离散数学期末试卷(4套附答案)

合集下载

离散数学期末试题及答案完整版

离散数学期末试题及答案完整版

离散数学期末试题及答案HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】326《离散数学》期末考试题(B )一、填空题(每小题3分,共15分)1.设,,},,{{b a b a A =?},则-A ? = ( ),-A {?} = ( ),)(A P 中的元素个数=|)(|A P ( ).2.设集合A 中有3个元素,则A 上的二元关系有( )个,其中有( )个是A 到A 的函数.3.谓词公式))()(())()((y P y Q y x Q x P x ⌝∧∃∧→∀中量词x ∀的辖域为( ), 量词y ∃的辖域为( ).4.设}24,12,8,6,4,3,2,1{24=D ,对于其上的整除关系“|”,元素( )不存在补元.5.当n ( )时,n 阶完全无向图n K 是平面图,当当n 为( )时,n K 是欧拉图. 二.1. 若n B m A ==||,||,则=⨯||B A ( ),A 到B 的2元关系共有( )个,A 上的2元关系共有( )个.2. 设A = {1, 2, 3}, f = {(1,1), (2,1), (3, 1)}, g = {(1, 1), (2, 3), (3, 2)}和h = {(1, 3), (2, 1), (3, 1)},则( )是单射,( )是满射,( )是双射.3. 下列5个命题公式中,是永真式的有( )(选择正确答案的番号). (1)q q p p →→∧)(; (2))(q p p ∨→; (3))(q p p ∧→; (4)q q p p →∨∧⌝)(; (5)q q p →→)(.4. 设D 24是24的所有正因数组成的集合,“|”是其上的整除关系,则3的补元( ),4的补元( ),6的补元( ).5. 设G 是(7, 15)简单平面图,则G 一定是( )图,且其每个面恰由( )条边围成,G 的面数为( ).三.1.设}}{},,{{c b a A =,}}{},,{},{{c c b a B =,则)(=⋃B A ,)(=⋂B A ,)()(=A P .2.集合},,{c b a A =,其上可定义( )个封闭的1元运算,( )个封闭的2元运算,( )个封闭的3元运算.3.命题公式1)(↑∧q p 的对偶式为( ).4.所有6的因数组成的集合为( ).5.不同构的5阶根树有( )棵.四、(10分)设B A f →:且C B g →:,若g f 是单射,证明f 是单射,并举例说明g 不一定是单射.五、(15分)设},,,{d c b a A =,A 上的关系)},(),,(),,(),,(),,(),,(),,(),,(),,{(c d b d a d c c b c a c c a b a a a R =,1.画出R 的关系图R G .2.判断R 所具有的性质.3.求出R 的关系矩阵R M .六、(10分)利用真值表求命题公式))(())((p q r r q p A →→↔→→=的主析取范式和主合取范式.七、(10分) 边数30<m 的简单平面图G ,必存在节点v 使得4)deg(≤v . 八、(10分) 有六个数字,其中三个1,两个2,一个3,求能组成四位数的个数.《离散数学》期末考试题(B)参考答案一、1. {{a , b }, a , b , ?}, {{a , b }, a , b },16.2.92, 27.3.)()(x Q x P →, )()(y P y Q ⌝∧.4. 2, 4, 6, 12.5.4≤,奇数.二、1.22,2,m mn mn ., g , g . ,2,4.,不存在,不存在. 5.连通,3,10.三、1. }}{},,{},,{},{{c c b b a a B A =⋃,}}{{c B A =⋂,{)(=A P ?, {{a , b }}, {{c }}, {{a , b }, {c }}}.2.27933,3,3. 3.0)(↓∨q p .4.{-1,-2,-3,-6,1,2,3,6}. .四、证 对于任意A y x ∈,,若)()(y f x f =,则))(())((y f g x f g =,即))(())((y g f x g f =. 由于g f 是单射,因此y x =,于是f 是单射.例如取},,{},3,2,1(},,{γβα===C B b a A ,令)}2,(),1,{(b a f =,)},3(),,2(),,1{(ββα=g ,这时)},(),,{(βαb a g f = 是单射,而g 不是单射.五、解 1. R 的关系图R G 如下:2.(1)由于R b b ∉),(,所以R 不是自反的. (2)由于R a a ∈),(,所以R 不是反自反的.(3)因为R b d ∈),(,而R d b ∉),(,因此R 不是对称的. (4)因R a c c a ∈),(),,(,于是R 不是反对称的.(5)经计算知R c d a d c c b c a c c a b a a a R R ⊆=)},(),,(),,(),,(),,(),,(),,(),,{( ,进而R 是传递的.综上所述,所给R 是传递的.3.R 的关系矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=0111011100000111R M .六、解 命题公式))(())((p q r r q p A →→↔→→=的真值表如下:由表可知,))(())((p q r r q p A →→↔→→=的主析取范式为A 的主合取范式为)()(r q p r q p A ⌝∨⌝∨∧∨⌝∨⌝=.七、证 不妨设G 的阶数3≥n ,否则结论是显然的. 根据推论1知,63-≤n m . 若G 的任意节点v 的度数均有5)deg(≥v ,由握手定理知n v m v5)deg(2≥=∑.于是m n 52≤,进而652363-⋅≤-≤m n m . 因此30≥m ,与已知矛盾. 所以必存在节点v 使得4)deg(≤v .八、解 设满足要求的r 位数的个数有a r 种,r = 0,1,2,…,则排列计数生成函数65432121211219619431x x x x x x ++++++=,因而38!412194=⋅=a .。

离散数学期末考试试题(有几套带答案)

离散数学期末考试试题(有几套带答案)

离散数学试题(A卷及答案)一、证明题(10分)1)(⌝P∧(⌝Q∧R))∨(Q∧R)∨(P∧R)⇔R证明: 左端⇔(⌝P∧⌝Q∧R)∨((Q∨P)∧R)⇔((⌝P∧⌝Q)∧R))∨((Q∨P)∧R) ⇔(⌝(P∨Q)∧R)∨((Q∨P)∧R)⇔(⌝(P∨Q)∨(Q∨P))∧R⇔(⌝(P∨Q)∨(P∨Q))∧R⇔T∧R(置换)⇔R2)∃x(A(x)→B(x))⇔∀xA(x)→∃xB(x)证明:∃x(A(x)→B(x))⇔∃x(⌝A(x)∨B(x))⇔∃x⌝A(x)∨∃xB(x)⇔⌝∀xA(x)∨∃xB(x)⇔∀xA(x)→∃xB(x)二、求命题公式(P∨(Q∧R))→(P∧Q∧R)的主析取范式和主合取范式(10分)证明:(P∨(Q∧R))→(P∧Q∧R)⇔⌝(P∨(Q∧R))∨(P∧Q∧R))⇔(⌝P∧(⌝Q∨⌝R))∨(P∧Q∧R)⇔(⌝P∧⌝Q)∨(⌝P∧⌝R))∨(P∧Q∧R)⇔(⌝P∧⌝Q∧R)∨(⌝P∧⌝Q∧⌝R)∨(⌝P∧Q∧⌝R))∨(⌝P∧⌝Q∧⌝R))∨(P∧Q∧R)⇔m0∨m1∨m2∨m7⇔M3∨M4∨M5∨M6三、推理证明题(10分)1)C∨D, (C∨D)→⌝E, ⌝E→(A ∧⌝B), (A∧⌝B)→(R∨S)⇒R∨S证明:(1) (C∨D)→⌝E (2) ⌝E→(A∧⌝B)(3) (C∨D)→(A∧⌝B)(4) (A∧⌝B)→(R∨S)(5) (C∨D)→(R∨S)(6) C∨D(7) R∨S2) ∀x(P(x)→Q(y)∧R(x)),∃xP(x)⇒Q(y)∧∃x(P(x)∧R(x)) 证明(1)∃xP(x)(2)P(a)(3)∀x(P(x)→Q(y)∧R(x))(4)P(a)→Q(y)∧R(a) (5)Q(y)∧R(a)(6)Q(y)(7)R(a)(8)P(a)(9)P(a)∧R(a)(10)∃x(P(x)∧R(x))(11)Q(y)∧∃x(P(x)∧R(x))四、设m是一个取定的正整数,证明:在任取m+1个整数中,至少有两个整数,它们的差是m的整数倍证明设1a,2a,…,1+m a为任取的m+1个整数,用m去除它们所得余数只能是0,1,…,m-1,由抽屉原理可知,1a,2a,…,1+m a这m+1个整数中至少存在两个数sa和t a,它们被m除所得余数相同,因此s a和t a的差是m的整数倍。

《离散数学》期末考试试卷附答案

《离散数学》期末考试试卷附答案

《离散数学》期末考试试卷附答案一、填空题(每小题3分,共15小题,共45分)1设集合A,B,其中A={1,2,3}, B= {1,2}, 则A - B=____________________;ρ(A) - ρ(B)=__________________________ .2. 设有限集合A, |A| = n, 则|ρ(A×A)| = __________________________.3.设集合A = {a, b}, B = {1, 2}, 则从A到B的所有映射是__________________________ _____________, 其中双射的是__________________________.4. 已知命题公式G=⌝(P→Q)∧R,则G的主析取范式是_________________________________________________________________________________________.5.设G是完全二叉树,G有7个点,其中4个叶点,则G的总度数为__________,分枝点数为________________.6设A、B为两个集合, A= {1,2,4}, B = {3,4}, 则从A⋂B=_________________________; A⋃B=_________________________;A-B=_____________________ .7. 设R是集合A上的等价关系,则R所具有的关系的三个特性是______________________, ________________________,_______________________________.8. 设命题公式G=⌝(P→(Q∧R)),则使公式G为真的解释有__________________________,_____________________________,__________________________.9. 设集合A={1,2,3,4}, A上的关系R1 = {(1,4),(2,3),(3,2)}, R1 = {(2,1),(3,2),(4,3)}, 则R1•R2 = ________________________,R2•R1 =____________________________,R12 =________________________.10. 设有限集A, B,|A| = m, |B| = n, 则| |ρ(A⨯B)| =_____________________________.11设A,B,R是三个集合,其中R是实数集,A = {x | -1≤x≤1, x∈R}, B = {x | 0≤x < 2, x∈R},则A-B = __________________________ , B-A = __________________________ , A∩B = __________________________ , .13.设集合A={2, 3, 4, 5, 6},R是A上的整除,则R以集合形式(列举法)记为___________ _______________________________________________________.14. 设一阶逻辑公式G = ∀xP(x)→∃xQ(x),则G的前束范式是__________________________ _____.15.设G是具有8个顶点的树,则G中增加_________条边才能把G变成完全图。

离散数学期末考试试题(配答案)

离散数学期末考试试题(配答案)

离散数学期末考试试题(配答案)1. 谓词公式)()(x xQ x xP ∃→∀的前束范式是___________。

2. 设全集{}{}{},5,2,3,2,1,5,4,3,2,1===B A E 则A ∩B =____;=A _____;=B A Y __ _____3. 设{}{}b a B c b a A ,,,,==;则=-)()(B A ρρ__ __________;=-)()(A B ρρ_____ ______。

二.选择题(每小题2分;共10分)1. 与命题公式)(R Q P →→等价的公式是( )(A )R Q P →∨)( (B )R Q P →∧)( (C ))(R Q P ∧→ (D ))(R Q P ∨→ 2. 设集合{}c b a A ,,=;A 上的二元关系{}><><=b b a a R ,,,不具备关系( )性质 (A ) (A)传递性 (B)反对称性 (C)对称性 (D)自反性 三.计算题(共43分)1. 求命题公式r q p ∨∧的主合取范式与主析取范式。

(6分)2. 设集合{}d c b a A ,,,=上的二元关系R 的关系矩阵为⎪⎪⎪⎪⎪⎭⎫⎝⎛=1000000011010001R M ;求)(),(),(R t R s R r 的关系矩阵;并画出R ;)(),(),(R t R s R r 的关系图。

(10分)5. 试判断),(≤z 是否为格?说明理由。

(5分)(注:什么是格?Z 是整数;格:任两个元素;有最小上界和最大下界的偏序)四.证明题(共37分)1. 用推理规则证明D D A C C B B A ⌝⇒∧⌝⌝⌝∧∨⌝→)(,)(,。

(10分)2. 设R 是实数集;b a b a f R R R f +=→⨯),(,:;ab b a g R R R g =→⨯),(,:。

求证:g f 和都是满射;但不是单射。

(10分)一;1; _ ∃x ∃y¬P(x)∨Q(y)2; {2} {4;5} {1;3;4;5}3; {{c};{a ;c};{b ;c};{a ;b ;c}} Φ_ 二;B D三;解:主合取方式:p ∧q ∨r ⇔(p ∨q ∨r)∧(p ∨¬q ∨r)∧(¬p ∨q ∨r)= ∏0.2.4主析取范式:p ∧q ∨r ⇔(p ∧q ∧r) ∨(p ∧q ∧¬r) ∨(¬p ∧q ∧r) ∨(¬p ∧¬q ∧r) ∨(p ∧¬q ∧r)= ∑1.3.5.6.7 四;1;证明:编号 公式 依据 (1) (¬B∨C )∧¬C 前提 (2) ¬B∨C ;¬C (1) (3) ¬B (2) (4) A →B (3) (5) ¬A (3)(4) (6) ¬(¬A∧D ) 前提 (7) A ∨¬D (6) (8)¬D (5)(6)2;证明:要证f 是满射;即∀y ∈R ;都存在(x1;x2)∈R ×R ;使f (x1;x2)=y ;而f (x1;x2)=x1+x2;可取x1=0;x2=y ;即证得;再证g 是满射;即∀y ∈R ;;都存在(x1;x2)∈R ×R ;使g (x1;x2)=y ;而g (x1;x2)=x1x2;可取x1=1;x2=y ;即证得;最后证f 不是单射;f (x1;x2)=f (x2;x1)取x1≠x2;即证得;同理:g (x1;x2)=g (x2;x1);取x1≠x2;即证得。

离散数学期末考试题(附答案和含解析)

离散数学期末考试题(附答案和含解析)

一、填空2.A ,B ,C 表示三个集合,文图中阴影部分的集合表达式为 (B ⊕C)-A4.公式P R S R P ⌝∨∧∨∧)()(的主合取范式为 )()(R S P R S P ∨⌝∨⌝∧∨∨⌝ 。

5.若解释I 的论域D 仅包含一个元素,则 )()(x xP x xP ∀→∃ 在I 下真值为 1 。

6.设A={1,2,3,4},A 上关系图如下,则 R^2= {(1,1),(1,3),(2,2),(2,4)} 。

//备注:⎪⎪⎪⎪⎪⎭⎫⎝⎛=0000100001010010R⎪⎪⎪⎪⎪⎭⎫⎝⎛=00000000101001012R7.设A={a ,b ,c ,d},其上偏序关系R 的哈斯图如下,则R= {(a,b),(a,c), (a,d), (b,d), (c,d)} U {(a,a),(b,b)(c,c)(d,d)} 。

//备注:偏序满足自反性,反对称性,传递性8.图的补图为 。

//补图:给定一个图G ,又G 中所有结点和所有能使G 成为完全图的添加边组成的图,成为补图. 自补图:一个图如果同构于它的补图,则是自补图 9.设A={a ,b ,c ,d} ,A 上二元运算如下:* a b c d a b c da b c d b c d a c d a b d a b c那么代数系统<A ,*>的幺元是 a ,有逆元的元素为 a,b,c,d ,它们的逆元分别为 a,b,c,d 。

//备注:二元运算为x*y=max{x,y},x,y ∈A 。

10.下图所示的偏序集中,是格的为 c 。

//(注:什么是格?即任意两个元素有最小上界 和最大下界的偏序)二、选择题1、下列是真命题的有( C 、D )A . }}{{}{a a ⊆;B .}}{,{}}{{ΦΦ∈Φ;C .}},{{ΦΦ∈Φ; D .}}{{}{Φ∈Φ。

2、下列集合中相等的有( B 、C )A .{4,3}Φ⋃;B .{Φ,3,4};C .{4,Φ,3,3};D . {3,4}。

(完整版)离散数学试题及答案,推荐文档

(完整版)离散数学试题及答案,推荐文档

11 设 A,B,R 是三个集合,其中 R 是实数集,A = {x | -1≤x≤1, xR}, B = {x | 0≤x < 2, xR},则
A-B = __________________________ , B-A = __________________________ ,
A∩B = __________________________ , . 13. 设集合 A={2, 3, 4, 5, 6},R 是 A 上的整除,则 R 以集合形式(列举法)记为___________ _______________________________________________________. 14. 设一阶逻辑公式 G = xP(x)xQ(x),则 G 的前束范式是__________________________
二、选择题
1. C. 2. D. 3. B. 4. B.
5. D. 6. C. 7. C.
8. A. 9. D. 10. B. 11. B.
第 5 页 共 18 页
13. {(2, 2),(2, 4),(2, 6),(3, 3),(3, 6),(4, 4),(5, 5),(6, 6)}.
14. x(P(x)∨Q(x)). 15. 21.
16. (R(a)∧R(b))→(S(a)∨S(b)). 17. {(1, 3),(2, 2)}; {(1, 1),(1, 2),(1, 3)}.
8. 设命题公式 G=(P(QR)),则使公式 G 为真的解释有
__________________________,_____________________________,
__________________________.

国家开放大学电大本科《离散数学》2022-2023期末试题及答案(试卷号:1009)

国家开放大学电大本科《离散数学》2022-2023期末试题及答案(试卷号:1009)

国家开放大学电大本科《离散数学> 2022-2023期末试题及答案(试卷号:1009)一、单项选择题(每小题3分,本息共16分)1, 若集合A = <1,2,3},则下列表述正确的是〈 )•A. {1,2,3}€AB. AC(1,2}C. U,2,3}gAD. {1,2}£A2. 设 A = {1,2,3},B = (1,2,3,4},人到 B 的关系 R = {O ,>> |工 £ A ,了 £ B },则 R =().A. {<1,2>,V2,3>}B. {V1,1>,V1,2>,V1,3>,V1,4>,V1,5>}C. «1,1>,<2,1>)D. {<2,】>,V3,】>,V3,2>}3. 无向图G 的边数是10,则图G 的结点度数之和为(A. 10B. 20C. 30D. 54. 如图一所示,以下说法正确的是〈 )•A. e 是割点B. {a,e}是点割集C. (b.e}是点割集D. {d}是点割集5-设个体域为整数集,则公式Vx3y (x+y = 2)的解释可为().A. 任意整数工,对任意整数y 满足工+了 = 2B. 对任意整数工,存在整数y 满足工+了 = 2C. 存在一整数z,对任意整数y 满足工+了 = 2D. 存在一整数工,有整数了满足x+jr = 2则人 CHBUC )等于 _____ .7. 设 A = {1,2},B = <2,3},C=(3,4},从 A 到 B 的函数/= (VI,2>,V2,3>},从 B到 C 的函数 g = (V2,3>,V3,4>},则 Ran (g 0/)等于 ______ .8. 设G 是汉密尔顿图,S 是其结点集的一个子集,若S 的元素个数为6,则在G-S 中的连通分支数不超过 ________ .二、填空霆(每小题3分,本题共15分)9.设G是有8个结点的连通图,结点的度数之和为24,则可从G中删去 ________ 条边后使之变成树.10.设个体域D = {1,2, 3, 4},则谓词公式(VQ A S)消去量词后的等值式为H.将语句“昨夭下雨,今天仍然下雨.”翻译成命题公式.12. 将i 吾句“我们下午2点或者去礼堂看电彩或者去教室看书.”翻译成命飓公式. 得分评卷人13. 不存在集合A 与B,使得AEB 与AQB 同时成立.14. 如图二所示的图G 存在一条欧拉回路.15. 设 A = {l,2,3},R = (<x,y>l=£A<yCA 且 1+»=4}击={〈工,3>0£人,36人且 工=)},试求 R,S,R" ,r (S ).16. 设图 G = <VtE>»V=(v! 试(1) 画出G 的图形表示; (2) 写出其邻接矩阵; (3) 求出每个结点的度数; (4)画出图G 的补图的图形•17. 求-I (PVQ )VR 的析取范式与主合取范式•18. 试证明门 PVQ»P -*(i (n PVn Q)〉.(仅 一、单项选择题(每小题3分,本题共15分)1.C2. D3. B二、填空题(每小题3分,本题共15分)6. {b t c)7. {3,4)(或 C ) 8.6 9.5评卷人三、逻辑公式翻译(每小题6分,本题共12分)四、判断说明题(判断各题正误,并说明理由.每小题7分,本题共14 分)评卷人五、计算题(每小题12分,本题共36分)评卷人六、证明题(本题共8分)10.A(1)AA(2) AA(3) AA(4)三、逻辑公式翻译(每小题6分,本题共12分)11.设P:昨天下雨,Q:今天下雨. (2分)则命题公式为:PAQ. (6分)12.设P:我们下午2点去礼堂看电影,Q:我们下午2点去教室看书. (2分)则命题公式为门(P-Q). (6分)注:或者(1 PAQ)V(PAi Q)四、判断说明题(每小题7分,本题共14分)13.错误•(3分)例:设A = {a},B^{a,{a}}(5 分)则有AEB且AWB. (7分)说明:举出符合条件的反例均给分.14.正确. (3分)因为图G为连通的,且其中每个顶点的度数均为偶数. (7分)如果具体指出一条欧拉回路也同样给分.五、计算题(每小题12分,本题共36分)15.解:R = {V1,3>,V2,2>,V3,1>} (3分)S = {<1,1>,<2,2>,<3,3>} (6分)7?~* = (<3,1>,<2,2>,<1,3>} (9分)r(S) = (<l,l>,<2,2>,<3,3>} (12分)说明:对于每一个求解项,如果部分正确,可以给对应1分・16.解:(1)(2)邻接矩阵10 0.(3)deg(pi) = 2deg(v2)=2deg(v3)=Odcg(vj = 2 (9 分)(4)补图(12 分)17.解门(PVQ)VR«=>(-, PA-i Q)VR 析取范式(5分)PVR)A(n QVR) (7分)«((n PVK)V(QA-i Q))A(-| QVR) (9分) E((I P VK) V(QA-i Q))A((n QV^>V(P An P)) (10分)«(-i PVR VQ) A(" VR Vi Q) A(i QVk VP)A(i QVRV") ⑴分) «(PV-i QVR)A(i PVQVR)A(rPVi QVR) 主合取范式(12 分)六、证明题(本题共8分)18.证明:(Di PVQ P(1 分)<2)P P(附加前提) (3分)(3)Q T(l)(2)/ (5 分)(4)PAQ T(2)(3)/ (6 分)(5)n(i PV-i Q) T(4)E (7 分)(6)P^n (n PV-i Q) CP 规则(8 分)说明:(D因证明过程中,公式引用的次序可以不同,一般引用前提正确得1分,利用两个公式得出有效结论得1或2分,最后得出结论得2或1分.(2)可以用真值表验证.采用反证法可参照给分.。

离散数学期末试卷

离散数学期末试卷

离散数学期末试卷一、选择题(共10题,每题2分,共20分)1.下列哪个是真值?–[ ] A. $P \\vee \\sim P$–[ ] B. $P \\wedge \\sim P$–[ ] C. $P \\rightarrow \\sim P$–[ ] D. $P \\leftrightarrow \\sim P$2.下列哪个式子是永真式?–[ ] A. $(P \\rightarrow Q) \\wedge (Q \\rightarrow P)$–[ ] B. $(P \\rightarrow Q) \\vee (Q\\rightarrow P)$–[ ] C. $(P \\wedge \\sim P) \\vee (Q \\wedge \\sim Q)$–[ ] D. $(P \\rightarrow Q) \\rightarrow (Q \\rightarrow P)$3.下列集合中的哪个是无穷集合?–[ ] A. $\\{1, 2, 3\\}$–[ ] B. $\\{1, 2, 3, ...\\}$–[ ] C. $\\{\\emptyset\\}$–[ ] D. $\\{\\emptyset, \\{1\\}, \\{2\\}\\}$4.对于集合$A = \\{1, 2, 3\\}$和$B = \\{3, 4, 5\\}$,下面哪个选项是$A \\cap B$?–[ ] A. $\\{1, 2\\}$–[ ] B. $\\{2, 4\\}$–[ ] C. $\\{3\\}$–[ ] D. $\\{1, 3\\}$5.对于集合$A = \\{1, 2, 3\\}$和$B = \\{3, 4, 5\\}$,下面哪个选项是$A \\cup B$?–[ ] A. $\\{1, 2, 4, 5\\}$–[ ] B. $\\{\\emptyset\\}$–[ ] C. $\\{1, 2, 3, 4, 5\\}$–[ ] D. $\\{1, 3\\}$6.哪个选项是集合$A = \\{2, 4, 6, 8, 10\\}$的幂集?–[ ] A. $\\{2, 4, 6, 8, 10\\}$–[ ] B. $\\{2, 4, 6, 8, 10, \\{\\}\\}$–[ ] C. $\\{\\{2\\}, \\{4\\}, \\{6\\}, \\{8\\},\\{10\\}, \\{2, 4\\}, \\{2, 6\\}, \\{2, 8\\}, \\{2, 10\\}, \\{4, 6\\}, \\{4, 8\\}, \\{4, 10\\}, \\{6, 8\\}, \\{6,10\\}, \\{8, 10\\}, \\{2, 4, 6\\}, \\{2, 4, 8\\}, \\{2, 4, 10\\}, \\{2, 6, 8\\}, \\{2, 6, 10\\}, \\{2, 8, 10\\}, \\{4, 6, 8\\}, \\{4, 6, 10\\}, \\{4, 8, 10\\}, \\{6, 8, 10\\},\\{2, 4, 6, 8\\}, \\{2, 4, 6, 10\\}, \\{2, 4, 8, 10\\}, \\{2, 6, 8, 10\\}, \\{4, 6, 8, 10\\}, \\{2, 4, 6, 8, 10\\}\\}$–[ ] D. $\\{\\{\\}, \\{2\\}, \\{4\\}, \\{6\\},\\{8\\}, \\{10\\}, \\{2, 4\\}, \\{2, 6\\}, \\{2, 8\\},\\{2, 10\\}, \\{4, 6\\}, \\{4, 8\\}, \\{4, 10\\}, \\{6,8\\}, \\{6, 10\\}, \\{8, 10\\}, \\{2, 4, 6\\}, \\{2, 4,8\\}, \\{2, 4, 10\\}, \\{2, 6, 8\\}, \\{2, 6, 10\\}, \\{2, 8, 10\\}, \\{4, 6, 8\\}, \\{4, 6, 10\\}, \\{4, 8, 10\\},\\{6, 8, 10\\}, \\{2, 4, 6, 8\\}, \\{2, 4, 6, 10\\}, \\{2, 4, 8, 10\\}, \\{2, 6, 8, 10\\}, \\{4, 6, 8, 10\\}, \\{2, 4, 6, 8, 10\\}\\}$7.下列哪个命题是正确的?–[ ] A. 如果x>10,则x>5–[ ] B. 如果x>5,则x>10–[ ] C. 如果x>10,则x<5–[ ] D. 如果x<5,则x>108.哪个选项是命题$P: (P \\rightarrow Q) \\wedgeP$的否定?–[ ] A. $\\sim P \\rightarrow (\\sim Q \\vee \\sim P)$–[ ] B. $(P \\rightarrow \\sim Q) \\vee P$–[ ] C. $(P \\rightarrow Q) \\wedge \\sim P$–[ ] D. $Q \\rightarrow P$9.对于命题$P: (x > 5) \\wedge (y < 10)$,下列哪个选项是x与$Q: (x < 2) \\vee (y > 8)$的合取式?–[ ] A. $(x > 5) \\wedge (y < 10) \\vee (x < 2) \\vee (y > 8)$–[ ] B. $(x > 5) \\vee (y < 10) \\wedge (x < 2) \\vee (y > 8)$–[ ] C. $(x > 5) \\vee (y < 10) \\vee (x < 2) \\wedge (y > 8)$–[ ] D. $(x > 5) \\vee (x < 2) \\vee (y < 10) \\vee (y > 8)$10.下列哪个命题是等价的?–[ ] A. $P \\rightarrow Q$–[ ] B. $\\sim P \\vee Q$–[ ] C. $\\sim Q \\rightarrow \\sim P$–[ ] D. $P \\wedge \\sim Q$二、填空题(共5题,每题4分,共20分)1.集合$\\{x | x > 0\\}$的基数是\\\\\\。

离散数学期末考试试题及答案

离散数学期末考试试题及答案

离散数学期末考试试题及答案离散数学试题(B卷答案1)一、证明题(10分)1)(P∧(Q∧R))∨(Q∧R)∨(P∧R)R证明: 左端(P∧Q∧R)∨((Q∨P)∧R)((P∧Q)∧R))∨((Q∨P)∧R)((P∨Q)∧R)∨((Q∨P)∧R)((P∨Q)∨(Q∨P))∧R((P∨Q)∨(P∨Q))∧RT∧R(置换)R2) x (A(x)B(x))xA(x)xB(x)证明:x(A(x)B(x))x(A(x)∨B(x))x A(x)∨xB(x)xA(x)∨xB(x)xA(x)xB(x)二、求命题公式(P∨(Q∧R))(P∧Q∧R)的主析取范式和主合取范式(10分)。

证明:(P∨(Q∧R))(P∧Q∧R)(P∨(Q∧R))∨(P∧Q∧R))(P∧(Q∨R))∨(P∧Q∧R)(P∧Q)∨(P∧R))∨(P∧Q∧R)(P∧Q∧R)∨(P∧Q∧R)∨(P∧Q∧R))∨(P∧Q∧R))∨(P∧Q∧R)m0∨m1∨m2∨m7M3∨M4∨M5∨M6三、推理证明题(10分)1)C∨D,(C∨D)E, E(A∧B),(A∧B)(R∨S)R∨S证明:(1)(C∨D) E ?P(2) E(A∧B) ??P(3) (C∨D)(A∧B) T(1)(2),I(4) (A∧B)(R∨S)??P(5) (C∨D)(R∨S) ? T(3)(4),I(6)C∨D P(7) R∨S T(5),I2) x(P(x)Q(y)∧R(x)),xP(x)Q(y)∧x(P(x)∧R(x))证明(1)xP(x) P(2)P(a) T(1),ES(3)x(P(x)Q(y)∧R(x)) P(4)P(a)Q(y)∧R(a) T(3),US(5)Q(y)∧R(a) T(2)(4),I(6)Q(y) T(5),I(7)R(a) T(5),I(8)P(a)∧R(a) T(2)(7),I(9)x(P(x)∧R(x)) T(8),EG(10)Q(y)∧x(P(x)∧R(x)) T(6)(9),I四、某班有25名学生,其中14人会打篮球,12人会打排球,6人会打篮球和排球,5人会打篮球和网球,还有2人会打这三种球。

(完整word版)离散数学期末练习题带答案

(完整word版)离散数学期末练习题带答案

4, 2 } U I A ,则对应于 R 的划分是(
)。
A. {{ 1},{2,3},{4}}
B. {{ 1,3},{2,4}}
C. {{ 1,3},{2},{4}}
D. {{ 1},{2},{3},{4}}
23.设 G A, 是群,则下列陈述不正确的是(
)。
A. (a 1) 1 a C. an a m an m
Байду номын сангаасC. a b ab 1
D. a b a b 1
19. 设简单图 G 所有结点的度数之和为 50,则 G 的边数为(
(
)
A. 50
B. 25
C. 10
D. 5
20.设简单无向图 G 是一个有 5 个顶点的 4-正则图,则 G 有(
A. 4
B. 5
C. 10
D. 20
)。 )条边。
21.设集合 A {1,2,3,4} , A 上的等价关系 R { 1,1 , 3,2 , 2,3 ,
D. x y lcm{ x, y} ,即 x, y 的最小公倍数
25. 设 X {1,2,3 }, Y { a,b, c, d}, f { 1, a , 2, b , 3, c } ,则 f 是
(
)。
A .从 X 到 Y 的双射
B.从 X 到 Y 的满射,但不是单射
C.从 X 到 Y 的单射,但不是满射
)。
A. G 的所有结点的度数全为偶数
B. G 中所有结点的度数全为奇数
C. G 连通且所有结点度数全为奇数
D. G 连通且所有结点度数全为偶数
36.下列 不.一.定.是树的是( ) A. 无回路的连通图 D
B. 有 n 个结点, n-1 条边的连通图

大学离散数学期末考试题库和答案

大学离散数学期末考试题库和答案

大学离散数学期末考试题库和答案一、单项选择题(每题2分,共20分)1. 在集合论中,以下哪个符号表示“属于”?A. ∈B. ∉C. ⊆D. ⊂答案:A2. 如果A和B是两个集合,那么A∪B表示什么?A. A和B的交集B. A和B的并集C. A和B的差集D. A和B的补集答案:B3. 以下哪个命题是真命题?A. ∀x∈N, x^2 > xB. ∃x∈N, x^2 = x + 1C. ∀x∈N, x^2 ≥ xD. ∃x∈N, x^2 < x答案:C4. 在图论中,一个无向图的边数为E,顶点数为V,那么这个图的生成树的边数是多少?A. EB. V-1C. VD. E-1答案:B5. 以下哪个算法是用于解决旅行商问题(TSP)的?A. 动态规划B. 贪心算法C. 分支限界法D. 回溯法答案:D6. 在逻辑中,以下哪个符号表示“蕴含”?A. ∧B. ∨C. →D. ↔答案:C7. 以下哪个是二进制数?A. 1010B. 2A3C. 12BD. ZYX答案:A8. 在关系数据库中,以下哪个操作用于删除表中的行?A. SELECTB. INSERTC. UPDATED. DELETE答案:D9. 以下哪个是布尔代数的基本运算?A. 并集B. 交集C. 差集D. 所有以上答案:D10. 在离散数学中,以下哪个概念用于描述两个集合之间的关系?A. 函数B. 映射C. 序列D. 所有以上答案:D二、多项选择题(每题3分,共15分)11. 以下哪些是集合的基本运算?A. 并集B. 交集C. 差集D. 补集答案:ABCD12. 在图论中,以下哪些是图的基本类型?A. 无向图B. 有向图C. 完全图D. 二分图答案:ABCD13. 在逻辑中,以下哪些是命题逻辑的基本连接词?A. 与(∧)B. 或(∨)C. 非(¬)D. 蕴含(→)答案:ABCD14. 在关系数据库中,以下哪些是SQL的基本操作?A. SELECTB. INSERTC. UPDATED. DELETE答案:ABCD15. 在离散数学中,以下哪些是组合数学的基本概念?A. 排列B. 组合C. 二项式系数D. 图论答案:ABC三、填空题(每题3分,共30分)16. 如果集合A={1, 2, 3},集合B={2, 3, 4},那么A∩B=______。

《离散数学》期末练习题考试卷和答案

《离散数学》期末练习题考试卷和答案

a , b, c , d , e, f , g,那么 所对应的 19. 设集合 A a , b , c , d , e , f , g , A 上有一个划分
等价关系 R 应有( )个序偶。 )。
20. 在有理数集合 Q 上定义二元运算*: a * b a b ab ,则 Q , * 的幺元是(
等价关系 R 应有( )个序偶。 )。
25. 在有理数集合 Q 上定义二元运算*: a * b a b ab ,则 Q , * 的幺元是(
26. 一个(
)称为布尔代数。
27.P Q P Q 的主析取范式是
。(写出一般
5
表示形式即可) 28.设集合 A a , b , c , d , R 是 A 上的二元关系,且 R a , b , b , a , b , c , c , d , a , c , 则 R 的传递闭包 t R 。
C. x x是正整数, x 5


D. x x是有理数, x 5

6.下面有关集合之间的包含和属于关系的说法,正确的是 Ⅰ. Ⅲ.
Ⅱ. , ,
Ⅳ.
a, b a, b, a, b
B.Ⅰ和Ⅲ
a, b a, b, a, b, c
二、填空题 1.设 A 为非空集合,且 A n ,则 A 上不同的二元关系的个数为 为 。 时, P Q 的真值为 1。 , A 上不同的映射的个数
2.设 P 、 Q 为两个命题,当且仅当
3. 在运算表中的空白处填入适当符号,使 a , b , c, * 成为群。 *
a a
a b c
4. 当 n 为 数时, K n n 3 必为欧拉图。

国家开放大学电大本科《离散数学》2024-2025期末试题及答案(试卷号:1009)

国家开放大学电大本科《离散数学》2024-2025期末试题及答案(试卷号:1009)

国家开放大学电大本科《离散数学》2024-2025期末试题及答案(试卷号:1009)一、单项选择题(每小题3分,本题共16分)若集合A = {1,2,3,4},则下列表述不正确的是( ).A.{2,3)€AB.AU{1,2,3,4}C. <1,2,3,4)QAD. 16A2.若无向图G的结点度数之和为20,则G的边数为( ).A.10B. 20C. 30D. 53.无向图G是棵树,结点数为10,则G的边数为( ).A. 5B. 10C.9D. 114.设A(x):x是人,B(x):x是学生,则命题“有的人是学生”可符号化为( )•A.Vx)(A(x)-*B(x»B.(3x)(A(x)AB(x))C.(Vx)(A(x)AB(x»D.-«(3x)(A(x)A -B(x»5.下面的推理正确的是( ).A.(l)(Vx)F(x)->G(x) 前提引入(2)F(>-)-*G(y) US(1).B.(1)( 3 x)F(x)-*G(x) 前提引入(2)F(y)-*G(y) US(1),C.(l)(3x)(F(x)->G(x»前提引入(2)F(y)-*G(x) ES(1).D.(l)(3x)(F(x)-*G(x)) 前提引入(2)F(y)-*G(y) ESQ).二、填空题(每小题3分,本题共15分)6.设A = {1,2),H = {1,2,3},则A到B上不同的函数个数为________________ .7.有&个结点的无向完全图的边数为 ____________ .8.若无向图G中存在欧拉路但不存在欧拉回路,则G的奇数度数的结点有________ 个.9.设G是有10个结点的无向连通图,结点的度数之和为30,则从G中删去条边后使之变成树.10.设个体域£> = {1,2,3,4},则谓词公式(*)人(了)消去量词后的等值式为三、逻辑公式翻译(每小题6分,本息共12分)11.将语句“昨天下甬“翻译成命题公式.12.将语句“小王今天上午或者去看电彩或者去打球”翻译成命JS公式.四、判断说明题(判断各题正误,并说明理由.每小题7分,本黑共14分)13.存在集合A与B,使得A6B与AUB同时成立.14.完全图K<是平面图.五、计算题(每小题12分,本题共36分)15.设偏序集VA,R>的哈斯图如下,B为A的子集,其中B = 试(1)写出R的关系表达式;(2)画出关系R的关系图;(3)求出B的最大元、极大元、上界.16.设图G — <V,E>,V={vj f v it v t,Vi»v s)»(v2, v3)»(v3»vs)}»试(1)画出G的图形表示;(2)写出其邻接矩阵;(3)求出每个结点的度数;(4)画出图G的补图的图形,17.求P TQ代R)的合取范式与主合取范式.六、证明题(本题共8分)18.设A.B是任意集合,试证明:若AXA=BXB,^ A = B.M答杖松标准(仅辩者)一、单项选择题(每小题3分,本题共15分)1. A2. A3. C4.B5. D二、填空题(每小题3分,本题共]5分)6.97.”3 — 1)/2(或庆)8.210. A(l) VA(2) V A(3) V A(4)三、 逻辑公式翻译(每小题6分,本题共】2分)H,设P :昨天下雨. 则命题公式为:P ,12. 设P :小王今天上午去看电影 Q :小王今天上午去打球 则命题公式为:r (PiQ ). 或者(rPAQ )V 〈PA rQ )四、 判断说明题(每小题7分,本题共14分)13. 正确.例:设 A = {a} t H — {a,{a}) 则有且ACI3.说明:举出符合条件的例均给分. 14. 正确.完全图K 〈是平面图, 如K,可以如下图示嵌入平面.(7分)五、计算题(每小题12分,本题共36分)15. (l )R = {Va ,a>,Vb,Q>,Vc,c>,Vd,d>・Va0>・Va ・c>,V&,d>,VQ,d >}. (4 分)(2)关系图(8分)(3)集合B 无最大元,极大元为6与c.无上界. 16, 解: (1)关系图(2分) (6分)(2分)(6分)(3分) (517. P TQAR) 5PV(QAR) 0(rPVQ 〉A(rPVR)合取范式<=>(-PVQ)V(K A rR)A(rPVR) 0("VQ)V(& A rR)A(" VR)V(QA -Q)D(rPVQVR)A(rPVQVA("VR VQ) A(-、PVR V -Q) c=>(-PVQV7?)A(-'PVQV-R)A(-PV-QVR) 主合取范式 六、证明题(本意共8分)18. 证明:V2(2)邻接矩阵bioir 101001001 1 00 0(6分)(3) deg(vi)=,3deg(v t )—2 <ieg(v 3)~2 deg顷)=1 deg(v s )=2 (4) 补图(9分)(】2分)(2分) (5分)(7分〉设x€A,则Vx,x>€AXA,(1 分)因AXA = BXB,故V X,X>€BXB,则有xGB, (3 分)因此AGB. (5分)设xQB,则Vx,x>€BXB,(6 分)因AXA-BXB,故Vx,x>eAXA,则有因此BWA. (7 分)故得A=B. (8分)。

离散数学考试试题及答案

离散数学考试试题及答案

离散数学考试试题及答案离散数学考试试题及答案离散数学是计算机科学和数学中的一门重要学科,它研究的是离散的结构和对象。

离散数学的理论和方法在计算机科学、信息科学、通信工程等领域具有广泛的应用。

下面将为大家提供一些离散数学考试试题及答案,希望对大家的学习和复习有所帮助。

1. 集合论题目(1) 设A={1,2,3,4,5},B={3,4,5,6,7},求A∪B的结果。

答案:A∪B={1,2,3,4,5,6,7}(2) 设A={1,2,3,4,5},B={3,4,5,6,7},求A∩B的结果。

答案:A∩B={3,4,5}(3) 设A={1,2,3,4,5},B={3,4,5,6,7},求A-B的结果。

答案:A-B={1,2}2. 图论题目(1) 给定一个无向图G,顶点集为V={A,B,C,D,E},边集为E={(A,B),(A,C),(B,D),(C,D),(D,E)},求该图的邻接矩阵。

答案:邻接矩阵为:A B C D EA 0 1 1 0 0B 1 0 0 1 0C 1 0 0 1 0D 0 1 1 0 1E 0 0 0 1 0(2) 给定一个有向图G,顶点集为V={A,B,C,D,E},边集为E={(A,B),(B,C),(C,D),(D,E),(E,A)},求该图的邻接表。

答案:邻接表为:A ->B ->C ->D ->E -> AB -> CC -> DD -> EE -> A3. 命题逻辑题目(1) 判断以下命题是否为永真式:(p∨q)∧(¬p∨r)∧(¬q∨¬r)。

答案:是永真式。

(2) 给定命题p:如果天晴,那么我去游泳;命题q:我没有去游泳。

请判断以下命题的真假:(¬p∨q)∧(p∨¬q)。

答案:是真命题。

4. 关系代数题目(1) 给定关系R(A,B,C)和S(B,C,D),求R⋈S的结果。

(完整word版)离散数学期末考试试题及答案

(完整word版)离散数学期末考试试题及答案

离散数学试题(B卷答案1)一、证明题(10分)1)(⌝P∧(⌝Q∧R))∨(Q∧R)∨(P∧R)⇔R证明: 左端⇔(⌝P∧⌝Q∧R)∨((Q∨P)∧R)⇔((⌝P∧⌝Q)∧R))∨((Q∨P)∧R)⇔(⌝(P∨Q)∧R)∨((Q∨P)∧R)⇔(⌝(P∨Q)∨(Q∨P))∧R⇔(⌝(P∨Q)∨(P∨Q))∧R⇔T∧R(置换)⇔R2) ∃x (A(x)→B(x))⇔∀xA(x)→∃xB(x)证明:∃x(A(x)→B(x))⇔∃x(⌝A(x)∨B(x))⇔∃x⌝A(x)∨∃xB(x)⇔⌝∀xA(x)∨∃xB(x)⇔∀xA(x)→∃xB(x)二、求命题公式(P∨(Q∧R))→(P∧Q∧R)的主析取范式和主合取范式(10分)。

证明:(P∨(Q∧R))→(P∧Q∧R)⇔⌝(P∨(Q∧R))∨(P∧Q∧R))⇔(⌝P∧(⌝Q∨⌝R))∨(P∧Q∧R)⇔(⌝P∧⌝Q)∨(⌝P∧⌝R))∨(P∧Q∧R)⇔(⌝P∧⌝Q∧R)∨(⌝P∧⌝Q∧⌝R)∨(⌝P∧Q∧⌝R))∨(⌝P∧⌝Q∧⌝R))∨(P∧Q∧R)⇔m0∨m1∨m2∨m7⇔M3∨M4∨M5∨M6三、推理证明题(10分)1)C∨D, (C∨D)→⌝E,⌝E→(A∧⌝B), (A∧⌝B)→(R∨S)⇒R∨S 证明:(1) (C∨D)→⌝E P(2) ⌝E→(A∧⌝B) P(3) (C∨D)→(A∧⌝B) T(1)(2),I(4) (A∧⌝B)→(R∨S) P(5) (C∨D)→(R∨S) T(3)(4), I(6) C∨D P(7) R∨S T(5),I2) ∀x(P(x)→Q(y)∧R(x)),∃xP(x)⇒Q(y)∧∃x(P(x)∧R(x))证明(1)∃xP(x) P(2)P(a) T(1),ES(3)∀x(P(x)→Q(y)∧R(x)) P(4)P(a)→Q(y)∧R(a) T(3),US(5)Q(y)∧R(a) T(2)(4),I(6)Q(y) T(5),I(7)R(a) T(5),I(8)P(a)∧R(a) T(2)(7),I(9)∃x(P(x)∧R(x)) T(8),EG(10)Q(y)∧∃x(P(x)∧R(x)) T(6)(9),I四、某班有25名学生,其中14人会打篮球,12人会打排球,6人会打篮球和排球,5人会打篮球和网球,还有2人会打这三种球。

离散数学期末考试试题及答案

离散数学期末考试试题及答案

离散数学试题(B卷答案1)一、证明题(10分)1)(⌝P∧(⌝Q∧R))∨(Q∧R)∨(P∧R)⇔R证明: 左端⇔(⌝P∧⌝Q∧R)∨((Q∨P)∧R)⇔((⌝P∧⌝Q)∧R))∨((Q∨P)∧R)⇔(⌝(P∨Q)∧R)∨((Q∨P)∧R)⇔(⌝(P∨Q)∨(Q∨P))∧R⇔(⌝(P∨Q)∨(P∨Q))∧R⇔T∧R(置换)⇔R2) ∃x (A(x)→B(x))⇔∀xA(x)→∃xB(x)证明:∃x(A(x)→B(x))⇔∃x(⌝A(x)∨B(x))⇔∃x⌝A(x)∨∃xB(x)⇔⌝∀xA(x)∨∃xB(x)⇔∀xA(x)→∃xB(x)二、求命题公式(P∨(Q∧R))→(P∧Q∧R)的主析取范式和主合取范式(10分)。

证明:(P∨(Q∧R))→(P∧Q∧R)⇔⌝(P∨(Q∧R))∨(P∧Q∧R))⇔(⌝P∧(⌝Q∨⌝R))∨(P∧Q∧R)⇔(⌝P∧⌝Q)∨(⌝P∧⌝R))∨(P∧Q∧R)⇔(⌝P∧⌝Q∧R)∨(⌝P∧⌝Q∧⌝R)∨(⌝P∧Q∧⌝R))∨(⌝P∧⌝Q∧⌝R))∨(P∧Q∧R)⇔m0∨m1∨m2∨m7⇔M3∨M4∨M5∨M6三、推理证明题(10分)1)C∨D, (C∨D)→⌝E,⌝E→(A∧⌝B), (A∧⌝B)→(R∨S)⇒R∨S 证明:(1) (C∨D)→⌝E P(2) ⌝E→(A∧⌝B) P(3) (C∨D)→(A∧⌝B) T(1)(2),I(4) (A∧⌝B)→(R∨S) P(5) (C∨D)→(R∨S) T(3)(4), I(6) C∨D P(7) R∨S T(5),I2) ∀x(P(x)→Q(y)∧R(x)),∃xP(x)⇒Q(y)∧∃x(P(x)∧R(x))证明(1)∃xP(x) P(2)P(a) T(1),ES(3)∀x(P(x)→Q(y)∧R(x)) P(4)P(a)→Q(y)∧R(a) T(3),US(5)Q(y)∧R(a) T(2)(4),I(6)Q(y) T(5),I(7)R(a) T(5),I(8)P(a)∧R(a) T(2)(7),I(9)∃x(P(x)∧R(x)) T(8),EG(10)Q(y)∧∃x(P(x)∧R(x)) T(6)(9),I四、某班有25名学生,其中14人会打篮球,12人会打排球,6人会打篮球和排球,5人会打篮球和网球,还有2人会打这三种球。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、单项选择题(每小题3分,共30分)
1.下列为两个命题变元p,q的最小项的是( ) A .p∧q∧⎤ p
B .⎤ p∨q
C .⎤ p∧q
D .⎤ p∨p∨q 2.下列句子不是命题的是( ) A .中华人民共和国的首都是北京 B .张三是学生 C .雪是黑色的
D .太好了!
3.对于公式(∀x ) (∃y )(P (x )∧Q (y ))→(∃x )R (x ,y ),下列说法正确的是( ) A .y 是自由变元 B .y 是约束变元
C .(∃x )的辖域是R(x , y )
D .(∀x )的辖域是(∃y )(P (x )∧Q (y ))→(∃x )R (x ,y )
4.7.集合A={1,2,…,10}上的关系R={(x ,y )|x +y =10,x ∈A ,y ∈A},则R 的性质是( )
A .自反的
B .对称的
C .传递的、对称的
D .反自反的、传递的 5.设论域为{l ,2},与公式)(x xA ∃等价的是( ) A.A (1)∨A (2)
B. A (1)→A (2)
C.A (1)
D. A (2)→A (1)
6. 下列关系矩阵所对应的关系具有反自反性的是( ) A .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001110101
B .⎥⎥⎥⎦

⎢⎢⎢⎣⎡101100001 C .⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡001100100
D .⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡001010101
7. 下列运算不满足...交换律的是( ) A .a *b =a+2b
B .a *b =min(a ,b )
C .a *b =|a -b |
D .a *b =2ab
8..设A 是奇数集合,下列构成独异点的是( ) A.<A ,+> B.<A ,-> C.<A ,×> D.<A ,÷> 9. 右图的最大入度是( ) A .0 B .1 C .2
D .3
第9题图
拟题学院(系): 高密校区 适用专业: 学年 2学期 离散数学 (B卷) 试题标准答案
10. 设有向图D 的节点数大于1,D=(V ,E )是强连通图,当且仅当( ) A. D 中至少有一条通路 B. D 中至少有一条回路
C. D 中有通过每个结点至少一次的通路
D. D 中有通过每个结点至少一次的回路 二、填空题(每空3分,共30分)
1.设A ={1,2,3,4},B ={2,4,6},则A -B =________,A ⊕B =________。

2.设S 是非空有限集,代数系统<P (S ),∪>中,其中P (S )为集合S 的幂集,则P (S )对
∪运算的单位元是________,零元是________。

3.设f ∶R →R,f(x)=x+3,g ∶R →R,g(x)=2x+1,则复合函数____________))(g (f =x ,
__________________)x )(f (g = 。

4.设有向图G=(V ,E ),V={v 1,v 2,v 3,v 4},若G 的邻接矩阵⎥

⎥⎥⎦
⎤⎢⎢⎢
⎢⎣⎡=0001
00111101
1010A ,则deg -(v 1)=_ ________,deg +(v 4)=____________。

5.给定集合A={1,2,3,4,5},在集合A 上定义两种关系:R={(1,2),(3,4),(2,2)}, S={(4,2),(2,5),(3,1),(1,3)},则_______________S R = ,_______________R S = 。

三、解答题(5个小题,共40分)
1.(8分)设A={a,b,c,d},A 上的等价关系R={(a,b ),(b,a ),(c,d ),(d,c )}∪I A ,画出R 的关系图,并求出A 中各元素的等价类。

2.(8分)构造命题公式((P ∧Q )→P )∨R 的真值表。

3.(8分)求命题公式A=P →((Q →P )∧(⎤P ∧Q ))的主析取范式和主合取范式。

4.(8分)用推理方法证明:⎤(A ∧B),B ∨C, ⎤C ⇒⎤A. 5.(8分)用矩阵的方法求图中结点u 1,u 5之间长度为2的路的数目。

第5题图
-
拟 题 人:
书写标准答案人:
(答案要注明各个要点的评分标准)
一、单项选择题(每小题3分,共30分)1.(C)2. (D);3.(C );4.(B);5. (A) 6.(C)7. (B);8.(C);9.(D);10. (D). 二、填空题(每空3分,共30分) 1.{1,3},{1,3,6}; 2.Φ, S; 3.2x+7, 2x+4; 4.3,1; 5.{(1,5),(3,2), (2,5)},{(4,2),(3,2), (1,4)}
三、解答题(5个小题,共40分) 1.解:R 的关系图:
……4分
[a]=[b]={a,b}, [c]=[d]={c,d} ……8分
2. P Q P ∧Q P ∧Q →P ((P ∧Q )→P )∨R 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 0 1 1 1 0 0 0 1 1 0 1 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 0 0 1 1
………8分 3.解:A= P →((Q →P )∧(⎤P ∧Q )) =⎤P ∨((⎤Q ∨P )∧(⎤P ∧Q )) =⎤P ∨((⎤Q ∧⎤P ∧Q )∨(P ∧⎤P ∧Q )) =⎤P ∨(0∨0)
=⎤P ………4分 所以A 的主析取范式A=⎤P ∧(Q ∨⎤Q )=(⎤P ∧Q )∨(⎤P ∧⎤Q ) ………6分 A 的主合取范式A=⎤P ∨(Q ∧⎤Q )=(⎤P ∨Q )∧(⎤P ∨⎤Q ) ………8分
4.证明: (1)B ∨C P ………1分
(2)⎤C P (1) ………3分 (3)B T (1) (2)I ………4分
(4)⎤(A ∧B) P ………6分 (5)⎤A ∨⎤B T(4)E ………7分 (6)⎤A T (3) (5)I ………8分 5. .解: 邻接矩阵
⎥⎥⎥
⎥⎥
⎥⎦

⎢⎢⎢⎢⎢
⎢⎣⎡=011111000110011
1010111110A ………2

⎥⎥⎥
⎥⎥
⎥⎦

⎢⎢⎢
⎢⎢
⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢
⎢⎢
⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=412231222122322
2223231224
011111000110011
1010111110
01111
1000110011
10101111102
A ………6
分 所以,图中节点u 1,u 5之间长度为2的路有3条。

………8
分。

相关文档
最新文档