LCD发展简史
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
液晶及液晶显示器的发展简史
热致液晶的发现
1888年奥地利植物学家Friedrich Reinitzer在加热苯酸脂晶体时发现:当温度升到145.5°C时晶体融化成为乳白色粘稠的液体。再继续加热到178.5°C时乳白粘稠的液体变成完全透明的液体。后经德国卡尔斯吕爱大学教授Otto Lehmann 研究,这种乳白粘稠的液体具有光学各向异性,因而建议称之为液体晶体(Liquid Crgstal)。
液晶的合成和分类
二十世纪二十年代,德国Heidelberg大学的Ludwig Gattermann首先合Halle大学的Daniel Vorlander则先后合成了300多种液晶,并指出液晶分子是棒状的分子。在此基础上,法国的George Friedel及F.Grand-jean等对液晶的结构及光学性能作了详细的研究,并于1922年完成了液晶分类的工作,将液晶划分为:近晶相、向列相和胆甾相。
液晶的物理性能研究
转变)。这一发现为液晶显示器的制作提供了依据。
液晶在液晶显示器方向的应用研究
1968年美国Heilmeir等人还提出了宾主效应(GH)模式。
1969年Xerox公司提出Ch-N相变存储模式。
1986年Nagata提出用双层盒(DSTN)实现黑白显示技术;之后又有用拉伸高分子膜实现黑白显示的技术(FSTN)。
1996年以后,又提出采用单个偏光片的反射式TN(RTN)及反射式STN(RSTN)模式。
液晶显示器产业的形成、发展及布局
自1968年Heilmeir制成第一个DSM-LCD开始, 美、日等国即开始了LCD的应用和生产研究。70年代初期,美国Rockwell公司开始生产DSM-LCD的计算机。Optel公司则生产DSM-LCD手表。日本Sharp、Epson等公司此类产品及工艺的成熟度都非常完满。但DSM-LCD应用电流、电压效应,耗电较多,很快被TN-LCD取代。
1972年S.Kobayashi等人制成TN-LCD,并迅速工业化,被广泛应用于计算器、手表、测试设备及汽车显示等,取得了巨大成功。并促使LCD向大容量、大面积彩色化方向发展。
大容量、大面积的一个方向是TN显示模式与半导体结合,采用有源矩阵(Active Matrix)的方式。该方式最早于1972年由P.Brody提出。经10多年的研究,到80年代中后期,日本已开始大批量生产以TFT为代表的AM-LCD。目前它是手提电脑的首选显示屏。
大容量的另一个方向是采用STN模式。虽然STN模式1983年才提出来,但由于它与TN生产技术有很大程度的工艺相似性,投资规模小,因而到80年代末90年代初已开始产业化,加之FSTN技术的发展,STN-LCD成为中高档、中小尺寸显示的主导。
全彩色化方案首先有
1995年以后,ECB彩色化方案也见之于报导。它利用电压控制显示颜色,工艺简单,但色彩有限。一般只能实现3~4色。
目前,反射式显示模式(RTN,RSTN)正是许多工厂竞相开发的产品方向。日本Sharp、Epson公司已经生产此类产品,主要应用于手机显示屏上。
就全球产业布局来说,日本TFT生产占全球80-90%的市场份额,台湾和韩国生产部分中小尺寸屏。TN、STN生产90%以上在中国大陆、香港、台湾及东南亚地区。
LCD结构
TN、HTN、STN的结构:
FSTN、ECB-Multi-color STN的结构:
DSTN的结构:
Color STN的结构:
LCD的显示原理
TN型
扭曲向列相(TN)显示
最常见的如用于电子表和计算器上的显示方式就是扭
曲向列相(TN)显示,这种显示器件由两片基板玻璃中
间注入向列相液晶材料构成,通过特殊的表面处理使
分子在顶层与X方向平行,而在底层与X方向垂直,这
种结构使液晶层形成了一个90°扭曲,从而得名,图
1.即为扭曲结构。
这种结构类似于胆甾相结构,所以有时加入一点螺旋
添加剂以保证扭曲方向一致。TN显示的最基本原理是
一个偏振光原理,当光入射TN盒时,其偏振面顺着液
晶方向而扭曲。例如,偏振光平行于样品顶层方向,
当穿过液晶盒时,其偏振方向会随着分子旋转,从底
面出射时,其偏振面旋转了90°。右图为一个TN盒的
示意图,黑线代表分别贴在显示器上、下表面呈交叉状态的偏振片。
当光射入液晶盒,其偏振面随分子旋转。当光达到液晶盒底部,偏振矢量面已旋转了90°,接着穿过第二层偏光片。对于一个反射TN型液晶显示器,相当于在底部装有一面镜子,它将透射光反射回来。右图为光进入液晶盒后随着扭曲的路线。
从液晶盒中出来的光呈现银灰色。当液晶盒受到一个强度足够大的电场的作用时,晶分子将经历一个弗利德兹转换。右图为一个发生转变的扭曲向列相液晶盒。
必须注意的是在这种状态下,扭曲受到破坏,液晶层的分子取向与电场平行。当偏振光射入这种液晶盒时,偏振面不随分子旋转,因而无法透过第二层偏光片。这样在亮态的背景下施加电场的区域呈现为暗态。
电光效应:
依靠电场强度的作用扭曲向列相实现了亮态和暗态之间变化。这种显示类型最主要的一个特点就是分子对外加压的响应,右边的曲线图(电光曲线)是一个曲型的向列相液晶盒在电压作用下的响应曲线,即分子与玻璃面倾斜度随外加电压变化的关系。
对于TN型显示、电致扭曲形变决定了液晶盒对光的透
过率。右图显示了透过率与电场作用关系图。考虑到
偏光片的作用使反射型TN显示屏的最大透过率只有
50%。垂直线代表液晶盒的开或关状态时的电压。
----? -
STN型
超扭曲向列型显示
具有很多行和列的显示,其开、关状态时的电压差别很小,由于这个原因,TN显示器不适合多路寻址大信息量显示的要求。这个问题在1980年中期,由于超扭曲向列型(STN)显示器的出现而得到解决。在这种显示器中,相对于TN液晶盒90°角,它的液晶分子旋转了270°左右。扭曲角的作用可从右图电光效应曲线中可以看出。
随着扭曲角的增大,分子倾角随外加电压的变化很陡峭。从右图的响应参数
可以看出其开态和关态的电压非常接近。
虽然一般都希望得到一条陡峭的电光曲线,但也要考虑到中间灰度的问题,考虑到这个原因,很多供应商所用的STN显示器采用了210°扭曲角,这样在允许快速寻址的同时又能满足灰度显示的要求。早期的210°扭曲显示模式通过器件的光谱变化也无法得到理想的颜色:在点亮状态,象素显示倾向于黄颜色,而在关闭状态为蓝紫色。因此,STN除了不受消费者的普遍欢迎外,通过滤色片实现全色显示的STN也只能得到黑、白两种颜色。这个问题通过增加一个扭曲角正好相反的液晶盒而得到解决,这种器件就是双层超扭曲向列型显示