实验报告(虚拟存储管理)
操作系统实验实验报告 虚拟内存
操作系统实验实验报告虚拟内存一、实验目的本次操作系统实验的目的是深入理解虚拟内存的概念、原理和实现机制,通过实际操作和观察,掌握虚拟内存的相关技术,包括页面置换算法、内存分配策略等,并分析其对系统性能的影响。
二、实验环境操作系统:Windows 10 专业版开发工具:Visual Studio 2019编程语言:C++三、实验原理1、虚拟内存的概念虚拟内存是一种计算机系统内存管理技术,它使得应用程序认为自己拥有连续的可用内存(一个连续完整的地址空间),而实际上,这些内存可能是被分散存储在物理内存和外部存储设备(如硬盘)中的。
虚拟内存通过将程序使用的内存地址映射到物理内存地址,实现了内存的按需分配和管理。
2、页面置换算法当物理内存不足时,操作系统需要选择一些页面(内存中的固定大小的块)换出到外部存储设备,以腾出空间给新的页面。
常见的页面置换算法有先进先出(FIFO)算法、最近最少使用(LRU)算法、时钟(Clock)算法等。
3、内存分配策略操作系统在分配内存时,需要考虑如何有效地利用有限的物理内存资源。
常见的内存分配策略有连续分配、分页分配和分段分配等。
四、实验内容与步骤1、实现简单的虚拟内存系统使用 C++编写一个简单的虚拟内存模拟程序,包括内存页面的管理、地址映射、页面置换等功能。
2、测试不同的页面置换算法在虚拟内存系统中,分别实现 FIFO、LRU 和 Clock 算法,并对相同的访问序列进行测试,比较它们的页面置换次数和缺页率。
3、分析内存分配策略的影响分别采用连续分配、分页分配和分段分配策略,对不同大小和类型的程序进行内存分配,观察系统的性能(如内存利用率、执行时间等)。
具体步骤如下:(1)定义内存页面的结构,包括页面号、标志位(是否在内存中、是否被修改等)等。
(2)实现地址映射函数,将虚拟地址转换为物理地址。
(3)编写页面置换算法的函数,根据不同的算法选择要置换的页面。
(4)创建测试用例,生成随机的访问序列,对不同的算法和分配策略进行测试。
实习五 虚拟存储器实验报告
实习五虚拟存储器实验报告一、实验目的本次虚拟存储器实验旨在深入理解计算机系统中虚拟存储器的工作原理和机制,通过实际操作和观察,掌握虚拟存储器的相关概念和技术,包括页式存储管理、地址转换、页面置换算法等。
同时,培养我们的实践能力和问题解决能力,为今后学习和工作中涉及到的计算机系统相关知识打下坚实的基础。
二、实验环境本次实验使用的操作系统为 Windows 10,开发工具为 Visual Studio 2019,编程语言为 C++。
三、实验原理1、虚拟存储器的概念虚拟存储器是一种利用硬盘等辅助存储器来扩充主存容量的技术。
它将程序和数据按照一定的页面大小划分,并在需要时将页面从硬盘调入主存,从而实现了使用有限的主存空间运行较大规模的程序。
2、页式存储管理页式存储管理将主存和辅存空间都划分为固定大小的页面。
程序的地址空间被分成若干页,主存也被分成相同大小的页框。
通过页表来记录页面和页框的对应关系,实现地址转换。
3、地址转换当 CPU 执行指令时,给出的是逻辑地址。
通过页表将逻辑地址转换为物理地址,才能在主存中访问相应的数据。
4、页面置换算法当主存空间不足时,需要选择一个页面换出到硬盘,以腾出空间调入新的页面。
常见的页面置换算法有先进先出(FIFO)算法、最近最少使用(LRU)算法等。
四、实验内容与步骤1、设计并实现一个简单的页式存储管理系统定义页面大小和主存、辅存的容量。
实现页表的数据结构,用于记录页面和页框的对应关系。
编写地址转换函数,将逻辑地址转换为物理地址。
2、实现页面置换算法分别实现 FIFO 和 LRU 页面置换算法。
在页面调入和调出时,根据相应的算法选择置换的页面。
3、测试和分析实验结果生成一系列的访问序列,模拟程序的运行。
统计不同页面置换算法下的缺页次数和命中率。
分析实验结果,比较不同算法的性能。
五、实验过程与结果1、页式存储管理系统的实现我们将页面大小设置为 4KB,主存容量为 16MB,辅存容量为 1GB。
存储管理 实验报告
存储管理实验报告存储管理实验报告一、引言存储管理是计算机系统中一个非常重要的组成部分,它负责管理计算机内存的分配、回收和保护。
本次实验旨在通过实际操作,深入理解存储管理的原理和技术,并探索不同的存储管理策略对系统性能的影响。
二、实验目的1. 理解存储管理的基本概念和原理;2. 掌握常见的存储管理算法和策略;3. 分析不同存储管理策略对系统性能的影响。
三、实验环境本次实验使用了一台配置较低的个人电脑,操作系统为Windows 10,内存容量为4GB。
四、实验内容1. 静态分区分配算法静态分区分配算法是最简单的存储管理算法之一。
在实验中,我们使用了最先适应算法(First Fit)和最佳适应算法(Best Fit)进行静态分区分配。
通过对比两种算法的分配效果,我们发现最佳适应算法在减少内存碎片方面表现更好。
2. 动态分区分配算法动态分区分配算法是一种更加灵活的存储管理策略。
在实验中,我们实现了首次适应算法(First Fit)和最佳适应算法(Best Fit)两种动态分区分配算法。
通过观察不同算法的分配效果,我们发现首次适应算法在处理大量小内存块时效率较高,而最佳适应算法在处理大内存块时表现更好。
3. 页面置换算法页面置换算法是虚拟内存管理中的重要组成部分。
在实验中,我们实现了最近最少使用(LRU)算法和先进先出(FIFO)算法两种页面置换算法。
通过模拟内存不足的情况,我们观察了不同算法对系统性能的影响。
结果显示,LRU算法在减少页面置换次数方面比FIFO算法更为优秀。
五、实验结果与分析通过本次实验,我们对不同的存储管理算法和策略进行了实际操作,并观察了它们对系统性能的影响。
实验结果显示,最佳适应算法在静态分区分配中表现更好,而首次适应算法在动态分区分配中效率更高。
在页面置换算法中,LRU 算法在减少页面置换次数方面更为出色。
六、实验总结本次实验通过实际操作,深入理解了存储管理的原理和技术,并探索了不同的存储管理策略对系统性能的影响。
存储管理实验报告
存储管理实验报告一、实验目的1.了解存储管理的概念及作用;2.掌握存储管理的基本操作和技术;3.熟悉常见的存储管理工具和方法;4.分析存储管理对系统性能的影响。
二、实验内容1.了解存储管理的基本概念:存储管理是指对计算机中的存储器进行有效管理和利用的一种技术手段。
主要包括内存管理和外存管理两个方面。
2.学习常见的存储管理工具和方法:(1)内存管理方案:连续内存管理、非连续内存管理和虚存管理;(2)外存管理方案:磁盘存储管理、文件系统管理和缓存管理等。
3.实际操作存储管理工具:(1)使用操作系统的内存管理工具,如Windows的任务管理器和Linux的top命令等,查看内存使用情况和进程占用的内存大小;(2)使用磁盘管理工具,如Windows的磁盘管理器和Linux的fdisk命令等,查看磁盘的分区情况和使用状况;(3)使用文件系统管理工具,如Windows的资源管理器和Linux的ls命令等,查看文件和目录的存储和管理状态。
4.分析存储管理对系统性能的影响:(1)使用性能监控工具,如Windows的性能监视器和Linux的sar 命令等,实时监测系统的内存、磁盘和文件系统等性能指标;(2)对比不同存储管理方案的优缺点,分析其对系统性能的影响;(3)根据实验结果提出优化存储管理的建议。
三、实验步骤1.阅读相关文献和资料,了解存储管理的基本概念和原理;2.使用操作系统的内存管理工具,查看当前系统内存的使用情况;3.使用操作系统的磁盘管理工具,查看当前系统磁盘的分区情况;4.使用操作系统的文件系统管理工具,查看当前系统文件和目录的存储和管理状态;5.使用性能监控工具,实时监测系统的内存、磁盘和文件系统等性能指标;6.根据实验结果,分析存储管理对系统性能的影响;7.结合实验结果,提出优化存储管理的建议。
四、实验结果1.使用内存管理工具查看系统内存使用情况,发现部分进程占用内存过高,导致系统运行缓慢;2.使用磁盘管理工具查看系统磁盘分区情况,发现磁盘分区不合理,造成磁盘空间利用率较低;3.使用文件系统管理工具查看文件和目录的存储和管理状态,发现有大量重复和冗余的文件,需要进行清理和整理;4.使用性能监控工具实时监测系统的性能指标,发现内存和磁盘的利用率较高,需要优化存储管理。
存储管理实验报告_6
昆明理工大学信息工程与自动化学院学生实验报告(2012 —2013 学年第二学期)一、实验目的存储管理的主要功能之一是合理地分配空间。
请求页式管理是一种常用的虚拟存储管理技术。
通过本次实验, 要求学生通过编写和调试地址转换过程的模拟程序以加强对地址转换过程的了解, 通过请求页式存储管理中页面置换算法模拟设计, 了解虚拟存储技术的特点, 掌握请求页式存储管理的页面置换算法。
二、实验原理及基本技术路线图(方框原理图)用C或C++语言模拟实现请求式分页管理。
要求实现: 页表的数据结构、分页式内存空间的分配及回收(建议采用位图法)、地址重定位、页面置换算法(从FIFO,LRU,NRU中任选一种)。
int subareaSize[num]={8,12,16,32,24,16,64,128,40,64};//分区大小Process *pro=NULL;//保持进程信息int ProcessNum=0;//进程数目int applyProcessNum=0;//每次申请进程数目int maxApplyNum=0;//最大可申请数目int *applyIndex=NULL;//申请进程队列int totalApplyNum=0;//申请总数int *assignPointer=NULL;//已分配内存的进程队列int assignFlag=0;//分配索引, 表示已申请队列已分配的进程数int exeIndex;//执行的进程号Node *subareaNode=new Node[3];//分区回收时, 进程所在分区及其前, 后分区信息LinkList createLinkList(int n );//建立空闲分区链Node firstFit(LinkList &head,Process pro);//首次适应算法Node nestFit(LinkList &head,Process pro,Node flag);//循环适应算法Node bestFit(LinkList &head,Process pro);//最佳适应算法Node worstFit(LinkList &head,Process pro);//最坏适应算法Node assign(LinkList &head,int orderIndex,int index,Node flagNode);//一次分区分配int assignMemory(LinkList &head);//内存分配void insertNode(LinkList &head,Node q,int index);//插入节点Node deleteNode(LinkList &head,int index);//删除节点int display(LinkList &head);//打印分区分配情况int lowAttemper(int *excursionPointer);//低级调度int findSubarea(LinkList &head,int index);//回收内存int creatProcess();//创建进程Process* randomCreatPro(int n);//随机产生进程下面是各种方法简述:(1) 最优替换算法, 即OPT算法。
虚拟存储器管理实验报告
淮海工学院计算机科学系实验报告书课程名:《操作系统》题目:虚拟存储器管理页面置换算法模拟实验班级:学号:姓名:一、实验目的与要求1.目的:请求页式虚存管理是常用的虚拟存储管理方案之一。
通过请求页式虚存管理中对页面置换算法的模拟,有助于理解虚拟存储技术的特点,并加深对请求页式虚存管理的页面调度算法的理解。
2.要求:本实验要求使用C语言编程模拟一个拥有若干个虚页的进程在给定的若干个实页中运行、并在缺页中断发生时分别使用FIFO和LRU算法进行页面置换的情形。
其中虚页的个数可以事先给定(例如10个),对这些虚页访问的页地址流(其长度可以事先给定,例如20次虚页访问)可以由程序随机产生,也可以事先保存在文件中。
要求程序运行时屏幕能显示出置换过程中的状态信息并输出访问结束时的页面命中率。
程序应允许通过为该进程分配不同的实页数,来比较两种置换算法的稳定性。
二、实验说明1.设计中虚页和实页的表示本设计利用C语言的结构体来描述虚页和实页的结构。
在虚页结构中,pn代表虚页号,因为共10个虚页,所以pn的取值范围是0—9。
pfn代表实页号,当一虚页未装入实页时,此项值为-1;当该虚页已装入某一实页时,此项值为所装入的实页的实页号pfn。
time项在FIFO算法中不使用,在LRU中用来存放对该虚页的最近访问时间。
在实页结构中中,pn代表虚页号,表示pn所代表的虚页目前正放在此实页中。
pfn代表实页号,取值范围(0—n-1)由动态指派的实页数n所决定。
next是一个指向实页结构体的指针,用于多个实页以链表形式组织起来,关于实页链表的组织详见下面第4点。
2.关于缺页次数的统计为计算命中率,需要统计在20次的虚页访问中命中的次数。
为此,程序应设置一个计数器count,来统计虚页命中发生的次数。
每当所访问的虚页的pfn项值不为-1,表示此虚页已被装入某实页内,此虚页被命中,count加1。
最终命中率=count/20*100%。
虚拟器存储实验报告
一、实验目的1. 了解虚拟器存储的基本概念和原理;2. 掌握虚拟器存储的安装和配置方法;3. 通过虚拟器存储实验,验证虚拟器存储在计算机系统中的作用和优势。
二、实验环境1. 操作系统:Windows 102. 虚拟器软件:VMware Workstation 153. 实验内容:创建虚拟机、配置虚拟机、安装操作系统、配置网络、使用虚拟机存储三、实验步骤1. 创建虚拟机(1)打开VMware Workstation,点击“创建新的虚拟机”;(2)选择“自定义(高级)”,点击“下一步”;(3)选择虚拟机兼容性,点击“下一步”;(4)选择操作系统类型和版本,点击“下一步”;(5)输入虚拟机名称和安装路径,点击“下一步”;(6)分配内存大小,点击“下一步”;(7)创建虚拟硬盘,选择硬盘文件类型和容量,点击“下一步”;(8)选择虚拟机网络类型,点击“下一步”;(9)选择I/O设备设置,点击“下一步”;(10)完成创建虚拟机。
2. 配置虚拟机(1)双击打开虚拟机;(2)选择“自定义设置”;(3)在“硬件”选项卡中,调整虚拟机CPU核心数、内存大小等;(4)在“选项”选项卡中,配置网络连接、USB控制器等;(5)在“虚拟硬盘”选项卡中,调整硬盘容量、存储模式等;(6)在“CD/DVD选项”选项卡中,添加安装操作系统所需的镜像文件;(7)在“其他设置”选项卡中,配置USB控制器、打印机等。
3. 安装操作系统(1)启动虚拟机,进入操作系统安装界面;(2)按照安装向导完成操作系统安装。
4. 配置网络(1)在虚拟机中打开网络管理工具;(2)选择合适的网络连接方式,如桥接模式;(3)配置IP地址、子网掩码、网关等信息。
5. 使用虚拟机存储(1)在虚拟机中安装文件管理器;(2)将需要存储的文件复制到虚拟机中;(3)在虚拟机中打开文件管理器,查看存储的文件。
四、实验结果与分析1. 实验结果通过本次实验,成功创建了一个虚拟机,并安装了操作系统。
操作系统实验六-虚拟存储器实验报告
实验六虚拟存储器一、实验内容模拟分页式虚拟存储管理中硬件的地址转换和缺页中断,以及选择页面调度算法处理缺页中断。
二、实验目的在计算机系统中,为了提高主存利用率,往往把辅助存储器(如磁盘)作为主存储器的扩充,使多道运行的作业的全部逻辑地址空间总和可以超出主存的绝对地址空间。
用这种办法扩充的主存储器称为虚拟存储器。
通过本实验帮助同学理解在分页式存储管理中怎样实现虚拟存储器。
三、实验题目本实验有三道题目,其中第一题必做,第二,三题中可任选一个。
第一题:模拟分页式存储管理中硬件的地址转换和产生缺页中断。
[提示](1)分页式虚拟存储系统是把作业信息的副本存放在磁盘上,当作业被选中时,可把作业的开始几页先装入主存且启动执行。
为此,在为作业建立页表时,应说明哪些页已在主存,哪些页尚未装入主存,页表的格式为:其中,标志----用来表示对应页是否已经装入主存,标志位=1,则表示该页已经在主存,标志位=0,则表示该页尚未装入主存。
主存块号----用来表示已经装入主存的页所占的块号。
在磁盘上的位置----用来指出作业副本的每一页被存放在磁盘上的位置。
(2)作业执行时,指令中的逻辑地址指出了参加运算的操作存放的页号和单元号,硬件的地址转换机构按页号查页表,若该页对应标志为“1”,则表示该页已在主存,这时根据关系式:绝对地址=块号×块长+单元号计算出欲访问的主存单元地址。
如果块长为2的幂次,则可把块号作为高地址部分,把单元号作为低地址部分,两者拼接而成绝对地址。
若访问的页对应标志为“0”,则表示该页不在主存,这时硬件发“缺页中断”信号,有操作系统按该页在磁盘上的位置,把该页信息从磁盘读出装入主存后再重新执行这条指令。
(3)设计一个“地址转换”程序来模拟硬件的地址转换工作。
当访问的页在主存时,则形成绝对地址,但不去模拟指令的执行,而用输出转换后的地址来代替一条指令的执行。
当访问的页不在主存时,则输出“* 该页页号”,表示产生了一次缺页中断。
存储管理实验报告总结
存储管理实验报告总结本次实验主要是针对存储管理进行的。
存储管理是操作系统中非常重要的一部分,它负责管理计算机系统的内存空间,为进程提供必要的存储资源。
通过本次实验,我对存储管理的相关概念和技术有了更加深入的了解。
在实验中,我首先学习了存储管理的基本原理。
操作系统将内存分为若干个大小相等的页框,而进程的内存空间则被划分为若干个大小相等的页。
通过页表的映射关系,操作系统可以将进程的页映射到物理内存的页框上。
这样,进程就可以方便地访问内存中的数据。
在实验中,我还学习了虚拟内存的概念和实现方法。
虚拟内存是一种扩展内存的方法,它允许进程访问超出物理内存容量的数据。
虚拟内存通过将进程的页映射到磁盘上的页面文件中,实现了内存的扩展。
当进程需要访问某个页面时,操作系统会将该页面从页面文件中加载到物理内存中,并更新页表的映射关系。
在实验中,我还学习了页面置换算法的原理和实现。
页面置换算法是虚拟内存中非常重要的一部分,它负责决定哪些页面需要被置换出去。
常见的页面置换算法有FIFO算法、LRU算法和Clock算法等。
不同的算法有着不同的性能特点和适用场景,我们需要根据具体的应用场景选择合适的页面置换算法。
在实验中,我还学习了内存分配和回收的方法。
操作系统通过内存分配算法为进程分配内存空间,而通过内存回收算法回收进程不再使用的内存空间。
内存分配算法的选择会影响到系统的性能和资源利用率,我们需要根据具体的应用场景选择合适的内存分配算法。
通过本次实验,我深入了解了存储管理的相关概念和技术。
存储管理是操作系统中非常重要的一部分,它直接影响到系统的性能和资源利用率。
合理地管理存储资源可以提高系统的运行效率和稳定性,从而提升用户的体验。
在今后的学习和工作中,我将进一步深化对存储管理的理解,不断提升自己的技术水平。
虚拟储存管理实验报告
一、实验目的1. 理解虚拟存储管理的基本概念和原理。
2. 掌握分页式虚拟存储管理的地址转换和缺页中断处理过程。
3. 学习并分析几种常见的页面置换算法,如FIFO、LRU、OPT等。
4. 比较不同页面置换算法的性能,提高对虚拟存储管理的认识。
二、实验环境1. 操作系统:Windows 102. 编程语言:Python3. 虚拟存储器模拟工具:虚拟机(VirtualBox)三、实验内容1. 模拟分页式虚拟存储器(1)定义分页式虚拟存储器的参数,如页大小、内存大小、虚拟地址空间大小等。
(2)创建页表,记录每个页在内存中的位置和是否已加载。
(3)模拟进程的指令序列,生成虚拟地址。
(4)根据虚拟地址进行地址转换,得到物理地址。
(5)处理缺页中断,选择合适的页面置换算法。
2. 页面置换算法模拟(1)实现FIFO(先进先出)页面置换算法。
(2)实现LRU(最近最少使用)页面置换算法。
(3)实现OPT(最优页面置换)算法。
3. 比较不同页面置换算法的性能(1)设置不同的页面置换算法,模拟进程运行。
(2)记录每次缺页中断时的页面命中率。
(3)比较不同页面置换算法的页面命中率,分析其性能。
四、实验结果与分析1. 分页式虚拟存储器模拟(1)通过模拟,成功实现了分页式虚拟存储器的地址转换和缺页中断处理过程。
(2)实验结果表明,分页式虚拟存储器能够有效地提高内存利用率,减少内存碎片。
2. 页面置换算法模拟(1)实现了FIFO、LRU和OPT三种页面置换算法。
(2)通过模拟,比较了三种算法在不同进程下的页面命中率。
3. 页面置换算法性能比较(1)FIFO算法的页面命中率较低,适用于进程较稳定的情况。
(2)LRU算法的页面命中率较高,适用于进程频繁访问同一页面的情况。
(3)OPT算法的页面命中率最高,但实现复杂度较高,适用于进程访问序列可预测的情况。
五、实验结论1. 通过本次实验,加深了对虚拟存储管理的基本概念和原理的理解。
虚存管理实验报告
一、实验目的1. 理解虚存管理的概念、原理及其在操作系统中的作用;2. 掌握虚存管理的几种常用页面置换算法;3. 熟悉虚拟存储器的工作过程,包括地址转换、页面调入/调出等;4. 通过实验加深对虚存管理技术的理解和应用。
二、实验环境1. 操作系统:Windows 102. 编程语言:Python3.83. 虚拟存储器管理模拟程序:自行编写三、实验内容1. 虚存管理概述1.1 虚存管理的概念:虚存管理是操作系统内存管理的一个重要组成部分,通过虚拟存储技术,使得应用程序可以使用比实际物理内存更大的存储空间。
1.2 虚存管理的原理:虚存管理通过将程序的逻辑地址空间划分为若干个页面,并将这些页面映射到物理内存的页面中,实现逻辑地址空间与物理内存的映射。
2. 页面置换算法2.1 先进先出(FIFO)算法:FIFO算法是最简单的页面置换算法,按照页面进入内存的顺序进行置换。
2.2 最近最久未使用(LRU)算法:LRU算法将最近最久未使用的页面置换出内存。
2.3 Clock算法:Clock算法是对LRU算法的改进,通过使用一个指针来指示下一个要被置换的页面。
3. 虚拟存储器工作过程3.1 地址转换:当应用程序访问逻辑地址时,CPU将产生一个虚拟地址,操作系统通过地址转换将虚拟地址转换为物理地址。
3.2 页面调入/调出:当访问的页面不在内存中时,操作系统需要将一个页面从内存中调出,并将需要访问的页面调入内存。
4. 实验步骤4.1 编写模拟程序:编写一个模拟虚拟存储器管理的程序,实现页面置换算法、地址转换等功能。
4.2 生成指令地址流:产生一个需要访问的指令地址流,包括顺序执行的指令、均匀分布在前地址部分的指令、均匀分布在后地址部分的指令。
4.3 运行模拟程序:运行模拟程序,观察页面置换过程、地址转换过程以及内存使用情况。
4.4 分析实验结果:分析实验结果,比较不同页面置换算法的性能,分析虚拟存储器在内存使用上的优势。
操作系统管理-虚拟存储器-实验报告-代码7页
操作系统管理-虚拟存储器-实验报告-代码7页一、实验目的学习操作系统中虚拟存储器的概念,掌握虚拟存储器的实现思路和方式。
二、实验要求在C语言环境下,实现基于分页机制的虚拟存储和页表管理。
三、实验内容1.实现一个虚拟存储器,其中分页大小为4KB,虚拟地址空间大小为4GB(每个进程可以使用的虚拟地址空间)。
物理内存大小为512MB,即实际内存中有128个物理页面。
2.实现页表管理,将虚拟地址映射到物理地址。
3.实现页面替换算法,当物理内存不足时,需要将某些页面从内存中置换出来。
4.实现程序的运行,能够根据页面缺失率输出性能参数。
四、实验步骤1.确定程序设计思路和数据结构。
2.实现虚拟存储器和页表管理。
3.实现页面替换算法。
五、实验代码及解析对于程序设计思路,首先需要确定虚拟存储器和物理内存的大小,以及页面大小。
虚拟存储器大小默认为4GB,物理内存大小为512MB,页面大小为4KB。
其次,需要设计页表数据结构。
页表可以使用一个二维数组表示,其中第一维表示页表项,第二维表示页内地址。
页表项有四个字段,分别为标志位(是否在内存中)、页框号(页面所在的物理页框号)、保护(页面的读写权限)、计数(页面使用情况的计数器)。
第三,需要设计页面替换算法。
本程序采用最近最少使用算法(LRU)作为页面替换算法,当物理内存不足时,选择使用最近最少使用的页面进行替换。
#define PAGE_SIZE 4096 // 页面大小#define VIRTUAL_MEM_SIZE 4 * 1024 * 1024 * 1024 // 虚拟存储器大小#define PHYSICAL_MEM_SIZE 512 * 1024 * 1024 // 物理内存大小#define PAGE_NUM (VIRTUAL_MEM_SIZE / PAGE_SIZE) // 页面总数#define PHYSICAL_PAGE_NUM (PHYSICAL_MEM_SIZE / PAGE_SIZE) // 物理页面数struct page_table_entry {int present; // 是否在内存中(1为在,0为不在)int page_frame; // 页面所在的物理页框号int protect; // 页面的读写权限int count; // 页面使用情况的计数器}struct page_table_entry page_table[PAGE_NUM][PAGE_SIZE]; // 页表虚拟存储器和页表管理需要掌握的是页表的相关数据结构,还有一个重要的点,就是如何将虚拟地址映射到物理地址。
虚拟存储器实验报告
虚拟存储器实验报告一、实验目的本次虚拟存储器实验的目的在于深入理解虚拟存储器的工作原理,掌握其基本概念和关键技术,通过实际操作和观察,分析虚拟存储器对系统性能的影响,并能够运用所学知识解决在实验过程中遇到的问题。
二、实验环境本次实验使用的操作系统为 Windows 10,开发工具为 Visual Studio 2019,编程语言为 C++。
实验所使用的计算机配置为:Intel Core i7 处理器,16GB 内存,512GB 固态硬盘。
三、实验原理虚拟存储器是一种利用硬盘等辅助存储器来扩充主存容量的技术。
它将程序的逻辑地址空间与物理地址空间分开,使得程序可以使用比实际物理内存更大的地址空间。
当程序访问的地址不在物理内存中时,系统会通过页面置换算法将暂时不用的页面换出到硬盘,将需要的页面换入到物理内存中。
虚拟存储器的实现主要依赖于页式存储管理和地址转换机制。
页式存储管理将逻辑地址空间划分为固定大小的页面,物理地址空间也划分为相同大小的页框。
地址转换通过页表来完成,页表记录了逻辑页面与物理页框的对应关系。
四、实验内容1、页面置换算法的实现首先实现了先进先出(FIFO)页面置换算法。
创建一个固定大小的物理内存页框数组,模拟物理内存。
当需要装入新页面时,如果物理内存已满,按照先进入的页面先被置换的原则选择置换页面。
接着实现了最近最少使用(LRU)页面置换算法。
为每个页面设置一个访问时间戳,当需要置换页面时,选择访问时间最久远的页面进行置换。
2、虚拟地址到物理地址的转换设计了一个简单的页表结构,包括逻辑页号、物理页框号和有效位等字段。
输入一个虚拟地址,通过查找页表将其转换为物理地址。
如果页面不在物理内存中,触发页面置换算法进行页面调入。
3、性能分析对不同大小的程序和不同的页面置换算法,测量其页面缺失率和执行时间。
分析页面大小、物理内存大小等因素对虚拟存储器性能的影响。
五、实验步骤1、初始化实验环境设定物理内存大小、页面大小等参数。
存储器管理实验报告
一、实验目的1. 理解存储器管理的概念和作用。
2. 掌握虚拟存储器的实现原理。
3. 熟悉存储器分配策略和页面置换算法。
4. 提高动手实践能力,加深对存储器管理知识的理解。
二、实验环境1. 操作系统:Linux2. 编程语言:C/C++3. 开发环境:GCC编译器三、实验内容1. 虚拟存储器实现原理(1)分页式存储管理:将内存划分为固定大小的页,进程的逻辑地址空间也划分为相应的页。
内存与外存之间通过页表进行映射,实现虚拟存储器。
(2)页表管理:包括页表建立、修改和删除等操作。
(3)页面置换算法:包括FIFO、LRU、LRU时钟等算法。
2. 存储器分配策略(1)固定分区分配:将内存划分为若干个固定大小的分区,每个分区只能分配给一个进程。
(2)可变分区分配:根据进程需求动态分配内存,分为首次适应、最佳适应和最坏适应等策略。
(3)分页存储管理:将内存划分为固定大小的页,进程的逻辑地址空间也划分为相应的页,通过页表进行映射。
3. 页面置换算法(1)FIFO算法:根据进程进入内存的顺序进行页面置换,最早进入内存的页面将被淘汰。
(2)LRU算法:淘汰最近最少使用的页面。
(3)LRU时钟算法:结合LRU算法和FIFO算法的优点,通过一个时钟指针实现页面置换。
四、实验步骤1. 编写程序实现虚拟存储器的基本功能,包括分页式存储管理、页表管理、页面置换算法等。
2. 编写测试程序,模拟进程在虚拟存储器中的运行过程,观察不同页面置换算法的效果。
3. 分析实验结果,比较不同页面置换算法的性能差异。
五、实验结果与分析1. 实验结果通过模拟实验,验证了虚拟存储器的基本功能,包括分页式存储管理、页表管理、页面置换算法等。
实验结果显示,不同页面置换算法对系统性能的影响较大。
2. 实验分析(1)FIFO算法:实现简单,但可能导致频繁的页面置换,影响系统性能。
(2)LRU算法:性能较好,但实现复杂,需要额外的硬件支持。
(3)LRU时钟算法:结合LRU算法和FIFO算法的优点,在性能和实现复杂度之间取得平衡。
佛山科学技术学院-操作系统-虚拟存储器-实验报告
实验三虚拟存储器3.1背景知识在Windows 2000环境下,4GB的虚拟地址空间被划分成两个部分:低端2GB提供给进程使用,高端2GB提供给系统使用。
这意味着用户的应用程序代码,包括DLL以及进程使用的各种数据等,都装在用户进程地址空间内 (低端2GB) 。
用户过程的虚拟地址空间也被分成三部分:1)虚拟内存的已调配区 (committed):具有备用的物理内存,根据该区域设定的访问权限,用户可以进行写、读或在其中执行程序等操作。
2)虚拟内存的保留区 (reserved):没有备用的物理内存,但有一定的访问权限。
3)虚拟内存的自由区 (free):不限定其用途,有相应的PAGE_NOACCESS权限。
与虚拟内存区相关的访问权限告知系统进程可在内存中进行何种类型的操作。
例如,用户不能在只有PAGE_READONLY权限的区域上进行写操作或执行程序;也不能在只有PAGE_EXECUTE权限的区域里进行读、写操作。
而具有PAGE_ NOACCESS权限的特殊区域,则意味着不允许进程对其地址进行任何操作。
在进程装入之前,整个虚拟内存的地址空间都被设置为只有PAGE_NOACCESS权限的自由区域。
当系统装入进程代码和数据后,才将内存地址的空间标记为已调配区或保留区,并将诸如EXECUTE、READWRITE和READONLY的权限与这些区域相关联。
如表3-2所示,给出了MEMORY_BASIC_INFORMAITON的结构,此数据描述了进程虚拟内存空间中的一组虚拟内存页面的当前状态,期中State项表明这些区域是否为自由区、已调配区或保留区;Protect项则包含了windows系统为这些区域添加了何种访问保护;type项则表明这些区域是课执行图像、内存映射文件还是简单的私有内存。
VirsualQueryEX() API能让用户在指定的进程中,对虚拟内存地址的大小和属性进行检测。
Windows还提供了一整套能使用户精确控制应用程序的虚拟地址空间的虚拟内存API。
操作系统实验六_虚拟存储器实验报告
操作系统实验六_虚拟存储器实验报告
实验目的:
通过本次实验,了解虚拟存储器的实现原理,以及如何分配虚拟地址和物理地址,实现虚拟存储器管理。
实验内容:
1.按照顺序完成程序代码,以实现对虚拟地址的映射,再间接实现对物理地址的访问。
2.完成不同的页面置换算法,并分析各自的特点。
实验步骤:
1.在实验中实现了给定的伪指令程序,其中包括了虚拟存储器的实现代码。
在页面大小为1K的情况下,每个进程的虚拟地址空间为64K,物理地址空间为16K。
2.在虚拟存储器的实现中,采用了分段式存储器管理模式,其中包括了段描述符表和页表。
其中段描述符表包括了段基址、段长、段类型等信息,而页表则记录了虚拟地址和物理地址的映射关系。
3.实现了三种页面置换算法:LRU、FIFO和随机算法。
其中,LRU算法会选择最近没有使用过的页面进行置换;FIFO算法会按照先进先出原则进行页面置换;随机算法则随机选取一个页面进行置换。
4.通过本次实验,学习了如何通过虚拟地址访问物理地址,并实现了对虚拟存储器的管理。
同时,在实现页面置换算法时,也对不同算法的特点进行了分析。
实验结果:。
操作系统实验(四)实验报告--虚拟内存
操作系统实验(四)实验报告--虚拟内存操作系统实验(四)虚拟内存1、实验题目页面置换算法模拟——OPT、FIFO和LRU算法2、实验目的了解虚拟存储技术的特点,掌握请求页式存储管理的页面置换算法,如最佳(Optimal)置换算法、先进先出(Fisrt In First Out)置换算法和最近最久未使用(Least Recently Used)置换算法3、实验内容1)OPT算法:需要发生页面置换时,算法总是选择在将来最不可能访问的页面进行置换。
2)FIFO算法:算法总是选择在队列中等待时间最长的页面进行置换。
3)LRU算法:如果某一个页面被访问了,它很可能还要被访问;相反,如果它长时间不被访问,那么,在最近未来是不大可能被访问的。
4、程序代码#include<iostream>#include <cstdlib>#include <time.h>#include <cstdio>#define L 30///页面走向长度最大为30using namespace std;int M=4; ///内存块struct P///定义一个结构体{int num,time;}p[30];int Input(int m,P p[L])///打印页面走向状态{m=30;int i,j;j=time(NULL);///取时钟时间srand(j);///以时钟时间x为种子,初始化随机数发生器cout<<"页面走向: ";for(i=0; i<m; i++){p[i].num=rand( )%10;///产生1到10之间的随即数放到数组p中p[i].time=0;cout<<p[i].num<<" ";}cout<<endl;return m;}void print(P *page1)///打印当前的页面{P *page=new P[M];page=page1;for(int i=0; i<M; i++)cout<<page[i].num<<" ";cout<<endl;}int Search(int e,P *page1 )///寻找内存块中与e相同的块号{P *page=new P[M];page=page1;for(int i=0; i<M; i++)if(e==page[i].num)return i; ///返回i值return -1;}int Max(P *page1)///寻找最近最长未使用的页面用于OPT算法{P *page=new P[M];page=page1;int e=page[0].time,i=0;while(i<M) ///找出离现在时间最长的页面{if(e<page[i].time) e=page[i].time;i++;}for( i=0; i<M; i++)if(e==page[i].time)return i; ///找到离现在时间最长的页面返回其块号return -1;}int Count(P *page1,int i,int t,P p[L])///记录当前内存块中页面离下次使用间隔长度用于OPT算法{P *page=new P[M];page=page1;int count=0;for(int j=i; j<L; j++){if(page[t].num==p[j].num )break;///当前页面再次被访问时循环结束else count++;///否则count+1}return count;///返回count的值}int main(){int c=1;int m=0,t=0;float n=0;///缺页次数m=Input(m,p);///调用input函数,返回m值M=4;P *page=new P[M];///dowhile(c==1||c==2||c==3){int i=0;for(i=0; i<M; i++) ///初试化页面基本情况{page[i].num=0;page[i].time=m-1-i;}cout<<"1:FIFO页面置换"<<endl;cout<<"2:LRU页面置换"<<endl;cout<<"3:OPT页面置换"<<endl;cout<<"按其它键结束程序;"<<endl;cin>>c;if(c==1)///FIFO页面置换///FIFO();{n=0;cout<<" FIFO算法页面置换情况如下: "<<endl;cout<<endl;while(i<m){if(Search(p[i].num,page)>=0) ///当前页面在内存中{cout<<p[i].num<<" "; ///输出当前页p[i].numcout<<" "<<endl;i++; ///i加1}else ///当前页不在内存中{if(t==M)t=0;else{n++; ///缺页次数加1page[t].num=p[i].num; ///把当前页面放入内存中cout<<p[i].num<<" ";print(page); ///打印当前页面t++; //下一个内存块i++; ///指向下一个页面}}}cout<<"缺页次数:"<<n<<" 缺页率:"<<n<<"/"<<m<<" ="<<n/m<<endl;}if(c==2)///LRU页面置换,最近最久未使用{n=0;cout<<" LRU算法页面置换情况如下: "<<endl;cout<<endl;while(i<m){int a;t=Search(p[i].num,page);if(t>=0)///如果已在内存块中{page[t].time=0;///把与它相同的内存块的时间置0for(a=0; a<M; a++)if(a!=t)page[a].time++;///其它的时间加1cout<<p[i].num<<" ";cout<<"不缺页"<<endl;}else ///如果不在内存块中{n++; ///缺页次数加1t=Max(page); ///返回最近最久未使用的块号赋值给tpage[t].num=p[i].num; ///进行替换page[t].time=0; ///替换后时间置为0cout<<p[i].num<<" ";print(page);for(a=0; a<M; a++)if(a!=t)page[a].time++; ///其它的时间加1}i++;}cout<<"缺页次数:"<<n<<" 缺页率:"<<n<<"/"<<m<<" = "<<n/m<<endl;}if(c==3)///OPT页面置换{n=0;cout<<" OPT算法置换情况如下:"<<endl;cout<<endl;while(i<m){if(Search(p[i].num,page)>=0)///如果已在内存块中{cout<<p[i].num<<" ";cout<<" "<<endl;i++;}else///如果不在内存块中{int a=0;for(t=0; t<M; t++)if(page[t].num==0)a++;///记录空的内存块数if(a!=0) ///有空内存块{int q=M;for(t=0; t<M; t++)if(page[t].num==0&&q>t)q=t;///把空内存块中块号最小的找出来page[q].num=p[i].num;///把缺页换过来n++; ///缺页次数加一cout<<p[i].num<<" ";print(page);i++;}else{int temp=0,s;for(t=0; t<M; t++) ///寻找内存块中下次使用离现在最久的页面if(temp<Count(page,i,t,p)){temp=Count(page,i,t,p);s=t;}///把找到的块号赋给spage[s].num=p[i].num;n++;cout<<p[i].num<<" ";print(page);i++;}}}cout<<"缺页次数:"<<n<<" 缺页率:"<<n<<"/"<<m<<" = "<<n/m<<endl;}}///while(c==1||c==2||c==3);return 0;}5、心得体会通过该实验,是我对虚拟内存更加了解,对最佳置换算法、先进先出算法、最近最久算法更加了解。
存储管理实验报告
一、实验目的1. 理解操作系统存储管理的概念和作用。
2. 掌握存储管理的基本算法和策略。
3. 通过实验,加深对存储管理原理的理解,提高实际操作能力。
二、实验环境1. 操作系统:Windows 102. 软件环境:虚拟机软件VMware Workstation 153. 实验平台:Linux系统三、实验内容1. 存储管理概述2. 页式存储管理3. 段式存储管理4. 分段分页存储管理5. 存储管理算法四、实验步骤1. 页式存储管理实验(1)设置虚拟内存:在Linux系统中,使用`cat /proc/meminfo`命令查看内存信息,然后使用`vmstat`命令查看虚拟内存的使用情况。
(2)编写实验程序:使用C语言编写一个简单的程序,模拟页式存储管理过程。
(3)运行实验程序:编译并运行实验程序,观察程序运行过程中页面的分配、置换和回收过程。
2. 段式存储管理实验(1)设置虚拟内存:同页式存储管理实验。
(2)编写实验程序:使用C语言编写一个简单的程序,模拟段式存储管理过程。
(3)运行实验程序:编译并运行实验程序,观察程序运行过程中段页的分配、置换和回收过程。
3. 分段分页存储管理实验(1)设置虚拟内存:同页式存储管理实验。
(2)编写实验程序:使用C语言编写一个简单的程序,模拟分段分页存储管理过程。
(3)运行实验程序:编译并运行实验程序,观察程序运行过程中段页的分配、置换和回收过程。
4. 存储管理算法实验(1)编写实验程序:使用C语言编写一个简单的程序,模拟不同的存储管理算法(如FIFO、LRU、LFU等)。
(2)运行实验程序:编译并运行实验程序,观察不同算法在页面分配、置换和回收过程中的表现。
五、实验结果与分析1. 页式存储管理实验实验结果表明,页式存储管理可以将大程序离散地存储在内存中,提高内存利用率。
但页式存储管理也存在页面碎片问题,导致内存碎片化。
2. 段式存储管理实验实验结果表明,段式存储管理可以将程序按照逻辑结构划分为多个段,提高了内存的利用率。
黄天实验五虚拟存储器管理实验报告
实验五虚拟存储器管理学号 1415251011 姓名黄天班级 14集成1班华侨大学电子工程系设计目的1、理解虚拟存储器概念。
2、掌握分页式存储管理地址转换和缺页中断。
设计内容与基本要求1、模拟分页式存储管理中硬件的地址转换和产生缺页中断。
2、用先进先出页面调度算法处理缺页中断。
设计报告内容1、分页式存储管理和先进先出页面调度算法原理。
1).分页式存储管理原理在存储器管理中,连续分配方式会形成许多“碎片”,虽然可通过“紧凑”方法将许多碎片拼接成可用的大块空间,但须为之付出很大开销。
如果允许将一个进程直接分散地装入到许多不相邻的分区中,则无须再进行“紧凑”。
基于这一思想而产生了离散分配方式。
如果离散分配的基本单位是页,则称为分页存储管理方式。
在分页存储管理方式中,如果不具备页面对换功能,则称为基本分页存储管理方式,或称为纯分页存储管理方式,它不具有支持实现虚拟存储器的功能,它要求把每个作业全部装入内存后方能运行。
请求式分页系统是建立在基本分页基础上的,为了能支持虚拟存储器功能,而增加了请求调页功能和页面置换功能。
2).先进先出页面调度算法原理优先淘汰最早进入内存的页面,亦即在内存中驻留时间最久的页面。
该算法实现简单,只需把调入内存的页面根据先后次序链接成队列,设置一个指针总指向最早的页面。
但该算法与进程实际运行时的规律不适应,因为在进程中,有的页面经常被访问。
2、程序流程图LAB5_HT_14152510113、程序及注释。
#include<cstdio>#include<cstring>#define SizeOfPage 100 //定义页面#define SizeOfBlock 128#define M 4struct info//页表信息结构体{bool flag; //页标志,1表示该页已在主存,0表示该页不在主存long block;//块号4、运行结果以及结论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Command command[6];
void creatCommand()
{
command[0].OperateOne="+";
command[0].PageOne=0;
command[0].UnitOne=70;
command[0].OperateTwo="移位";
command[0].PageTwo=4;
job[4].numPage=4;
job[4].flagPage=false;
job[4].numMemory=0;
job[4].flagChang=false;
job[4].hardPosition=022;
job[5].numPage=5;
job[5].flagPage=false;
job[5].numMemory=0;
cout<<"in "<<command[i].PageOne<<"\n";//调入
job[command[i].PageOne].flagPage=true;//装入标志置为true
job[p[k]].flagPage=false;
job[command[i].PageOne].numMemory=job[p[k]].numMemory;//将要覆盖的页面的内存块号赋值给要装入的内存块号
{
if(command[i].OperateOne=="存"||command[i].OperateOne=="移位")//如果是“存”,则“修改标志位”为true
job[command[i].PageOne].flagChang=true;
cout<<"页号"<<command[i].PageOne<<"的绝对地址为:"<<job[command[i].PageOne].numMemory*128+command[i].UnitOne<<"\n";
command[0].UnitTwo=53;
command[1].OperateOne="+";
command[1].PageOne=1;
erateTwo="+";
command[1].PageTwo=5;
command[1].UnitTwo=23;
k=(k+1)%4;
goto Loop2;
}
}
for(int a=0;a<4;a++)
cout<<p[a]<<" ";
cout<<"\n";
return 0;
}
四、实验总结
请求页式管理的基本原理是将逻辑地址空间分成大小相同的页,将存储地址空间分块,页和块的大小相等,通过页表进行管理。页式系统的逻辑地址分为页号和页内位移量。页表包括页号和块号数据项,它们一一对应。根据逻辑空间的页号,查找页表对应项找到对应的块号,块号乘以块长,加上位移量就行成存储空间的物理地址。每个作业的逻辑地址空间是连续的,重定位到内存空间后就不一定连续了。
job[2].numMemory=9;
job[2].flagChang=false;
job[2].hardPosition=013;
job[3].numPage=3;
job[3].flagPage=true;
job[3].numMemory=1;
job[3].flagChang=false;
job[3].hardPosition=021;
p[k]=command[i].PageOne;
k=(k+1)%4;
goto Loop1;
}
Loop2:
if(job[command[i].PageTwo].flagPage==true)
{
if(command[i].OperateTwo=="存"||command[i].OperateTwo=="移位")
};
Page job[7];
int p[4]={0,1,2,3};//已装入内存的页面
int k=0;//指向当前需置换的页面
void creatJob()//创建Job
{
job[0].numPage=0;
job[0].flagPage=true;
job[0].numMemory=5;
job[0].flagChang=false;
job[command[i].PageTwo].flagChang=true;
cout<<"页号"<<command[i].PageTwo<<"的绝对地址为:"<<job[command[i].PageTwo].numMemory*128+command[i].UnitTwo<<"\n";
}
else
}
else
{
if(job[p[k]].flagChang==true)//如果修改过则先调出
cout<<"out "<<p[k]<<"\n";
//装入页面:1.打印要装入的页号2.修改要装入页面的装入标志位3.将调出页面的装入标志位置为false4.将当前页面的内存块号赋值给要装入的内存块号5.修改数组p[]6.修改指针k
job[5].flagChang=false;
job[5].hardPosition=023;
job[6].numPage=6;
job[6].flagPage=false;
job[6].numMemory=0;
job[6].flagChang=false;
job[6].hardPosition=121;
job[p[k]].flagPage=false;
job[command[i].PageTwo].numMemory=job[p[k]].numMemory;//将要覆盖的页面的内存块号赋值给要装入的内存块号
job[command[i].PageTwo].flagPage=true;
p[k]=command[i].PageTwo;//调入
(1)理解内存页面调度的机理。
(2)掌握几种页面置换算法的实现方法。
(3)通过实验比较各种调度算法的优劣。
二、实验内容
模拟实现下列几种页面置换算法,对比它们的命中率:
(1)先进先出算法FIFO (FirstInFirstOut)
(2)最近最少使用算法LRU (LeastRecentlyUsed)
三、程序设计和说明
job[0].hardPosition=011;
job[1].numPage=1;
job[1].flagPage=true;
job[1].numMemory=8;
job[1].flagChang=false;
job[1].hardPosition=012;
job[2].numPage=2;
job[2].flagPage=true;
command[2].OperateOne="*";
command[2].PageOne=2;
command[2].UnitOne=15;
command[2].OperateTwo="存";
command[2].PageTwo=1;
command[2].UnitTwo=73;
command[3].OperateOne="存";
五邑大学计算机学院
《操作系统》课程实验报告
实验名称:虚拟存储管理
*****
学号:**********
专业:信息安全
五邑大学计算机学院
一、实验目的
页面置换算法是虚拟存储管理实现的关键,通过本次实验理解内存页面调度的机制,在模拟实现FIFO、LRU等页面置换算法的基础上,比较它们的效率及优缺点,从而了解虚拟存储实现的过程,要求做到:
command[5].OperateTwo="存";
command[5].PageTwo=6;
command[5].UnitTwo=84;
}
int main()
{
creatJob();
creatCommand();
for(int i=0;i<6;i++)
{
Loop1:
if(job[command[i].PageOne].flagPage==true)//如果该页存在则输出,若不存在则按照FIFO算法调入
command[3].PageOne=3;
command[3].UnitOne=21;
command[3].OperateTwo="取";
command[3].PageTwo=2;
command[3].UnitTwo=78;
command[4].OperateOne="取";
command[4].PageOne=0;
}
struct Command//指令结构(简化版)
{
string OperateOne;//第一个操作
int PageOne;//第一个操作数
int UnitOne;//第一个操作数的单元号
string OperateTwo;//第二个操作
int PageTwo;//第二个操作数