纳米材料及其应用课件

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
另外,当纳米微粒的尺寸小到一定值 时,可在一定波长的光激发下发光。这 是载流子的量子限域效应引起的。
六、纳米材料的应用
由于纳米微粒的小尺寸效应、表面效 应、量子效应和宏观量子隧道效应,使 得它在磁、光、电、敏感等方面呈现常 规材料不具备的特性,因此纳米微粒在 磁性材料、传感、医学、传感、军事等 方面有广泛的应用。
第四篇 纳米材料及其应用
一、纳米微细材料的工艺方法 二、纳米材料的量子效应 三、纳米材料的热学特性 四、纳米材料的磁学特性 五、纳米材料的光学特性 六、纳米微粒的分析和测量 七、纳米材料的应用
一、纳米微细材料制造的ຫໍສະໝຸດ Baidu艺方法
1、激光诱导化学气相沉积法 (LICVD)
基本原理——利用反应气体分子对特 定波长激光束的吸收,引起反应气体分 子激光光解、激光热解、激光光敏化和 激光诱导合成,在一定工艺条件下,获 得纳米微粒。
主要表现为:超顺磁性、矫顽力、居 里温度和磁化率。
五、纳米材料的光学特性
1、宽频带强吸收 当尺寸减小到纳米级时,各种金属纳
米微粒几乎都呈黑色,它们对可见光的 反射率极低。这就是纳米材料的强吸收 率、低反射率。
例如,铂金纳米粒子的反射率为1%。 纳米氮化硅、碳化硅及三氧化二铝对 红外有一个宽频带强吸收谱。
磁记录等
此外,还可作为光快门、光调节器、 激光磁爱滋病毒检测仪等仪器仪表材料; 抗瘤药物磁性载体、细胞磁分离介质、 复印机墨粉、磁性墨水等材料。
2、光学应用
纳米策粒的小尺寸效应使其具有与常 规大块材料不同的光学特性。如光学非 线性、光吸收、光反射、光传输过程中 的能量损耗等都与纳米微粒的尺寸的很 大的依赖关系。
二、纳米材料的量子效应
1、量子尺寸效应 以下两种情形均称为量子尺寸效应:
一是纳米粒子尺寸小到某一值时,在 费米能级附近的电子能级由准连续变为 离散的现象;
二是纳米半导体微粒存在不连续的最 高被占据分子轨道和最低未被占据的分 子轨道能级,能级间隔变宽现象。
当能级间隔大于热能、磁能、静电能、 光子能量或超导态的凝聚能时,就必须 要考虑量子尺寸效应。
2、纳米微粒分散物系的光学性质和发光效 应
纳米微粒分散于介质中形成分散物系 (溶胶),纳米微粒称为胶体(或分散 相)。
由于在溶胶中胶体的高分散性和不均 匀性,使得分散物系具有特殊的光学特 性,例如丁达尔效应。
丁达尔效应——如果让一束聚集的光 线通过分散物系,在入射光的垂直方向 上可以看到一个发光的圆锥体。
例如,光吸收显著增加并产生吸收峰 的等离子共振频移;磁有序态向磁无序 态转变;超导相向正常相的转变;声子 谱发生改变等。
三、纳米材料的热学特性
纳米微粒的熔 点、烧结温度 和晶化温度均 比常规粉体低 得多。这是纳 米微粒量子效 应造成的。
四、纳米材料的磁学特性
纳米微粒的小尺寸效应、量子尺寸效 应、表面效应,使其具有常规粗晶材料 不具备的磁特性。
优点——表面清洁、纳米微粒大小可 精确控制、无粘结、粒度分布均匀。
2、低温等离子体增强化学气相沉积法
(PECVD)
基础——化学气相沉积法
原理——由于等离子体是不等温系统, 其中“电子气”具有比中性粒子和正离 子大得多的平均能量;电子的能量足以 使气体分子的化学键断裂,并导致化学 活性高的粒子(离子、活化分子等基团) 的产生。即,反应气体的化学键在低温 下就可以被分解,从而实现高温材料的 低温合成。
量子尺寸效应导致纳米微粒的磁、光、 声、热、电以及超导电性与宏观特性有 着显著的不同。
例如,当温度为1K时, Ag纳米微粒粒 径< 14nm时,Ag纳米微粒变为金属绝缘体。
2、小尺寸效应
当超细微粒的尺寸与光波波长、德布 罗意波长以及超导态的相干长度或透射 深度等物理特征尺寸相当或更小时,晶 体周期性的边界条件将被破坏;非晶态 纳米微粒的颗粒表面层附近原子密度减 小,导致声、光、电、磁、热力学等特 性呈现新的变化,称为小尺寸效应。
1、微波源 2、真空系统 3、励磁系统 4、配气系统 5、反应室 6、基片加热
系统
低温等离子体增强化学气相沉淀技术的优点: ① 运行气压低。 ② 等离子体密度高。 ③ 无内电极放电,杂质少,污染小。 ④ 微波能量转换率高,达95%。 ⑤ 离子能量低。 ⑥ 可稳态运行,参数易于控制。 ⑦ 速率高、纳米材料纯度高。 ⑧ 提高了反应物的活性。 ⑨ 有良好的各向异性刻蚀性能。
⑴ 光学纤维
光纤在现代通信和光传输上占据极为 重要的地位。而纳米微粒作为光纤的材 料可以降低光导纤维的传输损耗。关键 是要经过热处理,经过热处理的光纤比 未经过热处理的光纤性能好得多。
2、光学应用
⑵ 紫外吸收材料
纳米微粒的量子尺寸效应使它对某种 波长的光吸收带有蓝移现象;纳米微粒 粉体对各种波长光的吸收带有宽化现象。 利用这两种特性,人们制成纳米紫外吸 收材料。
3、液相法制备纳米材料
化学共沉淀是利用各种组分元素的可 溶性盐类,把它们按一定的比例配制成
液N体H,4C然O后3 加入沉降剂,如 NH4OH 、
等,使得各种组分元素共同 形成沉淀,并通过控制溶液浓度、PH值 等来控制形成沉淀粉体的性能。最后经 过过滤、洗涤,对沉淀物进行加热分解, 得到各种组分元素的氧化物均匀复合粉 体。氧化锌纳米粉体的制备过程如图所 示。
1、磁性材料 2、光学应用 3、生物和医学上的应用 4、传感材料 5、军事上的应用
1、磁性材料
磁流体是磁性材料应用的一个典型。
磁流体——是使强磁性超微粒子外包裹 一层长链的表面活性剂,稳定地分散在 基液中形成的胶体。
磁流体的特性——具有固体的强磁性 和液体的流动性。
磁流体的应用:磁密封、磁液扬声器、
第四篇 纳米材料及其应用
第四篇 纳米材料及其应用
纳米材料科学——对介于团簇和 亚微米级体系之间1—100nm微小体 系的制备及其特性的研究的一个分 支学科。
1990年7月在美国巴尔基摩召开的国际第一 届纳米科学技术学术会议上,正式把纳米材料 科学作为材料科学的一个分支公布于世。纳米 材料科学的诞生标志着材料科学已经进入了一 个新的层次。
3、生物和医学上的应用
纳米微粒的尺寸一般比生物体的细胞、红血 球小得多,这就为生物学和医学研究和应用提 供了途径。
相关文档
最新文档