极性与电流方向之间的关系。

八年级科学下册 1.2 电生磁教案 (新版)浙教版

八年级科学下册 1.2 电生磁教案 (新版)浙教版

第2节电生磁教学目标1、知道电流周围存在磁场,能说出奥斯特实验的现象,知道直线电流磁场的特征。

2、认识通电螺线管磁场的特征,会用安培定则判断磁场方向和电流方向。

3、知道电磁铁的组成和特点。

4、理解电磁继电器的结构和工作原理。

5、了解电铃、电话、磁悬浮列车的工作原理,了解信息的磁记录。

重点难点分析重点:电流的磁场、电磁铁难点:电磁铁的应用教、学预设调控对策【设问引入】磁体在它的周围空间能产生磁场,那么,不用磁体能否在空间产生磁场呢?一、直线电流的磁场【设问】学校的电铃是怎么响起来的?磁悬浮高速列车是怎么悬浮的?让我们从1820年丹麦的无论学家奥斯特对电流磁现象的发现说起吧。

【实验】奥斯特实验1、在小磁针的上方拉一根与小磁针平行的直导线,当直导线上通电流是,你观察到什么现象?--小磁针发生了偏转。

学生思考:①小磁针为什么发生偏转?--小磁针受到了力的作用。

②没有其它的物体与之直接接触,那么什么东西能使小磁针受到力的作用呢?--显然是磁场。

是通电导线周围的磁场。

结论:通电导线的周围存在磁场。

改变电流的方向,观察小磁针的偏转方向有什么变化?--小磁针的偏转方向发生改变,指向与原先相反。

说明:磁场的方向与原先相反,与电流的方向有关。

【师】既然通电的直导线周围存在磁场,我们肯定会对磁场的分布(模样)发生兴趣吧。

那么怎样才能观察到磁场的分布呢?--用铁屑来显示磁场的分布。

2、在有机玻璃上均匀地撒上一些铁屑,给直导线通电后,轻敲玻璃板后,观察铁屑在直导线周围的分布情况。

现象:铁屑的分布呈同心圆状,且靠近直导线铁屑越多,即磁感线月密集。

说明磁场越强。

【小结】直线电流的磁场分布特点:通电直导线的周围存在磁场,且磁场方向与电流方向有关;直线电流磁场的磁感线分布是一个个同心圆,距离直线电流越近,磁性越强,反之越弱。

二、通电螺线圈的电流【实验一】1、如果把直导线按一定的方向绕螺线圈后再通电,观察能否吸引大头针。

--现象:能吸引大头针。

霍尔法测量通电螺线管内的磁场分布实验讲义

霍尔法测量通电螺线管内的磁场分布实验讲义

用上述测量数据得到的斜率 U ,以通电螺线管中心点磁感应强度理论计算值为标准 I M
值,计算 95A 型集成霍尔传感器的灵敏度 K。
对于有限长螺线管来说,管中的磁感应强度理论计算值为 B 0
N L2 D2
IM
。95A
型集
成霍尔传感器的灵敏度 K 的定义为 K U 。由此可知,对于有限长螺线管,集成霍尔传
点,那么式(9)可写作:
B
1 2
0
N L
I
l0 x
R2 l0 x2
l0 x
R2
l0
x2
(12)
由式(12)可求得螺线管中心( x 0 )处的磁感应强度为:
B0 0
NI L2 D2
(13)
同样,可求得螺线管两端,如右端( x l0 )处的磁感应强度为:
BL
2
1 2
0
N L2 R2
当螺线管无限长时,在螺线管中心, 1=0、2 ,则磁感应强度为
B
0
N L
I
(10)
在两端,如左端, 1 0,
2
2
,仍带入式(9),求出端部的磁感应强度为
B
1 2
0
N L
I
(11)
可见无限长螺线管螺线管两端的磁感应强度值等于螺线管中心的磁感应强度值一半。
图 3 螺线管剖面示意图
若螺线管的长度有限,设长度为 L 2l0 ,直径为 D 2R ,取螺线管的中点 O 为 x 轴的原
片(图中所示为 n 型半导体,其载流子为带负电荷的 w
电子),且磁场 B 垂直作用于该半导体,则由于受到洛
伦茨力的作用,在薄片 b 侧将有负电荷积聚,使薄片
b 侧电势比 a 侧低。这种当电流垂直于外磁场方向通 过半导体时,在垂直于电流和磁场的方向,半导体薄

2022年教科版物理《电流的磁场》精选教案(推荐)

2022年教科版物理《电流的磁场》精选教案(推荐)

电流的磁场教学目标一、知识与能力1.了解奥斯特的发现及其意义, 知道通电直导线周围的磁场情况.2.知道通电螺线管周围的磁场分布, 掌握安培定那么.3.知道磁现象的电本质.二、过程与方法1.通过对奥斯特发现的实验的观察, 了解导线周围的磁场.2.经历关于通电螺线管周围磁场分布的实验探究过程, 知道螺线管磁场和条形磁体磁场的相似性.三、情感、态度与价值观1.通过实验探究及讨论活动, 培养学生善于观察、勤于思考、勇于探究的科学素养.2.通过实验探究和讨论活动, 培养学生积极与他人合作的意识.教学重难点【教学重点】通电螺线管周围的磁场分布.【教学难点】磁现象的电本质.教学准备◆教师准备多媒体教学课件、螺线管、铁屑、电池、小磁针等.◆学生准备螺线管、铁屑、电池、小磁针等.教学过程一、情境导入1.情景:1820年, 安培在科学院的例会上做了一个小实验, 如图7-2-1所示, 把螺线管沿东西方向水平悬挂起来, 然后给导线通电, 发现螺线管通电转动后停在南北方向上, 这一现象引起了与会科学家的极大兴趣. 你知道这是怎么回事吗?2.回忆:师:当把小磁针放在条形磁体的周围时, 能观察到什么现象?其原因是什么?生思考交流:观察到小磁针发生偏转;因为磁体周围存在着磁场, 小磁针受到磁场的磁力作用而发生偏转.师:同学们答复得很好, 带电体和磁体有一些相似的性质, 这些相似是一种巧合呢?还是它们之间存在着某些联系呢?科学家们基于这一想法, 一次又一次地寻找电与磁的联系. 1820年丹麦物理学家奥斯特终于用实验证实通电导体的周围存在着磁场, 这一重大发现轰动了科学界, 使电磁学进入一个新的开展时期. 今天, 我们沿着奥斯特的足迹, 来再现一下奥斯特所做的实验.二、进行新课(一)奥斯特的发现1.奥斯特实验.先向学生说明实验要求, 如图7-2-2所示, 然后学生分组实验:将直导线与小磁针平行并放. 观察现象:①如图7-2-2 (a), 当直导线通电时会发生什么现象?(小磁针发生偏转)②如图7-2-2 (b), 断电后会发生什么现象?(小磁针转回到原来指南北的方向)③如图7-2-2 (c), 改变通电电流的方向后会发生什么现象?(小磁针发生偏转, 其N极所指方向与图a时相反)提问:(1)通过实验, 你观察到了哪些物理现象?(通电时小磁针发生偏转;断电时小磁针转回到指南北的方向;通电电流方向相反, 小磁针偏转方向也相反)(2)通过这些物理现象你能总结出什么规律?(①通电导线周围存在磁场;②磁场方向与电流方向有关)师:同学们答复得很好, 我们鼓掌给予鼓励. 以上实验是丹麦的科学家奥斯特首先发现的, 此实验又叫奥斯特实验. 这个实验说明, 除了磁体周围存在着磁场外, 电流的周围也存在着磁场, 即电流的磁场.总结奥斯特实验. 现象:导线通电, 周围小磁针发生偏转;通电电流方向改变, 小磁针偏转方向相反. 规律:通电导线周围存在磁场, 磁场方向与电流方向有关.师:这个实验看上去非常简单, 但在当时这一重大发现轰动了科学界. 因为它揭示了电现象和磁现象不是各自孤立的, 而是紧密联系的, 从而说明外表上互不相关的自然现象之间是相互联系的, 这一发现有力地推动了电磁学的研究和开展. 奥斯特实验用的是一根直导线, 后来科学家们又把导线弯成各种形状, 通电后研究电流的磁场. 我们也研究一下, 说出你们的做法和观察的结果. (学生把直导线弯成各种形状, 通电后看小磁针的变化. )(二)通电螺线管的磁场.1.演示通电螺线管的磁场:把直导线缠在铅笔上, 然后抽出铅笔, 再通电, 小磁针偏转, 周围存在磁场.师:这种把导线绕在圆筒上, 做成的螺线管也叫线圈. 它能使各导线产生的磁场叠加在一起,磁场就会强得多, 这样在生产实际中用途就大. 那么通电螺线管的磁场是什么样的?观察铁屑的分布和小磁针的指向. 如图7-2-3所示, 在板上均匀撒满铁屑, 在螺线管两端各放一个小磁针, 通电后观察小磁针的指向. 轻轻敲板, 观察铁屑的排列. 改变电流方向再观察一次.提问:(1)通电前小磁针如何指向?通电后会发生什么现象?(原指南北, 通电后磁针偏转. )(2)通电后, 轻轻敲板, 铁屑为什么会产生规那么排列?铁屑的排列与什么现象一样?(铁屑磁化变成“小磁针〞, 轻敲使铁屑可自由转动, 使铁屑按磁场进行排列, 其排列与条形磁体的排列相同, 通电螺线管相当于条形磁体. )(3)改变通电方向, 小磁针的指向有什么不同?这说明什么?(小磁针指向相反, 说明通电螺线管两端的极性与通电电流有关. )2.通电螺线管的极性和电流关系——安培定那么.师:我们知道通电螺线管两端的极性跟螺线管中的电流方向有关, 有什么样的关系?我们能否想出一句话来概括这种普遍规律?学生讨论交流, 归纳总结.师:大家答复得都很好, 虽有不同的看法, 还是说出了自己的观点, 我很快乐看到这样的场面. 我们知道, 通电导体周围存在着磁场, 通电螺线管外部的磁场和条形磁体的磁场相似. 通电螺线管相当于一个条形磁体, 其极性和电流方向的关系符合安培定那么——右手螺旋定那么:用右手握螺线管, 让四指弯向螺线管电流的方向, 那么大拇指所指的那端就是螺线管的北极.(三)物体磁性从哪里来.1.提出问题:(1)磁体和电流都能产生磁场, 磁体的磁场和电流的磁场是否有相同的起源呢?(2)电流的本质是电荷定向运动, 所以电流的磁场应该是由于电荷的运动而产生的. 那么磁体的磁场是否也是由电荷的运动产生的呢?2.学生展开讨论交流, 教师巡视, 进行指导帮助.3.利用课件展示安培的分子电流假说:通电螺线管的外部磁场与条形磁体的磁场具有相似性, 法国学者安培由此受到启发, 提出了著名的分子电流假说. 他认为:在原子、分子等物质微粒的内部, 存在着一种环形电流, 分子电流使每个物质微粒都成为微小的磁体, 它的两侧相当于两个磁极, 物体内大量微小的磁体有序排列使得物体显示磁性.4.课件展示:利用安培分子电流假说解释磁现象, 联系磁化和消磁进行分析与理解.三、反思总结1.请学生总结本节课的主要内容, 教师再作适当的补充.2.教师进一步强调本节课的重点、难点和关键点. 请学生反思自己本节课的学习情况, 谈谈收获和体会.3.布置思考题及课后作业.(1)制作“家庭实验室〞的电磁炮.(2)课后作业:“自我评价〞第1、2题.【板书设计】第2节电流的磁场(一)奥斯特的发现——电流的磁效应现象:导线通电, 周围小磁针发生偏转;通电电流方向改变, 小磁针偏转方向相反.规律:通电导线周围存在磁场;磁场方向与电流方向有关.(二)通电螺线管的磁场1.通电螺线管外部的磁场与条形磁体的磁场相似.2.安培定那么:用右手握螺线管, 让四指弯向螺线管电流的方向, 那么大拇指所指的那端就是螺线管的北极.(三)物体磁性从哪里来?安培分子电流假说.第2节磁场对电流的作用第1课时┃教学过程设计┃第2课时┃教学小结┃。

螺线管磁场测定

螺线管磁场测定

螺线管磁场测定本实验仪用集成霍耳传感器测量通电螺线管内直流电流与霍耳传感器输出电压之间关系,证明霍耳电势差与螺线管内磁感应强度成正比,了解和熟悉霍耳效应的重要物理规律;用通电长直螺线管中心点磁感应强度理论计算值作为标准值来校准集成霍耳传感器的灵敏度;熟悉集成霍耳传感器的特性和应用;用该集成霍耳传感器测量通电螺线管内的磁感应强度与位置刻度之间的关系,作磁感应强度与位置的关系图。

从而学会用集成霍耳元件测量磁感应强度的方法。

一、实验目的1.了解和掌握集成线性霍耳元件测量磁场的原理和方法;2.学会测量霍耳元件灵敏度的方法。

3.精确测量通电螺线管磁场分布,二、实验原理霍耳元件的作用(如右图2所Array示):若电流I流过厚度为d的半导体薄片,且磁场B垂直于该半导体,是电子流方向由洛伦茨力作用而发生改变,在薄片两个横向面a、b之间应产生电势差,图2 霍耳元件这种现象称为霍耳效应。

在与电流I、磁场B垂直方向上产生的电势差称为霍耳电势差,通常用U H 表示。

霍耳效应的数学表达式为:IB K IB dR U H HH ==)((1) 其中R H 是由半导体本身电子迁移率决定的物理常数,称为霍耳系数。

B 为磁感应强度,I 为流过霍耳元件的电流强度,K H 称为霍耳元件灵敏度。

虽然从理论上讲霍耳元件在无磁场作用(即B=0)时,U H =0,但是实际情况用数字电压表测时并不为零,这是由于半导体材料结晶不均匀及各电极不对称等引起附加电势差,该电势差U 0称为剩余电压。

随着科技的发展,新的集成化(IC)元件不断被研制成功。

本实验采用SS95A 型集成霍耳传感器(结构示意图如图3所示)是一种高灵敏度集成霍耳传感器,它由霍耳元件、放大器和薄膜电阻剩余电压补偿组成。

测量时输出信号大,并且剩余电压的影响已被消除。

对SS95A 型集成霍耳传感器,它由三根引线,分别是:“V +”、“V -”、“V out ”。

其中“V +”和“V -”构成“电流输入端”,“V out ”和“V -”构成“电压输出端”。

电流的磁场第1课时奥斯特实验通电螺线管的磁场教案新版

电流的磁场第1课时奥斯特实验通电螺线管的磁场教案新版

物理备课大师 【全免费】第 1 课时奥斯特实验通电螺线管的磁场【教课目的】一、知识与技术1.认识电流的磁效应,初步认识电和磁之间有某种联系.2.知道通电导体四周存在着磁场;通电螺线管的磁场与条形磁体相像.3.会判断通电螺线管两头的极性或通电螺线管的电流方向.二、过程与方法1. 经过察看直导线电流磁场和通电螺线管的磁场实验,进一步发展学生的空间想象力.2. 经过对实验的剖析,提升学生比较、剖析、概括得出结论的能力.三、感情、态度与价值观经过认识电与磁之间的互相联系,使学生乐于研究自然界的奇妙,培育学生的学习热忱和实事求的态度,初步领悟研究物理规律的方法和技巧.【教课要点】奥斯特的实验:通电螺线管的磁场;安培定章.【教课难点】通电螺线管的磁场及其应用.【教具准备】奥斯特实验器械一套、通电螺线管、小磁针、大头针、多媒体课件等.【教课课时】 1 课时【稳固复习】教师指引学生复习上一节内容,并解说学生所做的课后作业( 教师可针对性地精选部分难题解说),增强学生对知识的稳固.【新课引入】教师播放多媒体文件: 电和磁之间的相像之处.师:电和磁从现象上看有特别相像的地方,它们之间有没有必定的联系呢?从哲学角度看,应当是有的,我们生产和生活中的一些电器设施中,如扬声器、电磁继电器、话筒、电吉他、电话等,均用到了磁性,但它们的磁性均离不开电,由此看来,电与磁之间必定存在着某种联系. 第一揭开这个神秘的是丹麦物理学家奥斯特.【预习指导】阅读课本P143 - 146文字内容和插图,把基本观点、规律、实验现象和结论用双色笔做上记号,并达成“教案”中“课前预习”部分 . 而后各小组内部沟通议论,提出预习疑问,学科组长做好记录,准备展现.【讲堂导学】知识点 1电流的磁效应一、学生小组合作研究,教师指导点拨师: 1. 你的生活中哪些设施用到了电与磁的应用?这些说了然什么?生: 1. 电铃、电话等,电流四周能产生和电磁铁同样的作用.师:2. 利用桌上老师供给的器械,重复奥斯特所做的实验,注意察看现象,并概括结论.①通电和断电,现象:结论 :②改变导线中电流方向,现象:结论 :生:2. ①通电时小磁针发生偏转,断电时小磁针恢还本来指向,通电导体四周存在磁场②小磁针偏转方向改变,通电导体四周磁场方向与电流方向相关.[ 要点概括 ] ①电流四周存在着磁场;②电流磁场的方向跟电流的方向相关.思想拓展教师指引学生达成对应课时中思想拓展题目,并进行解说知识点 2通电螺线管的磁场二、学生小组合作达成以下研究,教师巡视指导,合时评论.师: 1. 利用老师供给的有机玻璃板、铁屑、螺线管达成教材图17-16实验,并依据铁屑散布状况描出磁感线.写出你的研究结论.生: 1. 如下图 .通电螺线管四周的磁场与条形磁体的磁场相像.师: 2. 利用老师供给的器械及课本图17-17 实验研究 : 通电螺线管的极性可能和哪些因素相关呢?注意察看现象,并概括出结论.生: 2. 通电螺线管的极性与电流方向及导线环绕方向相关.师: 3. 你如何利用小磁针判断通电、螺线管的磁极?说出你的方法.生: 3. 让小磁针N、 S 极分别凑近通电螺线管的磁极,与小磁针N 极吸引且与S 极排挤的一端为S 极,反之,与小磁针S 极吸引且与N极排挤的一端为N 极.师: 4. 请你利用右手螺旋定章体验: 判断你上述实验中通电螺线管的磁极,并比较和你用小磁针判断的能否同样?生: 4. 同样[ 重难点点拨 ] 通电螺线管的四周存在着磁场,其外面的磁场与条形磁体的磁场相像,通电螺线管的两头与条形磁体同样有两个磁极. 在通电螺线管外面,磁感线从通电螺线管的N 极出往返到S 极;在通电螺线管内部,磁感线从S 极到 N 极 . 若改变电流方向,通电螺线管的 N 极和 S 极也改变,且地点正好对换.[ 特别提示 ] 使用右手螺旋定章时应注意以下三点.①决定通电螺线管磁极极性的根本要素是通电螺线管上电流的围绕方向,而不是通电螺线管上导线的绕法和电源正、负极的接法. 当两个螺线管中电流的围绕方向一致时,它们两端的磁极极性才同样.②四指的围绕方向一定是螺线管上电流的围绕方向.③ N 极和 S 极必定在通电螺线管的两头.思想拓展教师指引学生达成对应课时中思想拓展题目,并进行解说.[ 讲堂小结 ] 指导学生总结概括本节课学到了什么1. 通电导线四周存在磁场,磁场方向跟电流方向相关. 这类现象叫做电流的磁效应.2.奥斯特发现了电和磁的联系,能够说以电磁学作为一个整体的科学是由奥斯特创始的.3. 全部通电导体四周都存在磁场,无论是铁、铜、铝,仍是金属做的导体. 从磁场方向上讲:通电螺线管的四周的磁场散布和条形磁铁的磁场散布同样.【课后作业】达成本课时对应练习,并预习下一课时内容。

九年级《通电螺线管的磁场》优秀教学案例

九年级《通电螺线管的磁场》优秀教学案例
讨论过程中,鼓励学生积极发言,分享自己的观点和思考。通过小组合作,共同解决问题,提高学生的团队协作能力和沟通技巧。
(四)总结归纳
在小组讨论结束后,组织学生进行课堂小结。教师引导学生从以下几个方面进行总结:
1.通电螺线管磁场的产生原理和判断磁极的方法;
2.通电螺线管在实际应用中的例子及作用;
3.本节课学到的物理知识和实验技能。
(五)作业小结
课后作业旨在巩固所学知识,拓展学生思维。布置以下作业:
1.复习本节课所学知识,整理笔记;
2.完成课后练习题,巩固理论知识;
3.设计一个简单的电磁设备,并说明其工作原理和应用。
五、案例亮点
1.知识与生活实际紧密结合
本教学案例在内容设计上,充分体现了知识与生活实际的紧密结合。通过引入日常生活中的电磁设备,如电磁铁、电动机等,使学生能够直观地感受到物理知识在实际应用中的价值,激发学生的学习兴趣和探究欲望。这种贴近生活的教学方式,有助于提高学生理论联系实际的能力,培养他们解决实际问题的素养。
(二)问题导向
在教学过程中,我们将以问题为导向,引导学生主动思考、探究。针对通电螺线管的磁场这一主题,设计一系列具有启发性的问题,如“电流是如何产生磁场的?”“如何判断通电螺线管的磁极?”等。通过这些问题,激发学生的好奇心,使他们能够在解决问题的过程中,掌握所学知识,提高分析问题的能力。
(三)小组合作
(二)讲授新知
1.讲解通电螺线管磁场的产生原理,通过动画、示意图等形式,让学生直观地理解电流如何产生磁场。
2.引导学生掌握安培定则,通过右手螺旋法则判断通电螺线管的磁极,并分析简单电磁设备的磁场分布。
3.结合实际应用,讲解通电螺线管在生活中的电磁设备,如电磁铁、电动机等,让学生了解物理知识ຫໍສະໝຸດ 实际工程中的应用。二、教学目标

苏科版物理九年级上第十六章 第2节 电流的磁场 第一课时 电流的磁效应教案

苏科版物理九年级上第十六章  第2节 电流的磁场 第一课时 电流的磁效应教案

2 电流的磁场第一课时电流的磁效应[学习目标]1.认识电流的磁效应,初步了解电与磁之间的某种联系;2.会判断通电螺线管周围的磁场方向。

一、电流的磁效应奥斯特实验证明:通电导线的周围存在着磁场,磁场的方向跟电流的方向有关,这种现象叫做电流的磁效应。

这一现象是由丹麦物理学家奥斯特在1820年发现的。

二、通电螺线管的磁场1.把导线绕在圆筒上,做成螺线管,也叫线圈,在通电情况下会产生磁场。

通电螺线管的磁场相当于条形磁体的磁场,通电螺线管的两端相当于条形磁体的两个磁极,通电螺线管外部的磁感线从N极出发,回到S极,内部的磁感线从S极出发,回到N极。

2.通电螺线管的磁场方向与电流方向有关。

磁场的强弱与电流大小、线圈匝数、有无铁芯有关。

三、安培定则判断通电螺线管的磁场方向可以使用安培(右手)定则:将右手的四指顺着电流方向抓住螺线管,大拇指的方向就是该螺线管的N极。

一、电流的磁效应电流周围存在磁场的现象称为电流的磁效应,这是丹麦物理学家奥斯特在1820年首先发现的。

奥斯特实验:实验前要使小磁针静止时指向南北方向,为使小磁针能偏转,直导线应放在小磁针上方且与小磁针平行,即沿南北方向放置;1.给导线通电,小磁针发生偏转;断电后,小磁针又回到原来的位置(地磁场作用下);结论:通电导体周围存在着磁场;2.小磁针与导线不动,调整电源改变导线中电流的方向,磁针偏转方向与原来相反;结论:电流磁场的方向与直导线中电流的方向有关系。

二、通电螺线管周围的磁场通电螺线管的磁场:通电螺线管周围的磁场和条形磁体的磁场一样。

安培定则:用右手握螺线管,让四指弯向螺线管中电流的方向,则大拇指所指的那端就是螺线管的N极。

通电螺线管的性质:(1)通电螺线管磁性的强弱与有无铁芯(有铁芯则称为电磁铁)、电流的大小、线圈匝数的多少有关;(2)通电螺线管的极性可由电流方向来改变。

知识点一:电流的磁效应【例题精讲】1.如图所示,将一根直导线放在静止小磁针的正上方,并与小磁针平行。

北京课改版物理九年级《12.2通电螺线管的磁场》教学设计

北京课改版物理九年级《12.2通电螺线管的磁场》教学设计

通电螺线管的磁场教学目标知识与技能1.知道电流的磁效应。

2.知道通电螺线管周围存在着磁场3.知道通电螺线管周围存在着磁场与条形磁体的磁场相似。

4.知道通电螺线管内部的磁场由S 极指向N 极。

5.知道右手螺旋定则并会运用。

过程与方法情感态度价值观说明与建议1.做好通电直导线周围存在磁场的实验实验要领:小磁针尽可能的靠近直导线;小磁针静止时应与直导线平行;开关闭合后立即断开;让学生观察小磁针发生转动的现象;此实验可说明三个问题:● 通电直导线周围存在着磁场。

● 电流具有磁效应:通电直导线周围存在的磁场是电流产生的。

有电流存在,就有磁场产生,这叫电流的磁效应。

● 电流磁场的方向跟电流方向有关。

2.实验探究通电螺线管的磁场这部分内容建议老师设计为以演示为主的探究课型。

实验1:按图12-15乙进行实验,目的:呈现通电螺线管周围磁场的分布,实验时要通过实物投影让学生观察。

然后在黑板上用曲线画出磁场的分布情况。

实验2:确定磁感线的环绕方向将小磁针分别放在通电螺线管A 、B 、C 、D 、E 位置(让学生观察实物投影),由小磁针的N 极指向确定各点的磁场方向,进而确定了磁感线的环绕方向。

通电螺线管磁极的确定由实验确定了磁感线的环绕方向后,引导学生对比条形磁体的磁感线,确定该通电螺线管的磁极。

如图所示,左端为N极,右端为S极。

3.探究跟电流方向的关系可提问,通电螺线管的磁极是固定不变的吗?通电螺线管的磁场的分布已经确定,只要用小磁针确定磁感线的环绕方向即可知道磁极。

建议作三次实验,每一次都与右手的四指与拇指的关系进行对应,最后得出安培定则。

电生磁教学设计(优秀6篇)

电生磁教学设计(优秀6篇)

电生磁教学设计(优秀6篇)电生磁教学设计篇一《电生磁》教学设计永久镇中学孙桂芬一、教学内容分析本节课是人教版八年级物理下册第九章《电与磁》第三节《电生磁》,本节课是在已有的电学知识和简单的磁现象知识基础上,将电和磁对立统一起来。

本节课是初中物理电磁学部分的一个重点,也是可持续发展的物理学习的必要基础。

本节课主要包括三个重要的知识点:通过奥斯特实验明确通电导线周围存在磁场;通电螺线管的磁场;安培定则,这是一节内容较多、信息量较大的课。

但是这节课的优点是知识结构上条理清晰、层次分明。

本节课有两个实验,并且都有着直观的实验结果,相对较为生动,容易引发学生的学习积极性。

二、教学对象分析我校系吉林省松原市长岭县永久镇中学,学校硬件配备较为齐全,强化班级建设,突出学生个性,注重培养学生自主学习能力和学生合作学习意识。

初二的学生心智已较为成熟,认知水平比起刚接触物理时有了很大提高,形象思维和抽象思维都已有了不同程度的发展,分析问题、解决问题的能力也更加提高。

三、教学目标的确定(一)知识与技能1.认识电流的磁效应,初步了解电和磁之间有某种联系。

2.知道通电导体周围存在着磁场,通电螺线管的磁场与条形磁铁相似。

3.会用安培定则判断通电螺线管的极性和通电螺线管的电流方向。

(二)过程与方法1.观察体验通电导体与磁体之间的相互作用,初步了解电和磁之间有某种联系。

2.体验探究通电螺线管外部磁场的方向的过程。

(三)情感态度与价值观通过“电生磁”现象,初步认识电与磁之间的相互联系,使学生乐于探索自然界的奥秘。

四、教学重点、难点(一)教学重点1.通过奥斯特的实验认识电流的磁效应。

2.通电螺线管外部磁场分布。

(二)教学难点:通电螺线管两端的极性和通电螺线管的电流方向的判断方法。

五、通过虚拟实验软件演示奥斯特实验和通电螺线管的磁场实验,初步认识电与磁之间的联系,从而掌握“电生磁”现象和安培定则,培养学生探索科学的意识。

六、教学过程(一)教学流程图以旧引新引入课题——探究奥斯特实验——介绍奥斯特实验──探究螺线管的磁场分布——体会通电螺线管的极性与电流方向的关系——安培定则──课堂练习——知识回顾——布置作业。

第2节 电生磁教案

第2节 电生磁教案

第2节电生磁知识与技能:1.认识电流的磁效应,初步了解电和磁之间的联系。

2.知道通电导体周围存在着磁场,知道通电螺线管外部的磁场与条形磁体的磁场相似。

3.会判断通电螺线管两端的极性或通电螺线管中电流的方向。

过程与方法:1.通过观察直导线电流磁场和通电螺线管的磁场实验,进一步拓展学生的空间想象力。

2.通过对实验的分析,提高学生比较、分析、归纳得出结论的能力。

情感、态度与价值观:通过认识电与磁之间的相互联系,使学生乐于探索自然界的奥妙,培养学生的学习热情,初步领会探索物理规律的方法和技巧。

重点:电流的磁效应;通电螺线管的磁场。

难点:运用安培定则判断通电螺线管的极性或通电螺线管的电流方向。

多媒体课件、纸盒吸铁魔术道具、电源、导线、小磁针、圆筒、硬纸板、铁屑。

一、情景导入教师先给大家表演一个魔术──纸盒吸铁,然后提问学生:此盒中可能是什么?你猜想的依据是什么?教师断开开关,再去接触铁屑,由不能吸引铁屑引起学生思维冲突,此时教师将纸盒打开,让学生明白,刚才产生的磁可能跟电有关。

到底磁是否能生电?这节课我们就来揭开这个谜!二、合作探究电流的磁效应提出问题观察实验中通电导线周围的小磁针的情况。

电源和导线的作用是什么?小磁针有什么作用?演示实验将一枚转动灵活的小磁针置于桌面上,在小磁针旁放一条直导线,使导线与电池触接,看看电路连通瞬间小磁针有什么变化?断电,小磁针有什么变化?改变电流方向触接,小磁针有什么变化?交流讨论同学们根据观察到的现象,交流讨论产生该现象说明了什么?归纳总结(1)直导线通电后,小磁针发生偏转。

说明:通电导体周围存在磁场。

(2)改变电流方向,小磁针偏转方向相反。

说明:电流周围磁场的方向与电流方向有关。

(3)通电导线周围存在与电流方向有关的磁场,这种现象叫做电流的磁效应。

通电螺线管的磁场提出问题既然电能生磁,为什么我们在生活中感受不到呢?比如:手电筒在通电时连一根大头针都吸不动……怎样增大磁性呢?演示实验把导线绕在圆筒上,做成螺线管,与电源相连通电后各圈导线产生的磁场叠加在一起,磁场就会强得多。

六年级科学电和磁教案(通用11篇)

六年级科学电和磁教案(通用11篇)

六年级科学电和磁教案六年级科学电和磁教案(通用11篇)六年级科学电和磁教案篇1教学目标:1、知识和技能认识电流的磁效应。

知道通电导体的周围存在磁场,通电螺线管的磁场与条形磁铁的磁场相似。

理解电磁铁的特性和工作原理。

2、过程和方法观察和体验通电导体与磁体之间的相互作用,初步了解电和磁之间有某种联系。

探究通电螺线管外部磁场的方向。

3、情感、态度、价值观通过认识电与磁之间的相互联系,使学生乐于探索自然界的奥妙。

重、难点:1、试验探究电流的磁效应的规律。

2、探究通电螺线管的磁场规律。

教学器材:电脑平台、磁体、小磁针、电源、导线教学课时:2时教学过程:一、前提测评:1、静止后的磁针指南的一端叫极,又叫极,指北的一端叫极,又叫极。

2、同名磁极相互,异名磁极相互;磁极间的相互作用是通过发生的。

3、磁场的方向是这样规定的:小磁针静止时极所指的方向就是该点的;可以利用带箭头的曲线来描述磁场,这样的曲线叫做。

4、使原来没有磁性的物体获得磁性的过程叫。

二、导学达标:引入课题:试验“猜一猜”利用隐蔽的通电螺线管吸引小铁钉,让学生猜是什么物体?磁体对进入磁场的物体会发生作用,能否利用人工作用产生磁场、控制磁场?进行新课:1、电流的磁效应:试验:53页图8.2-2示,结果结论:通电导体的周围有磁场,磁场的方向跟电流的方向有关,这现象叫电流的磁效应。

(这试验叫奥斯特试验)思考:为什么手电筒、普通电线通电时吸引力好像不存在?……如何增强磁场?(做成螺线管,也叫线圈,如……开始的试验)2、探究:通电螺线管的磁场猜想:通电螺线管能否产生磁场,磁场可能与哪种磁体的相似?(1)试验:54页图8.2-4示(对比条形磁体)结论:通电螺线管外部的磁场与磁体的磁场相似。

指出N极、S 极猜想:改变电流方向,磁场方向会不会变化?(2)试验:54页图8.2-4示,但电流方向相反结果:结论:指出图8.2-5中的N极、S极讨论:能否利用一句话来概括这普遍性的规律?(参考55页提示)(3)安培定则:右手握螺线管,让四指弯向螺线管中电流的方向,则大拇指所指的那一端就是通电螺线管的N极。

电生磁 精品 公开课教案(大赛一等奖作品)

电生磁 精品 公开课教案(大赛一等奖作品)

第2节电生磁教学目标知识要点课标要求1.电流的磁效应通过实验了解电流周围存在磁场2.通电螺旋管的磁场会探究通电螺旋管外部的磁场方向,了解通电螺旋管外部的磁场与条形磁体的相似.会判断通电螺旋管的电流方向和两端的极性教学过程新课引入老师先给大家表演一个魔术──纸盒吸铁,然后提问学生:此盒中可能是什么?你猜想的依据是什么?教师断开开关,再去接触铁屑,由不能吸引铁屑引起学生思维冲突,此时教师将纸盒打开,让学生明白,刚才产生的磁可能跟电有关。

到底磁是否能生电?这节课我们就来揭开这个谜!合作探究探究点一:电流的磁效应活动1:针对导课的问题,老师让学生交流、讨论如何设计实验来验证你的猜想?需要哪些实验器材?总结:选取电源、导线和开关、小磁针。

将电源、导线、开关连接成一个闭合电路,将小磁针放在周围,观察小磁针是否发生偏转。

活动2:根据学生所设计的实验,让学生动手验证。

根据实验现象,阐明你的猜想。

总结:导线通电后,发现小磁针发生偏转,说明通电导体周围能够产生磁场。

活动3:要想让小磁针偏转的方向相反,然后如何操作?自己动手实验验证,这又说明说明什么问题?总结:通电导体电流的方向改变,周围磁场的方向也随之改变。

归纳总结:电流周围存在磁场,磁场的方向跟电流的方向有关。

这就是电流的磁效应。

拓宽延伸:电流的磁效应是丹麦物理学家奥斯特第一个发现的,所以该实验叫奥斯特实验,它揭示了电和磁不是孤立的,而是有密切的联系。

活动4:其实我们今天研究的问题早在1820年丹麦伟大的物理学家奥斯特在一次偶然的实验中就发现了电和磁之间是有联系的,他是怎样做这个实验的呢?我们一起来看看视频吧!播放视频!探究点二:通电螺旋管的磁场活动1:看了这个视频实验后,大家觉得与我们刚才做的实验相比,有哪些不同吗?视频中的小磁针偏转的角度那么大,而我们实验的时候却那么小,可能是什么原因形成的?小组之间交流、发言。

总结:在实验中利用短路获得较强的电流来增加磁性。

三、通电螺线管的磁场教案

三、通电螺线管的磁场教案

第十二章第三节通电螺线管的磁场一、指导思想与理论依据本节围绕“引导学生认识电流的磁效应,知道通电导体周围存在着磁场,通电螺线管的磁场与条形磁体相似”和“通过实验探究通电螺线管两端极性与电流方向的关系”展开教学。

电流的磁效应揭示了电与磁联系的一个方面。

本节内容更加注重学生的亲身体验与感悟,如电流周围存在磁场,通电螺线管的磁场分布与条形磁体相似等,都是在实验的基础上进行的,使学生获得形象、具体的感性认识。

通过学生观察实验的方式导入新课,激发学生的求知欲和兴趣。

本节课合理地设计了相关实验,在实验探究的基础上,让学生自己总结出判断通电螺线管两端极性的方法,初步掌握安培定则。

二、教学背景分析1.教学内容分析通电螺线管的磁场是本节的重点之一,因此,通过演示实验让学生直观地观察通电螺线管周围铁屑的分布情况,知道通电螺线管的磁场与条形磁体相似。

通过实验探究通电螺线管两端的极性与通电螺线管的电流方向的关系并加以表述,以培养学生的空间想象能力和语言表达能力。

探究结束后,让学生自己归纳判断通电螺线管的极性和电流方向的方法,通过师生相互交流得出安培定则。

2.学生情况分析学生已经研究了简单的磁现象,知道了磁体周围存在磁场以及磁极间的相互作用规律;知道磁场具有方向性,能使放入其中的磁针发生偏转;对条形磁体的磁场有了一定的感性认识。

电流的磁效应是学习电磁现象的重要基础。

因此,要尽可能让学生确信电流及其周围的磁场是同时存在且密不可分的。

为了说明这个问题,要做好奥斯特实验,帮助学生加深对电流磁效应的理解,初步认识电与磁之间存在某种关系。

3.教学方式讲授、探究、实验。

4.教学器材计算机、实物投影仪、螺线管演示器、大头针、长直导线、干电池(带电池盒)、小磁针、导线、多媒体课件、电磁铁、铁芯、开关。

三、教学目标1.知识与技能(1)认识电流的磁效应,了解奥斯特实验的重要意义。

(2)知道通电导体周围存在磁场,通电螺线管的磁场与条形磁体相似。

用霍尔效应测量螺线管磁场

用霍尔效应测量螺线管磁场

,陈史洁,化教6班实验八 用霍尔效应测量螺线管磁场用霍尔传感器测量通电螺线管内励磁电流与输出霍尔电压之间关系,证明霍尔电势差与螺线管内磁感应强度成正比;用通电长直通电螺线管轴线上磁感应强度的理论计算值作为标准值来校准或测定霍尔传感器的灵敏度,熟悉霍尔传感器的特性和应用;用该霍尔传感器测量通电螺线管内的磁感应强度与螺线管轴线位置刻度之间的关系,作磁感应强度与位置刻线的关系图,学会用霍尔元件测量磁感应强度的方法。

一、实验目的1.了解霍尔效应现象,掌握其测量磁场的原理。

2.学会用霍尔效应测量长直通电螺线管轴向磁场分布的方法。

二、实验原理图1所示的是长直螺线管的磁力线分布,有图可知,其内腔中部磁力线是平行于轴线的直线系,渐近两端口时,这些直线变为从两端口离散的曲线,说明其内部的磁场在很大一个范围内是近似均匀的,仅在靠近两端口处磁感应强度才显著下降,呈现明显的不均匀性。

根据电磁学毕奥-萨伐尔)Savat Biot (-定律,通电长直螺线管线上中心点的磁感应强度为: 22M DL I N B +••μ=中心 (1)理论计算可得,长直螺线管轴线上两个端面上的磁感应强度为内腔中部磁感应强度的1/2:22M DL I N 21B 21B +••μ•==中心端面 (2) 式中,μ为磁介质的磁导率,真空中的磁导率μ0=4π×10-7(T ·m/A),N 为螺线管的总匝数,I M 为螺线管的励磁电流,L 为螺线管的长度,D 为螺线管的平均直径。

附加电势差的消除应该说明,在产生霍尔效应的同时,因伴随着多种副效应(见附录),以致实验测得的电压并不等于真实的V H 值,而是包含着各种副效应引起的附加电压,因此必须设法消除。

根据副效应产生的机理可知,采用电流和磁场换向的对称测量法,基本上能够把副效应的影响从测量的结果中消除,具体的做法是Is 和B (即l M )的大小不变,并在设定电流和磁场的正、反方向后,依次测量由下列四组不同方向的Is 和B 组合的A 、A ′两点之间的电压V 1、 V 2、V 2、和V 4,即 +Is +B V 1 +Is -B V 2 -Is -B V 3 -Is +B V 4然后求上述四组数据V 1、V 2、V 3和V 4 绝对值的平均值,可得:44321V V V V V +++= (3) 通过对称测量法求得的V H ,虽然还存在个别无法消除的副效应,但其引入的误差甚小,可以略而不计。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用Flash动画演示右手螺旋定则的使用,增加直观性,可视性。
学生用白板笔标注电流方向和磁极极性,为其他同学起到示范作用。
8分钟
总结提高
师生共同对本节内容进行总结,启发学生对本节标题进行重新命名
讨论:对本节标题进行重新命名
延伸刺激学生的学习欲望,强化学习的成就感。
3分钟
反馈练习
用Flash播放习题
检验学习成效
查漏补缺
检验学习成效
查漏补缺
用Flash播放习题,可以增加教师练习题的可选择性,教师可以根据学生当时掌握知识的情况,选择不同难度的练习。
6分钟
3.实物投影展示学生实验操作过程,探究通电螺线管周围磁场方向,师及时用白板笔进行标注磁极的磁性,学生易于观察并对结果进行对比,降低教学的难度。
15分钟
学习
安培定则
的使用
Flash动画演示:安培定则
指导学习
对学困生师用在手上贴箭头的方法帮助突破难点。
观察、模仿
小组互助学习,练习使用安培定则解决问题。
小组互助学习有助于学困生得到帮助,并培养学生的互助友爱的精神。
3.情感态度与价值观:
(1)通过认识电和磁之间的联系,并亲自设计实验,体验探索自然的奥秘的乐趣,培养学生的学习热情,初步领会探索物理规律的方法。
(2)通过渗透物理学史的知识,培养学生大物理的视角。
教学过程
教学阶段
教师活动
学生活动
设置意图
技术应用
时间安排
回顾旧知对比思考
引出课题
提问:根据以前学过的知识,电和磁之间有什么联系
学生设计并演示:探究通电螺线管周围的磁场方向和电流方向是否有关?
通过和条形磁铁磁场分布的对比,渗透了基本的物理研究方法。
通过学生设计并演示实验,发挥了学生学习的主动性和创造性,可以让学生体验科学探究的过程和学习的成就感。
1.用提前录制的视频展示通电螺线管的绕制方法代替教师现场绕制,增加可视性。
2.视频展示通电螺线管周围铁屑分布,实验过程简洁,现象清楚。避免了铁屑不好控制和收拾的弊端,节约课堂时间。
通电螺线管的磁场
教学目标
1.知识与技能:
(1)知道电与磁有密切的联系。
(2)知道电流周围存在磁场。
(3)知道通电螺线管对外相当于一条形磁铁。
(4)会用右手螺旋定则确定通电螺线管的磁极或螺线管上的电流方向。
2.方法与过程:
(1)通过观察通电直导线磁场和通电螺线管的磁场的实验,进一步发展空间想象力。
(2)通过将通电螺线管的磁场和条形磁铁的磁场作比较,提高学生比较、分析、归纳、总结的能力
用实物投影展示实验现象,增加实验现象的可视性
用电子白板的灯光及放大等功能控制投影清晰度和观察重点,现象清晰明了。
10分钟
实验探究通电螺线管的磁场
PPT展示:通过和条形磁铁磁场分布的对比,
渗透基本的物理研究方法。
引导分析:如何用小电流获得较强磁场?
帮助学生设计并演示实验。
演示实验:通电螺线管周围铁屑分布
引导学生回顾
思考,抢答
激发兴趣,刺激求知欲。
PPT展示,实验探究通电直导线的磁场
提出问题:如何用实验的方法发现电流周围是否有磁场?
引导学生设计实验。
帮助学生完成实验
设计并演示实验:奥斯特实验
学生设计并演示:探究直导线的磁场方向和电流方向是否有关?
通过实验现象,感知电流周围磁场的存在,激发学生强烈的好奇心,引发进一步的思考,探求现象背后的原因。
相关文档
最新文档