自动控制原理第三章课后习题答案解析(最新)
自动控制原理第三章习题解答

tp =
1−ξ 2
= e −π 0.6 /
1−0.62
= e −π 0.6 /
1−0.62
= 9 .5 %
π
1 − ξ ωn
2
=
π
1.6
= 1.96( s )
ts =
3-5
3.5
ξω n
=
3.5 = 2.92( s ) 1.2
设单位反馈系统的开环传递函数为
G ( s) =
0.4 s + 1 s ( s + 0.6)
s5 s4 s3 s2 s1 s0
1 12 35 3 20 25 16 80 3 3 5 25 10 25
有一对虚根,系统不稳定 3-13 已知单位反馈系统的开环传递函数
G ( s) =
K (0.5s + 1) s ( s + 1)(0.5s 2 + s + 1)
试确定系统稳定时的 K 值范围。 解:系统特征方程为
ε 0 ,试问 k1 应满足什么条件?
见习题 3-20 解答 3-2 设系统的微分方程式如下: (1)
&(t ) = 2r (t ) 0.2c
&&(t ) + 0.24c &(t ) + c(t ) = r (t ) (2) 0.04c
试求系统的单位脉冲响应 k(t)和单位阶跃响应 h(t)。已知全部初始条件为零。 解: (1) 因为 0.2 sC ( s ) = 2 R ( s ) 单位脉冲响应: C ( s ) = 10 / s 单位阶跃响应 h(t)
试求系统的超调量σ%、峰值时间tp 和调节时间ts。 解: h(t ) = 1 −
自动控制原理第三章答案

h(t) 1
1 2
4 e 3
t
1 e 3
4t
T 1,T 0.25 ts 3T 3s(T 4T )
1 1 2
ts 3T 1 , (T 1 4T2 )
6
不是舍去T2 , 是相应项衰减快
3-7 某单位反馈系统阶跃响应如题3-7所示, 试确定其开环传递函数
解:由可知图,系统具有二阶欠阻尼系统 特征,且
p
0.1 1 0.1 1
2
n
n
代入:(s) s 2 s
2
n
2
2
n
n
38.9 问题 1、没有完成 1514 2、求开环传递函数 s 45.9s 1514
2 n
2
开环传递函数
n 2 1514 G( s ) H ( s ) 2 2 s 2 n s s 45.9s
习题 3-1 某温度计插入温度恒定的热水后,其显示温度随时间 1 t T 变化的规律为
h(t ) 1 e
实验测得当t=60s时温度计读数达到实际水温的95%, 试确定 该温度计的传递函数
解: 温度计插入温度恒定的热水后,温度计显示温度为阶跃响应过程。
方法1:参考(3-5),响应为典型一阶系统单位阶跃响应。
3-8 给定位置控制系统结构图如题3-8 图所示,试确定参数K1,K2值,使系 统阶跃响应的峰值时间tp=0.5s,超调 量σ%=2%。 解:据题意
K K s(s 1) (s) K (K s 1) s (1 K K ) s K s 2 s 1 s(s 1)
2 2
dy(t ) 1 2 L[ ] 1 dt s 1 s 2 s 4s 2 s 3s 2
自动控制原理第三章课后习题答案(最新)汇总

3-1设系统的微分方程式如下:(1)0.2c(t) 2r(t)单位脉冲响应:C(s) 10/s g(t) 103t3 3tc(t) 1 e cos4t e si n4t413-2 温度计的传递函数为 —,用其测量容器内的水温,1min 才能显示出该温度的Ts 198%的数值。
若加热容器使水温按 10(C/min 的速度匀速上升,问温度计的稳态指示误差有多大?解法一 依题意,温度计闭环传递函数由一阶系统阶跃响应特性可知: c(4T) 98 o o ,因此有 4T 1 min ,得出T 0.25 min 。
视温度计为单位反馈系统,则开环传递函数为(s)1K 1TG(s)—1(s) Tsv 1用静态误差系数法,当r(t) 10t 时,e ss10 10T 2.5 C oK(2) 0.04c(t)0.24c(t) c(t)r(t)试求系统闭环传递函数① 部初始条件为零。
解:(s),以及系统的单位脉冲响应 g(t)和单位阶跃响应 c(t)。
已知全(1)因为 0.2sC(s)2R(s) 闭环传递函数(s)C(s) 10R(s) s单位阶跃响应c(t) C(s) 10/s 2c(t) 10t t 0(2) (0.04s 20.24s 1)C(s) R(s)C (s )闭环传递函数(s)C(s) R(s)120.04s0.24s 1单位脉冲响应:C(s)120.04s 2 0.24s 1g(t)25 e 33tsi n4t单位阶跃响应h(t) C(s)25 s[(s 3)216]1 s 6 s (s 3)216(s)1 Ts 1解法二依题意,系统误差疋义为e(t) r(t) c(t),应有e(s)E(s)1 C(s)R(s)11 TsR(s) Ts 1 Ts 13-3 已知二阶系统的单位阶跃响应为c(t) 10 12.5e 1.2t sin(1.6t 53.1o)试求系统的超调量c%、峰值时间t p和调节时间t'si n( 1n t )t p Jl- 1.96(s■1 2n1.63.5 3.5t s 2.92(s)n 1.2或:先根据c(t)求出系统传函,再得到特征参数,带入公式求解指标。
自动控制原理第3章习题解答

(2) k (t ) = 5t + 10 sin( 4t + 45 )
0
(3) k (t ) = 0.1(1 − e 解: (1) Φ ( s ) =
−t / 3
)
0.0125 s + 1.25
1
胡寿松自动控制原理习题解答第三章
(2) k (t ) = 5t + 10 sin 4t cos 45 + 10 cos 4t sin 45
3s 4 + 10s 3 + 5s 2 + s + 2 = 0
试用劳思稳定判据和赫尔维茨判据确定系统的稳定性。 解: 列劳思表如下:
s4 s3 s2 s1 s0
3 5 2 10 1 47 2 10 1530 0 − 47 2
由劳思表可以得到该系统不稳定。 3-12 已知系统特征方程如下,试求系统在 s 右半平面的根数及虚根值。 (1)
2ξω n = 70
ξ=
7 2 6
根据(3-17)
h(t ) = 1 +
e − t / T1 e − t / T12 + T2 / T1 − 1 T1 / T2 − 1
解:根据公式(3-17)
3
胡寿松自动控制原理习题解答第三章
自动控制原理第3章 习题及解析

自动控制原理(上)习 题3-1 设系统的结构如图3-51所示,试分析参数b 对单位阶跃响应过渡过程的影响。
考察一阶系统未知参数对系统动态响应的影响。
解 由系统的方框图可得系统闭环响应传递函数为/(1)()()111K Ts Ks Kbs T Kb s Ts +Φ==++++ 根据输入信号写出输出函数表达式:111()()()()()11/()K Y s s R s K s T Kb s s s T bK =Φ⋅=⋅=-++++对上式进行拉式反变换有1()(1)t T bKy t K e-+=-当0b >时,系统响应速度变慢;当/0T K b -<<时,系统响应速度变快。
3-2 设用11Ts +描述温度计特性。
现用温度计测量盛在容器内的水温,发现1min 可指示96%的实际水温值。
如果容器水温以0.1/min C ︒的速度呈线性变化,试计算温度计的稳态指示误差。
考察一阶系统的稳态性能分析(I 型系统的,斜坡响应稳态误差)解 由开环传递函数推导出闭环传递函数,进一步得到时间响应函数为:()1t T r y t T e -⎛⎫=- ⎪⎝⎭其中r T 为假设的实际水温,由题意得到:600.961Te-=-推出18.64T =,此时求输入为()0.1r t t =⋅时的稳态误差。
由一阶系统时间响应分析可知,单位斜坡响应的稳态误差为T ,所以稳态指示误差为:lim ()0.1 1.864t e t T →∞==3-3 已知一阶系统的传递函数()10/(0.21)G s s =+今欲采用图3-52所示负反馈的办法将过渡过程时间s t 减小为原来的1/10,并保证总的放大倍数不变,试选择H K 和0K 的值。
解 一阶系统的调节时间s t 与时间常数成正比,则根据要求可知总的传递函数为10()(0.2/101)s s Φ=+由图可知系统的闭环传递函数为000(10()()1()0.211010110()0.21110H HHHK G s K Y s R s K G s s K K K s s K ==++++==Φ++)比较系数有101011011010HHK K K ⎧=⎪+⎨⎪+=⎩ 解得00.9,10H K K ==3-4 已知二阶系统的单位阶跃响应为1.5()1012sin(1.6+53.1t y t e t -=-)试求系统的超调量%σ,峰值时间p t ,上升时间r t 和调节时间s t 。
自动控制原理第三章习题参考答案

Y (s) 1 1 600 ( s) 12 ( ) 2 R( s ) s 10 s 60 s 70 s 600
n 600 24.5
70 70 1.43 2 n 2 24 .5
3-7 简化的飞行控制系统结构图如下,试选择参数K1和Kt, 使系统的ωn=6,ξ=1
S2+5=0
S3 16/3 S2 5
S1 10 S0 25
s1, 2 5 j
有1对纯虚根,系统临界稳定。
3-13单位反馈系统的开环传递函数为:
K (0.5s 1) G( s) 2 s( s 1)(0.5s s 1)
确定使系统稳定的K值范围。 解:闭环传递函数为:
K (0.5s 1) ( s) 0.5s 4 1.5s 3 2 s 2 (1 0.5 K ) s K K ( s 2) 4 s 3s 3 4 s 2 ( 2 K ) s 2 K
K 速度误差系数: P lim sG ( s ) 10
s 0
速度误差:
1 e ss 0.1 Kp
3-11 已知系统的特征方程为:
3s 4 10 s 3 5s 2 s 2 0
用劳斯判据确定系统的稳定性 解:列劳斯列表 S4 3 5 2
S3 10
S2 4.7 S1 -3.26
1
2
S0 2 第1列符号变化两次, 说明有两个正根,系统不稳定。
3-12 已知Βιβλιοθήκη 统的特征方程如下,试求系统在S右半平面的根 数及虚根值。
(1) s 3s 12 s 24 s 32 s 48 0
5 4 3 2
S5 1 S4 3 S3 4 S2 12
自动控制原理课后答案

3-3 判断使系统稳定的K的范围:放大系数可否为复数 ? 3-11(2) 过阻尼系统,求ts(用欠阻尼公式?) 3-11(1) 主导极点分析(偶极子,模比(wn)>5)
计算ts的时候,需指明Δ是5%还是2%
3-14 计算稳态误差 3-17 计算复合控制
自动控制原理习题分析第三章3-1(1)
自动控制原理习题分析第三章3-17
自动控制原理习题分析第三章3-17
自动控制原理习题分析第三章3-17
自动控制原理习题分析第三章3-17
自动控制原理习题分析第三章3-1(1)
自动控制原理习题分析第三章3-1(4)
自动控制原理习题分析第三章3-2(3)
自动控制原理习题分析第三章3-2(3)
自动控制原理习题分析第三章3-2(4)
自动控制原理习题分析第三章3-2(4)
自动控制原理习题分析第三章3-3(2)
自动控制原理习题分析第三章3-3(2)
自动控制原理习题分析第三章3-6
自动控制原理习题分析第三章3-6
自动控制原理习题分析第三章3-8
自动控制原理习题分析第三章3-8
自动控制原理习题分析第三章3-9
自动控制原理习题分析第三章3-9
自动控制原理习题分析第三章3-11(1)
自动控制原理习题分析第三章3-11(1)
自动控制原理习题分析第三章3-11(1)
自动控制原理习题分析第三章3-11(1)
自动控制原理习题分析第三章3-11(2)
自动控制原理习题分析第三章3-14
自动控制原理习题分析第三章3-14
自动控制原理习题分析第三章3-14
自动控制原理习题分析第三章3-14
自动控制原理习题分析第三章3-17
自动控制理论第三章习题答案

解:系统开环传递函数
图 3-42
飞行控制系统
25K1
G0 (s)
=
1+
s(s + 0.8)
25K1 s(s + 0.8)
Kt
s
=
s(s
+
25K1 0.8) + 25K1Kt s
=
25K1
=
ω
2 n
s(s + 0.8 + 25K1Kt ) s(s + 2ξωn )
ω
2 n
=
36
=
25K1
K1
=
36 25
1
s(s + 1) + 10τ 2s
= 10(1 + τ1s) = 10 =
ω
2 n
s(s + 1) + 10τ 2s s(s + 2) s(s + 2ξωn )
s(s + 1)
ω
2 n
= 10
ωn = 10
2ξωn = 2
ξ= 1 10
σ % = e−ξπ / 1−ξ 2 = 35.1%
5
胡寿松自动控制原理习题解答第三章
单位脉冲响应: C(s) = 10 / s k(t) = 10 t ≥ 0
单位阶跃响应 h(t) C(s) = 10 / s2 h(t) = 10t t ≥ 0
(2) (0.04s2 + 0.24s + 1)C(s) = R(s)
单位脉冲响应: C(s)
=
0.04 s 2
1 + 0.24s
+1
C (s)
(1) s5 + 3s 4 + 12s3 + 24s 2 + 32s + 48 = 0 (2) s 6 + 4s5 − 4s 4 + 4s3 - 7s 2 - 8s + 10 = 0
自动控制原理第三章课后习题 答案(最新)要点

3-1(1) )(2)(2.0t r t c= (2) )()()(24.0)(04.0t r t c t c t c=++ 试求系统闭环传递函数Φ(s),以及系统的单位脉冲响应g(t)和单位阶跃响应c(t)。
已知全部初始条件为零。
解:(1) 因为)(2)(2.0s R s sC =闭环传递函数ss R s C s 10)()()(==Φ 单位脉冲响应:s s C /10)(= 010)(≥=t t g单位阶跃响应c(t) 2/10)(s s C = 010)(≥=t t t c(2))()()124.004.0(2s R s C s s =++ 124.004.0)()(2++=s s s R s C 闭环传递函数124.004.01)()()(2++==s s s R s C s φ 单位脉冲响应:124.004.01)(2++=s s s C t e t g t 4s i n 325)(3-= 单位阶跃响应h(t) 16)3(61]16)3[(25)(22+++-=++=s s s s s s Ct e t e t c t t 4sin 434cos 1)(33----=3-2 温度计的传递函数为11+Ts ,用其测量容器内的水温,1min 才能显示出该温度的98%的数值。
若加热容器使水温按10ºC/min 的速度匀速上升,问温度计的稳态指示误差有多大?解法一 依题意,温度计闭环传递函数11)(+=ΦTs s 由一阶系统阶跃响应特性可知:o o T c 98)4(=,因此有 min 14=T ,得出 min 25.0=T 。
视温度计为单位反馈系统,则开环传递函数为Tss s s G 1)(1)()(=Φ-Φ=⎩⎨⎧==11v TK 用静态误差系数法,当t t r ⋅=10)( 时,C T Ke ss ︒===5.21010。
解法二 依题意,系统误差定义为 )()()(t c t r t e -=,应有 1111)()(1)()()(+=+-=-==ΦTs TsTs s R s C s R s E s e C T s Ts Ts ss R s s e s e s ss ︒==⋅+=Φ=→→5.210101lim )()(lim 23-3 已知二阶系统的单位阶跃响应为)1.536.1sin(5.1210)(2.1o tt et c +-=-试求系统的超调量σ%、峰值时间tp 和调节时间ts 。
自动控制原理第三章课后习题 答案(最新)

3-1 设系统的微分方程式如下:(1) )(2)(2.0t r t c =&(2) )()()(24.0)(04.0t r t c t c t c =++&&&试求系统闭环传递函数Φ(s),以及系统的单位脉冲响应g(t)和单位阶跃响应c(t)。
已知全部初始条件为零。
解:(1) 因为)(2)(2.0s R s sC = 闭环传递函数ss R s C s 10)()()(==Φ 单位脉冲响应:s s C /10)(= 010)(≥=t t g单位阶跃响应c(t) 2/10)(s s C = 010)(≥=t t t c(2))()()124.004.0(2s R s C s s =++ 124.004.0)()(2++=s s s R s C 闭环传递函数124.004.01)()()(2++==s s s R s C s φ 单位脉冲响应:124.004.01)(2++=s s s C t e t g t 4sin 325)(3-= 单位阶跃响应h(t) 16)3(61]16)3[(25)(22+++-=++=s s s s s s Ct e t e t c t t 4sin 434cos 1)(33----=3-2 温度计的传递函数为11+Ts ,用其测量容器内的水温,1min 才能显示出该温度的98%的数值。
若加热容器使水温按10ºC/min 的速度匀速上升,问温度计的稳态指示误差有多大?解法一 依题意,温度计闭环传递函数11)(+=ΦTs s 由一阶系统阶跃响应特性可知:o o T c 98)4(=,因此有 min 14=T ,得出 min 25.0=T 。
视温度计为单位反馈系统,则开环传递函数为Tss s s G 1)(1)()(=Φ-Φ=⎩⎨⎧==11v TK 用静态误差系数法,当t t r ⋅=10)( 时,C T Ke ss ︒===5.21010。
自动控制原理课后答案第3章

第3章 控制系统的时域分析【基本要求】1. 掌握时域响应的基本概念,正确理解系统时域响应的五种主要性能指标;2. 掌握一阶系统的数学模型和典型时域响应的特点,并能熟练计算其性能指标和结构参数;3. 掌握二阶系统的数学模型和典型时域响应的特点,并能熟练计算其欠阻尼情况下的性能指标和结构参数;4. 掌握稳定性的定义以及线性定常系统稳定的充要条件,熟练应用劳斯判据判定系统稳定性;5. 正确理解稳态误差的定义,并掌握系统稳态误差、扰动稳态误差的计算方法。
微分方程和传递函数是控制系统的常用数学模型,在确定了控制系统的数学模型后,就可以对已知的控制系统进行性能分析,从而得出改进系统性能的方法。
对于线性定常系统,常用的分析方法有时域分析法、根轨迹分析法和频域分析法。
本章研究时域分析方法,包括简单系统的动态性能和稳态性能分析、稳定性分析、稳态误差分析以及高阶系统运动特性的近似分析等。
根轨迹分析法和频域分析法将分别在本书的第四章和第五章进行学习。
这里先引入时域分析法的基本概念。
所谓控制系统时域分析方法,就是给控制系统施加一个特定的输入信号,通过分析控制系统的输出响应对系统的性能进行分析。
由于系统的输出变量一般是时间t 的函数,故称这种响应为时域响应,这种分析方法被称为时域分析法。
当然,不同的方法有不同的特点和适用范围,但比较而言,时域分析法是一种直接在时间域中对系统进行分析的方法,具有直观、准确的优点,并且可以提供系统时间响应的全部信息。
3.1 系统的时域响应及其性能指标为了对控制系统的性能进行评价,需要首先研究系统在典型输入信号作用下的时域响应过程及其性能指标。
下面先介绍常用的典型输入信号。
3.1.1 典型输入信号由于系统的动态响应既取决于系统本身的结构和参数,又与其输入信号的形式和大小有关,而控制系统的实际输入信号往往是未知的。
为了便于对系统进行分析和设计,同时也为了便于对各种控制系统的性能进行评价和比较,需要假定一些基本的输入函数形式,称之为典型输入信号。
自动控制原理第三章习题参考答案

入分别为r(t)=2t和r(t)=2+2t+t2时,系统的稳态误差。
(1)G(s)
100
(0.1s 1)(s 5)
特征方程:1+G(s)=0 0.1s2+1.5s+105=0
解:
Kv
lim sG(s) 0 s0
S2 0.1 105
r(t) 2t ess
2 Kv
r(t) 2 2t t 2
-
-
10
C(s)
s(s 1)
2s
(1)取τ1=0, τ2=0.1,计算测速反馈系统的超调量、调 节时间和速度误差。
(2)取τ1=0.1, τ2=0,计算比例微分校正系统的超调量、
调节时间和速度误差。
解(1)开环传递函数
G(s)
s2
10
(1 10 2 )s
10 s2 2s
n 10 3.162 2 1 0.316
S1 1.5 S0 105
系统稳定
Kp
lim G(s)
s0
20
Kv 0
ess
2 1 Kp
2 Kv
2 Ka
Ka
lim
s0
s 2G(s)
0
3-15已知单位反馈系统的开环传递函数如各题所示,求输 入分别为r(t)=2t和r(t)=2+2t+t2时,系统的稳态误差。
(3)G(s) 10(2s 1)
3-6 已知控制系统的阶跃响应为:
h(t) 1 0.2e60t 1.2e10t
试确定系统的阻尼比ξ和自然频率ωn 解:对h(t)求导,得系统的单位脉冲响应为:
y(t) h’(t) 12e60t 12e10t 12(e10t - e ) 60t
自动控制原理(邹伯敏)第三章标准答案

自动控制理论第三章作业答案题3-4解:系统的闭环传递函数为2()()1()1()1C s G s R s G s s s ==+++ 由二阶系统的标准形式可以得到11, 2n ωζ==因此,上升时间 2.418r dd t s ππβωω--===峰值时间 3.6276p d t s πω=== 调整时间:35% 642% 8s n s n t s t s ωζωζ∆=≈=∆=≈=超调量:100%16.3%p M e =⨯=题3-5解:22()10()(51)10102510.60.5589n n n C s R s s a s a a ωωζωζ=+++⎧=⎧=⎪⎪⇒⇒⎨⎨=+==⎪⎩⎪⎩⇒=闭环传递函数1.242100%9.45%pdpt sM eπω====⨯=35% 1.58142% 2.108snsnt st sωζωζ∆=≈=∆=≈=题3-7解:0.11.31100%30%1pdptM eπω===-=⨯==上升时间超调量=0.357933.64nζω⎧⇒⎨=⎩221131.9()(2)24.08nnG ss s s sωζω==++开环传递函数题3-8(1)2100()(824)G ss s s=++解:闭环传递函数为2()100()(824)100C sR s s s s=+++特征方程为328241000s s s+++=列出劳斯表:3212408100011.50100ssss第一列都是正数,所以系统稳定(2)10(1)()(1)(5)sG ss s s+=-+解:闭环传递函数()10(1)()(1)(5)10(1)C s s R s s s s s +=-+++ 特征方程为3255100s s s +++=列出劳斯表:32015041002.5010s s ss 第一列都是正数,所以系统稳定 (3)10()(1)(23)G s s s s =-+ 解:闭环传递函数()10()(1)(23)10C s R s s s s =-++ 特征方程为3223100s s s +-+=列出劳斯表:3210230110023010s s ss --劳斯表第一列的数符号变了2次,因此在s 平面的右半部分有两个特征根,系统不稳定。
自动控制原理第三章课后习题答案解析(最新)

3-1(1) )(2)(2.0t r t c= (2) )()()(24.0)(04.0t r t c t c t c=++ 试求系统闭环传递函数Φ(s),以及系统的单位脉冲响应g(t)和单位阶跃响应c(t)。
已知全部初始条件为零。
解:(1) 因为)(2)(2.0s R s sC =闭环传递函数ss R s C s 10)()()(==Φ 单位脉冲响应:s s C /10)(= 010)(≥=t t g单位阶跃响应c(t) 2/10)(s s C = 010)(≥=t t t c(2))()()124.004.0(2s R s C s s =++ 124.004.0)()(2++=s s s R s C 闭环传递函数124.004.01)()()(2++==s s s R s C s φ 单位脉冲响应:124.004.01)(2++=s s s C t e t g t 4sin 325)(3-= 单位阶跃响应h(t) 16)3(61]16)3[(25)(22+++-=++=s s s s s s Ct e t e t c t t 4sin 434cos 1)(33----=3-2 温度计的传递函数为11+Ts ,用其测量容器内的水温,1min 才能显示出该温度的98%的数值。
若加热容器使水温按10ºC/min 的速度匀速上升,问温度计的稳态指示误差有多大?解法一 依题意,温度计闭环传递函数11)(+=ΦTs s 由一阶系统阶跃响应特性可知:o o T c 98)4(=,因此有 min 14=T ,得出 min 25.0=T 。
视温度计为单位反馈系统,则开环传递函数为Ts s s s G 1)(1)()(=Φ-Φ= ⎩⎨⎧==11v T K用静态误差系数法,当t t r ⋅=10)( 时,C T Ke ss ︒===5.21010。
解法二 依题意,系统误差定义为 )()()(t c t r t e -=,应有 1111)()(1)()()(+=+-=-==ΦTs TsTs s R s C s R s E s e C T s Ts Ts ss R s s e s e s ss ︒==⋅+=Φ=→→5.210101lim )()(lim 23-3 已知二阶系统的单位阶跃响应为)1.536.1sin(5.1210)(2.1o tt et c +-=-试求系统的超调量σ%、峰值时间tp 和调节时间ts 。
自动控制原理课后答案第三章

环传递函数, 已知单位反馈系统的开 环传递函数, 的稳定性. 试用劳思判据判断系统 的稳定性. 50 ; G(s) = s(s + 1)(s + 5)
若要求右半s 若要求右半s平面闭环 极点数,则列Routh表 极点数,则列Routh表 : Routh 1 5 s3 6 50 s2 6 × 5 − 1× 50 1 <0 0 s 6 0 s 50 首列元素反号两次, 首列元素反号两次, 故 右半s 右半s平面闭环极点数 为2.
第三章重点
进行时域分析的基本方法:重点是二阶系统的时域响应、 进行时域分析的基本方法:重点是二阶系统的时域响应、劳斯稳定判据 及稳态误差分析。 及稳态误差分析。 基本概念,稳定性和动态性能、主导极点、稳态误差、串联校正、 基本概念,稳定性和动态性能、主导极点、稳态误差、串联校正、反馈 校正等。 校正等。 Routh判据的应用;建立系统稳定(绝对稳定和相对稳定)的概念;稳 判据的应用; 判据的应用 建立系统稳定(绝对稳定和相对稳定)的概念; 定和闭环极点的关系 二阶系统的典型输入及性能指标; )(3-27)( )(3-28) 二阶系统的典型输入及性能指标;式(3-26)( )( )( ) )(3-31)和(3-32)为参数与指标间的数学描述 (3-30)( )( ) ) 高阶系统重点建立主导极点概念, 高阶系统重点建立主导极点概念,非主导极点及开环小时间常数影响 根据稳态误差定义推导出稳态误差与系统结构参数以及输入信号形式大 小的关系,引出静态误差系数。( 。(0、 、 型系统 型系统? 小的关系,引出静态误差系数。( 、I、II型系统?)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3-1(1) )(2)(2.0t r t c= (2) )()()(24.0)(04.0t r t c t c t c=++ 试求系统闭环传递函数Φ(s),以及系统的单位脉冲响应g(t)和单位阶跃响应c(t)。
已知全部初始条件为零。
解:(1) 因为)(2)(2.0s R s sC = 闭环传递函数ss R s C s 10)()()(==Φ 单位脉冲响应:s s C /10)(= 010)(≥=t t g单位阶跃响应c(t) 2/10)(s s C = 010)(≥=t t t c(2))()()124.004.0(2s R s C s s =++ 124.004.0)()(2++=s s s R s C 闭环传递函数124.004.01)()()(2++==s s s R s C s φ 单位脉冲响应:124.004.01)(2++=s s s C t e t g t 4sin 325)(3-= 单位阶跃响应h(t) 16)3(61]16)3[(25)(22+++-=++=s s s s s s Ct e t e t c t t 4sin 434cos 1)(33----=3-2 温度计的传递函数为11+Ts ,用其测量容器内的水温,1min 才能显示出该温度的98%的数值。
若加热容器使水温按10ºC/min 的速度匀速上升,问温度计的稳态指示误差有多大?解法一 依题意,温度计闭环传递函数11)(+=ΦTs s 由一阶系统阶跃响应特性可知:o o T c 98)4(=,因此有 min 14=T ,得出 min 25.0=T 。
视温度计为单位反馈系统,则开环传递函数为Ts s s s G 1)(1)()(=Φ-Φ= ⎩⎨⎧==11v T K用静态误差系数法,当t t r ⋅=10)( 时,C T Ke ss ︒===5.21010。
解法二 依题意,系统误差定义为 )()()(t c t r t e -=,应有 1111)()(1)()()(+=+-=-==ΦTs TsTs s R s C s R s E s e C T s Ts Ts ss R s s e s e s ss ︒==⋅+=Φ=→→5.210101lim )()(lim 23-3 已知二阶系统的单位阶跃响应为)1.536.1sin(5.1210)(2.1o tt et c +-=-试求系统的超调量σ%、峰值时间tp 和调节时间ts 。
解:)1sin(111)(22βωζζζω+---=-t e t c n t nζβarccos = 21/%ζπζσ--=e np t ωζπ21-=ns t ζω5.3=6.01.53cos cos 0===βζ%5.9%2226.01/6.06.01/6.01/====------ππζπζσe e e)(96.16.112s t np ==-=πωζπ)(92.22.15.35.3s t ns ===ζω 或:先根据c(t)求出系统传函,再得到特征参数,带入公式求解指标。
3-4 机器人控制系统结构图如图T3.1所示。
试确定参数21,K K 值,使系统阶跃响应的峰值时间5.0=p t s ,超调量%2%=σ。
图T3.1 习题3-4 图解 依题,系统传递函数为222121212112)1()1()1(1)1()(n n n s s K K s K K s K s s s K K s s K s ωζωω++=+++=++++=ΦΦ 由 ⎪⎩⎪⎨⎧=-===--5.0102.0212n p oo t e ωζπσζπζ 联立求解得 ⎩⎨⎧==1078.0n ωζ比较)(s Φ分母系数得⎪⎩⎪⎨⎧=-===146.0121001221K K K n n ζωω 3-5 设图T3.2(a )所示系统的单位阶跃响应如图T3.2(b )所示。
试确定系统参数,1K 2K 和a 。
图T3.2 习题3-5 图解 由系统阶跃响应曲线有⎪⎩⎪⎨⎧=-===∞oo o op t c 3.33)34(1.03)(σ系统闭环传递函数为222212212)(nn n s s K K as s K K s ωξωω++=++=Φ (1) 由 ⎪⎩⎪⎨⎧===-=--o o oo np e t 3.331.01212ζζπσωζπ 联立求解得 ⎩⎨⎧==28.3333.0n ωζ由式(1)⎩⎨⎧====222110821n n a K ζωω另外 3lim 1)(lim )(2122100==++=⋅Φ=∞→→K K as s K K s s s c s s3-6已知单位反馈随动系统如图T3.3所示,K=16s -1,T=0.25s,试求: (1)特征参数ζ和n ω; (2)计算σ%和t s ;(3)若要求σ%=16%,当T 不变时K 应当取何值?图T3.3 习题3-6 图【解】:(1)求出系统的闭环传递函数为:TK s T s TK Ks Ts K s /1/)(22++=++=Φ因此有:25.0212/1),(825.0161======-KTT s T K n n ωζω(2) %44%100e%2-1-=⨯=ζζπσ%)2)((2825.044=∆=⨯=≈s t ns ζω(3)为了使σ%=16%,由式%16%100e %2-1-=⨯=ζζπσ可得5.0=ζ,当T 不变时,有: )(425.04)(425.05.021212/11221--=⨯===⨯⨯===s T K s T T n n ωζζω3-7 系统结构图如图T3.4所示。
已知系统单位阶跃响应的超调量σ%3.16=%,峰值时间1=p t s 。
图T3.4 习题3-7 图(1) 求系统的开环传递函数)(s G ; (2) 求系统的闭环传递函数)(s Φ;(3) 根据已知的性能指标σ%、p t 确定系统参数K 及τ; (4) 计算等速输入s t t r )(5.1)(︒=时系统的稳态误差。
解 (1) )110(10)1(101)1(10)(++=+++=ττs s K s s s s s K s G(2) 2222210)110(10)(1)()(nn n s s K s s Ks G s G s ωζωωτ++=+++=+=Φ (3)由 ⎪⎩⎪⎨⎧=-===--113.16212ζωπσζζπn p o o o o t e 联立解出 ⎪⎩⎪⎨⎧===263.063.35.0τωζn 由(2) 18.1363.31022===n K ω,得出 318.1=K。
(4)63.31263.01018.1311010)(lim 0=+⨯=+==→τK s sG K s v413.063.35.1===v ssK A e3-8 已知单位反馈系统的单位阶跃响应为,求(1)开环传递函数;(2)s n %t σως; (3)在作用下的稳态误差。
3-9 已知系统结构图如图T3.5所示,)125.0)(11.0()(++=s s s Ks G试确定系统稳定时的增益K 的取值范围。
图T3.5 习题3-9 图解:3-10 已知单位反馈系统的开环传递函数为)22)(4()1(7)(2++++=s s s s s s G试分别求出当输入信号t t t r ),(1)(=和2t 时系统的稳态误差。
解 )22)(4()1(7)(2++++=s s s s s s G ⎩⎨⎧==17v K由静态误差系数法)(1)(t t r =时, 0=ss et t r =)(时, 14.178===K A e ss2)(t t r =时, ∞=ss e3-11 已知单位负反馈系统的开环传递函数为 ()(0.11)(0.21)KG S s s s =++,若r(t) = 2t +2时,要求系统的稳态误差为0.25,试求K 应取何值。
3-12设系统结构图如图T3.6所示,图T3.6 习题3-12 图(1) 当025,0f K K ==时,求系统的动态性能指标%σ和s t ; (2) 若使系统ζ=0.5,单位速度误差0.1ss e =时,试确定0K 和f K 值。
(1)%25.4%1.75ts σ== (5分) (2)0100,6f K K ==(5分)3-13 已知系统的特征方程,试判别系统的稳定性,并确定在右半s 平面根的个数及纯虚根。
(1)01011422)(2345=+++++=s s s s s s D (2)0483224123)(2345=+++++=s s s s s s D (3)022)(45=--+=s s s s D(4)0502548242)(2345=--+++=s s s s s s D解(1)1011422)(2345+++++=s s s s s s D =0Routh : S 5 1 2 11 S 4 2 4 10 S 3 ε 6 S 2 εε124- 10S 6 S 0 10第一列元素变号两次,有2个正根。
(2)483224123)(2345+++++=s s s s s s D =0 Routh : S 5 1 12 32S 4 3 24 48 S 33122434⨯-= 32348316⨯-= 0S 2424316412⨯-⨯= 48S 1216448120⨯-⨯= 0 辅助方程 124802s +=,S 24 辅助方程求导:024=sS 0 48系统没有正根。
对辅助方程求解,得到系统一对虚根 s j 122,=±。
(3)022)(45=--+=s s s s DRouth : S 5 1 0 -1S 4 2 0 -2 辅助方程 0224=-s S 3 8 0 辅助方程求导 083=sS 2 ε -2 S ε16S 0 -2第一列元素变号一次,有1个正根;由辅助方程0224=-s 可解出: ))()(1)(1(2224j s j s s s s -+-+=-))()(1)(1)(2(22)(45j s j s s s s s s s s D -+-++=--+= (4)0502548242)(2345=--+++=s s s s s s D Routh : S 5 1 24 -25S 4 2 48 -50 辅助方程 05048224=-+s s S 3 8 96 辅助方程求导 09683=+s sS 2 24 -50 S 338/3S 0 -50第一列元素变号一次,有1个正根;由辅助方程05048224=-+s s 可解出: )5)(5)(1)(1(25048224j s j s s s s s -+-+=-+)5)(5)(1)(1)(2(502548242)(2345j s j s s s s s s s s s s D -+-++=--+++=3-14 某控制系统方块图如图T3.7所示,试确定使系统稳定的K 值范围。