全等三角形复习基本题型分类
清单02全等三角形(8个考点梳理题型解读核心素养提升中考聚焦)(原卷版)
清单02 全等三角形(8个考点梳理+题型解读+核心素养提升+中考聚焦)【知识导图】【知识清单】考点一.全等图形(1)全等形的概念能够完全重合的两个图形叫做全等形.(2)全等三角形能够完全重合的两个三角形叫做全等三角形.(3)三角形全等的符号“全等”用符号“≌”表示.注意:在记两个三角形全等时,通常把对应顶点写在对应位置上.(4)对应顶点、对应边、对应角把两个全等三角形重合到一起,重合的顶点叫做对应顶点;重合的边叫做对应边;重合的角叫做对应角.1.(2022秋•剑阁县期末)下列说法正确的是()A.两个面积相等的图形一定是全等图形B.两个全等图形形状一定相同C.两个周长相等的图形一定是全等图形D.两个正三角形一定是全等图形2.(2022秋•东莞市期末)下列各组图形中,是全等形的是()A.两个含60°角的直角三角形B.腰对应相等的两个等腰直角三角形C.边长为3和4的两个等腰三角形D.一个钝角相等的两个等腰三角形考点二.全等三角形的性质(1)性质1:全等三角形的对应边相等性质2:全等三角形的对应角相等说明:①全等三角形的对应边上的高、中线以及对应角的平分线相等②全等三角形的周长相等,面积相等③平移、翻折、旋转前后的图形全等(2)关于全等三角形的性质应注意①全等三角形的性质是证明线段和角相等的理论依据,应用时要会找对应角和对应边.②要正确区分对应边与对边,对应角与对角的概念,一般地:对应边、对应角是对两个三角形而言,而对边、对角是对同一个三角形的边和角而言的,对边是指角的对边,对角是指边的对角.3.(2022秋•庄河市期末)如图,图中的两个三角形全等,则∠α等于()A.50°B.71°C.58°D.59°4.(2022秋•丹阳市校级期末)已知△ABC≌△DEF,AC=9cm,则DF=cm.考点三.全等三角形的判定(1)判定定理1:SSS﹣﹣三条边分别对应相等的两个三角形全等.(2)判定定理2:SAS﹣﹣两边及其夹角分别对应相等的两个三角形全等.(3)判定定理3:ASA﹣﹣两角及其夹边分别对应相等的两个三角形全等.(4)判定定理4:AAS﹣﹣两角及其中一个角的对边对应相等的两个三角形全等.(5)判定定理5:HL﹣﹣斜边与直角边对应相等的两个直角三角形全等.方法指引:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.5.(2022秋•莘县期末)如图,BC=BD,那么添加下列选项中的一个条件后,仍无法判定△ABC≌△ABD 的是()A.AC=AD B.∠BAC=∠BAD C.∠ABC=∠ABD D.∠C=∠D=90°6.(2022秋•嘉鱼县期末)如图,点A、D在线段BC的两侧,且∠A=∠D=90°.试添加一个条件,使△ABC≌△DBC.并写出证明过程.7.(2023春•渠县校级期末)已知:如图,AC∥DF,点B为线段AC上一点,连接BF交DC于点H,过点A作AE∥BF分别交DC、DF于点G、点E,DG=CH,求证:△DFH≌△CAG.8.(2023春•鄠邑区期末)如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.它们运动的时间为t(s).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,并判断此时线段PC和线段PQ的位置关系,请分别说明理由;(2)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA=60°”,其他条件不变.设点Q的运动速度为x cm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由.考点四.直角三角形全等的判定1、斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”).2、直角三角形首先是三角形,所以一般三角形全等的判定方法都适合它,同时,直角三角形又是特殊的三角形,有它的特殊性,作为“HL”公理就是直角三角形独有的判定方法.所以直角三角形的判定方法最多,使用时应该抓住“直角”这个隐含的已知条件.9.(2022秋•衡山县期末)下列条件,不能判定两个直角三角形全等的是()A.两个锐角对应相等B.一个锐角和斜边对应相等C.两条直角边对应相等D.一条直角边和斜边对应相等10.(2022秋•磁县期末)如图,若要用“HL”证明Rt△ABC≌Rt△ABD,则还需补充的条件是()A.AC=AD或BC=BD B.AC=AD且BC=BDC.∠BAC=∠BAD D.以上都不对11.(2022秋•鄞州区校级期末)如图,AD∥BC,∠A=90°,E是AB上的一点,且AD=BE,∠1=∠2.求证:△ADE≌△BEC.12.(2023春•怀化期末)如图,在△ABC中,AC=BC,直线l经过顶点C,过A,B两点分别作l的垂线AE,BF,E,F为垂足,AE=CF.求证:∠ACB=90°.13.(2022秋•雄县校级期末)如图,在△ABC中,AB=AC,DE是过点A的直线,BD⊥DE于D,CE⊥DE于点E;(1)若B、C在DE的同侧(如图所示)且AD=CE.求证:AB⊥AC;(2)若B、C在DE的两侧(如图所示),且AD=CE,其他条件不变,AB与AC仍垂直吗?若是请给出证明;若不是,请说明理由.考点五.全等三角形的判定与性质(1)全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.(2)在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.14.(2022秋•大田县期末)如图,正方形ABCD是一张边长为12cm的皮革.皮雕师傅想在此皮革两相邻的角落分别切下△PDQ与△PCR后得到一个五边形PQABR,其中P,Q,R三点分别在边CD,AD,BC 上,且PD=2DQ,PC=CR.(1)若DQ=x,将△PDQ的面积用含x的代数式表示;(2)五边形PQABR的面积是否存在最大值?若存在,请求出该最大值;若不存在,请说明理由.15.(2022秋•荣昌区期末)如图,AD是△ABC的中线,BE⊥AD,垂足为E,CF⊥AD,交AD的延长线于点F,G是DA延长线上一点,连接BG.(1)求证:BE=CF;(2)若BG=CA,求证:GA=2DE.16.(2022秋•宿城区校级期末)如图,△ABC和△ADE都是等腰三角形,BC、DE分别是这两个等腰三角形的底边,且∠BAC=∠DAE,求证:BD=CE.17.(2022秋•孝南区期末)如图,已知,点B,E,C,F在一条直线上,AB=DF,AC=DE,∠A=∠D.(1)求证:AC∥DE;(2)若BF=21,EC=9,求BC的长.考点六.全等三角形的应用(1)全等三角形的性质与判定综合应用用全等寻找下一个全等三角形的条件,全等的性质和判定往往是综合在一起应用的,这需要认真分析题目的已知和求证,分清问题中已知的线段和角与所证明的线段或角之间的联系.(2)作辅助线构造全等三角形常见的辅助线做法:①把三角形一边的中线延长,把分散条件集中到同一个三角形中是解决中线问题的基本规律.②证明一条线段等于两条线段的和,可采用“截长法”或“补短法”,这些问题经常用到全等三角形来证明.(3)全等三角形在实际问题中的应用一般方法是把实际问题先转化为数学问题,再转化为三角形问题,其中,画出示意图,把已知条件转化为三角形中的边角关系是关键.18.(2023春•长安区期末)王强同学用10块高度都是2cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC=BC,∠ACB=90°),点C在DE上,点A和B 分别与木墙的顶端重合.(1)求证:△ADC≌△CEB;(2)求两堵木墙之间的距离.19.(2022秋•永城市校级期末)如图,点B,F,C,E在直线l上(点F,C之间不能直接测量),点A,D 在l的异侧,AB∥DE,∠A=∠D,测得AB=DE.(1)求证:△ABC≌△DEF;(2)若BE=10cm,BF=3cm,求FC的长.20.(2022秋•新化县期末)【问题背景】在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且∠EAF=60°,试探究图1中线段BE、EF、FD之间的数量关系.【初步探索】小亮同学认为:延长FD到点G,使DG=BE,连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,则可得到BE、EF、FD之间的数量关系是.【探索延伸】在四边形ABCD中如图2,AB=AD,∠B+∠D=180°,E、F分别是BC、CD上的点,∠EAF=∠BAD,上述结论是否仍然成立?说明理由.【结论运用】如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角(∠EOF)为70°,试求此时两舰艇之间的距离.考点七.角平分线的性质角平分线的性质:角的平分线上的点到角的两边的距离相等.注意:①这里的距离是指点到角的两边垂线段的长;②该性质可以独立作为证明两条线段相等的依据,有时不必证明全等;③使用该结论的前提条件是图中有角平分线,有垂直角平分线的性质语言:如图,∵C在∠AOB的平分线上,CD⊥OA,CE⊥OB∴CD=CE21.(2022秋•双流区期末)已知:如图,△ABC中,∠ACB=90°,AD⊥AB,BD平分∠ABC交AD于D 点.(1)求证:∠ADE=∠AED;(2)若AB=6,CE=2,求△ABE的面积.22.(2022秋•巩义市期末)如图,在Rt△ABC中,∠C=90°,∠CAB的平分线AD交BC于点D,过点D 作DE⊥AB,垂足为E,此时点E恰为AB的中点.(1)求∠CAD的大小;(2)若BC=9,求DE的长.考点八.作图—尺规作图的定义(1)尺规作图是指用没有刻度的直尺和圆规作图.只使用圆规和直尺,并且只准许使用有限次,来解决不同的平面几何作图题.(2)基本要求它使用的直尺和圆规带有想像性质,跟现实中的并非完全相同.直尺必须没有刻度,无限长,且只能使用直尺的固定一侧.只可以用它来将两个点连在一起,不可以在上画刻度.圆规可以开至无限宽,但上面亦不能有刻度.它只可以拉开成你之前构造过的长度.23.(2022秋•长安区校级期末)如图,Rt△ABC中,∠C=90°,∠B=30°,要求用圆规和直尺作图,把它分成两个三角形,其中一个三角形是等腰三角形.其作法错误的是()A.B.C.D.24.(2022秋•青秀区校级期末)如图,是尺规作图中“画一个角等于已知角”的示意图,该作法运用了“全等三角形的对应角相等”这一性质,则判定图中两三角形全等的条件是()A.SAS B.ASA C.AAS D.SSS【核心素养提升】逻辑推理——构建全等三角形进行证明1.(2022秋•香坊区期末)如图,等边△ABC中,CH⊥AB于点H,点D、E分别在边AB、BC上,连接DE,点F在CH上,连接EF,若DE=EF,∠DEF=60°,BE=2,CE=8,则DH=.2.(2022秋•江岸区期末)如图所示,在四边形ABCD中,∠BAD=∠BCD=90°,AB=AD且AC=5,将BC沿BA方向平移至AE,连接CE、DE,若以AC、BD和DE为边构成的三角形面积是,则DE =.3.(2022秋•葫芦岛期末)在平面直角坐标系xOy中,△ABC为等腰直角三角形,∠ACB=90°,点A(0,5),点C(﹣2,0),点B在第四象限.(1)如图1,求点B的坐标;(2)如图2,若AB交x轴于点D,BC交y轴于点M,N是BC上一点,且BN=CM,连接DN,求证CD+DN=AM;(3)如图3,若点A不动,点C在x轴的负半轴上运动时,分别以AC,OC为直角边在第二、第三象限作等腰直角△ACE与等腰直角△OCF,其中∠ACE=∠OCF=90°,连接EF交x轴于P点,问当点C 在x轴的负半轴上移动时,CP的长度是否变化?若变化,请说明理由,若不变化,请求出其长度.【中考热点聚焦】热点1.三角形全等的判定1.(2023•衢州)已知:如图,在△ABC和△DEF中,B,E,C,F在同一条直线上.下面四个条件:①AB=DE;②AC=DF;③BE=CF;④∠ABC=∠DEF.(1)请选择其中的三个条件,使得△ABC≌△DEF(写出一种情况即可).(2)在(1)的条件下,求证:△ABC≌△DEF.2.(2023•云南)如图,C是BD的中点,AB=ED,AC=EC.求证:△ABC≌△EDC.热点2.三角形全等的判定和性质的综合应用3.(2023•苏州)如图,在△ABC中,AB=AC,AD为△ABC的角平分线.以点A圆心,AD长为半径画弧,与AB,AC分别交于点E,F,连接DE,DF.(1)求证:△ADE≌△ADF;(2)若∠BAC=80°,求∠BDE的度数.4.(2023•营口)如图,点A,B,C,D在同一条直线上,点E,F分别在直线AB的两侧,且AE=BF,∠A=∠B,∠ACE=∠BDF.(1)求证:△ACE≌△BDF;(2)若AB=8,AC=2,求CD的长.5.(2023•南通)如图,点D,E分别在AB,AC上,∠ADC=∠AEB=90°,BE,CD相交于点O,OB=OC.求证:∠1=∠2.小虎同学的证明过程如下:证明:∵∠ADC=∠AEB=90°,∴∠DOB+∠B=∠EOC+∠C=90°.∵∠DOB=∠EOC,∴∠B=∠C.……第一步又OA=OA,OB=OC,∴△ABO≌△ACO.……第二步∴∠1=∠2.……第三步(1)小虎同学的证明过程中,第步出现错误;(2)请写出正确的证明过程.6.(2023•陕西)如图,在△ABC中,∠B=50°,∠C=20°.过点A作AE⊥BC,垂足为E,延长EA至点D.使AD=AC.在边AC上截取AF=AB,连接DF.求证:DF=CB.7.(2023•长沙)如图,AB=AC,CD⊥AB,BE⊥AC,垂足分别为D,E.(1)求证:△ABE≌△ACD;(2)若AE=6,CD=8,求BD的长.8.(2023•聊城)如图,在四边形ABCD中,点E是边BC上一点,且BE=CD,∠B=∠AED=∠C.(1)求证:∠EAD=∠EDA;(2)若∠C=60°,DE=4时,求△AED的面积.热点3.三角形全等的实际应用9.(2022•扬州)如图,小明家仿古家具的一块三角形状的玻璃坏了,需要重新配一块.小明通过给玻璃店老板提供相关数据,为了方便表述,将该三角形记为△ABC,提供下列各组元素的数据,配出来的玻璃不一定符合要求的是()A.AB,BC,CA B.AB,BC,∠B C.AB,AC,∠B D.∠A,∠B,BC 10.(2022•百色)校园内有一块四边形的草坪造型,课外活动小组实地测量,并记录数据,根据造型画如图的四边形ABCD,其中AB=CD=2米,AD=BC=3米,∠B=30°.(1)求证:△ABC≌△CDA;(2)求草坪造型的面积.热点4.角的平分线的性质11.(2023•广州)如图,已知AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,AE=12,DF=5,则点E到直线AD的距离为.12.(2022•北京)如图,在△ABC中,AD平分∠BAC,DE⊥AB.若AC=2,DE=1,则S△ACD=.。
全等三角形的五大基本模型及题型归纳总结
全等三角形的基本模型一、平移模型常见的平移模型:例1:如图,在四边形ABCD中,AD∥BC且AD=BC,点E在边AB上,点F在AB的延长线上,且AE =BF.求证:∠ADE=∠BCF.例2:如图,AB∥DE,AB=DE,BE=CF.求证:AC∥DF.二、轴对称模型常见的轴对称类型:例3:如图3-ZT-5,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是() A.AC=BDB.∠CAB=∠DBAC.∠C=∠DD.BC=AD例4:如图,OP平分∠MON,PE⊥OM于点E,PF⊥ON于点F,OA=OB,则图中有______ 对全等三角形.例5:如图,点D,E分别在AB,AC上,AB=AC,BD=CE.求证:BE=CD.例6:如图3-ZT-8,EB交AC于点M,交FC于点D,AB交FC于点N,∠E=∠F=90°,∠B=∠C,AE=AF. 试证明下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM.三、旋转模型常见的旋转模型例7:如图,已知∠AOB=90°,OM是∠AOB的平分线,三角尺的直角顶点P在射线OM上滑动,两直角边分别与OA,OB交于点C,D.求证:PC=PD.两个特殊的旋转模型:(一)绕点型:(手拉手模型)(1)自旋转(2)共旋转(典型的手拉手模型)例7:在直线ABC 的同一侧作两个等边三角形△ABD 和△BCE ,连接AE 与CD ,证明: 1) △ABE ≌△DBC 2) AE=DC3) AE 与DC 的夹角为60。
4) △AGB ≌△DFB 5) △EGB ≌△CFB 6) BH 平分∠AHC 7) GF ∥AC练习:1. 如果两个等边三角形△ABD 和△BCE ,连接AE 与CD ,证明: 1) △ABE ≌△DBC 2) AE=DC3) AE 与DC 的夹角为60。
4) AE 与DC 的交点设为H,BH 平分∠AHC2. △ABD和△ACE均为等腰直角三角形,连接CD,BE交于点O①△ACD ≌△ABE;②∠BOC=90°;③OA平分∠BOC3. 已知:△ABE和△ACD为两个的等腰三角形,∠BAE=∠CAD=∠α,连接EC,BD交于点O①△ABD ≌△AEC;②∠α+∠BOC=180°;③OA平分∠BOC模型应用1. (2010·深圳改编)如图,△AOB和△COD均为等腰直角三角形,∠AOB=∠COD=90°,D在AB上.(1)求证:△AOC≌△BOD;(2)判断△CAD是什么形状的三角形,说明理由.2. 如图,△ABC与△ADE都是等腰直角三角形,连接CD,BE,CD,BE相交于点O,判断CD与BE的位置关系,并说明理由.(二)半角模型:说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。
专题02 全等三角形重难点题型(解析版)-初中数学七年级上学期重难点题型分类高分必刷题(人教版)
专题02高分必刷题-全等三角形重难点题型分类(解析版)题型1:全等三角形的性质1.下列说法正确的是()A.两个等边三角形一定全等B.形状相同的两个三角形全等C.面积相等的两个三角形全等D.全等三角形的面积一定相等【解答】解:A、两个边长不相等的等边三角形不全等,故本选项错误;B、形状相同,边长不对应相等的两个三角形不全等,故本选项错误;C、面积相等的两个三角形不一定全等,故本选项错误;D、全等三角形的面积一定相等,故本选项正确.故选:D.2.如图,△ABC≌△DCB,△A=80°,△DBC=40°,则△DCA的度数为()A.20°B.25°C.30°D.35°【解答】解:△△ABC≌△DCB,∴∠D=△A=80°,△ACB=DBC=40°,∴∠DCB=180°﹣∠D﹣∠DBC=60°,∴∠DCA=△DCB﹣∠ACB=20°,故选:A.3.如图,△ABC≌△DEF,BE=7,AD=3,则AB=.【解答】解:△△ABC≌△DEF,∴AB=DE,∴AB﹣AD=DE﹣AD,即BD=AE,∵BE=7,AD=3,∴BD=AE==2∴AB=AD+DB=3+2=5.故答案为:5.题型2:添加一个条件,是两三角形全等4.如图,已知MB=ND,△MBA=△NDC,下列条件中不能判定△ABM≌△CDN的是()A.△M=△N B.AM∥CN C.AB=CD D.AM=CN【解答】解:A、△M=△N,符合ASA,能判定△ABM≌△CDN,故A选项不符合题意;B、AM∥CN,得出△MAB=△NCD,符合AAS,能判定△ABM≌△CDN,故B选项不符合题意.C、AB=CD,符合SAS,能判定△ABM≌△CDN,故C选项不符合题意;D、根据条件AM=CN,MB=ND,△MBA=△NDC,不能判定△ABM≌△CDN,故D选项符合题意;故选:D.5.如图,已知△ADB=△CBD,下列所给条件不能证明△ABD≌△CDB的是()A.△A=△C B.AD=BC C.△ABD=△CDB D.AB=CD【解答】解:在△ABD和△CDB中,,∴△ABD≌△CDB(AAS)∴选项A能证明;在△ABD和△CDB中,,∴△ABD≌△CDB(SAS),∴选项B能证明;在△ABD和△CDB中,,∴△ABD≌△CDB(ASA),∴选项C能证明;选项D不能证明△ABD≌△CDB;故选:D.6.如图,已知△1=△2,要使△ABC≌△CDA,还需要补充的条件不能是()A.AB=CD B.BC=DA C.△B=△D D.△BAC=△DCA 【解答】解:A、根据AB=CD和已知不能推出两三角形全等,错误,故本选项正确;B、△在△ABC和△CDA中∴△ABC≌△CDA(SAS),正确,故本选项错误;C、△在△ABC和△CDA中∴△ABC≌△CDA(AAS),正确,故本选项错误;D、△在△ABC和△CDA中∴△ABC≌△CDA(AAS),正确,故本选项错误;故选:A.题型三:尺规作图的依据7.如图,是用直尺和圆规作一个角等于已知角的示意图,则说明△A′O′B′=△AOB的依据是()A.SSS B.SAS C.AAS D.ASA【解答】解:由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依据SSS可判定△COD≌△C'O'D',故选:A.8.工人师傅常用角尺平分一个任意角.做法如下:如图,△AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与点M,N重合,过角尺顶点C作射线OC.由此作法便可得△MOC≌△NOC,其依据是()A.SSS B.SAS C.ASA D.AAS【解答】解:∵在△ONC和△OMC中,∴△MOC≌△NOC(SSS),∴∠BOC=∠AOC,故选:A.9.如图,红红书上的三角形被墨迹污染了一部分,她根据所学的知识很快就画了一个与书上完全一样的三角形,那么红红画图的依据是()A.SSS B.SAS C.ASA D.AAS【解答】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选:C.题型4:角平分线的性质10.如图,在△ABC中,△C=90°,AC=BC,AD平分△CAB交BC于D,DE⊥AB于E,若AB=6cm,则△DBE的周长是()A.6 cm B.7 cm C.8 cm D.9 cm【解答】解:△AD平分△CAB,DE⊥AB,△C=90°,∴DE=CD,又△AC=BC,AC=AE,∴AC=BC=AE,∴△DBE的周长=DE+BD+EB=CD+BD+EB=BC+EB=AE+EB=AB,∵AB =6cm,∴△DBE的周长=6cm.故选:A.11.如图,△ABC中,△C=90°,AD是角平分线,AB=14,S△ABD=28,则CD的长为.【解答】解:如图,过D作DE⊥AB于E,∵∠C=90°,AD是角平分线,∴由角平分线的性质,得DE=CD.∵AB=14,S△ABD=28,∴×AB×DE=28,即×14×DE=28,解得DE=4,∴CD=4,故答案为:4.12.如图,BD是△ABC的平分线,DE⊥AB于E,S△ABC=36cm2,AB=18cm,BC=12cm,则DE=cm.【解答】解:过点D作DF⊥BC于点F,∵BD是△ABC的平分线,DE⊥AB,∴DE=DF,∵AB=18cm,BC=12cm,∴S△ABC=S△ABD+S△BCD=AB•DE+BC•DF=DE•(AB+BC)=36cm2,∴DE=2.4(cm).故答案为:2.4.题型五:全等三角形中档证明题考向1:重叠边技巧①短边相等+重叠边=长边相等②长边相等-重叠边=短边相等13.如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,△A=△D,AF=DC.求证:(1)△ABC≌△DEF;(2)BC∥EF.【解答】证明:(1)△AF=DC,∴AF+CF=DC+CF,∴AC=DF,∵在△ABC和△DEF中,∴△ABC≌△DEF(SAS);(2)△由(1)知△ABC≌△DEF,∴∠BCA=△EFD,∴BC∥EF.14.已知:如图,A、C、F、D在同一直线上,AF=DC,AB=DE,BC=EF,求证:AB∥DE.【解答】证明:△AF=DC,∴AF﹣FC=DC﹣CF,即AC=DF.在△ACB和△DFE中,∴△ACB≌△DFE(SSS),∴∠A=△D,∴AB∥DE.考向2:重叠角技巧重叠角技巧:①小角相等+重叠角=大角相等②大角相等-重叠角=小角相等15.如图,AB=AD,△C=△E,△1=△2,求证:△ABC≌△ADE.【解答】证明:△△1=△2,∴∠1+∠EAC=△2+∠EAC,即△BAC=△DAE,在△ABC和△ADE中,,∴△ABC≌△ADE(AAS).16.如图,△ABC和△ADE都是等腰三角形,且△BAC=90°,△DAE=90°,B,C,D在同一条直线上.求证:BD=CE.【解答】证明:△△ABC和△ADE都是等腰直角三角形,∴AD=AE,AB=AC,又△△EAC =90°+∠CAD,△DAB=90°+∠CAD,∴∠DAB=△EAC,∵在△ADB和△AEC中,∴△ADB≌△AEC(SAS),∴BD=CE.考向三:等角的余角相等技巧:∠1+∠2=90,∠2+∠3=90, ∠1=∠3技巧:把全等三角形中一个三角形的两个锐角分别随意标上∠1、∠2,再从第二个三角形的两个锐角中挑一个和∠1或∠2互余的角标上∠3。
全等三角形题型归纳(经典完整)
1/3一,证明边或角相等(一)方法:证明两条线段相等或角相等,如果这两条线段或角在两个三角形内,就证明这两个三角形全等;如果这两条线段或角在同一个三角形内,就证明这个三角形是等腰三角形;如果看图时两条线段既不在同一个三角形内,也不在两个全等三角形内,那么就利用辅助线进行等量代换,同样如果角不在同一个三角形内,也不在两个全等三角形内,也是用等量代换(方法是:(1)同角(等角)的余角相等(2)同角(等角)的补角相等,此类型问题一般不单独作一大题,往往是通过得出角相等后用来证明三角形全等,而且一般是在双垂直的图形中)1.已知,如图,AB ⊥AC ,AB =AC ,AD ⊥AE ,AD =AE 。
求证:BE =CD 。
2.如图,在四边形ABCD 中,E 是AC 上的一点,∠1=∠2,∠3=∠4,求证: ∠5=∠.3.已知:如图△ABC 中,AB=AC ,BD ⊥AC ,CE ⊥AB ,BD 、CE 交于H 。
求证:HB=HC 。
2、如图, 已知:AB ⊥BC 于B , EF ⊥AC 于G , DF ⊥BC 于D , BC=DF .求证:AC=EF .二.证明线段和差问题(形如:AB+BC=CD,AB=AD - CD)证明两条线段和等于另一条线段,常常使用截长补短法。
①截长法即为在这三条最长的线段截取一段使它等于较短线段中的一条,然后证明剩下的一段等于另一条较短的线段。
②AEDC B654321E D CBAFGE DCBAFMNE 12342/3EDCBA 补短法即为在较短的一条线段上延长一段,使它们等于最长的线段,然后证明延长的这一线段等于另一条较短的线段。
证明两条线段差等于另一条线段,只需把差化成和来解决即可。
1.如图,已知AD ∥BC ,∠PAB 的平分线与∠CBA 的平分线相交于E ,CE 的连线交AP 于D .求证:AD +BC =AB . 2、如图,已知:△ABC 中,∠BAC =90, AB =AC ,AE 是过A 一直线,且点B 、C 在AE 的异侧,BD ⊥AE 于D ,CE ⊥AE 于E . 求证:BD =DE +CE ;3、如图,AB ∥CD ,DE 平分∠ADC ,AE 平分∠BAD ,求证:AB=AD - CD三.证明线段的2倍或21关系 ( AB CE =2,MN BN =12)1. 利用含30角的直角三角形的性质证明 例1.已知,如图1,∆ABC 是等边三角形,在AC 、BC 上分别取点D 、E ,且AD =CE ,连结AE、BD 交于点N ,过B 作BM AE⊥,垂足为M ,求证:MN BN =12(提示:先证∠=BNE 60)2. 利用等线段代换(充分利用中点)例1.如图,△ABC 中,∠BAC =90度,AB =AC ,BD 是∠ABC 的平分线,BD 的延长线垂直于过C 点的直线于E ,直线CE 交BA 的延长线于F . 求证:BD =2CE .3.转化为线段和问题,利用截长补短法 例5.P E D CBAFE DCB A3/3已知:如图5,四边形ABCD 中,∠=D 90,对角线AC 平分∠BAD ,AC BC =,求证:ADAB =12四.证明二倍角关系利用三角形外角和定理和等量代换如图,△ABC 中,AD 是∠CAB 的平分线,且AB =AC +CD ,求证:∠C =2∠BD CBA。
专题03 全等三角形的六种模型全梳理(解析版)-2024年常考压轴题攻略(8年级上册人教版)
专题03全等三角形的六种模型全梳理几何探究类问题一直属于考试压轴题范围,在三角形这一章,压轴题主要考查是证明三角形各种模型,或证明线段数量关系等,接来下我们针对其做出详细分析与梳理。
类型一、倍长中线模型目的:①构造出一组全等三角形;②构造出一组平行线。
将分散的条件集中到一个三角形中。
如图1,ABC 中,若86AB AC ==,,求BC 边上的中线小明在组内经过合作交流,得到了如下的解决方法:如图连接BE .请根据小明的方法思考:(1)如图2,由已知和作图能得到ADC EDB ≌△△A .SSS B .SAS C .AAS D .ASA(2)如图2,AD 长的取值范围是.(2)根据全等三角形的性质得到6AC BE ==,由三角形三边关系得到AB BE AE AB BE -<<+,即可求出17AD <<;(3)延长AD 到点M ,使AD DM =,连接BM ,证明ADC MDB △△≌,得到BM AC CAD M =∠=∠,,由AE EF =得到CAD AFE ∠=∠,进而推出BF BM =,即可证明AC BF =.【详解】解:(1)如图2,延长AD 到点E ,使DE AD =,连接BE .∵AD 为BC 的中线,∴BD CD =,又∵AD DE ADC BDE =∠=∠,,∴()SAS ADC EDB ≌△△,故答案为:B ;(2)解:∵ADC EDB ≌△△,∴6AC BE ==,在ABE 中,AB BE AE AB BE -<<+,∴86286AD -<<+,∴17AD <<,故答案为:C ;(3)证明:延长AD 到点M ,使AD DM =,连接BM ,∵AD 是ABC 中线,∴CD BD =,∵在ADC △和MDB △中,DC DB ADC MDB AD HD =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ADC MDB ≌△△,∴BM AC CAD M =∠=∠,,∵AE EF =,(1)如图1,求证:12BF AD =;(2)将DCE △绕C 点旋转到如图2所示的位置,连接,AE BD ,过C 点作CM ⊥①探究AE 和BD 的关系,并说明理由;②连接FC ,求证:F ,C ,M 三点共线.【答案】(1)见解析(2)①,AE BD AE BD =⊥,理由见解析②见解析【分析】(1)证明≌ACD BCE V V ,得到AD BE =,再根据点F 为BE 中点,即可得证;则:AGB CBD BHG ∠=∠+∠=∠∵CBD EAC ∠=∠,∴90BHG ACB ∠=∠=︒,∴AE BD ⊥,综上:,AE BD AE BD =⊥;②延长CF 至点P ,使PF CF =∵F 为BE 中点,∴BF FE =,∴()SAS BFP EFC ≌,∴,BP CE BPF ECF =∠=∠,∴CE BP ,∴180CBP BCE ∠+∠=︒,∵360180BCE ACD ACB DCE ∠+∠=︒-∠-∠=︒,∴CBP ACD ∠=∠,又,CE CD BP AC BC ===,∴()SAS PBC DCA ≌,∴BCP CAD ∠=∠,延长FC 交AD 于点N ,则:18090BCP ACN ACB ∠+∠=︒-∠=︒,∴90CAD ACN ∠+∠=︒,∴90ANC ∠=︒,∴CN AD ⊥,∵CM AD ⊥,∴点,M N 重合,即:F ,C ,M 三点共线.【点睛】本题考查全等三角形的判定和性质,等腰三角形判定和性质.熟练掌握手拉手全等模型,倍长中线法构造全等三角形,是解题的关键.【变式训练1】如图,ABC 中,BD DC AC ==,E 是DC 的中点,求证:2AB AE =.【答案】见解析【分析】利用中线加倍证DEF CEA △≌△(SAS ),可得DF AC BD ==,FDE C ∠=∠,由DC AC =,可得ADC CAD ∠=∠进而可证ADF ADB ∠=∠.,再证ADB ADF △≌△(SAS )即可.【详解】证明:延长AE 到F ,使EF AE =,连结DF ,∵E 是DC 中点,∴DE CE =,∴在DEF 和CEA 中,DE CE DEF CEA EF EA =⎧⎪∠=∠⎨⎪=⎩,∴DEF CEA △≌△(SAS ),∴DF AC BD ==,FDE C ∠=∠,∵DC AC =,∴ADC CAD ∠=∠,又∵ADB C CAD ∠=∠+∠,ADF FDE ADC ∠=∠+∠,∴ADF ADB ∠=∠,在ADB 和ADF △中,AD AD ADB ADF DB DF =⎧⎪∠=∠⎨⎪=⎩,∴ADB ADF △≌△(SAS ),∴2AB AF AE ==.【点睛】本题考查中线加倍构图,三角形全等判定与性质,等腰三角形性质,掌握中线加倍构图,三角形全等判定与性质,等腰三角形性质是解题关键.【变式训练2】(1)如图1,已知ABC 中,AD 是中线,求证:2AB AC AD +>;(2)如图2,在ABC 中,D ,E 是BC 的三等分点,求证:AB AC AD AE +>+;(3)如图3,在ABC 中,D ,E 在边BC 上,且BD CE =.求证:AB AC AD AE +>+.【答案】(1)见解析;(2)见解析;(3)见解析【分析】(1)利用“倍长中线”法,延长AD ,然后通过全等以及三角形的三边关系证明即可;(2)取DE 中点H ,连接AH 并延长至Q 点,使得AH =QH ,连接QE 和QC ,通过“倍长中线”思想全等证明,进而得到AB =CQ ,AD =EQ ,然后结合三角形的三边关系建立不等式证明即可得出结论;(3)同(2)处理方式一样,取DE 中点M ,连接AM 并延长至N 点,使得AM =NM ,连接NE ,CE ,结合“倍长中线”思想证明全等后,结合三角形的三边关系建立不等式证明即可得出结论.【详解】证:(1)如图所示,延长AD 至P 点,使得AD =PD ,连接CP ,∵AD 是△ABC 的中线,∴D 为BC 的中点,BD =CD ,在△ABD 与△PCD 中,BD CD ADB PDC AD PD =⎧⎪∠=∠⎨⎪=⎩∴△ABD ≌△PCD (SAS ),∴AB =CP ,在△APC 中,由三边关系可得AC +PC >AP ,∴2AB AC AD +>;(2)如图所示,取DE 中点H ,连接AH 并延长至Q 点,使得AH =QH ,连接QE 和QC ,∵H 为DE 中点,D 、E 为BC 三等分点,∴DH =EH ,BD =DE =CE ,∴DH =CH ,在△ABH 和△QCH 中,BH CH BHA CHQ AH QH =⎧⎪∠=∠⎨⎪=⎩,∴△ABH ≌△QCH (SAS ),同理可得:△ADH ≌△QEH ,∴AB =CQ ,AD =EQ ,此时,延长AE ,交CQ 于K 点,∵AC +CQ =AC +CK +QK ,AC +CK >AK ,∴AC +CQ >AK +QK ,又∵AK +QK =AE +EK +QK ,EK +QK >QE ,∴AK +QK >AE +QE ,∴AC +CQ >AK +QK >AE +QE ,∵AB =CQ ,AD =EQ ,∴AB AC AD AE +>+;(3)如图所示,取DE 中点M ,连接AM 并延长至N 点,使得AM =NM ,连接NE ,CE ,∵M 为DE 中点,∴DM =EM ,∵BD =CE ,∴BM =CM ,在△ABM 和△NCM 中,BM CM BMA CMN AM NM =⎧⎪∠=∠⎨⎪=⎩∴△ABM ≌△NCM (SAS ),同理可证△ADM ≌△NEM ,∴AB =NC ,AD =NE ,此时,延长AE ,交CN 于T 点,∵AC +CN =AC +CT +NT ,AC +CT >AT ,∴AC +CN >AT +NT ,又∵AT +NT =AE +ET +NT ,ET +NT >NE ,∴AT +NT >AE +NE ,∴AC +CN >AT +NT >AE +NE ,∵AB =NC ,AD =NE ,∴AB AC AD AE +>+.【点睛】本题考查全等三角形证明问题中辅助线的添加,掌握“倍长中线”的基本思想,以及熟练运用三角形的三边关系是解题关键.【答案】(1)1.5 6.5AE <<;(2)见解析;(3)BE DF EF +=,理由见解析【分析】(1)如图①:将ACD △绕着点D 逆时针旋转180 得到EBD △可得BDE ≅ 得出5BE AC ==,然后根据三角形的三边关系求出AE 的取值范围,进而求得AD 范围;(2)如图②:FDC △绕着点D 旋转180︒得到NDB 可得BND CFD ≅ ,得出BN∴1.5 6.5AD <<;故答案为1.5 6.5AD <<;(2)证明:如图②:FDC △绕着点D 旋转180︒得到NDB∴BND CFD ≅ (SAS ),∴BN CF =,DN DF=∵DE DF⊥∴EN EF =,在BNE 中,由三角形的三边关系得:BE BN EN +>,∴BE CF EF +>;(3)BE DF EF +=,理由如下:如图③,将DCF 绕着点C 按逆时针方向旋转100︒∴△DCF ≌△BCH ,∴100CH CF DCB FCH ∠∠=︒=,=∴HBC D DF BH∠∠==,∵180ABC D ∠+∠︒=∴180HBC ABC ∠+∠︒=,∴点A 、B 、H 三点共线∵100FCH ∠=︒,50FCE ∠=︒,∴50ECH ∠=︒∴FCE ECH ∠∠=,在HCE 和FCE △中,===CF CH ECF ECH CE CE ∠∠⎧⎪⎨⎪⎩,∴HCE FCE ≌ (SAS )∴EH EF =,∵BE BH EH DF BH+==,∴BE DF EF +=.【点睛】本题属于三角形综合题,主要考查对全等三角形的性质和判定、三角形的三边关系定理、旋转的性质等知识点,通过旋转得到构造全等三角形是解答本题的关键.类型二、截长补短模型截长补短法使用范围:线段和差的证明(往往需证2次全等)(1)求证:CD BC DE=+;(2)若75B∠=︒,求E∠的度数.【答案】(1)见解析(2)105︒【分析】(1)在CD上截取CF∵CA平分BCD∠,∴BCA FCA∠=∠.在BCAV和FCA△中,⎧⎪∠⎨⎪⎩,∠=︒BAC60【答案】(1)5.8;(2)4.3【分析】(1)由已知条件和辅助线的作法,证得△ACD≌△ECD,得到由于∠A=2∠B,推出∠DEC=2∠B,等量代换得到∠B=∠EDB形,得出AC =CE =3.6,DE =BE =2.2,相加可得BC 的长;(2)在BA 边上取点E ,使BE =BC =2,连接DE ,得到△DEB ≌△DBC (SAS ),在DA 边上取点F ,使DF =DB ,连接FE ,得到△BDE ≌△FDE ,即可推出结论.【详解】解:(1)如图2,在BC 边上取点E ,使EC =AC ,连接DE .在△ACD 与△ECD 中,AC CE ACD ECD CD CD =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△ECD (SAS ),∴AD =DE ,∠A =∠DEC ,∵∠A =2∠B ,∴∠DEC =2∠B ,∴∠B =∠EDB ,∴△BDE 是等腰三角形;∴BE =DE =AD =2.2,AC =EC =3.6,∴BC 的长为5.8;(2)∵△ABC 中,AB =AC ,∠A =20°,∴∠ABC =∠C =80°,∵BD 平分∠B ,∴∠1=∠2=40°,∠BDC =60°,在BA 边上取点E ,使BE =BC =2,连接DE ,在△DEB 和△DBC 中,12BE BC BD BD =⎧⎪∠=∠⎨⎪=⎩,∴△DEB ≌△DBC (SAS ),∴∠BED =∠C =80°,∴∠4=60°,∴∠3=60°,在DA 边上取点F ,使DF =DB ,连接FE ,同理可得△BDE ≌△FDE ,∴∠5=∠1=40°,BE =EF =2,∵∠A =20°,∴∠6=20°,∴AF =EF =2,∵BD =DF =2.3,∴AD =BD +BC =4.3.【点睛】本题考查了全等三角形的性质与判定,等腰三角形的性质,熟悉这些定理是解决本题的关键.类型三、一线三等角模型应用:①通过证明全等实现边角关系的转化,便于解决对应的几何问题;②与函数综合应用中有利于点的坐标的求解。
全等三角形必考题型
全等三角形必考题型
在数学中,判断两个三角形是否全等是一种常见的题型。
以下是几种常见的全等三角形必考题型:
1. SSS判定法:如果两个三角形的三条边分别相等,则可以判定这两个三角形全等。
2. SAS判定法:如果两个三角形的一个角相等,且它们所夹的两边分别相等,则可以判定这两个三角形全等。
3. ASA判定法:如果两个三角形的两个角分别相等,且它们的夹角所对的边也相等,则可以判定这两个三角形全等。
4. RHS判定法:如果两个三角形的一个直角相等,且它们的斜边相等,则可以判定这两个三角形全等。
这些判定法是基于全等三角形的性质和定义来推导的。
学生在解答全等三角形的题目时,通常需要根据提供的条件进行分析,并利用这些判定法来做出判断。
此外,还存在一些需要应用多种判断法的复合题型,考察学生对不同判定法的理解和运用能力。
为了顺利解答全等三角形的必考题型,学生需要掌握三角形的性质和各种判定法的条件,以及具备逻辑思维和推理能力。
平时的课堂学习和练习中,应注重对这些知识点的理解和掌握,并通过大量的练习题来提高解题能力。
全等三角形压轴题与分类解析
BA ODCE图88年级三角形综合题归类一、 双等边三角形模型1. (1)如图7,点O 是线段AD 的中点,分别以AO 和DO 为边在线段AD 的同侧作等边三角形OAB 和等边三角形OCD ,连结AC 和BD ,相交于点E ,连结BC .求∠AEB 的大小; (2)如图8,ΔOAB 固定不动,保持ΔOCD 的形状和大小不变,将ΔOCD 绕着点O 旋转(ΔOAB 和ΔOCD 不能重叠),求∠AEB 的大小.2. 已知:点C 为线段AB 上一点,△ACM,△CBN 都是等边三角形,且AN 、BM 相交于O.①求证:AN=BM ②求∠AOB 的度数。
③ 若AN 、MC 相交于点P ,BM 、NC 交于点Q ,求证:PQ ∥AB 。
(某·中考题)同类变式: 如图a ,△ABC 和△CEF 是两个大小不等的等边三角形,且有一个公共顶点C ,连接AF 和BE.(1)线段AF 和BE 有怎样的大小关系?请证明你的结论;(2)将图a 中的△CEF 绕点C 旋转一定的角度,得到图b ,(1)中的结论还成立吗?作出判断并说明理由;(3)若将图a 中的△ABC 绕点C 旋转一定的角度,请你画出一个变换后的图形c(草图即可),(1)中的结论还成立吗?作出判断不必说明理由.图c3. 如图9,若△ABC 和△ADE 为等边三角形,,M N 分别为,EB CD 的中点,易证:CD BE ,△AMN 是等边三角形.CBOD图7 AEA BCMNO PQ(1)当把△ADE绕A点旋转到图10的位置时,CD BE=是否仍然成立?若成立,请证明;若不成立,请说明理由;(2)当△ADE绕A点旋转到图11的位置时,△AMN是否还是等边三角形?若是,请给出证明,若不是,请说明理由.同类变式:已知,如图①所示,在ABC△和ADE△中,AB AC=,AD AE=,BAC DAE∠=∠,且点B A D,,在一条直线上,连接BE CD M N,,,分别为BE CD,的中点.(1)求证:①BE CD=;②ANAM=;(2)在图①的基础上,将ADE△绕点A按顺时针方向旋转180,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立.4. 如图,四边形ABCD和四边形AEFG均为正方形,连接BG与DE相交于点H.(1)证明:△ABG ≌△ADE ;(2)试猜想∠BHD的度数,并说明理由;图9 图10 图11CENDABM图①CAEMBDN图②(3)将图中正方形ABCD 绕点A 逆时针旋转(0°<∠BAE <180°),设△ABE 的面积 为1S ,△ADG 的面积为2S ,判断1S 与2S 的大小关系,并给予证明.5.已知:如图,ABC △是等边三角形,过AB 边上的点D 作DG BC ∥,交AC 于点G ,在GD 的延长线上取点E ,使DE DB =,连接AE CD ,. (1)求证:AGE DAC △≌△;(2)过点E 作EF DC ∥,交BC 于点F ,请你连接AF ,并判断AEF △是怎样的三角形,试证明你的结论.CGAEDBF二、 垂直模型(该模型在基础题和综合题中均为重点考察内容)考点1:利用垂直证明角相等1. 如图,△ABC 中,∠ACB =90°,AC =BC ,AE 是BC 边上的中线,过C 作CF ⊥AE ,垂足为F ,过B 作BD ⊥BC 交CF 的延长线于D .求证:(1)AE =CD ; (2)若AC =12 cm ,求BD 的长.C FGEDAH2.(某中考)如图(1), 已知△ABC中, ∠BAC=900, AB=AC, AE是过A的一条直线, 且B、C在A、E的异侧, BD⊥AE于D, CE⊥AE于E 。
《全等三角形》证明题题型归类训练
《全等三角形》证明题题型归类训练题型1:全等+等腰性质1、如图,在△ABE 中,AB =AE,AD =AC,∠BAD =∠EAC, BC 、DE 交于点O. 求证:(1) △ABC ≌△AED ; (2) OB =OE 。
2、已知:如图,B 、E 、F 、C 四点在同一条直线上,AB =DC ,BE =CF ,∠B =∠C . 求证:OA =OD .题型2:两次全等1、AB=AC ,DB=DC ,F 是AD 的延长线上的一点。
求证:BF=CFFDCBA2、已知如图,E 、F 在BD 上,且AB =CD ,BF =DE,AE =CF,求证:AC 与BD 互相平分O C E BDAA B E O F D C3、如图,在四边形ABCD 中,AD ∥BC ,∠ABC=90°DE ⊥AC 于点F ,交BC 于点G ,交AB 的延长线于点E ,且AE=AC.求证:BG=FG题型3:直角三角形全等(余角性质)1、如图,在等腰Rt △ABC 中,∠C =90°,D 是斜边上AB 上任一点,AE ⊥CD 于E ,BF ⊥CD 交CD 的延长线于F ,CH ⊥AB 于H 点,交AE 于G . 求证:BD =CG .2、如图,将等腰直角三角形ABC 的直角顶点置于直线l 上,且过A,B 两点分别作直线的垂线,垂足分别为D,E ,请你在图中找出一对全等三角形,并写出证明它们全等的过程.3、如图,∠ABC =90°,AB =BC ,D 为AC 上一点,分别过A 、C 作BD 的垂线,垂足分别为E 、F 求证:EF =CF -AEAFCBDEGA BC FD E4、在△ABC 中,︒=∠90ACB ,BC AC =,直线MN 经过点C ,且MN AD ⊥于D ,MN BE ⊥于E .(1)当直线MN 绕点C 旋转到图1的位置时, 求证: ①ADC ∆≌CEB ∆;②BE AD DE +=;(2)当直线MN 绕点C 旋转到图2的位置时,(1)中的结论还成立吗?若成立,请给出证明;若不成立,说明理由.5、如图:BE ⊥AC,CF ⊥AB ,BM=AC,CN=AB 。
全等三角形重点题型(供参考)
全等三角形知识点总结知识点总结一、全等图形、全等三角形:1.全等图形:能够完全 ______ 的两个图形就是全等图形。
2.________________________________ 全等图形的性质:全等多边形的、分别相等。
3.全等三角形:三角形是特殊的多边形,因此,全等三角形的对应边、对应角分别相等。
同样,如果两个三角形的边、角分別对应相等,那么这两个三角形全等。
说明:全等三角形对应边上的高,中线相等,对应角的平分线相等:全等三角形的周长,而积也都相等。
这里要注意:(1)周长相等的两个三角形,不一定全等;(2)而积相等的两个三角形,也不一定全等。
二、全等三角形的判定:1.一般三角形全等的判定(1) __________________________________________________ 三边对应相等的两个三角形全等(“边边边”或“______________________________________ ”)。
(2) ______________________________________________________________ 两边和它们的夹角对应相等的两个三角形全等(“边角边”或“__________________________ ”)。
(3) ____________________________________________________________________ 两个角和它们的夹边分别对应相等的两个三角形全等("角边角”或“”)。
(4) ____________________________________________________________________ 有两角和其中一角的对边对应相等的两个三角形全等(“角角边”或“” )02.直角三角形全等的判定利用一般三角形全等的判定都能证明直角三角形全等.斜边和一条直角边对应相等的两个直角三角形全等("斜边、直角边”或“_____________________________________________________________________________ ”).注意:两边一对角(SSA)和三角(AAA)对应相等的两个三角形不一定全等。
全等三角形常见题型5种
全等三角形是初中数学中的一个重要知识点,其常见题型主要有以下五种:
1. 已知两边及其夹角,求证全等:这是全等三角形最基本的题型,也是最常见的题型。
解题的关键在于理解全等三角形的定义,即两个三角形如果它们的三边分别相等,那么这两个三角形就是全等的。
在解答这类题目时,我们通常会使用SAS(边角边)或ASA(角边角)定理。
2. 已知一边及其对角,求证全等:这类题目的解题思路与第一种类似,但是需要用到的是AAS(角角边)定理。
在解答这类题目时,我们需要先找出两个三角形的对应角和对应边,然后利用AAS定理进行证明。
3. 已知两角及其夹边,求证全等:这类题目的解题思路与前两种有所不同,需要用到的是HL(直角边边)定理。
在解答这类题目时,我们需要先找出两个三角形的对应角和对应边,然后利用HL定理进行证明。
4. 已知一边及其高,求证全等:这类题目的解题思路与前三种有所不同,需要用到的是SSS (边边边)定理。
在解答这类题目时,我们需要先找出两个三角形的对应边,然后利用SSS 定理进行证明。
5. 已知一边及其中线或高线,求证全等:这类题目的解题思路与第四种相似,但是需要用到的是RHS(旋转、平移、缩放)定理。
在解答这类题目时,我们需要先找出两个三角形的对应边和对应的中线或高线,然后利用RHS定理进行证明。
以上就是全等三角形的五种常见题型,每种题型都有其特定的解题方法和技巧。
在解答这类题目时,我们需要灵活运用全等三角形的各种定理,同时也需要注意观察和分析题目中的条件,以便找到最合适的解题方法。
全等三角形题型归纳(经典完整)
一,證明邊或角相等方法:證明兩條線段相等或角相等,如果這兩條線段或角在兩個三角形內,就證明這兩個三角形全等;如果這兩條線段或角在同一個三角形內,就證明這個三角形是等腰三角形;如果看圖時兩條線段既不在同一個三角形內,也不在兩個全等三角形內,那麼就利用輔助線進行等量代換,同樣如果角不在同一個三角形內,也不在兩個全等三角形內,也是用等量代換(方法是:(1)同角(等角)の餘角相等(2)同角(等角)の補角相等,此類型問題一般不單獨作一大題,往往是通過得出角相等後用來證明三角形全等,而且一般是在雙垂直の圖形中)1.已知,如圖,AB ⊥AC ,AB =AC ,AD ⊥AE ,AD =AE 。
求證:BE =CD 。
2.如圖,在四邊形ABCD 中,E 是AC 上の一點,∠1=∠2,∠3=∠4,求證: ∠5=∠6.3.已知:如圖△ABC 中,AB=AC ,BD ⊥AC ,CE ⊥AB ,BD 、CE 交於H 。
求證:HB=HC 。
2、如圖, 已知:AB ⊥BC 於B , EF ⊥AC 於G , DF ⊥BC 於D , BC=DF .求證:AC=EF .A ED C B654321E DCBAFGE D CBAFBC AMNE 1234EDC BA 二.證明線段和差問題 (形如:AB+BC=CD,AB=AD - CD)證明兩條線段和等於另一條線段,常常使用截長補短法。
①截長法即為在這三條最長の線段截取一段使它等於較短線段中の一條,然後證明剩下の一段等於另一條較短の線段。
②補短法即為在較短の一條線段上延長一段,使它們等於最長の線段,然後證明延長の這一線段等於另一條較短の線段。
證明兩條線段差等於另一條線段,只需把差化成和來解決即可。
1.如圖,已知AD ∥BC ,∠PAB の平分線與∠CBA の平分線相交於E ,CE の連線交AP 於D .求證:AD +BC =AB .2、如圖,已知:△ABC 中,∠BAC =90, AB =AC ,AE 是過A 一直線,且點B 、C 在AE の異側,BD ⊥AE 於D ,CE ⊥AE 於E . 求證:BD =DE +CE ;3、如圖,AB ∥CD ,DE 平分∠ADC ,AE 平分∠BAD ,求證:AB=AD - CDP E D CB A三.證明線段の2倍或21關系 ( AB CE =2, MN BN =12) 1. 利用含30角の直角三角形の性質證明例1. 已知,如圖1,∆ABC 是等邊三角形,在AC 、BC 上分別取點D 、E ,且AD =CE ,連結AE 、BD 交於點N ,過B 作BM AE ⊥,垂足為M ,求證:MN BN =12(提示:先證∠=BNE 60)2. 利用等線段代換(充分利用中點)例1.如圖,△ABC 中,∠BAC =90度,AB =AC ,BD 是∠ABC の平分線,BD の延長線垂直於過C 點の直線於E ,直線CE 交BA の延長線於F . 求證:BD =2CE .3.轉化為線段和問題,利用截長補短法例5. 已知:如圖5,四邊形ABCD 中,∠=D 90,對角線AC 平分∠BAD ,AC BC =,FE DCB A求證:AD AB12四.證明二倍角關系利用三角形外角和定理和等量代換如圖,△ABC 中,AD 是∠CAB の平分線,且AB =AC +CD ,求證:∠C =2∠BD C BA。
八年级上册数学《全等三角形》知识归纳与题型突破含解析
第十二章 全等三角形知识归纳与题型突破(题型清单)一、全等图形形状、大小相同的图形放在一起能够完全重合.能够完全重合的两个图形叫做全等形.要点诠释:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等.两个全等形的周长相等,面积相等.二、全等三角形能够完全重合的两个三角形叫全等三角形.三、全等三角形的性质全等三角形的对应边相等;全等三角形的对应角相等.要点诠释:全等三角形对应边上的高相等,对应边上的中线相等,周长相等,面积相等.全等三角形的性质是今后研究其它全等图形的重要工具.四、全等三角形的判定01 思维导图02 知识速记五、全等三角形的证明思路SAS HLSSS AAS SAS ASAAAS ASA AAS→ → → →→ → → → → → 找夹角已知两边找直角找另一边边为角的对边找任一角找夹角的另一边已知一边一角边为角的邻边找夹边的另一角找边的对角找夹边已知两角找任一边六、全等三角形证明方法全等三角形是平面几何内容的基础,这是因为全等三角形是研究特殊三角形、四边形、相似图形、圆等图形性质的有力工具,是解决与线段、角相关问题的一个出发点.运用全等三角形,可以证明线段相等、线段的和差倍分关系、角相等、两直线位置关系等常见的几何问题.可以适当总结证明方法.1.证明线段相等的方法:(1) 证明两条线段所在的两个三角形全等.(2) 利用角平分线的性质证明角平分线上的点到角两边的距离相等.(3) 等式性质.2.证明角相等的方法:(1) 利用平行线的性质进行证明.(2) 证明两个角所在的两个三角形全等.(3) 利用角平分线的判定进行证明.(4) 同角(等角)的余角(补角)相等.(5) 对顶角相等.3.证明两条线段的位置关系(平行、垂直)的方法;可通过证明两个三角形全等,得到对应角相等,再利用平行线的判定或垂直定义证明.4.辅助线的添加:(1)作公共边可构造全等三角形;(2)倍长中线法;(3)作以角平分线为对称轴的翻折变换全等三角形;(4)利用截长(或补短)法作旋转变换的全等三角形.5. 证明三角形全等的思维方法:(1)直接利用全等三角形判定和证明两条线段或两个角相等,需要我们敏捷、快速地发现两条线段和两个角所在的两个三角形及它们全等的条件.(2)如果要证明相等的两条线段或两个角所在的三角形全等的条件不充分时,则应根据图形的其它性质或先证明其他的两个三角形全等以补足条件.(3)如果现有图形中的任何两个三角形之间不存在全等关系,此时应添置辅助线,使之出现全等三角形,通过构造出全等三角形来研究平面图形的性质.七、 角平分线概念:从一个角的顶点引出一条射线,把这个角分成完全相同的角,这条射线叫做这个角的角平分线。
(完整版)全等三角形题型总结
全等三角形的判定题型类型一、全等三角形的判定1——“边边边”例题、已知:如图,AD =BC ,AC =BD.试证明:∠CAD =∠DBC.(答案)证明:连接DC , 在△ACD 与△BDC 中()AD BC AC BDCD DC ⎧=⎪=⎨⎪=⎩公共边∴△ACD ≌△BDC (SSS )∴∠CAD =∠DBC (全等三角形对应角相等)类型二、全等三角形的判定2——“边角边”例题、已知,如图,在四边形ABCD 中,AC 平分∠BAD ,CE ⊥AB 于E ,并且AE =12(AB +AD ),求证:∠B +∠D =180°.(答案)证明:在线段AE 上,截取EF =EB ,连接FC ,∵CE ⊥AB ,∴∠CEB =∠CEF =90°在△CBE 和△CFE 中,CEB CEF EC =EC EB EF =⎧⎪∠=∠⎨⎪⎩∴△CBE 和△CFE (SAS )∴∠B =∠CFE ∵AE =12(AB +AD ),∴2AE = AB +AD ∴AD =2AE -AB ∵AE =AF +EF ,∴AD =2(AF +EF )-AB =2AF +2EF -AB =AF +AF +EF +EB -AB =AF +AB -AB ,即AD =AF在△AFC 和△ADC 中(AF AD FAC DAC AC AC =⎧⎪∠=∠⎨⎪=⎩角平分线定义)∴△AFC ≌△ADC (SAS )∴∠AFC =∠D∵∠AFC +∠CFE =180°,∠B =∠CFE.∴∠AFC +∠B =180°,∠B +∠D =180°. 类型三、全等三角形的判定3——“角边角”例题、已知:如图,在△MPN 中,H 是高MQ 和NR 的交点,且MQ =NQ .求证:HN =PM.证明:∵MQ 和NR 是△MPN 的高, ∴∠MQN =∠MRN =90°, 又∵∠1+∠3=∠2+∠4=90°,∠3=∠4 ∴∠1=∠2在△MPQ 和△NHQ 中,12MQ NQ MQP NQH ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△MPQ ≌△NHQ (ASA ) ∴PM =HN类型四、全等三角形的判定4——“角角边”例题、已知Rt △ABC 中,AC =BC ,∠C =90°,D 为AB 边的中点,∠EDF =90°,∠EDF 绕D 点旋转,它的两边分别交AC 、CB 于E 、F .当∠EDF 绕D 点旋转到DE ⊥AC 于E 时(如图1),易证12DEF CEF ABC S S S +=△△△;当∠EDF 绕D 点旋转到DE 和AC 不垂直时,在图2情况下,上述结论是否成立?若成立,请给予证明;若不成立,请写出你的猜想,不需证明.解:图2成立; 证明图2:过点D 作DM AC DN BC ⊥⊥,则90DME DNF MDN ∠=∠=∠=°在△AMD 和△DNB 中,AMD=DNB=90A B AD BD ∠∠︒⎧⎪∠=∠⎨⎪=⎩∴△AMD ≌△DNB (AAS )∴DM =DN∵∠MDE +∠EDN =∠NDF +∠EDN =90°,∴∠ MDE =∠NDF在△DME 与△DNF 中,90EMD FDN DM DN MDE NDF ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩∴△DME ≌△DNF (ASA )∴DME DNF S S =△△∴DEF CEF DMCN DECF S =S =S S .+△△四边形四边形可知ABC DMCN 1S =S 2△四边形,∴12DEF CEF ABC S S S +=△△△类型五、直角三角形全等的判定——“HL ”下列说法中,正确的画“√”;错误的画“×”,并举出反例画出图形.(1)一条直角边和斜边上的高对应相等的两个直角三角形全等.( ) (2)有两边和其中一边上的高对应相等的两个三角形全等.( ) (3)有两边和第三边上的高对应相等的两个三角形全等.( )(答案)(1)√;(2)×;在△ABC 和△DBC 中,AB =DB ,AE 和DF 是其中一边上的高,AE =DF(3)×. 在△ABC 和△ABD 中,AB =AB ,AD =AC ,AH 为第三边上的高,如下图:1、已知:如图,DE ⊥AC ,BF ⊥AC ,AD =BC ,DE =BF.求证:AB ∥DC.(答案与解析)证明:∵DE ⊥AC ,BF ⊥AC ,∴在Rt △ADE 与Rt △CBF 中.AD BC DE BF ⎧⎨⎩=,=∴Rt △ADE ≌Rt △CBF (HL ) ∴AE =CF ,DE =BF∴AE +EF =CF +EF ,即AF =CE在Rt △CDE 与Rt △ABF 中,DE BFDEC BFA EC FA =⎧⎪∠=∠⎨⎪=⎩∴Rt △CDE ≌Rt △ABF (SAS )∴∠DCE =∠BAF ∴AB ∥DC. (点评)从已知条件只能先证出Rt △ADE ≌Rt △CBF ,从结论又需证Rt△CDE ≌Rt △ABF.我们可以从已知和结论向中间推进,证出题目.2、如图,△ABC 中,∠ACB =90°,AC =BC ,AE 是BC 边上的中线, 过C 作CF ⊥AE ,垂足为F ,过B 作BD ⊥BC 交CF 的延长线于D. (1)求证:AE =CD ;(2)若AC =12cm ,求BD 的长.(答案与解析)(1)证明:∵DB ⊥BC ,CF ⊥AE ,∴∠DCB +∠D =∠DCB +∠AEC =90°.∴∠D =∠AEC .又∵∠DBC =∠ECA =90°,且BC =CA ,∴△DBC ≌△ECA (AAS ).∴AE =CD . (2)解:由(1)得AE =CD ,AC =BC ,∴△CDB ≌△AEC (HL ) ∴BD =EC =12BC =12AC ,且AC =12. ∴BD =6cm .(点评)三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件三角形角平分线的性质三角形三条角平分线交于三角形内部一点,此点叫做三角形的内心且这一点到三角形三边的距离相等.三角形的一内角平分线和另外两顶点处的外角平分线交于一点.这点叫做三角形的旁心.三角形有三个旁心.所以到三角形三边所在直线距离相等的点共有4个.如图所示:△ABC 的内心为1P ,旁心为234,,P P P ,这四个点到△ABC 三边所在直线距离相等.角的平分线的性质及判定1、如图,AD 是∠BAC 的平分线,DE ⊥AB ,交AB 的延长线于点E ,DF ⊥AC 于点F ,且DB =DC.求证:BE =CF.(答案)证明:∵DE ⊥AE ,DF ⊥AC ,AD 是∠BAC 的平分线, ∴DE =DF ,∠BED =∠DFC =90°在Rt △BDE 与Rt △CDF 中,DB DCDE DF =⎧⎨=⎩,∴Rt △BDE ≌Rt △CDF (HL ) ∴BE =CF2、如图,AC=DB ,△PAC 与△PBD 的面积相等.求证:OP 平分∠AOB .(答案与解析)证明:作PM ⊥OA 于M ,PN ⊥OB 于N12PAC S AC PM =△∵,12PBD S BD PN =△,且PAC S =△PBD S △ ∴ 12AC PM 12BD PN =又∵AC =BD ∴PM =PN又∵PM⊥OA,PN⊥OB ∴OP平分∠AOB(点评)观察已知条件中提到的三角形△PAC与△PBD,显然与全等无关,而面积相等、底边相等,于是自然想到可得两三角形的高线相等,联系到角平分线判定定理可得.跟三角形的高结合的题目,有时候用面积会取得意想不到的效果.3、如图,DC∥AB,∠BAD和∠ADC的平分线相交于E,过E的直线分别交DC、AB于C、B两点. 求证:AD=AB+DC.(答案)证明:在线段AD上取AF=AB,连接EF,∵AE是∠BAD的角平分线,∴∠1=∠2,∵AF=AB AE=AE,∴△ABE≌△AFE,∴∠B=∠AFE由CD∥AB又可得∠C+∠B=180°,∴∠AFE+∠C=180°,又∵∠DFE+∠AFE=180°,∴∠C=∠DFE,∵DE是∠ADC的平分线,∴∠3=∠4,又∵DE=DE,∴△CDE≌△FDE,∴DF=DC,∵AD=DF+AF,∴AD=AB+DC.类型一、全等三角形的性质和判定如图,已知:AE⊥AB,AD⊥AC,AB=AC,∠B=∠C,求证:BD=CE.(答案)证明:∵AE⊥AB,AD⊥AC,∴∠EAB=∠DAC=90°∴∠EAB+∠DAE=∠DAC+∠DAE ,即∠DAB=∠EAC.在△DAB与△EAC中,DAB EACAB ACB C∠=∠⎧⎪=⎨⎪∠=∠⎩∴△DAB≌△EAC (SAS)∴BD=CE.类型二、巧引辅助线构造全等三角形(1).作公共边可构造全等三角形:1、在ΔABC中,AB=AC.求证:∠B=∠C(答案)证明:过点A作AD⊥BC在Rt△ABD与Rt△ACD中AB AC AD AD=⎧⎨=⎩∴Rt△ABD≌Rt△ACD(HL)∴∠B=∠C.(2).倍长中线法:1、已知:如图所示,CE、CB分别是△ABC与△ADC的中线,且∠ACB=∠ABC.求证:CD=2CE.(答案)证明:延长CE至F使EF=CE,连接BF.∵EC为中线,∴AE=BE.在△AEC与△BEF中,,,,AE BEAEC BEFCE EF=⎧⎪∠=∠⎨⎪=⎩∴△AEC≌△BEF(SAS).∴AC=BF,∠A=∠FBE.(全等三角形对应边、角相等)又∵∠ACB=∠ABC,∠DBC=∠ACB+∠A,∠FBC=∠ABC+∠A.∴AC=AB,∠DBC=∠FBC.∴AB=BF.又∵BC为△ADC的中线,∴AB=BD.即BF=BD.在△FCB与△DCB中,,,,BF BDFBC DBC BC BC=⎧⎪∠=∠⎨⎪=⎩∴△FCB≌△DCB(SAS).∴CF=CD.即CD=2CE.2、若三角形的两边长分别为5和7, 则第三边的中线长x的取值范围是( )A.1 <x<6B.5 <x<7C.2 <x<12D.无法确定(答案)A ;提示:倍长中线构造全等三角形,7-5<2x<7+5,所以选A选项.(3).作以角平分线为对称轴的翻折变换构造全等三角形:如图,AD 是ABC ∆的角平分线,H ,G 分别在AC ,AB 上,且HD =BD. (1)求证:∠B 与∠AHD 互补;(2)若∠B +2∠DGA =180°,请探究线段AG 与线段AH 、HD 之间满足的等量关系,并加以证明.(答案)证明:(1)在AB 上取一点M, 使得AM =AH, 连接DM.∵ ∠CAD =∠BAD, AD =AD, ∴ △AHD ≌△AMD. ∴ HD =MD, ∠AHD =∠AMD. ∵ HD =DB, ∴ DB = MD. ∴ ∠DMB =∠B.∵ ∠AMD +∠DMB =180︒,∴ ∠AHD +∠B =180︒. 即 ∠B 与∠AHD 互补. (2)由(1)∠AHD =∠AMD, HD =MD, ∠AHD +∠B =180︒.∵ ∠B +2∠DGA =180︒,∴ ∠AHD =2∠DGA. ∴ ∠AMD =2∠DGM.∵ ∠AMD =∠DGM +∠GDM. ∴ 2∠DGM =∠DGM +∠GDM. ∴ ∠DGM =∠GDM. ∴ MD =MG.∴ HD = MG.∵ AG = AM +MG, ∴ AG = AH +HD. (3).利用截长(或补短)法作构造全等三角形:1、如图,AD 是△ABC 的角平分线,AB >AC,求证:AB -AC >BD -DC (答案)证明:在AB 上截取AE =AC,连结DE∵AD 是△ABC 的角平分线,∴∠BAD =∠CAD在△AED 与△ACD 中⎪⎩⎪⎨⎧=∠=∠=AD AD CAD BAD ACAE∴△AED ≌△ADC (SAS )∴DE =DC 在△BED 中,BE >BD -DC即AB -AE >BD -DC ∴AB -AC >BD -DCM G HDCBAEDC BA2、如图所示,已知△ABC中AB>AC,AD是∠BAC的平分线,M是AD上任意一点,求证:MB-MC<AB-AC.(答案与解析)证明:∵AB>AC,则在AB上截取AE=AC,连接ME.在△MBE中,MB-ME<BE(三角形两边之差小于第三边).在△AMC和△AME中,()()()AC AECAM EAMAM AM=⎧⎪∠=∠⎨⎪=⎩所作,角平分线的定义,公共边,∴△AMC≌△AME(SAS).∴MC=ME(全等三角形的对应边相等).又∵BE=AB-AE,∴BE=AB-AC,∴MB-MC<AB-AC.(点评)因为AB>AC,所以可在AB上截取线段AE=AC,这时BE=AB-AC,如果连接EM,在△BME中,显然有MB-ME<BE.这表明只要证明ME=MC,则结论成立.充分利用角平分线的对称性,截长补短是关键.(4).在角的平分线上取一点向角的两边作垂线段.1、如图所示,已知E为正方形ABCD的边CD的中点,点F在BC上,且∠DAE=∠FAE.求证:AF=AD+CF.(答案与解析)证明:作ME⊥AF于M,连接EF.∵四边形ABCD为正方形,∴∠C=∠D=∠EMA=90°.又∵∠DAE=∠FAE,∴AE为∠FAD的平分线,∴ME=DE.在Rt△AME与Rt△ADE中,()()AE AEDE ME=⎧⎨=⎩公用边,已证,∴Rt△AME≌Rt△ADE(HL).∴AD=AM(全等三角形对应边相等).又∵E为CD中点,∴DE=EC.∴ME=EC.在Rt△EMF与Rt△ECF中,()(ME CEEF EF=⎧⎨=⎩已证,公用边),∴Rt△EMF≌Rt△ECF(HL).∴MF=FC(全等三角形对应边相等).由图可知:AF=AM+MF,∴AF=AD+FC(等量代换).(点评)与角平分线有关的辅助线:在角两边截取相等的线段,构造全等三角形;在角的平分线上取一点向角的两边作垂线段. 四边形ABCD为正方形,则∠D=90°.而∠DAE=∠FAE说明AE为∠FAD的平分线,按常规过角平分线上的点作出到角两边的距离,而E到AD的距离已有,只需作E到AF的距离EM即可,由角平分线性质可知ME=DE.AE=AE.Rt△AME与Rt△ADE全等有AD=AM.而题中要证AF=AD+CF.根据图知AF=AM+MF.故只需证MF=FC即可.从而把证AF=AD+CF转化为证两条线段相等的问题.2、如图所示,在△ABC中,AC=BC,∠ACB=90°,D是AC上一点,且AE垂直BD的延长线于E,12AE BD=,求证:BD是∠ABC的平分线.(答案与解析)证明:延长AE和BC,交于点F,∵AC⊥BC,BE⊥AE,∠ADE=∠BDC(对顶角相等),∴∠EAD+∠ADE=∠CBD+∠BDC.即∠EAD=∠CBD.在Rt△ACF和Rt△BCD中.所以Rt△ACF≌Rt△BCD(ASA).则AF=BD(全等三角形对应边相等).∵AE=BD,∴AE=AF,即AE=EF.在Rt△BEA和Rt△BEF中,则Rt△BEA≌Rt△BEF(SAS).所以∠ABE=∠FBE(全等三角形对应角相等),即BD是∠ABC的平分线.(点评)如果由题目已知无法直接得到三角形全等,不妨试着添加辅助线构造出三角形全等的条件,使问题得以解决.平时练习中多积累一些辅助线的添加方法.类型三、全等三角形动态型问题解决动态几何问题时要善于抓住以下几点:(1)变化前的结论及说理过程对变化后的结论及说理过程起着至关重要的作用;(2)图形在变化过程中,哪些关系发生了变化,哪些关系没有发生变化;原来的线段之间、角之间的位置与数量关系是否还存在是解题的关键;(3)几种变化图形之间,证明思路存在内在联系,都可模仿与借鉴原有的结论与过程,其结论有时变化,有时不发生变化1、已知:在△ABC中,∠BAC=90°,AB=AC,点D为射线BC上一动点,连结AD,以AD 为一边且在AD的右侧作正方形ADEF.(1)当点D在线段BC上时(与点B不重合),如图1,求证:CF=BD(2)当点D 运动到线段BC 的延长线上时,如图2,第(1)问中的结论是否仍然成立,并说明理由.(答案)证明:(1)∵正方形ADEF ∴AD =AF ,∠DAF =90°∴∠DAF -∠DAC =∠BAC -∠DAC ,即∠BAD =∠CAF在△ABD 和△ACF 中,AB AC BAD CAF AD AF =⎧⎪∠=∠⎨⎪=⎩∴△ABD ≌△ACF (SAS ) ∴BD =CF(2)当点D 运动到线段BC 的延长线上时,仍有BD =CF此时∠DAF +∠DAC =∠BAC +∠DAC ,即∠BAD =∠CAF在△ABD 和△ACF 中,AB AC BAD CAF AD AF =⎧⎪∠=∠⎨⎪=⎩∴△ABD ≌△ACF (SAS ) ∴BD =CF2、如图(1),△ABC 中,BC =AC ,△CDE 中,CE =CD ,现把两个三角形的C 点重合,且使∠BCA =∠ECD ,连接BE ,AD .求证:BE =AD .若将△DEC 绕点C 旋转至图(2),(3)所示的情况时,其余条件不变,BE 与AD 还相等吗?为什么?(答案)证明:∵∠BCA =∠ECD , ∴∠BCA -∠ECA =∠ECD -∠ECA ,即∠BCE =∠ACD在△ADC 与△BEC 中ACD=BCE AC BC CD CE =⎧⎪∠∠⎨⎪=⎩∴△ADC ≌△BEC(SAS) ∴BE =AD .若将△DEC 绕点C 旋转至图(2),(3)所示的情况时,其余条件不变,BE 与AD 还相等,因为还是可以通过SAS 证明△ADC ≌△BEC.。
全等三角形题型归类及解析
全等三角形题型归类及解析全等三角形难题题型归类及解析一、角平分线型角平分线具有轴对称性,因此我们可以充分利用这一特点,常用的辅助线有两种:一是利用截取的线段构造全等三角形,二是通过平分线上的一点作两边的垂线。
此外,还要掌握两个常用的结论:角平分线与平行线构成等腰三角形,角平分线与垂线构成等腰三角形。
例如,在三角形ABC中,点D在边BC上,AD平分∠BAC,在AB上截取AE=AC,连结DE,已知DE=2cm,BD=3cm,求线段BC的长度。
又如,在图中,BD为∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD于M,PN⊥CD于N,要判断PM与PN的关系。
还有,在△ABC中,E在边AC上,且∠AEB=∠ABC,要证明∠ABE=∠C;如果∠BAE的平分线AF交BE于F,FD∥BC交AC于D,且AB=5,AC=8,要求DC的长度。
2、中点型由中点可产生以下XXX:1、中线、倍长中线2、利用中心对称图形构造8字型全等三角形3、在直角三角形中联想直角三角形斜边上的中线4、三角形的中位线例如,在△ABC中,BE⊥AC,CD⊥XXX于D,BE平分∠ABC,且∠ABC=45°,与CD相交于点F,H是BC边的中点,DH与BE相交于点G,要证明BF=AC和CE=BF/2.还有,在△ABC中,D是BC的中点,DE⊥DF,要判断BE+CF与EF的大小关系,并证明结论。
又如,在△ABC中,AD是BC边上的中线,E是AD上的一点,且BE=AC,延长BE交AC于F,要证明AF=EF。
3、多个直角型除了以上两种常见的题型,还有一些涉及多个直角的题目,需要运用勾股定理和全等三角形的性质来解决。
例如,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB,要证明XXX。
要证明BE=CF,根据题目已知,AD是BC的中线,所以AD=DC,又因为DF=DE,所以三角形ADF和CED相等,所以∠A=∠C,即AB∥CF,同理可得BE∥AC,所以BE=CF,证毕。
全等三角形经典题型汇总
全等三角形经典题型汇总全等三角形知识网络题型一已知两边,找夹角SAS1.如图,△ABC中,AB = AC,点E,F 在边BC 上,BE = CF,点D 在AF 的延长线上,AD = AC,(1)求证:△ABE ≌△ACF;(2)若∠BAE = 30°,则∠ADC = °.【解析】(1)∵AB = AC,∴∠B = ∠ACF,在△ABE 和△ACF 中,AB = AC , ∠B = ∠ACF,BE = CF,∴△ABE ≌△ACF(SAS);(2)∵△ABE ≌△ACF,∠BAE = 30°,∴∠CAF = ∠BAE = 30°,∵AD = AC,∴∠ADC = ∠ACD,∴∠ADC = 1/2(180°- 30°)= 75°.2.如图,点E、F 在BC 上,BE = CF,AB = DC,∠B = ∠C,AF 与DE 交于点G,求证:GE = GF.【解析】∵BE = CF,∴BE + EF = CF + EF,∴BF = CE,在△ABF 和△DCE 中,AB = DC , ∠B = ∠C,BF = CE ,∴△ABF ≌△DCE(SAS),∴∠GEF = ∠GFE,∴EG = FG.3.已知,点P 是等边三角形△ABC 中一点,线段AP 绕点A 逆时针旋转60°到AQ,连接PQ、QC.(1)求证:PB=QC;(2)若PA=3,PB=4,∠APB=150°,求PC 的长度.【解析】(1)证明:∵线段AP 绕点A 逆时针旋转60°到AQ,∴AP = AQ,∠PAQ = 60°,∴△APQ 是等边三角形,∠PAC + ∠CAQ = 60°,∵△ABC 是等边三角形,∴∠BAP + ∠PAC = 60°,AB = AC,∴∠BAP = ∠CAQ,在△BAP 和△CAQ 中,BA = CA , ∠BAP = ∠CAQ,AP = AQ ,∴△BAP ≌△CAQ(SAS),∴PB = QC;(2)解:∵由(1)得△APQ 是等边三角形,∴AP = PQ = 3,∠AQP = 60°,∵∠APB = 150°,∴∠PQC = 150°﹣60°= 90°,∵PB = QC,∴QC = 4,∴△PQC 是直角三角形,题型二已知两边,找直角HL1.如图,BD = CF,FD⊥BC 于点D,DE⊥AB 于点E,BE = CD,若∠AFD = 145°,则∠EDF 的度数为()A.45°B.55°C.35°D.65°【解析】∵∠DFC + ∠AFD = 180°,∠AFD = 145°,∴∠DFC = 35°,∵DE⊥AB,DF⊥BC,∴∠BED = ∠CDF = 90°.∵在Rt△BDE 与Rt△CFD 中BE = CD,BD = CF,∴Rt△BDE ≌△Rt△CFD,∴∠BDE = ∠CFD = 35°.∵∠EDF + ∠BDE = 90°,∴∠EDF = 55°.故选B.2.如图,∠B = ∠D = 90°,BC = CD,∠1 = 40°,则∠2 = ().A.40°B.50°C.60°D.75°【解析】∵∠B = ∠D = 90°,在Rt△ABC 和Rt△ADC 中,BC = CD , AC = AC ,∴Rt△ABC ≌Rt△ADC(HL)∴∠2 = ∠ACB = 90°- ∠1 = 50°.故选:B.3.如图,直线l 上有三个正方形a,b,c,若a,c 的面积分别为5 和11,则b 的面积为().【解析】∵∠ACB+∠ECD=90°,∠DEC+∠ECD=90°,∴∠ACB=∠DEC,∵∠ABC=∠CDE,AC=CE,∴△ABC ≌△CDE,∴BC=DE.∴(如上图),根据勾股定理的几何意义,b 的面积=a 的面积+c 的面积,∴b 的面积=a 的面积+c 的面积=5+11=16.故选C.题型三已知两边,找第三边SSS1.如图,五边形ABCDE 中有一正三角形ACD,若AB = DE,BC = AE,∠E = 115°,则∠BAE 的度数为何?()A.115B.120C.125D.130【解析】∵三角形ACD 为正三角形,∴AC = AD,∠ACD = ∠ADC = ∠CAD = 60°,∵AB = DE,BC = AE,∴△ABC ≌△DEA,∴∠B = ∠E = 115°,∠ACB = ∠EAD,∠BAC = ∠ADE,∴∠ACB + ∠BAC = ∠BAC + ∠DAE = 180°﹣115°= 65°,∴∠BAE = ∠BAC + ∠DAE + ∠CAD = 65°+ 60°= 125°,故选:C.2.在边长为1 的正方形网格中标有A、B、C、D、E、F 六个格点,根据图中标示的各点位置,与△ABC 全等的是()A.△ACFB.△ACEC.△ABDD.△CEF【解析】在△ABC 中,A、在△ACF 中,则△ACF 与△ABC 不全等,故不符合题意;B、在△ACE 中,则△ACE 与△ABC 不全等,故不符合题意;C、在△ABD 中,则由SSS 可证明△ACE 与△ABC 全等,故符合题意;D、在△CEF 中,则△CEF 与△ABC 不全等,故不符合题意,故选C.3.如图,OA=OB,OC=OD,AD=BC,则图中全等三角形的对数有( ).A.1 对B.2 对C.3 对D.4 对【解析】∵OA = OB,OC = OD,AD=BC,∴△DOA ≌△COB(SSS);∵OA = OB,OC = OD,∴AC = BD,∵AB = AB,AD=BC,∴△ABD ≌△BAC(SSS);∵AD = BC,AC = BD,DC = CD,∴△ADC ≌△BCD(SSS).故选:C.4.如图,点B、C、E 三点在同一直线上,且AB = AD , AC = AE , BC = DE ;若∠1 + ∠2 + ∠3 = 94°,则∠3 的度数为().A.49°B.47°C.45°D.43°【解析】在△ABC 和△ADE 中,AB = AD , AC = AE , BC = DE ,∴△ABC ≌△ADE (SSS),∴∠ABC = ∠1,∠BAC = ∠2,在△ABC 中,由三角形的外角性质得,∠3 = ∠ABC + ∠BAC = ∠1 + ∠2,∵∠1 + ∠2 + ∠3 = 94°,∴2∠3 = 94°,∴∠3 = 47°.故选B.题型四已知一边一角(若边为角的对边,找任意角AAS )1.如图,正方形ABCD 中,AB = 1,点P 是BC 边上的任意一点(异于端点B、C ),连接AP,过B、D 两点作BE⊥AP 于点E,DF⊥AP 于点F.(1)求证:EF = DF﹣BE;(2)若△ADF 的周长为7/3 ,求EF 的长.【解析】(1)证明:∵BE⊥AP,DF⊥AP,∴∠DFA = ∠AEB = 90°,∠ABE + ∠BAE = 90°,∵四边形ABCD 为正方形,∴AD = AB,∠DAB = 90°= ∠DAF + ∠BAE,∴∠DAF = ∠ABE,在△ADF 和△BAE 中,∠DAF = ∠ABE,∠DFA = ∠AEB,AD = AB,∴△ADF ≌△BAE(AAS),∴AF = BE,DF = AE,∴EF = AE﹣AF = DF﹣BE;(2)解:设DF = a,AF = b,EF = DF﹣AF = a﹣b >0,∵△ADF 的周长为7/3,AD = 1,∴DF + AF = 4/3,即a + b = 4/3,由勾股定理得:DF2 + AF2 = AD2,即a2 + b2 = 1,∴(a - b)2 = 2(a2 + b2)- (a + b)2 = 2 - 16/9 = 2/9 ,∴a - b = √2/3 , 即EF = √2/3 .题型五已知一边一角(边为角的邻边(找已知角的另一边SAS ))1.如图,线段AD、BE 相交与点C , 且△ABC ≌△DEC,点M、N 分别为线段AC、CD 的中点.求证:(1)ME = BN;(2)ME∥BN.【解析】(1)∵△ABC ≌△DEC,∴AC = DC , BC = CE.∵点M、N 分别为线段AC、CD 的中点,∴CM = CN.在△BCN 和△ECM 中,AC = DC, ∠BCN = ∠ECM , BC = CE,∴△BCN ≌△ECM(SAS),∴ME = BN.(2)∵△BCN ≌△ECM,∴∠CBN = ∠CEM,∴ME∥BN.2.已知:△ABC 是等边三角形,点D、E 分别是边BC、CA 上的点且BD = CE,AD、BE相交于点O.(1)求证:△ACD ≌△BAE;(2)求∠AOB 的度数.【解析】(1)∵△ABC 是等边三角形,∴∠BAC = ∠C = 60°,BC = AC,∵BD = CE,∴BC - BD = AC - CE,∴AE = CD,在△ACD 和△BAE 中,AE = CD , ∠BAE = ∠C = 60°,AB = AC ,∴△ACD ≌△BAE(SAS);(2)∵△ACD ≌△BAE,∴∠CAD = ∠ABE,∴∠AOE = ∠BAD + ∠ABE = ∠BAD + ∠CAD = ∠BAC = 60°,∴∠AOB = 180°- 60°= 120°.题型六已知一边一角(边为角的邻边(找已知边的对角AAS))1.如图,在▱ABCD 中,E 是BC 的中点,连接AE 并延长交DC 的延长线于点F.(1)求证:AB = CF;(2)连接DE,若AD = 2AB,求证:DE⊥AF.【解析】(1)∵四边形ABCD 是平行四边形,∴AB∥DF,∴∠BAE = ∠F,∵E 是BC 的中点,∴BE = CE,在△AEB 和△FEC 中,∠BAE = ∠F,∠AEB = ∠FEC,BE = EC,∴△AEB ≌△FEC(AAS),∴AB = CF;(2)∵四边形ABCD 是平行四边形,∴AB = CD,∵AB = CF,DF = DC + CF ,∴DF = 2CF,∴DF = 2AB,∵AD = 2AB,∴AD = DF,∵△AEB ≌△FEC,∴AE = EF,∴ED⊥AF .题型七已知一边一角(边为角的邻边(找已知边的另一角ASA ))1.如图,∠A=∠B,AE=BE,点D 在AC 边上,∠1=∠2,AE 和BD 相交于点O.求证:△AEC ≌△BED;【解析】∵AE 和BD 相交于点O,∴∠AOD = ∠BOE.在△AOD 和△BOE 中,∠A=∠B,∴∠BEO = ∠2.又∵∠1 = ∠2,∴∠1 = ∠BEO,∴∠AEC = ∠BED.在△AEC 和△BED 中,∠A = ∠B,AE = BE , ∠AEC = ∠BED,∴△AEC ≌△BED(ASA).题型八已知两角,找两角的夹边ASA1.如图,在△DAE 和△ABC 中,D 是AC 上一点,AD = AB,DE∥AB,∠E = ∠C.求证:AE = BC.【解析】证明:∵DE∥AB,∴∠ADE = ∠BAC.在△ADE 和△BAC 中,∠E = ∠C ,∠ADE = BAC,AD = AB,∴△ADE ≌△BAC(AAS),∴AE = BC.题型九已知两角,找任意一边AAS1.如图AF//DE,点B、C 在线段AD 上,连接FC、EB,且∠E = ∠F,延长EB 交AF 于点G.(1)求证:BE//CF(2)若CF = BE,求证:AB = CD .【解析】(1)∵AF//DE,∴∠AGB = ∠E,又∵∠E = ∠F,∴∠AGB = ∠F,∴BE//CF(2)∵BE//CF,∴∠DBE = ∠ACF,∵∠E = ∠F , CF = BE,∴ΔACF ≌ΔDBE,∴AC = BD,∴AB = CD.。
全面的全等三角形题型汇总
全等三角形的总复习题型:角角边证明三角形全等1、如图,若∠1=∠2,∠C=∠D,则证明△ADB≌△ACB。
2、如图,已知:AD=AE,ABEACD∠=∠,求证:BD=CE.3、如图,已知:ABDBACDC∠=∠∠=∠.,求证:OC=OD.4、如图,CD⊥AB,BE⊥AC,垂足分别为D、E,BE交CD于F,且AD=DF,求证:AC= BF。
BAE FCDD EBAOD C5、如图,已知:BE=CD,∠B=∠C,求证:∠1=∠2。
题型:边角边证明三角形全等1、如图,△ABC中,AB=AC,AD平分∠BAC,证明:△ABD≌△ACD。
2、如图,已知AB=BE,BC=BD,∠1=∠2,证明:∠D=∠C。
3、如右图,AB=AD ,∠BAD=∠CAE,AC=AE,求证:CB=ED。
4、已知:如图,AB=CD,AB//DC.求证:AD//BC,AD=BC。
ABCDE5、如图,D、E在BC上,且BD=CE,AD=AE,∠ADE=∠AED,求证:AB=AC。
题型:角边角证明三角形全等1、如图,∠ABC=∠DCB,∠ACB=∠DCB,试说明△ABC≌△DCB。
A DB C2、已知:如图, AB=AC , ∠B=∠C,BE、DC交于O点。
求证:BD=CE.3、如图:在△ABC和△DBC中,∠ABD=∠DCA,∠DBC=∠ACB,求证:AC=DB.4、如图,已知:AE=CE,∠A=∠C,∠BED=∠AEC,求证:AB=CD.AEC B D5、已知:如图,AB//DE,AC//DF,BE=CF,求证:∠A=∠B.6、如图, AB//CD, AD、BC交于O点, EF过点O分别交AB、CD于E、F,且AE=DF, 求证:O是EF的中点.7、已知:如图,AE=BF,AD//BC,AB、CD交于O点。
求证:CE=DF.题型:边边边证明三角形全等1、如图,AB=AC,BD=CD,求证:∠1=∠2.2、已知:如图,AC=AD,BC=BD,求证:∠C=∠D3、如图,已知AB=CD,AC=BD,求证:∠A=∠D.4、已知:如图,AB=AC,AD=AE,BD=CE.求证:(1)△ABD≌△ACE;(2)△ABE≌△ACD.5、如图,AC与BD交于点O,AD=CB,E、F是BD上两点,且AE=CF,DE=BF.请推导下列结论:⑴∠D=∠B;⑵AE//CF.6、已知:如图,在四边形ABCD中,AB=CD,AD=CB,求证:(1)∠A=∠C;(2)AB//CD ,AD//BC.题型:HL定理证明三角形全等1、如图,△ABC中,D是BC上一点,DE⊥AB,DF⊥AC,E、F分别为垂足,且AE=AF,试说明:DE=DF,AD平分∠BAC.2、如图,B、E、F、C在同一直线上,AE⊥BC,DF⊥BC,AB=DC,BE=CF,试判断AB与CD的位置关系,并证明3、如图,AD是△ABC的高,E为AC上一点,BE交AD于F,且有BF=AC,FD=CD,试探究BE与AC的位置关系.4、如图,在△ABC中,∠ACB=90°,AC=BC,直线DN经过点C,且AD⊥DN于D,BE⊥DN于E,求证:DE=AD+BE.5、如图,AB=CD,DF⊥AC于F,BE⊥AC于E,DF=BE,求证:AF=CE.6、如图,A、E、F、B四点共线,AC⊥CE、BD⊥DF、AE=BF、AC=BD,求证:△ACF≌△BDE.7、已知:如图,AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=DC.求证:BE=DF.8、如图,在ABC中,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别是E、F,且DE=DF,试说明AB=AC题型:角平分线的应用1、如图,在△ABC中,∠C=90°,AD平分∠BAC,BC=10cm,BD=6cm,则点D到AB的距离为___________。
人教版八年级上册数学专题复习证明三角形全等的常见题型
证明三角形全等的常见题型全等三角形是初中几何的重要内容之一,全等三角形的学习是几何入门最关键的一步,这部分内容学习的好坏直接影响着今后的学习。
而一些初学的同学,虽然学习了几种判定三角形全等的公理和推论,但往往仍不知如何根据已知条件证明两个三角形全等。
在辅导时可以抓住以下几种证明三角形全等的常见题型,进行分析。
一、已知一边与其一邻角对应相等1.证已知角的另一边对应相等,再用SAS证全等。
例1已知:如图1,点E、F在BC上,BE=CF,AB=DC,∠B=∠C .求证:AF=DE。
证明∵BE=CF(已知),∴BE+ EF=CF+EF,即 BF=CE。
在△ABF和△DCE中,∴△ABF≌△DCE(SAS)。
∴ AF=DE(全等三角形对应边相等)。
2.证已知边的另一邻角对应相等,再用ASA证全等。
例2已知:如图2,D是△ABC的边AB上一点,DF交AC于点E,DE=FE,FC∥AB。
求证:AE=CE。
证明∵ FC∥AB(已知),∴∠ADE=∠CFE(两直线平行,内错角相等)。
在△ADE和△CFE中,∴△ADE≌△CFE(ASA).∴ AE=CE(全等三角形对应边相等)3.证已知边的对角对应相等,再用AAS证全等。
例3(同例2).证明∵ FC∥AB(已知),∴∠A=∠ECF(两直线平行,内错角相等).在△ADE和△CFE中,∴△ADE≌△CFE(AAS).∴ AE=CE(全等三角形对应边相等)。
二、已知两边对应相等1.证两已知边的夹角对应相等,再用SAS证等。
例4已知:如图3,AD=AE,点D、E在BCBD=CE,∠1=∠2。
求证:△ABD≌△ACE.证明∵∠1=∠2(已知),∠ADB=180°-∠1,∠AEC=180°-∠2(邻补角定义),∴∠ADB = ∠AEC,在△ABD和△ACE中,∴△ABD≌△ACE(SAS).2.证第三边对应相等,再用SSS证全等。
例5已知:如图4,点A、C、B、D在同一直线AC=BD,AM=CN, BM=DN。
【全等三角形】常考题型+解题思路整理!
【高整理】【全等三角形】常考题型+解题思路整理!全等三角形的性质对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等。
寻找对应边和对应角,常用到以下方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边。
(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角。
(3)有公共边的,公共边常是对应边。
(4)有公共角的,公共角常是对应角。
(5)有对顶角的,对顶角常是对应角。
(6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角)。
【解题关键】要想正确地表示两个三角形全等,找出对应的元素是关键。
全等三角形的判定方法(1)边角边定理(SA S):两边和它们的夹角对应相等的两个三角形全等。
(2)角边角定理(A S A):两角和它们的夹边对应相等的两个三角形全等。
(3)边边边定理(SS S):三边对应相等的两个三角形全等。
(4)角角边定理(A A S):两个角和其中一个角的对边对应相等的两个三角形全等。
(5)斜边、直角边定理(H L):斜边和一条直角边对应相等的两个直角三角形全等。
全等三形的应用运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线。
【拓展】通过判定两个三角形全等,可证明两条线段间的位置关系和大小关系。
而证明两条线段或两个角的和、差、倍、分相等是几何证明的基础。
找全等三角形的方法(1)可以从结论出发,寻找要证明的相等的两条线段(或两个角)分别在哪两个可能全等的三角形中;(2)可以从已知条件出发,看已知条件可以确定哪两个三角形全等;(3)可从条件和结论综合考虑,看它们能确定哪两个三角形全等;(4)若上述方法均不可行,可考虑添加辅助线,构造全等三角形。
三角形中常见辅助线的作法①延长中线构造全等三角形;②利用翻折,构造全等三角形;③引平行线构造全等三角形;④作连线构造等腰三角形。
苏教版八年级上册数学[全等三角形全章复习与巩固(基础)知识点整理及重点题型梳理]
苏教版八年级上册数学[全等三角形全章复习与巩固(基础)知识点整理及重点题型梳理]本文介绍了八年级上册数学中的全等三角形知识点,包括全等三角形的概念和性质,三角形全等的判定方法,角的平分线的性质以及全等三角形证明方法。
要点一介绍了全等三角形的判定与性质,其中包括边角边(SAS)、角边角(ASA)、角角边(AAS)、斜边、直角边定理(HL)、边边边(SSS)等判定方法,并说明了对应元素相等的性质。
要点二介绍了全等三角形的证明思路,包括找夹角、找直角、找另一边、边为角的对边等方法。
要点三介绍了角平分线的性质和判定定理,以及与角平分线有关的辅助线。
要点四介绍了全等三角形证明方法,包括证明线段相等的方法、证明角相等的方法等。
XXX∠FAE。
又∠EAG+∠XXX∠BAG=180°。
AEF≌△AGF(AAS)。
XXX.结论:BE=FD,EF=FD/2.2、(2014•北京市海淀区期末)如图,在△ABC中,AB=AC,D为BC边上一点,且AD=AC.连接CD,交AB于E点.证明:AE=DE.思路点拨】1)延长AD交CE于点F;2)证明△AFE≌△CFD,得到∠AFE=∠CFD,再证明△AED≌△CED,得到AE=DE.答案与解析】证明:(1)连接AF,CF,DF,因为AB=AC,AD=AC,∴∠BAD=∠CAD,∠AFD=∠CFD。
又∠AFE=∠XXX,∴△AFE≌△CFD(AAS)。
AE=DE.证明:作角平分线AD,连接BD,CD.AB=AC。
BAD=∠CAD。
又∠ABD=∠ACD。
ABD≌△ACD(AAS)。
BD=CD。
又∠BDA=∠CDA。
BDA≌△CDA(SAS)。
B=∠C.总结升华】本题考查了角平分线的性质,以及全等三角形的判定方法,即AAS和SAS定理。
证明:过点A作AD⊥BC,则在Rt△ABD与Rt△ACD 中,由于AB=AC,AD=AD,根据HL(斜边-直角边-斜边)可得Rt△ABD≌Rt△ACD,因此∠B=∠C。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《三角形全等的条件》分类复习一、三角形全等的条件之 SAS边角边的判定方法的两个三角形全等,简称边角边或SAS.1.如下图,AB=AD,∠BAC=∠DAC,求证:△ABC≌△ADC]2.如图,有一池塘,要测池塘两端A、B的距离,可先在平地上取一个可以直接到达A和B 的点C,连接AC并延长到D,使CD=CA。
连接BC并延长到E,使CE=CB。
连接DE,那么量出DE的长就是A、B的距离,为什么课堂练习:1.如图,已知AD平分∠BAC,要使△ABD≌△ACD,根据“SAS”需要添加条件 .$2. 如图:在△ABE和△ACF中,AB=AC, BF=CE.求证:⑴△ABE≌△ACF⑵AF=AE,O DC图1A课外延伸:1.如图1,已知;AC =DB ,要使ABC ∆≌DCB ∆,只需增加一个条件是_____ ____. 2. 如图2,已知:在ABC ∆和DEF ∆中,如果AB =DE ,BC =EF ,只要找出∠ =∠或______=_____或 ABC ∆DEF ∆ 3. 如图3,已知AB 、CD 交于点O ,AO =CO ,BO =DO ,则在以下结论中:①AD =BC ;②AD ∥BC ;③∠A =∠C ;④∠B =∠D ;⑤∠A =∠B ,正确结论的个数为( )[个 个 个 个$4. 如图,AB =AC ,AD =AE ,试说明:∠B =∠C.。
5.如图,AB =DB ,BC =BE ,∠1=∠2,试说明:△ABE ≌△DBC6.如图,已知点E 、F 在BC 上,且BE =CF ,AB =CD ,∠B=∠C ,试说明AF =DE{7.如图,已知AB =AD ,AC =AE ,∠1=∠2,试说明:BC = DEDBCA 图3D FC E B A 图2 EDCBAECDAB【2$8如图,E ,F 在BC 上,BE =CF ,AB =CD ,AB ∥CD 说明:(1)△ABF ≌ △DCE (2)AF ∥DE`9.如图(16)AD ∥BC ,AD =BC ,AE =CF.求证:(1)DE =DF ,(2)AB ∥CD.二、三角形全等的条件之ASA 与AAS角边角边的判定方法的两个三角形全等,简称角边角或 . :角角边的判定方法:的两个三角形全等,简称 。
1. 如右图,O 是AB 的中点,∠A=∠B 求证:△AOC ≌△BOD.若将第一题中的∠A=∠B 改为∠C=∠D ,其他条件不变,你还能得到△AOC ≌△BOD 吗!F(图16)EDCBA2. (1)如图,AB=AC,∠B=∠C,试说明△ABE≌△ACD全等.^(2)如果将上题中的AB=AC改为AD=AE,其他条件不变,你能说明AB=AC吗3.已知:OP是∠MON的平分线,C是OP上一点,CA⊥OM,CB⊥ON,垂足分别是A、B△AOC与△BOC全等吗为什么4.找出图中的全等三角形,写出表示他们全等的式子,并说明理由.|?课外延伸:1.欲证△ABC≌△DFE,已知DFABDA=∠=∠,,根据ASA还需要的条件是,理由是}BCEFA BCoA2.如图,已知AO=DO ,∠AOB 与∠DOC 是对顶角,还需补充条件_________=________,就可根据“ASA ”说明△AOB ≌△DOC ;或者补充条件___________=____________,就可根据“AAS ”,说明△AOB ≌△DOC3.3.下面能判断两个三角形全等的条件是( )A. 有两边及其中一边所对的角对应相等B. 三个角对应相等 C .两边和它们的夹角对应相等 D. 两个三角形面积相等4.如图,将一张长方形纸片ABCD 中沿对角线AC 折叠后,点D 落在点E 处, 与BC 交于点F ,图中全等三角形有( )对 (包含△ADC ) 对 对 对 对【第4题 第5题 第6题 第7题5.如图,已知MB=ND ,∠MBA =∠NDC ,下列添加的条件中,下列哪一个选项不能用于判定△ABM ≌△CDN 的 选项是 ( )A.∠M =∠N B .AB =CD C .AM =CN D .AM ∥CN 6.如图,D 是AB 边上的中点,将ABC ∆沿过D 的直线折叠,使点A 落在BC 上F 处,若50B ∠=︒, 则BDF ∠= __________度.{7.如图,△ABC 中,∠C=900,AD 平分∠CAB ,BC=8cm是 cm.8.如图,B ,E ,C ,F 在同一直线上,且BC =EF ,∠B 的一个条件是_____________.9.如图,点B 在AE 上,∠CAB=∠DAB ,要使ΔABC 10.如图,AE=AD ,要使ΔABD ≌ΔACE 11.如图AD =AB ,∠C =∠E ,∠CDE =55°,则∠DEDC BAF EDC BAA D M N . FE DCBA EDC B AA$第八题 第九题 第十题 第十一题12.△ABC 和△FED 中,AD =FC ,∠A =∠F .当添加条件 时,就可得到△ABC ≌△FED ,依据是 (只需填写一个你认为正确的条件)写出证明过程。
]13.如图,∠B =∠E ,∠ACB =∠DFE ,BF =CE .△ABC ≌△DEF 吗为什么!14.已知:∠ABC =∠DCB ,∠ACB =∠DBC ,试说明△ABC ≌△DCB ;△AOB ≌△DOC<15.已知,如图,∠1=∠2,∠C =∠D ,AD =EC ,△ABD ≌△EBC 吗为什么A DEB C—FDB AO—16.已知,如图4、点A 、F 、E 、C 在同一条直线上,AF =CE ,BE ∥DF ,AB ∥CD 试说明:△ABE ≌△CDF17.已知:如图,在△ABC 中, BE ⊥AD ,CF ⊥AD⑴若AD 是ΔABC 的中线,则 BE 与CF 相等吗⑵若BE =CF ,则AD是ΔABC 的中线吗为什么^三、三角形全等的条件之SSS~边边边的判定方法的两个三角形全等,简称边边边或SSS.1. 如图,C 点是线段BF 的中点,BA=DF ,AC=DC.△ABC 和△DFC 全等吗 写出证明过程。
ABCD:E12ABDF$.若将这两个三角形,向内侧移动形成下图,若AB=DF ,AC=DE ,BE=CF.你能找到一对全等三角形吗说明你的理由.#.若将第一题中的两个三角形拉开,再翻折形成下图,如图,点B 、C 、E 、F 在同一条直线上,AB =DF ,BC =EF ,AC =DE.那么∠B 与∠E 相等吗为什么课堂反馈:1. 连一连:找出下列全等的一对三角形并连线.?2. 如图①,△ABC 是一个钢架, AB =AC ,AD 是连接点A 与BC 中点D 的支架. 试说明:△ABD ≌△ ACD.B FACDE选一选:⑴如图①,在上题条件不变的情况下,以下结论不正确的是()A. △ABD≌△ACDB. ∠B=∠CC. AD是的△ABC的角平分线D.AD不是△ABC的高⑵图①变如图②,若使△ABD≌△ACD,只需满足(),=AC ∠B=∠C B. AB=AC ∠ADB=∠ADC=CD ∠BAD=∠CAD =AC BD=CD填一填:如图③,AB=AC,EB=EC,AE的延长线交BC于D,那么图中的全等三角形共有对.)做一做:如图④,AB=AD,BC=DC.证明:∠B=∠D课外延伸:1.如图,AB=DC,AC=DB,△ABC≌△DCB吗写出证明过程。
《DCBADCBA2、如图:AB =AC ,DB =DC ,F 是AD 的延长线上的一点。
求证:BF =CF 。
、3.在四边形ABCD 中,AD =BC ,AB =DC(1)试说明△ABC ≌△CDA ;(2)AD 与BC 平行吗请说明你的理由|4.已知AC =FE ,BC =DE ,点A 、D 、B 、F 在一条直线上,AD =BF ,说明:∠E =∠C5.已知如图,AB =CD ,CE =DF ,AE =BF ,则AE ∥DF 吗为什么;、6.如图,已知AB =AC ,BD =CD ,试用“边边边”识别法说明:∠B =∠CECFD BA FED C BA DCBAFDCBA<7.如图,已知AB=AE,AC=AD,BC=DE,试说明∠CAE=∠DAB(8.已知:AB=AC,EB=EC,AE的延长线交BC于D,试说明:BD=CD*9.(2011浙江省)如图,点D,E分别在AC,AB上.(1) 已知,BD=CE,CD=BE,求证:AB=AC;(2) 分别将“BD=CE”记为①,“CD=BE”记为②,“AB=AC”记为③.添加条件①、③,以②为结论构成命题1,添加条件②、③以①为结论构成命题2.命题2是命题.(选择“真”或“假”填入空格).AEB D!C四、三角形全等的条件之HLHL的判定方法:的两个直角三角形全等,简称。
—1、如图(1):AD⊥BC,垂足为D,BD=CD。
求证:△ABD≌△ACD。
2.如图在△ABC中,已知BD⊥AC,CE ⊥AB,BD=CE。
证明:△EBC≌△DCB ^3、如图(5):AB⊥BD,ED⊥BD,AB=CD,BC=DE。
求证:AC⊥CE。
'4、如图15△ABC中,AB=2AC,∠BAC=90°,延长BA到D,使AD=12AB,延长AC到E,使CE=AC。
(图1)DCBAED BAA…BC∟∟E D求证:△ABC ≌△AED 。
…5、如图,D 是△ABC 的BC 边上的中点,DE ⊥AC,DF ⊥AB,垂足分别为E,F,且DE =DF. 求证: △ABC 是等腰三角形.¥6、已知:如图,AB =CD,DE ⊥AC,BF ⊥AC,垂足分别为E,F,DE =BF. 求证:(1)AE =AF;(2)AB ∥CD.}7、如图:在△ABC 中,∠ACB =90°,AC =BC ,过点C 在△ABC 外作直线MN ,AM ⊥MN 于M ,BN ⊥MN 于N.(1)求证:MN =AM+BN.EDCBABCAE D ·FNMC BA(2)若过点C 在△ABC 内作直线MN ,AM ⊥MN 于M ,BN ⊥MN 于N ,则AM 、BN 与MN 之间有什么关系 请说明理由.>五、`六、角平分线的性质1、角平分线的性质: 。
2、角平分线的判定: 。
.3、如图,CD ⊥AB ,BE ⊥AC ,垂足分别为D ,E ,BE ,CD 相交于点O ,OB=OC , 求证:∠1=∠2;证明:∵CD ⊥AB ,BE ⊥AC ( )∴_______________________(垂直的定义)在△BDO 和△CEO 中_______(______________已证)(已知)(已知)∴_______≌_______( )】∴DO=EO ( )∴AO 为∠BAC 的平分线( ) ∴∠1=∠2( )4、如图,△ABC 中,∠C =90°,AC =BC ,AD 平分∠CAB 交BC 于D , DE ⊥AB 于E ,且AB =6㎝,则△DEB 的周长为 。