2014年全国初中数学竞赛试题及答案
2014年全国初中数学联合竞赛试题及答案
2014年全国初中数学联合竞赛预赛试题参考答案(八年级组)第一试一、选择题1.C 2.D 3.A 4.B 5.B (5.由11=x 和1121444k k k k x x -⎛--⎫⎡⎤⎡⎤=+-- ⎪⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭可得11x =,22x =,33x =,44x =,51x =,62x =,73x =,84x =,……因为2014=4×503+2,所以2014x =2) 二、填空题6.20°7.-48.919.5(小正方体个数最少情况如图所示(图中数字表示该位置小正方体的个数)所以最少为5块)10.23(对角四边形的面积之和相等)第二试一、(1)证明:∵2233x x y y =+=+,,∴22x y x y -=-∴ 1 ()x y x y +=≠……………………………………………………6分(2)解:∵2233x x y y =+=+,,∴323233x x x y y y =+=+,, 43243233x x x y y y =+=+,,54354333x x x y y y =+=+,,∴5543433223223339339x y x x y y x x x x y y y y +=+++=++++++3+ 22712712x x y y =+++223()2()1921192119()4261x y x y x y x y =+++=+++=++=.………15分 二、解:方程两边分解因式得 (2x +y )(x +y )=2×19×53.………………………………5分不妨先设x ≥y ≥1,则有2x +y ≥x +2y >x +y >1. 由此,只有三种情况: 253,2106,210238,219,2 2.x y x y x y x y x y x y+=+=+=⎧⎧⎧⎨⎨⎨+=+=+=⎩⎩⎩或或…………………………10分当253,238,x y x y +=⎧⎨+=⎩时,解得15,23,x y =⎧⎨=⎩当2106,21007,219,2 2.x y x y x y x y +=+=⎧⎧⎨⎨+=+=⎩⎩或时,不符合题意.故原方程的正整数解为15,23.x y =⎧⎨=⎩………………………………………………15分俯视图2 12三、解:设本次比赛钓到的鱼的总数是x 条.则钓到3条或3条以上的人共钓到鱼的条数为:()()14+26=16x x -⨯⨯-,钓到()16x -条的人数为165x -;…………………………………………………………5分 类似地,钓到10条或10条以下的人共钓到鱼的条数为:()()114+12213=81x x -⨯⨯+-,钓到这些鱼的人数为815x -;………………10分 根据题意,可知参加本次比赛的总人数得,()167465x -+++=()814215x -+++,解得x =541.因此,本次比赛共钓到541条鱼.……………………………………………………15分四、证明:∵AD 为△ABC 的角平分线,∴12∠=∠.(1)∵CE ∥AD ,∴1E ∠=∠,23∠=∠.∴3E ∠=∠. ∴AC =AE .∵F 为EC 的中点,∴AF ⊥BC . ∴90AFE FAD ∠=∠=︒.∴AF ⊥AD .…………………………………………………………10分(2)延长BA 与MN 延长线于点E ,过B 作BF ∥AC 交NM 延长线于点F .∴3C ∠=∠,4F ∠=∠.∵M 为BC 的中点∴BM =CM . 在△BFM 和△CNM 中,4,3,,F C BM CM ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△BFM ≌△CNM (AAS ). ∴BF =CN . ∵MN ∥AD ,∴1E ∠=∠,245∠=∠=∠. ∴5E F ∠=∠=∠. ∴AE =AN ,BE =BF .设CN =x ,则BF =x , AE =AN =AC -CN =10-x ,BE =AB +AE =6+10-x . ∴6+10-x =x .解得 x =8.∴CN =5.5,AN =2. ………………………………………………25分2014年全国初中数学联合竞赛预赛试题参考答案(九年级组)第一试一、选择题A MDCBNE F35 41 21.B 2.D 3.A 4.D 5.C 6.B 二、填空题7.1792(两边同时乘以a +b +c )8.-8 9.25-=x (提示:[]x ≤x <[]x +1,原方程化为[]x ≤2[]x +27<[]x +1,解得[]x =-3,代入原方程求出x .)10.(1,21)(1011,51-)(提示:除直角三角形ABC 斜边的中点外,直线AB 上与该中点关于斜边上高的垂足对称的点也满足题意)第二试一、解:设甲仓库供应给A 校,B 校,C 校的电脑分别为x 台,y 台,()[]y x -12+台,则乙仓库供应给A 校,B 校,C 校的电脑分别为(9-x )台,(15-y )台,()[]y -15x -9-20+台, 设总运输费为S 元,则S=10x +5y +6()[]y x -12++4(9-x )+8(15-y )+15()[]y -15x -9-20+,得S=15x +6y +48=9x +6(x +y )+48,…………………………………………………………10分 又0≤x ≤9,0≤y ≤15,4≤x +y ≤12,S≥9×0+6×4+48=72,………………………………………………………………………15分 此时,x =0,y =4,又()[]y x -12+=8,故甲仓库供应给A 校,B 校,C 校的电脑分别为0台,4台,8台.……………………20分二、(1)证明:由AB =AD ,知∠ABD =∠ADB =α,由等弧对等圆周角知,∠ACD =∠ACB =α.令∠DFC =β则∠BAD =∠BFC =2β,故∠ABD +∠ADB +∠BAD =α+α+2β=180°,于是α+β=90°,∠CDF =90°.又∠FBC =180°-α-2β=α=∠FCB ,所以FB =FC …………………………10分 (2)解:设边BC 的中点为M ,连接FM . 易知△FCD ≌△FBM ,BC =2CD 又AC 是∠BCD 的角平分线,由角平分线定理,得2==CDBCDE BE …………………25分三、解:点A 的坐标为(-1,0),点B 的坐标为(3,0),点C 坐标为(0,﹣3).∵y =x 2﹣2x ﹣3=(x ﹣1)2﹣4, ∴顶点D 的坐标为(1,﹣4);点E 的坐标为(1,0).………………………………5分 (1)当点M 在对称轴右侧时.①若点N 在射线CD 上,如图,延长MN 交y 轴于点F ,过点M 作MG ⊥y 轴于点G . ∵∠CMN =∠BDE ,∠CNM =∠BED =90°, ∴△MCN ∽△DBE ,∴21==DE BE MN CN , ∴MN =2CN . 设CN =a ,则MN =2a .∵∠CDE =∠DCF =45°,∴△CNF ,△MGF 均为等腰直角三角形, ∴NF =CN =a ,CF =a , ∴MF =MN +NF =3a ,∴MG =FG =223a , ∴CG =FG ﹣FC =22a ,∴M (223a ,﹣3+22a ).代入抛物线解得a =927,∴M (37,﹣920); ………………………………………………………………13分②若点N 在射线DC 上,如图,MN 交y 轴于点F ,过点M 作MG ⊥y 轴于点G . ∵∠CMN =∠BDE ,∠CNM =∠BED =90°, ∴△MCN ∽△DBE ,∴21==DE BE MN CN , ∴MN =2CN .设CN =a ,则MN =2a . ∵∠C DE =45°,∴△CNF ,△MGF 均为等腰直角三角形, ∴NF =CN =a ,CF =a , ∴MF =MN ﹣NF =a ,∴MG =FG =22a , ∴CG =FG +FC =223a ,∴M (22a ,﹣3+223a ).代入抛物线y =(x ﹣3)(x +1),解得a =5, ∴M (5,12);………………………………………………………………………………21分 (2)当点M 在对称轴左侧时. ∵∠CMN =∠BDE <45°, ∴∠MCN >45°,而抛物线左侧任意一点K ,都有∠KCN <45°,∴点M 不存在.…………………………24分综上可知,点M 坐标为(37,﹣920)或(5,12).……………………………………25分2014年全国初中数学联赛(初三组)初赛试卷(3月7日下午4:00—6:00)班级:: 姓名: 成绩:第2题图DACB第4题图DACB考生注意:1、本试卷共五道大题,全卷满分140分;2、用圆珠笔、签字笔或钢笔作答;3、解题书写不要超出装订线;4、不能使用计算器。
2014年全国初中数学联赛决赛(初二)试题及答案解析
2014年全国初中数学联合竞赛初二年级试题参考答案说明:第一试,选择题和填空题只设7分和0分两档;第二试各题,请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答不同,在评卷时请参照本评分标准划分的档次,给予相应的分数.第一试一、选择题:(本题满分42分,每小题7分)1.若0x >,0y >=的值为( B )A. 1B. 2C. 3D. 42.已知△ABC 中,2AB AC ==,点D 在BC 边的延长线上,4AD =,则错误!未找到引用源。
=( D )A .16B .15C .13D .123.已知,x y 为整数,且满足22441111211()()()3x y x y x y++=--,错误!未找到引用源。
则x y +的可能的值有 ( C ) A. 1个 B. 2个 C. 3个 D. 4个4.用1g 、3g 、6g 、30g 的砝码各一个,在一架没有刻度的天平上称量重物,如果天平两端均可放置砝码,那么,可以称出的不同克数的重物的种数为 ( C )A .21B .20C .31D .305.已知实数,,x y z 满足1()2x y z =++,则xyz 的值为 ( A )A .6B .4C .3D .不确定6.已知△ABC 的三边长分别为2,3,4,M 为三角形内一点,过点M 作三边的平行线,交各边于D 、E 、F 、G 、P 、Q (如图),如果DE FG PQ x ===,则x = ( D )A .1813B .2013C .2213D .2413 二、填空题:(本题满分28分,每小题7分)1.如果关于x 的方程|3||2||1|x x x a -+---=恰好只有一个解,则实数a =1-.2.使得不等式981715n n k <<+错误!未找到引用源。
对唯一的整数k 成立的最大正整数n 为 144 .3.已知P 为等腰△ABC 内一点,AB BC =,108BPC ∠=︒,D 为AC 的中点,BD与PC 交于点E ,如果点P 为△ABE 的内心(三角形的三条内角平分线的交点),则PAC ∠=48︒.4.已知n 为正整数,且432261225n n n n ++++为完全平方数,则n = 8 .第二试一、(本题满分20分)设b 为正整数,a 为实数,记221145224M a ab b a b =-++-+,在,a b 变动的情况下,求M 可能取得的最小整数值,并求出M 取得最小整数值时,a b 的值.解222233(2)2(2)121(21)(1)44M a b a b b b a b b =-+-+++++=-++++,………………5分注意到b 为正整数,所以2319(11)44M ≥++=,所以M 可能取得的最小整数值为5. ……………………10分当5M =时,223(21)(1)54a b b -++++=,故2217(21)(1)4a b b -+++=.…………………15分 因为b 为正整数,所以2(1)b +是整数且不小于4,所以一定有12b +=,且21(21)4a b -+=,所以1b =,12a =或32a =. ……………………20分 二.(本题满分25分)在直角△ABC 中,D 为斜边AB 的中点,E 、F 分别在AC 、BC 上,90EDF ∠=︒,已知4CE =,2AE =,32BF CF -=,求AB . 解 延长ED 到点M ,使DM ED =,连接MB 、MF .又因为D 为AB 的中点,所以△BDM ≌△ADE . …………5分所以AE BM =,A ABM ∠=∠,所以AC //BM ,所以18090CBM C ∠=︒-∠=︒,故△BMF 是直角三角形,于是有222BM BF MF +=. ……………………10分又在直角△CEF 中,有222CE CF EF +=.又由90EDF ∠=︒和DM ED=可得EF MF =, ……………………15分 于是可得222222CE CF BM BF AE BF +=+=+,所以222212BF CF CE AE -=-=,即()()12BF CF BF CF +-=. ……………………20分 又32BF CF -=,所以8BF CF +=,即8BC =. 因此2222268100AB AC BC =+=+=,所以10AB =. ……………………25分三.(本题满分25分)设不全相等的非零实数,,a b c 满足2221222bc ac ab a bc b ac c ab++=+++,求a b c ++的值. 解 由2221222bc ac ab a bc b ac c ab ++=+++得2221111222111a b c bc ac ab++=+++. 设22a x bc =,22b y ac =,22c z ab =,则8xyz =,且1111111x y z ++=+++,…………………10分 通分即得(1)(1)(1)(1)(1)(1)(1)(1)(1)y z x z x y x y z ++++++++=+++,展开后整理得2xyz x y z =+++,所以6x y z ++=. …………………15分 即2222226a b c bc ac ab++=,所以3333a b c abc ++=,分解因式得 222()[()()()]0a b c a b b c c a ++-+-+-=.又,,a b c 不全相等,所以222()()()0a b b c c a -+-+-≠,故0a b c ++=. ………………25分。
2014年全国初中数学竞赛试题参考答案及评分标准
2014年全国初中数学竞赛试题参考答案及评分标准一、选择题(共10小题,每小题6分,满分60分.) 1.已知x 、y 、z 满足2x =3y-x =5z+x ,则5x-yy+2z的值为( )(A )1 (B )13 (C )-13 (D )12【答】B .解:设 2x =3y-x =5z+x =1k 则x=2k ,y-z=3k ,z+x=5k ,即x=2k ,y=6k ,z=3k 。
所以5x-y y+2z =5·2k-6k 6k+6k =13,故选B.2.已知等腰三角形的周长为12,则腰长a 的取值范围是( )(A )a >3 (B )a <6 (C )3<a <6 (D )4<a <7 【答】C.解:腰长为a ,则底长为12-2a ,由2a >12-2a 及12-2a >0可得3<a <6 故选C. 3.设 21x x 、 是一元二次方程032=-+x x的两根,则 1942231+-x x 等于( )(A )-4 (B )8 (C )6 (D )0 【答】D.解:将21x x 、代入方程,将目标整式降次,利用两根之和求解.4.如果a b ,为给定的实数,且1a b <<,那么1121a a b a b ++++,, ,这四个数据的平均数与中位数之差的绝对值是( ) (A )1 (B )214a - (C )12 (D )14【答】D.解:由题设知,1112a a b a b <+<++<+,所以这四个数据的平均数为1(1)(1)(2)34244a ab a b a b+++++++++=, 中位数为 (1)(1)44224a ab a b++++++=, 于是 4423421444a b a b ++++-=. 故选D.5. 如图,正方形A BCD 和EFGC 中,正方形EFGC 的边长为a ,用a 的代数式表示阴影部分△AEG 的面积为( )(A )232a (B )223a (C )212a (D )2a【答】C .6.若△ABC 的三条边a,b,c 满足关系式a 4+b 2c 2- a 2c 2-b 4=0,则△ABC 的形状是( ) (A )等腰三角形 (B )等边三角形(C )直角三角形 (D )等腰三角形或直角三角形 【答】D.解法一:原方程左边变形为 (a 4-b 4)+(b 2c 2-a 2c 2)=0, (a 2+b 2)(a 2-b 2)+(b 2-a 2+)c 2=0,∴(a 2-b 2)(a 2+b 2-c 2)=0, ∴a=b 或c 2=a 2+b 2.∴△ABC 为等腰三角形或直角三角形. 解法二:应用配方法a 4+b 2c 2- a 2c 2-b 4=0, (a 4-a 2c 2)-(-b 2c 2+b 4)=0 (a 2-22c )2 -(22c -b 2)2=0 ∴(a 2-b 2)(a 2+b 2-c 2)=0, ∴a 2-b 2=0,或a 2+b 2-c 2=0. ∴a=b 或c 2=a 2+b 2. ∴△ABC 为等腰三角形或直角三角形. 故选D.7.一批志愿者组成了一个“爱心团队”,以募集爱心基金.第一个月他们就募集到资金1万元,随着影响的扩大,第n (n ≥2)个月他们募集到的资金都将会比上个月增加20%,则当该月所募集到的资金首次突破10万元时(参考数据: 51.22.5≈,61.2 3.0≈,71.2 3.6≈),相应的n 的值为( )(A )11 (B )12 (C )13 (D )14 【答】D.8.如图:点D 是△ABC 的边BC 上一点,若∠CAD = ∠DAB = 60°,AC = 3 ,AB = 6,则AD 的长度是( )(A )2 (B )2.5 (C )3 (D )3.5 【答】A.解:如图,作BE ⊥AC 交CA 的延长线于E ,在Rt △ABE 中, ∠BAE= 60° ∴∠ABE= 30° ∴AE=21AB = 3 由勾股定理得BE =33∴21BCA s △AC ·BE =329 ∵∠CAD = ∠DAB = 60°同理得△ADC 和△ABD 中AD 边上的高分别是323和33 ∴=CD A s △343AD ,=B DA s △323AD 又CD A s △+B DA s △=BC A s △ ∴343AD + 323AD =329 ∴AD = 2 故选A9.若m=20132+20132×20142+20142,则m ( )(A )是完全平方数,还是奇数 (B )是完全平方数,还是偶数 (C )不是完全平方数,但是奇数 (D )不是完全平方数,但是偶数 【答】A.解 :原式=20132-2×2013×2014+20142+2×2013×2014+20132×20142=(2013-2014)2+2×2013×2014+(2013×2014)2=1+2×2013×2014+(2013×2014)2=(2013×2014+1)2所以(2013×2014+1)2是一个完全平方数,末尾数字是9,所以也是奇数. 故选A. 10、设非零实数a ,b ,c 满足2302340a b c a b c ++=⎧⎨++=⎩,,则222ab bc caa b c ++++的值为( ) (A )12-(B )0 (C )12(D )1 【答】A.解:由已知得(234)(23)0a b c a b c a b c ++=++-++=,故 2()0a b c ++=.于是 2221()2ab bc ca a b c ++=-++, 所以22212ab bc ca a b c ++=-++.故选A.二、填空题(共5小题,每小题6分,满分30分)11.已知整数1234a a a a ⋅⋅⋅,,,,满足下列条件:10a =,21|1|a a =-+,32|2|a a =-+,43|3|a a =-+,…,依次类推,则2012a 的值为 .【答】1006-12.如图,四边形ABCD 中,AB =BC ,∠ABC =∠CDA =90°, BE ⊥AD 于点E ,且四边形ABCD 的面积为8,则BE = .【答】解:.如图,可以通过旋转变换将△ABE 绕点B 逆时针旋转90°,得到△CBF.证明出四边形BFDE 是正方形,且它的面积是8,则边长是或者过点B 作BF ⊥BE ,交DC 延长线于F. 证明△ABE ≌△CBF ,其余思路同上。
2014年全国初中数学联合竞赛试题参考答案及评分标准
2014年全国初中数学联合竞赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设7分和0分两档;第二试各题,请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.第一试一、选择题:(本题满分42分,每小题7分) 1.已知,x y 为整数,且满足22441111211()()()3x y x y x y++=--,则x y +的可能的值有( ) A. 1个 B. 2个 C. 3个 D. 4个【答】 C.由已知等式得2244224423x y x y x y xy x y x y++-⋅=⋅,显然,x y 均不为0,所以x y +=0或32()xy x y =-.若32()xy x y =-,则(32)(32)4x y +-=-.又,x y 为整数,可求得12,x y =-⎧⎨=⎩,或21.x y =-⎧⎨=⎩,所以1x y +=或1x y +=-.因此,x y +的可能的值有3个.2.已知非负实数,,x y z 满足1x y z ++=,则22t xy yz zx =++的最大值为 ( ) A .47 B .59 C .916 D .1225【答】 A.21222()2()()4t xy yz zx x y z yz x y z y z =++=++≤+++212(1)(1)4x x x =-+-2731424x x =-++2734()477x =--+,易知:当37x =,27y z ==时,22t xy yz zx =++取得最大值47.3.在△ABC 中,AB AC =,D 为BC 的中点,BE AC ⊥于E ,交AD 于P ,已知3BP =,1PE =,则AE = ( )A.2BCD【答】 B .因为A D B C ⊥,BE AC ⊥,所以,,,P D C E 四点共圆,所以12BD BC BP BE ⋅=⋅=,又2B C B D =,所以BD =DP =.又易知△AEP ∽△BDP ,所以AE PEBD DP =,从而可得PE AE BD DP =⋅==.4.6张不同的卡片上分别写有数字2,2,4,4,6,6,从中取出3张,则这3张卡片上所写的数字可以作为三角形的三边长的概率是 ( )A .12 B .25 C .23 D .34【答】 B.若取出的3张卡片上的数字互不相同,有2×2×2=8种取法;若取出的3张卡片上的数字有相同的,有3×4=12种取法.所以,从6张不同的卡片中取出3张,共有8+12=20种取法.要使得三个数字可以构成三角形的三边长,只可能是:(2,4,4),(4,4,6),(2,6,6),(4,6,6),由于不同的卡片上所写数字有重复,所以,取出的3张卡片上所写的数字可以作为三角形的三边长的情况共有4×2=8种.因此,所求概率为82205=. 5.设[]t 表示不超过实数t 的最大整数,令{}[]t t t =-.已知实数x 满足33118x x +=,则1{}{}x x+= ( )A .12 B.3 C.1(32D .1 【答】 D . 设1x a x +=,则32223211111()(1)()[()3](3)x x x x x a a x x x x x+=++-=++-=-,所以2(3)18a a -=,因式分解得2(3)(36)0a a a -++=,所以3a =. 由13x x +=解得1(32x =,显然10{}1,0{}1x x <<<<,所以1{}{}x x+=1. 6.在△ABC 中,90C ∠=︒,60A ∠=︒,1AC =,D 在BC 上,E 在AB 上,使得△ADE 为等腰直角三角形, 90ADE ∠=︒ ,则BE 的长为 ( )A.4- B.2 C.11)2D1【答】 A.过E 作EF BC ⊥于F ,易知△ACD ≌△DFE ,△EFB ∽△ACB .设EF x =,则2BE x =,22AE x =-,)DE x =-,1DF AC ==,故2221)]x x +=-,即2410x x -+=.又01x <<,故可得2x =故24BE x ==-二、填空题:(本题满分28分,每小题7分) 1.已知实数,,a b c 满足1a b c ++=,1111a b c b c a c a b++=+-+-+-,则abc =____.【答】 0. 由题意知1111121212c a b++=---,所以 (12)(12)(12)(12)(12)(12)(12)(12)(12)a b b c a c a b c --+--+--=---整理得22()8a b c abc -++=,所以abc =0.A2.使得不等式981715n n k <<+对唯一的整数k 成立的最大正整数n 为 . 【答】144. 由条件得7889k n <<,由k 的唯一性,得178k n -≤且189k n +≥,所以2118719872k k n n n +-=-≥-=,所以144n ≤.当144n =时,由7889k n <<可得126128k <<,k 可取唯一整数值127. 故满足条件的正整数n 的最大值为144.3.已知P 为等腰△ABC 内一点,AB BC =,108BPC ∠=︒,D 为AC 的中点,BD 与PC 交于点E ,如果点P 为△ABE 的内心,则PAC ∠= .【答】48︒.由题意可得PEA PEB CED AED ∠=∠=∠=∠,而180PEA PEB AED ∠+∠+∠=︒,所以60PEA PEB CED AED ∠=∠=∠=∠=︒, 从而可得30PCA ∠=︒.又108BPC ∠=︒,所以12PBE ∠=︒,从而24ABD ∠=︒. 所以902466BAD ∠=︒-︒=︒, 11()(6630)1822PAE BAD CAE ∠=∠-∠=︒-︒=︒,所以183048PAC PAE CAE ∠=∠+∠=︒+︒=︒.4.已知正整数,,a b c 满足:1a b c <<<,111a b c ++=,2b ac =,则b = .【答】36.设,a c 的最大公约数为(,)a c d =,1a a d =,1c c d =,11,a c 均为正整数且11(,)1a c =,11a c <,则2211b ac d a c ==,所以22|d b ,从而|d b ,设1b b d =(1b 为正整数),则有2111b a c =,而11(,)1a c =,所以11,a c 均为完全平方数,设2211,a m c n ==,则1b mn =,,m n 均为正整数,且(,)1m n =,m n <.又111a b c ++=,故111()111d a b c ++=,即22()111d m n mn ++=.注意到222212127m n mn ++≥++⨯=,所以1d =或3d =.若1d =,则22111m n mn ++=,验算可知只有1,10m n ==满足等式,此时1a =,不符合题意,故舍去.若3d =,则2237m n mn ++=,验算可知只有3,4m n ==满足等式,此时27,36,48a b c ===,符合题意.因此,所求的36b =.第二试D一、(本题满分20分)设实数,a b 满足22(1)(2)40a b b b a +++=,(1)8a b b ++=,求2211a b +的值.解 由已知条件可得222()40a b a b ++=,()8ab a b ++=.设a b x +=,ab y =,则有2240x y +=,8x y +=, ……………………5分 联立解得(,)(2,6)x y =或(,)(6,2)x y =. ……………………10分 若(,)(2,6)x y =,即2a b +=,6ab =,则,a b 是一元二次方程2260t t -+=的两根,但这个方程的判别式2(2)24200∆=--=-<,没有实数根; ……………………15分若(,)(6,2)x y =,即6a b +=,2ab =,则,a b 是一元二次方程2620t t -+=的两根,这个方程的判别式2(6)8280∆=--=>,它有实数根.所以2222222222211()262282a b a b ab a b a b a b ++--⨯+====. ……………………20分二.(本题满分25分)如图,在平行四边形ABCD 中,E 为对角线BD 上一点,且满足ECD ACB ∠=∠,AC 的延长线与△ABD 的外接圆交于点F . 证明:DFE AFB ∠=∠.证明 由ABCD 是平行四边形及已知条件知ECD ACB DAF ∠=∠=∠. ……………………5分又A 、B 、F 、 D 四点共圆,所以BDC ABD AFD ∠=∠=∠,所以△ECD ∽△DAF , ……………………15分 所以ED CD ABDF AF AF==. ……………………20分 又EDF BDF BAF ∠=∠=∠,所以△EDF ∽△BAF ,故DFE AFB ∠=∠. ……………………25分三.(本题满分25分)设n 是整数,如果存在整数,,x y z 满足3333n x y z xyz =++-,则称n 具有性FBD质P .在1,5,2013,2014这四个数中,哪些数具有性质P ,哪些数不具有性质P ?并说明理由.解 取1x =,0y z ==,可得33311003100=++-⨯⨯⨯,所以1具有性质P .取2x y ==,1z =,可得33352213221=++-⨯⨯⨯,所以5具有性质P .…………………5分 为了一般地判断哪些数具有性质P ,记333(,,)3f x y z x y z xyz =++-,则33(,,)()3()3f x y z x y z xy x y xyz =++-+- 3()3()()3()x y z x y z x y z xy x y z =++-+++-++=3()3()()x y z x y z xy yz zx ++-++++2221()()2x y z x y z xy yz zx =++++--- 2221()[()()()]2x y z x y y z z x =++-+-+-. 即(,,)f x y z 2221()[()()()]2x y z x y y z z x =++-+-+- ①……………………10分不妨设x y z ≥≥,如果1,0,1x y y z x z -=-=-=,即1,x z y z =+=,则有(,,)31f x y z z =+; 如果0,1,1x y y z x z -=-=-=,即1x y z ==+,则有(,,)32f x y z z =+; 如果1,1,2x y y z x z -=-=-=,即2,1x z y z =+=+,则有(,,)9(1)f x y z z =+; 由此可知,形如31k +或32k +或9k (k 为整数)的数都具有性质P .因此,1,5和2014都具有性质P . ……………………20分 若2013具有性质P ,则存在整数,,x y z 使得32013()3()()x y z x y z xy yz zx =++-++++.注意到3|2013,从而可得33|()x y z ++,故3|()x y z ++,于是有39|()3()()x y z x y z xy yz zx ++-++++,即9|2013,但2013=9×223+6,矛盾,所以2013不具有性质P . ……………………25分。
2014初中数学联赛初二年级
.
17 n k 15
【答】144.
由条件得 7 k 8 ,由 k 的唯一性,得 k 1 7 且 k 1 8 ,所以 2 k 1 k 1 8 7 1 ,
8n9
n8 n9
n n n 9 8 72
所以 n 144 .
当 n 144 时,由 7 k 8 可得126 k 128 , k 可取唯一整数值 127. 8n9
()
A.21
B.20
C.31
D.30
【答】 C.
2014 年全国初中数学联合竞赛初二年级试题参考答案 第 1 页(共 4 页)
可以称出的重物的克数可以为 1、2、3、4、5、6、7、8、9、10、20、21、22、23、24、25、26、27、
28、29、30、31、32、33、34、35、36、37、38、39、40,共 31 种.
x 2, y 3, z 1, xyz 6 .
6.已知△ ABC 的三边长分别为 2,3,4, M 为三角形内一点,过点 M 作三边的平行线,交各边于
D 、 E 、 F 、 G 、 P 、 Q (如图),如果 DE FG PQ x ,则 x =
()
18
A.
13
20
B.
13
22
C.
13
24
PAE 1 (BAD CAE) 1 (66 30) 18 ,
2
2
所以 PAC PAE CAE 18 30 48 .
EP
C
D
A
4.已知 n 为正整数,且 n4 2n3 6n2 12n 25 为完全平方数,则 n =
.
【答】8.
易知 n 1 , n 2 均不符合题意,所以 n 3 ,此时一定有
2014年全国初中数学联合竞赛(初二组)初赛试题参考答案及评分标准
2014年全国初中数学联合竞赛(初二组)初赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设7分和0分两档;第二试各题,请严格按照本评分标准规定的评分档次给分,不要再增加其他中间档次.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.一、选择题(本题满分42分,每小题7分)1、C2、B3、B4、D5、D6、C二、填空题(本题满分28分,每小题7分)1、41n -2、43、14、3三、(本大题满分20分)解不等式13|2|-<-x x解:(1)当2<x 时,不等式化为132-<-x x ,解此不等式得43>x 故此时243<<x ;(10分) (2)当2≥x 时,不等式化为132-<-x x ,解此不等式得21->x 故此时2≥x . (15分) 综上所述,不等式的解为:34x >.(20分)四、(本大题满分25分) 如图,在等腰梯形ABCD 中,//AD BC ,DE BC ⊥于E .若3,5DE BD ==, 求梯形ABCD 的面积.解:在直角△BDE 中,由勾股定理有:422=-=DE BD BE ;(5分)过D 作AC 的平行线交BC 的延长线于F ,连接DF 、CF ,则ACFD 是平行四边形,故CF =AD ,DF AC BD ==,所以DE 是等腰△DBF 底边上的高,故28BF BE ==(15分) 所以1221)(21=⋅=+=DE BF DE AD BC S ABCD (25分).五、(本大题满分25分)已知正整数a 、b 满足332)(b a b a +=+,试求a 、b 的值.解:由已知得b a b ab a +=+-22,(5分)则2)1()1()(222=-+-+-b a b a .(10分)因为a 、b 均为正整数,故01≥-a ,01≥-b ,(1)当a=b 时,1)1()1(22=-=-b a ,即a =b=2;(15分)(2)当a b ≠时,2()1a b -=,从而2(1)1a -=且2(1)0b -=;或者2(1)0a -=且2(1)1b -=; 所以,2,1a b ==,或者1,2a b ==.(20分)综上所述,所求,a b 的值是:2a b ==;或者1,2a b ==;或者2,1a b ==.(25分)。
2014年全国初中数学联赛试题及答案(修正版)
第一试
一、选择题:
1 1 1 1 21 1 1.已知 x,y 为整数,且满足(x+y) (x2+y2)=-3(x4-y4),则 x+y 的可能的值有( )
A. 1 个
B. 2 个
C. 3 个
D. 4 个
2.已知非负实数 x,y,z 满足 x+y+z=1,则 t=2xy+yz+2xz 的最大值为(
3 | f (x, y, z) (x y z)3 3(x y z)(xy yz zx) , 则 3 | (x y z)3 从 而
,
3 | (x y z) ,进而可知9 | f (x, y, z) (x y z) 3 3(x y z)(xy yz zx) .
综合可知:当且仅当 n 9k 3 或 n 9k 6 ( k 为整数)时,整数 n 不具有性质 P.
设 a b x , ab y ,则有 x2 y2 40 , x y 8 ,
联立解得 (x, y) (2, 6) 或 (x, y) (6, 2) .
若 (x, y) (2, 6) ,即 a b 2 , ab 6 ,则 a, b 是一元二次方程t 2 2t 6 0 的两
根,但这个方程的判别式 ( 2)2 24 20 0 ,没有实数根;
为等腰直角三角形, ∠ADE=90° ,则 BE 的长为(
)
A.4-2 3
B.2- 3
C.12( 3-1)
D. 3-1
二、填空题: 1.已知实数 a,b,c 满足 a+b+c=1,a+1b-c+a+1c-b+b+1c-a=1,则 abc=__
2.使得不等式197<n+n k<185对唯一的整数 k 成立的最大正整数 n 为________.
P.
2014年全国初中数学联合竞赛试题(第一试)参考答案
第一试
一、选择题: (本题满分 42 分,每小题 7 分) 1.已知 x, y 为整数,且满足 ( A. 1 个 B. 2 个
1 x
1 1 1 2 1 1 )( 2 2 ) ( 4 4 ) ,则 x y 的可能的值有( C ) y x y 3 x y
C. 3 个 D. 4 个 ( A )
2.已知非负实数 x, y, z 满足 x y z 1 ,则 t 2 xy yz 2 zx 的最大值为 A.
9 12 D. 16 25 3. 在△ ABC 中,AB AC ,D 为 BC 的中点,BE AC 于 E , 交 AD 于 P , 已知 BP 3 ,PE 1 , 则 AE = ( B )
B. C. A.
4 7
5 9
6 2
B. 2
C. 3
D. 6
4.6 张不同的卡片上分别写有数字 2,2,4,4,6,6,从中取出 3 张,则这 3 张卡片上所写的数字 可以作为三角形的三边长的概率是 ( B ) A.
1 2
B.
2 5
C.
2 3
D.
3 4
3
5.设 [t ] 表示不超过实数 t 的最大整数,令 {t} t [t ] .已知实数 x 满足 x
点 E ,如果点 P 为△ ABE 的内心,则 PAC
48
. 36 .
4.已知正整数 a, b, c 满足: 1 a b c , a b c 111, b2 ac ,则 b
第二试 (A)
一、 (本题满分 20 分)设实数 a, b 满足 a (b 1) b(b 2a) 40 , a(b 1) b 8 ,求
2014年全国初中数学联合竞赛试题参考答案和评分标准
初三数学竞赛试题 2014年全国初中数学联合竞赛试题参考答案及评分标准A.B. C. D.2014年全国初中数学联合竞赛试题参考答案及评分标准2.【答】 A.,易知:当,时,取得最大值.4.【答】 B.若取出的3张卡片上的数字互不相同,有2×2×2=8种取法;若取出的3张卡片上的数字有相同的,有3×4=12种取法.所以,从6张不同的卡片中取出3张,共有8+12=20种取法.6.【答】 A.过作于,易知△≌△,△∽△.设,则,,,,故,即.又,故可得.故.1.【答】 0.由题意知,所以2.【答】144.由条件得,由的唯一性,得且,所以,所以.当时,由可得,可取唯一整数值127.故满足条件的正整数的最大值为144.4.【答】36.设的最大公约数为,,,均为正整数且,,则,所以,从而,设(为正整数),则有,而,所以均为完全平方数,设,则,均为正整数,且,.又,故,即.注意到,所以或.若,则,验算可知只有满足等式,此时,不符合题意,故舍去.解由已知条件可得,.设,,则有,,……………………5分若,即,,则是一元二次方程的两根,但这个方程的判别式,没有实数根;……………………15分若,即,,则是一元二次方程的两根,这个方程的判别式,它有实数根.所以. ……………………20分解取,,可得,所以1具有性质.取,,可得,所以5具有性质.…………………5分为了一般地判断哪些数具有性质,记,则=.即……………………10分如果,即,则有;如果,即,则有;如果,即,则有;由此可知,形如或或(为整数)的数都具有性质.因此,1,5和2014都具有性质. ……………………20分若2013具有性质,则存在整数使得.注意到,从而可得,故,于是有,即,但2013=9×223+6,矛盾,所以2013不具有性质. ……………………25分2014年全国初中数学联合竞赛试题参考答案及评分标准,易知:当,时,取得最大值.【答】 B.若取出的3张卡片上的数字互不相同,有2×2×2=8种取法;若取出的3张卡片上的数字有相同的,有3×4=12种取法.所以,从6张不同的卡片中取出3张,共有8+12=20种取法.要使得三个数字可以构成三角形的三边长,只可能是:(2,4,4),(4,4,6),(2,6,6),(4,6,6),由于不同的卡片上所写数字有重复,所以,取出的3张卡片上所写的数字可以作为三角形的三边长的情况共有4×2=8种.A.B. C. D.【答】 A.设,则,,,,故,即.又,故可得.故.。
2014年全国初中数学竞赛预赛试题及答案
2014 年全国初中数学比赛初赛试题及参照答案(比赛时间: 2014 年 3 月 2 日上午 9:00--11:00)一、选择题(共 6 小题,每题 6 分,共 36 分)以下每题均给出了代号为A,B,C,D 的四个选项,此中有且只有一个选项是正确的 . 请将正确选项的代号字母填入题后的括号里,不填、多填或错填都得 0 分)是倒数等于它自己的自然数,1.若是最大的负整数,是绝对值最小的有理数,则的值为【】(A)2013(B)2014(C)2015(D)0【答】 D.解:最大的负整数是- 1,∴=-1;绝对值最小的有理数是0,∴=0;倒数等于它自己的自然数是1,∴=1.∴==0.2.已知实数知足则代数式的值是【】(A)(B)3(C)(D)7【答】 A.解:两式相减得3.如图,将表面睁开图(图1)复原为正方体,按图 2 所示摆放,那么,图1中的线段 MN在图2中的对应线段是【】(A)(B)(C)(D)【答】 C.解:将图 1 中的平面图折成正方体,MN和线段 c 重合.不如设图1中完整的正方形为完好面,△AMN和△ABM所在的面为组合面,则△AMN和△ ABM所在的面为两个相邻的组合面,比较图2,第一确立B点,所以线段d与AM重合,MN与线段c重合 .4.已知二次函数的图象如下图,则以下7 个代数式,,,,,,中,其值为正的式子的个数为【】(A)2个(B)3个(C)4个(D)4 个以上【答】 C.解:由图象可得:,,,∴,,.抛物线与轴有两个交点,∴. 当=1 时,,即.当=时,,即. 从图象可得,抛物线对称轴在直线=1 的左侧,即,∴. 所以 7 个代数式中,其值为正的式子的个数为 4 个.5.如图,Rt△OAB的极点O与坐标原点重合,∠AOB=90°,AO=2BO,当 A 点在反比率函数(x>0)的图象上挪动时,B点坐标知足的函数分析式为【】(A)(x<0)(B)(x<0)(C)(x<0)(D)(x<0)【答】 B.解:如图,分别过点分别做轴的垂线,那么∽,则,故.6.如图,四边形ABHK是边长为6的正方形,点 C、D在边AB上,且 AC=DB=1,点P是线段 CD上的动点,分别以AP、PB为边在线段 AB的同侧作正方形AMNP和正方形BRQP,E、F 分别为 MN、QR的中点,连结EF,设 EF的中点为 G,则当点 P 从点 C 运动到点D 时,点挪动的路径长为【】G(A)1(B)2(C)3(D)6【答】 B.解:设 KH中点为 S,连结 PE、ES、SF、PF、PS,可证明四边形PESF为平行四边形,∴G为 PS的中点,即在点P 运动过程中,G一直为PS 的中点,所以G的运转轨迹为△ CSD的中位线,∵ CD=AB-AC-BD=6-1-1=4,∴点 G挪动的路径长为=2.二、填空题(共 6 小题,每题 6 分,共 36 分)7.已知,化简得.【答】.解:∵,∴,,原式=.8.一个不透明的袋子中有除颜色外其他都同样的红、黄、蓝色玻璃球若干个,此中红色玻璃球有 6 个,黄色玻璃球有 9 个,已知从袋子中随机摸出一个蓝色玻璃球的概率为,那么,随机摸出一个为红色玻璃球的概率为.【答】.解:设口袋中蓝色玻璃球有个,依题意,得,即=10,所以 P(摸出一个红色玻璃球) =.9.若,则=.【答】 8.解:∵,∴.则,即.∴10.如图,在 Rt△OAB中,∠AOB=30°,AB=2,将 Rt△OAB绕O点顺时针旋转90°获得 Rt△OCD,则AB扫过的面积为.【答】.解:∵Rt△OAB中,∠AOB=30°,AB=2,∴A O=CO=,BO=DO=4,∴暗影部分面积 ==== .11.如图,在矩形ABCD中, AB=3,BC=4,点 E 是 AD上一个动点,把△ BAE沿 BE 向矩形内部折叠,当点 A 的对应点 A1恰落在∠ BCD的均分线上时, CA1=.【答】.解:过 A1作 A1M⊥BC,垂足为 M,设 CM=A1 M=x,则 BM=4-x,在 Rt△A1BM中,,∴∴在等腰12.已知=,∴ x =A1M=,Rt△A1CM中,C A1=.a、b、c、d 是四个不一样的整数,且知足a+b+c+d=5,若m是对于x的方程(x-a)( x-b)( x-c)( x-d)=2014中大于 a、b、c、d 的一个整数根,则m 的值为.【答】 20.解:∵( m-a)( m-b)( m-c)( m-d)=2014,且 a、b、c、 d 是四个不一样的整数,因为 m是大于 a、b、c、d 的一个整数根,∴( m- a)、( m-b)、( m-c)、(m-d)是四个不一样的正整数.∵2014=1×2×19×53,∴( m-a)+(m-b)+(m-c)+(m-d)=1+2+19+53=75.又∵ a+b+c+d=5,∴ m=20.三、解答题(第13 题 14 分,第 14 题 16 分,第 15 题 18 分,共 48 分)13. 某学校为九年级数学比赛获奖选手购置以下三种奖品,此中小笔录本每本大笔录本每本 7 元,钢笔每支 10 元,购置的大笔录本的数目是钢笔数目的5 元,2 倍,共花销346 元,若使购置的奖品总数最多,则这三种奖品的购置数目各为多少?x y z.0 x≤69 0 y≤ 49 0 z≤34,4.x y z≥00z≤14z14 9 4.8z 14=2=28..z 9=26=18..z 4=50=8..5084 .1414.ABCD AD=8DE AB E BC F AE=6.1P AD A D DP x,AEHP y, y x 2 AE=2EB.BC DEAB OBC DE ABCD.141Rt52.7DE AB AB.10DE AB AB6.136 .1615.如图 1,等腰梯形OABC的底边OC在x轴上,AB∥OC,O为坐标原点,OA= AB=BC,∠AOC=60°,连结 OB,点 P 为线段 OB上一个动点,点 E为边 OC中点.(1)连结PA、PE,求证:PA=PE;(2)连结PC,若PC+PE=,试求AB的最大值;(3)在( 2)在条件下,当AB取最大值时,如图 2,点M坐标为( 0,- 1),点D为线段 OC上一个动点,当 D点从 O点向 C点挪动时,直线 MD与梯形另一边交点为 N,设 D点横坐标为 m,当△ MNC为钝角三角形时,求 m的范围.解:( 1)证明:如图1,连结 AE.5 分(2) ∵PC+PE=,∴ PC+PA=.明显有 OB=AC≤PC+PA=.7 分在 Rt△BOC中, 设AB=OA=BC=x,则 OC=2x,OB=,∴≤,∴≤2.即 AB的最大值为2.10 分(3)当 AB取最大值时, AB=OA=BC=2,OC=4.分三种状况议论:①当 N点在 OA上时,如图2,若 CN⊥MN时,此时线段 OA上 N点下方的点(不包含N、O)均知足△ MNC为钝角三角形.过 N作 NF⊥x 轴,垂足为 F,∵A 点坐标为(1,),∴可设N点坐标为(,),则DF=a-m,NF=,FC=4-a.∵△ OMD∽△ FND∽△ FCN,∴.解得,,即当 0< <时,△ MNC为钝角三角形;14分②当 N点在 AB上时,不可以知足△ MNC为钝角三角形;15 分③当 N点在 BC上时,如图3,若 CN⊥MN时,此时 BC上 N点下方的点(不包含N、C)均知足△ MNC为钝角三角形.∴当<<4 时,△MNC为钝角三角形 .综上所述,当0< <或< <4 时,△MNC为钝角三角形 .12020-2-8。
2014年全国初中数学竞赛试题及答案
中国教育学会中学数学教学专业委员会2014年全国初中数学竞赛试题答题时注意:1.用圆珠笔或钢笔作答; 2.解答书写时不要超过装订线; 3.草稿纸不上交.一、选择题(共5小题,每小题7分,共35分.每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的.请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)1.设非零实数a ,b ,c 满足2302340a b c a b c ++=⎧⎨++=⎩,,则222ab bc caa b c ++++的值为( ). (A )12-(B )0 (C )12(D )12.已知关于x 的不等式组255332x x x t x +⎧->-⎪⎨+⎪-<⎩,恰有5个整数解,则t 的取值范围是( ).(A )6-<t <112-(B )6-≤t <112-(C )6-<t ≤112-(D )6-≤t ≤112-3.如图,在Rt △ABC 中,已知O 是斜边AB 的中点,CD ⊥AB ,垂足为D ,DE ⊥OC ,垂足为E .若AD ,DB ,CD 的长度都是有理数,则线段OD ,OE ,DE ,AC 的长度中,不.一定..是有理数的为( ). (A )OD (B )OE (C )DE(D )AC4.如图,已知△ABC 的面积为24,点D 在线段AC 上,点F 在线段BC 的延长线上,且4BC CF =,DCFE 是平行四边形,则图中阴影部分的面积为( ).(A )3 (B )4 (C )6(D )85.对于任意实数x ,y ,z ,定义运算“*”为:()()32233333451160x y x y xy x y x y +++*=+++-,且()x y z x y z **=**,则2013201232****的值为( ). (A )607967(B )1821967(C )5463967(D )16389967二、填空题(共5小题,每小题7分,共35分)6.设33a =,b 是a 的小数部分,c 是2a 的小数部分,则(4)b b c ++的值为 .7.一个质地均匀的正方体的六个面上分别标有数1,2,3,4,5,6.掷这个正方体三次,则其朝上的面的数和为3的倍数的概率是 .8.已知正整数a ,b ,c 满足2220+--=a b c ,2380-+=a b c ,则abc 的最大值为 .9.实数a ,b ,c ,d 满足:一元二次方程20x cx d ++=的两根为a ,b ,一元二次方程20x ax b ++=的两根为c ,d ,则所有满足条件的数组(),,,a b c d 为 .10.444444222222121231991001121231991001++++++++++-+-+-…的值为 .三、解答题(共4题,每题20分,共80分)11.如图,抛物线y=23ax bx+-,顶点为E,该抛物线与x轴交于A,B两点,与y轴交于点C,且OB=OC=3OA.直线113y x=-+与y轴交于点D.求∠DBC ∠CBE.12.设△ABC的外心、垂心分别为O H、,若B C H O、、、共圆,对于所有的△ABC,求BAC∠所有可能的度数.13.如图,设点D 在△ABC 外接圆上,且为BC 的中点,点X 在BD 上,E 是AX 的中点,过△ABC 的内心I 作直线R T 平行于DE ,分别与BC ,AX 交于点R ,T ,设直线DR 与ET 交于点S .证明:点S 在△ABC 的外接圆上.14.如果将正整数M 放在正整数m 左侧,所得到的新数可被7整除,那么称M 为m 的“魔术数”(例如,把86放在415的左侧,得到的数86415能被7整除,所以称86为415的魔术数).求正整数n 的最小值,使得存在互不相同的正整数12n a a a ,,…,,满足对任意一个正整数m ,在12n a a a ,,…,中都至少有一个为m 的魔术数.中国教育学会中学数学教学专业委员会2013年全国初中数学竞赛试题参考答案一、选择题 1.A解:由已知得(234)(23)0a b c a b c a b c ++=++-++=,故2()0a b c ++=.于是2221()2ab bc ca a b c ++=-++,所以22212ab bc ca a b c ++=-++. 2.C解:根据题设知不等式组有解,解得,32t -<x <20.由于不等式组恰有5个整数解,这5个整数解只能为15,16,17,18,19,因此14≤32t -<15,解得6-<t ≤112-. 3.D解:因AD ,DB ,CD 的长度都是有理数,所以,OA =OB =OC =2AD BD+是有理数.于是,OD =OA -AD 是有理数.由Rt △DOE ∽Rt △COD ,知2OD OE OC =,·DC DODE OC =都是有理数,而AC=·AD AB 不一定是有理数. 4.C解:因为DCFE 是平行四边形,所以DE //CF ,且EF //DC .连接CE ,因为DE //CF ,即DE //BF ,所以S △DEB = S △DEC ,因此原来阴影部分的面积等于△ACE 的面积.连接AF ,因为EF //CD ,即EF //AC ,所以S △ACE = S △ACF .因为4BC CF =,所以S △ABC = 4S △ACF .故阴影部分的面积为6.5.C解:设201320124m ***=,则()20132012433m ****=*32323339274593316460m m m m m m ⨯+⨯+⨯+==++++-, 于是()201320123292****=*3223333923929245546310360967⨯⨯+⨯⨯+⨯+==+-.二、填空题 6.2解:由于2123a a <<<<,故1=-b a ,22=-c a .所以223(4)(1)(124)(1)(1)12b b c a a a a a a a ++=--+-+=-++=-=.7.13解:掷三次正方体,朝上的面的数和为3的倍数的是3,6,9,12,15,18,且3=1+1+1,6=1+1+4=1+2+3=2+2+2,9=1+2+6=1+3+5=1+4+4=2+2+5=2+3+4=3+3+3, 12=1+5+6=2+4+6=2+5+5=3+3+6=3+4+5=4+4+4, 15=3+6+6=4+5+6=5+5+5, 18=6+6+6.记掷三次正方体面朝上的数分别为x ,y ,z .则使x +y +z 为3的倍数的(x ,y ,z )中,3个数都不相等的有8组,恰有两个相等的有6组,3个数都相等的有6组.故所求概率为83263616663⨯⨯+⨯+=⨯⨯.8.2013解:由已知2220+--=a b c ,2380-+=a b c 消去c ,并整理得()228666b a a -++=.由a 为正整数及26a a +≤66,可得1≤a ≤3.若1a =,则()2859b -=,无正整数解; 若2a =,则()2840b -=,无正整数解;若3a =,则()289b -=,于是可解得11=b ,5b =. (i )若11b =,则61c =,从而可得311612013abc =⨯⨯=; (ii )若5b =,则13c =,从而可得3513195abc =⨯⨯=. 综上知abc 的最大值为2013.9.(1212),,,--,(00),,,-t t (t 为任意实数) 解:由韦达定理得,,,.+=-⎧⎪=⎪⎨+=-⎪=⎪⎩a b c ab d c d a cd b 由上式,可知b a c d =--=.若0b d =≠,则1==d a b ,1==bc d ,进而2b d a c ==--=-.若0b d ==,则c a =-,有()(00),,,,,,=-a b c d t t (t 为任意实数). 经检验,数组(1212)--,,,与(00),,,-t t (t 为任意实数)满足条件. 10解:设0k >,那么=11111(1)1k k k k ⎤⎫=+=+-⎪⎥++⎝⎭⎣⎦. 上式对1=k ,2,…,99求和,得原式11991100100100⎫⎫=+-=-=⎪⎪⎝⎭⎝⎭.三、解答题11.解:将0x =分别代入y =113x -+,23y ax bx =+-知,D (0,1),C (0,3-),所以B (3,0),A (1-,0).直线y =113x -+过点B .将点C (0,3-)的坐标代入y =(1)(3)a x x +-,得1a =.…………5分抛物线223y x x =--的顶点为E (1,4-).于是由勾股定理得BC =32,CE =2,BE =25. 因为BC 2+CE 2=BE 2,所以,△BCE 为直角三角形,90BCE ∠=︒.…………10分因此tan CBE ∠=CE CB =13.又tan ∠DBO =13OD OB =,则∠DBO =CBE ∠.所以,45DBC CBE DBC DBO OBC ∠-∠=∠-∠=∠=︒.…………20分12.解:分三种情况讨论. (i )若△ABC 为锐角三角形.因为1802BHC A BOC A ∠=︒-∠∠=∠,,所以由BHC BOC ∠=∠,可得1802A A ︒-∠=∠,于是60A ∠=︒.…………5分(ii )若△ABC 为钝角三角形.当90A ∠>︒时,因为()1802180BHC A BOC A ∠=︒-∠∠=︒-∠,,所以由180BHC BOC ∠+∠=︒,可得()3180180A ︒-∠=︒,于是120A ∠=︒;当90A ∠<︒时,不妨假设90B ∠>︒,因为2BHC A BOC A ∠=∠∠=∠,,所以由180BHC BOC ∠+∠=︒,可得3180A ∠=︒,于是60A ∠=︒.…………15分(iii )若△ABC 为直角三角形.当90A ∠=︒时,因为O 为边BC 的中点,B C H O ,,,不可能共圆,所以A ∠不可能等于90︒;当90A ∠<︒时,不妨假设90B ∠=︒,此时点B 与H 重合,于是总有B C H O ,,,共圆,因此A ∠可以是满足090A ︒<∠<︒的所有角.综上可得,A ∠所有可能取到的度数为所有锐角及120︒.…………20分13.证明:如图,设DR 与△ABC 的外接圆交于点S ',AX 与S E '交于点T ',连接S C CD S A AE AD '',,,,.由D 为BC 的中点知,A ,I ,D 三点共线,且∠CS D '=∠RCD ,△S CD '∽△CRD ,所以S D CDCD RD'=, ① 即2CD S D RD '=⋅. ②…………5分由E 为AX 的中点知,∠AS E '=∠T AE ',△AS E '∽△T AE ',所以S E AEAE T E'=', ③ 即2AE S E T E ''=⋅. ④由IR ∥DE ,知180IRD S'DE S'AE ∠=︒-∠=∠.又因为IDR S DA S EA ''∠=∠=∠,所以△IRD ∽△S AE ',则有ID S ERD AE'=. ⑤ …………10分由I 为△ABC 的内心,连接CI ,由CID CAI ACI DCB BCI ICD ∠=∠+∠=∠+∠=∠知ID CD =.由式①,⑤,得S D S ECD AE''=, 即S D CDS E AE'='. ⑥ 由式②,④,得22CD S D RDAE S E T E'⋅=''⋅. ⑦ 由式⑥,⑦得S D RDS E T E'='', …………15分于是RT '∥DE .又RT ∥DE ,故点T '与T 重合,即点S '在直线ET 上.从而,点S '与S 重合,即点S 在△ABC 的外接圆上.…………20分14.解:若n ≤6,取m =1,2,…,7,根据抽屉原理知,必有12na a a ,,…,中的一个正整数M 是(1i j ,≤i <j ≤7)的公共的魔术数,即7|(10M i +),7|(10M j +).则有7|(j i -),但0<j i -≤6,矛盾.故n ≥7.…………10分又当12n a a a ,,…,为1,2,…,7时,对任意一个正整数m ,设其为k 位数(k 为正整数).则10k i m +(12i =,,…,7)被7除的余数两两不同.若不然,存在正整数i ,(1j ≤i <j ≤7),满足7|[(10)(10)]k k j m i m +-+,即7|10()k j i -,从而7|()j i -,矛盾.故必存在一个正整数i (1≤i ≤7),使得7|(10)k i m +,即i 为m 的魔术数. 所以,n 的最小值为7.…………20分。
2014年全国初中数学联合竞赛试题
2014年全国初中数学联合竞赛试题第一试(3月23日上午8:30——9:30) 一、选择题(本题满分42分,每小题7分)1. 已知x , y 为整数,且满足)11(32)11)(11(4422y x y x y x --=++,则x +y 的可能的值有( )A .1个B .2个C .3个D .4个2.已知非负实数x ,y ,z 满足1=++z y x ,则zx yz xy t 22++=的最大值为( )A .74 B .95 C .169 D .2512 3.在△ABC 中,AB=AC ,D 为BC 的中点,BE ⊥AC 于E ,交AD 于P ,已知BP=3,PE=1.则AE=( )A .26B .2C .3D .6 4.6张不同的卡片上分别写有数字2,2,4,4,6,6,从中取出3张,则这3张卡片上所写的数字可以作为三角形的三边长的概率是( )A .21 B .52 C .32 D .43 5.设[]t 表示不超过实数t 的最大整数,令{}[]t t t -=,已知实数x 满足18133=+x x ,则{}=⎭⎬⎫⎩⎨⎧+x x 1( )A .21 B .53- C .)53(21- D .1 6.在△ABC 中,∠C =90°,∠A =60°,AC=1,D 在BC 上,E 在AB 上,使得△ADE 为等腰直角三角形,∠ADE =90°,则BE 的长为( )A .324-B .32-C .)13(21- D .13- 二、填空题(本题满分28分,每小题7分)1. 已知实数a ,b ,c 满足1=++c b a ,1111=-++-++-+ba c a cbc b a ,则=a b c . 2. 使得不等式158179<+<k n n 对唯一的整数k 成立的最大正整数n 为 .3.已知P 为等腰△ABC 内一点,AB=BC ,∠BPC =108°,D 为AC 的中点,BD 与PC 交于E ,如果P 为△ABE 的内心,则∠P AC = .4.已知正整数a ,b ,c 满足:c b a <<<1,111=++c b a ,ac b =2,则=b .第二试(3月23日上午9:50——11:20)一、(本题满分20分)设实数a ,b 满足40)2()1(22=+++a b b b a ,8)1(=++b b a ,求2211ba +的值. 二、(本题满分20分)如图,在□ABCD 中,E 为对角线BD 上一点,且满足∠ECD=∠ACB , AC 的延长线与△ABD 的外接圆交于点F ,证明:∠DFE=∠AFB .三、(本题满分25分)设n 是整数,如果存在整数x ,y ,z 满足xyz z y x n 3333-++=,则称n 具有性质P .在1,5,2013,2014这四个数中,哪些数具有性质P ,哪些数不具有性质P ?并说明理由.E PDCBA311. 【分析】2,12322311)11(32)11)(11(4422±±=⇒+=⇒=-⇒--=++x xy x y yx y x y x ,)1,2(),5.0,2(),2,1(),4.0,1(),(--=⇒y x )1,2(),2,1(),(--=−−−→−y x 取整数解 1,1-=+⇒y x ;再找回遗失的一组解01122>+yx ,),(),(011t t y x y x -=⇒=+,0,≠∈t R t ∴1,0±=+y x2. 【分析】x z y z y x -=+⇒=++11,212222x x t yz zx yz xy t x z y +-=−−−→−++=-=+)22(4)1(4)()(2222x x t x yz z y z y +---=-+=-72816)73(72tx -+--= 740)73(7728162≤⇒≥-≥-⇒t x t ,此时73=x ,代入可得72==z y3. 【分析】易知BEC ∆∽⇒∆BDPBEBDBD BP BE BD BC BP =⇒=2 62,6423===⇒=⇒BC CD BD BDBD 22162422=-=-=BE BC CE ,36922=-=-=BD BP PD 2tan 136tan =⇒∠=====∠AEAPE PE AEAE PD BD BPD 4. 【分析】46622113aaaFEDCBA42664表示可行方案46426526024==P 5. 【分析】=+-+⇒=+)11)(1(1812233x x x x x x 183)1()1(2=⎥⎦⎤⎢⎣⎡-++x x x x 令p xx =+1,则0)63)(3(018323=++-⇒=--p p p p p ,0632>++p p ,3=p ,即253013312±=⇒=+-⇒=+x x x x x ,325325<+< ,212530<-<, ⅰ)当253+=x 时,{}53222531++-+=⎭⎬⎫⎩⎨⎧+x x 12532253=-+-+=; ⅱ)当253-=x 时,{}25322531--+-=⎭⎬⎫⎩⎨⎧+x x 12253253=-++-=; 6. 【分析】作EF ⊥BC 于F ,易知△DEF ≌△ADC ,DF=AC=1,EF=CD=a , 又可知a BF 3=,在Rt △ABC 中,31360tan =++===︒a a BC ACBC, 32-=⇒a ,在Rt △BEF 中,324)32(222-=-===a EF BE1. 【分析】 1=++c b a ,12112112111111=-+-+-⇒=-++-++-+ba cb ac a c b c b aPEDCBA1)21)(21)(21()21)(21()21)(21()21)(21(=-----+--+--⇒c b a a c b c b aabc ca bc ab c b a ca bc ab c b a 8)(4)(21)(4)(43-+++++-=+++++-⇒0081=⇒=−−−→−=++abc abc c b a2. 【分析】 n k n k n n 9887158179<<⇒<+<,因给定的n 且k 唯一, 故14428798≤⇒≤-n n n ,此时127=k 其实本题是填空,可以等比放大,天马行空,−−−−→−<<⇒<<分子分母再放大726472639887n k n k 144,127144128144126==⇒<<⇒n k n k 3. 【张榜中学王寿喜老师分析】设x PBE =∠, 则x DCE +︒=∠18,x PCE EAD +︒=∠=∠18,x PEB PEA 236+︒=∠=∠,在PBE ∆中,︒=⇒︒=︒+++︒12180108236x x x ,∴︒=∠24ABD ,︒=∠66BAD ,︒=∠48PAC4. 【张榜中学王寿喜老师分析】c b a <<<1,111=++c b a ,则b c a -=+111 ①,2b ac = ②②-①,1112-+=--b b c a ac ,11012-+=---b b c a ac111)10)(11()1)(1(11+=-−−−→−-+=---<-b c b b c a c a ,101-=-b a9+=⇒a b ,21+=a c ,27111219=⇒=++++a a a a ,36=b一、【分析】40)(40)2()1(22222=++⇒=+++b a b a a b b b a ,8)(8)1(=++⇒=++b a ab b b a .⎩⎨⎧==+62ab b a ,或⎩⎨⎧==+26ab b a ①若⎩⎨⎧==+62ab b a ,则,a b 是一元二次方程0622=+-x x 的两根,0<∆,不符;②若⎩⎨⎧==+26ab b a 则,a b 是一元二次方程0262=+-x x 的两根, 0>∆,故84436)(2)(112222=-=-+=+ab ab b a b a 二、【证明】∵□ABCD∴∠ACB=∠DAF ∵∠ECD=∠ACB∴∠ECD=∠ACB=∠DAF ∵A 、B 、F 、 D 四点共圆 ∴∠BDC=∠ABD=∠DF A∴△ECD ∽△DAF ∴AF AB AF CD DF DE == ∵∠EDF=∠BDF=∠BAF ∴△EDF ∽△BAF ∴∠DFE=∠AFB三.【分析】∵10013001333=⨯⨯⨯-++,此时x=1,y=0,z=0,∴1具有性质P .∵51223122333=⨯⨯⨯-++,此时x=2,y=2,z=1,∴5具有性质P .xyz y x xy z y x xyz z y x 3)(3)(333333-+-++=-++ ))((3)(3zx yz xy z y x z y x ++++-++=))((21222zx yz xy z y x z y x ---++++=[]222)()()()(21x z z y y x z y x -+-+-++= 不失一般性,令0>≥≥z y x ,并记[]222333)()()()(213),,(x z z y y x z y x xyz z y x z y x f -+-+-++=-++=, ⅰ)若)1,0,1(),,(=---z x z y y x ,即1+=z x ,z y =,则13),,(+=z z y x f ; ⅱ)若)1,1,0(),,(=---z x z y y x ,即1+==z y x ,则23),,(+=z z y x f ; ⅲ)若)2,1,1(),,(=---z x z y y x ,即1,2+=+=z y z x ,则99),,(+=z z y x f ; 综上所述,形如31k +或32k +或9k (N k ∈)的数都具有性质P .所以1,5和2014都具有性质P ;但k k 93692232013≠=+⨯=,所以2013不具有性质P .。
2014年全国初中数学联赛决赛试题和参考题答案
2014年全国初中数学联赛决赛试题一、选择题:(本题满分42分,每小题7分)1.已知,x y 为整数,且满足22441111211()()()3xyxyxy,则x y 的可能的值有【】A. 1个B. 2个C. 3个D. 4个2.已知非负实数,,x y z 满足1x y z ,则22t xy yz zx 的最大值为【】A .47B .59C .916D .12253.在△ABC 中,ABAC ,D 为BC 的中点,BE AC 于E ,交AD 于P ,已知3BP ,1PE,则AE =【】A .62B .2C .3D .64.6张不同的卡片上分别写有数字2,2,4,4,6,6,从中取出3张,则这3张卡片上所写的数字可以作为三角形的三边长的概率是【】A .12B .25C .23D .345.设[]t 表示不超过实数t 的最大整数,令{}[]t tt .已知实数x 满足33118xx,则1{}{}x x 【】A .12B .35C .1(35)2D .16.在△ABC 中,90C,60A ,1AC ,D 在BC 上,E 在AB 上,使得△ADE 为等腰直角三角形,90ADE ,则BE 的长为【】A .423B .23C .1(31)2D .31二、填空题:(本题满分28分,每小题7分)1.已知实数,,a b c 满足1a b c ,1111abcbc ac ab,则abc____.2.使得不等式981715n nk对唯一的整数k 成立的最大正整数n 为.3.已知P 为等腰△ABC 内一点,ABBC ,108BPC ,D 为AC 的中点,BD 与PC 交于点E ,如果点P 为△ABE 的内心,则PAC.4.已知正整数,,a b c 满足:1ab c ,111a b c ,2b ac ,则b.三、(本题满分20分)设实数,a b 满足22(1)(2)40a b b b a ,(1)8a b b ,求2211ab的值.四、.(本题满分25分)如图,在平行四边形ABCD 中,E 为对角线BD 上一点,且满足ECDACB , AC 的延长线与△ABD 的外接圆交于点F. 证明:DFE AFB .五、(本题满分25分)设n 是整数,如果存在整数,,x y z 满足3333nxyzxyz ,则称n 具有性质P .(1)试判断1,2,3是否具有性质P ;(2)在1,2,3,…,2013,2014这2014个连续整数中,不具有性质P 的数有多少个?FCA BDE2014年全国初中数学联赛决赛试题和参考答案一、选择题:(本题满分42分,每小题7分)1.已知,x y 为整数,且满足22441111211()()()3xyxyxy,则x y 的可能的值有【】A. 1个B. 2个C. 3个D. 4个【答】 C. 由已知等式得2244224423x y xyx yxyx y x y,显然,x y 均不为0,所以x y =0或32()xy x y .若32()xy x y ,则(32)(32)4x y .又,x y 为整数,可求得12,x y,或21.x y,所以1x y 或1x y .因此,x y 的可能的值有3个.2.已知非负实数,,x y z 满足1xyz,则22txyyzzx 的最大值为【】A .47B .59C .916D .1225【答】 A.21222()2()()4t xyyzzx x yz yz x y z y z 212(1)(1)4x x x 2731424xx2734()477x,易知:当37x ,27yz时,22t xy yzzx 取得最大值47.3.在△ABC 中,ABAC ,D 为BC 的中点,BEAC 于E ,交AD 于P ,已知3BP ,1PE,则AE =【】A .62B .2C .3D .6【答】 B.因为AD BC ,BE AC ,所以,,,P D C E 四点共圆,所以12BD BC BP BE ,又2BCBD ,所以6BD,所以3DP.又易知△AEP ∽△BDP,所以AE PE BDDP,从而可得1623PE AEBD DP.4.6张不同的卡片上分别写有数字2,2,4,4,6,6,从中取出3张,则这3张卡片上所写的数字可以作为三角形的三边长的概率是【】A .12B .25C .23D .34【答】 B.若取出的3张卡片上的数字互不相同,有2×2×2=8种取法;若取出的3张卡片上的数字有相同的,有3×4=12种取法.所以,从6张不同的卡片中取出3张,共有8+12=20种取法.要使得三个数字可以构成三角形的三边长,只可能是:(2,4,4),(4,4,6),(2,6,6),(4,6,6),由于不同的卡片上所写数字有重复,所以,取出的3张卡片上所写的数字可以作为三角形的三边长的情况共有4×2=8种.因此,所求概率为82205.5.设[]t 表示不超过实数t 的最大整数,令{}[]t tt .已知实数x 满足33118xx,则1{}{}x x【】A .12B .35C .1(35)2D .1【答】 D. 设1x a x,则32223211111()(1)()[()3](3)xxxxxa axxxxx,所以2(3)18a a,因式分解得2(3)(36)0a a a ,所以3a .由13xx解得1(35)2x,显然1{}1,0{}1x x ,所以1{}{}x x1.6.在△ABC 中,90C,60A ,1AC,D 在BC 上,E 在AB 上,使得△ADE 为等腰直角三角形,90ADE ,则BE 的长为【】A .423B .23C .1(31)2D .31【答】 A.过E 作EF BC 于F ,易知△ACD ≌△DFE ,△EFB ∽△ACB .设EFx ,则2BEx ,22AEx ,2(1)DEx ,1DFAC ,故2221[2(1)]x x,即2410x x .又01x ,故可得23x.故2423BE x .二、填空题:(本题满分28分,每小题7分)1.已知实数,,a b c 满足1a b c ,1111abcbc ac ab,则abc____.【答】0. 由题意知1111121212cab,所以(12)(12)(12)(12)(12)(12)(12)(12)(12)a b b c a c a b c 整理得22()8a b c abc ,所以abc 0.2.使得不等式981715n n k对唯一的整数k 成立的最大正整数n 为.【答】144. 由条件得7889k n,由k 的唯一性,得178k n且189k n,所以FEBCAD2118719872k k nnn,所以144n .当144n 时,由7889k n可得126128k ,k 可取唯一整数值127.故满足条件的正整数n 的最大值为144.3.已知P 为等腰△ABC 内一点,ABBC ,108BPC ,D 为AC 的中点,BD与PC 交于点E ,如果点P 为△ABE 的内心,则PAC .【答】48.由题意可得PEA PEB CED AED ,而180PEA PEB AED ,所以60PEA PEB CED AED ,从而可得30PCA . 又108BPC ,所以12PBE ,从而24ABD . 所以902466BAD ,11()(6630)1822PAEBAD CAE ,所以183048PAC PAE CAE 4.已知正整数,,a b c 满足:1ab c ,111a b c ,2b ac ,则b.【答】36. 设,a c 的最大公约数为(,)a c d ,1aa d ,1c c d ,11,a c 均为正整数且11(,)1a c ,11a c ,则2211bacd a c ,所以22|d b ,从而|d b ,设1b b d (1b 为正整数),则有2111ba c ,而11(,)1a c ,所以11,a c 均为完全平方数,设2211,a m c n ,则1b m n ,,m n均为正整数,且(,)1m n ,mn .又111a b c ,故111()111d a b c ,即22()111d m nmn .注意到222212127m nmn,所以1d或3d .若1d ,则22111mnmn ,验算可知只有1,10m n 满足等式,此时1a ,不符合题意,故舍去.若3d,则2237m nmn ,验算可知只有3,4m n 满足等式,此时27,36,48a bc,符合题意.EDAB PC因此,所求的36b .三、(本题满分20分)设实数,a b 满足22(1)(2)40a b b b a ,(1)8a b b ,求2211ab的值.解由已知条件可得222()40a bab ,()8ab a b .设a b x ,ab y ,则有2240xy,8xy,…………5分联立解得(,)(2,6)x y 或(,)(6,2)x y .………10分若(,)(2,6)x y ,即2a b ,6ab ,则,a b 是一元二次方程2260tt 的两根,但这个方程的判别式2(2)24200,没有实数根;……………15分若(,)(6,2)x y ,即6ab,2ab ,则,a b 是一元二次方程2620tt 的两根,这个方程的判别式2(6)8280,它有实数根.所以2222222222211()262282a ba b ab aba b a b.………20分四、.(本题满分25分)如图,在平行四边形ABCD 中,E 为对角线BD 上一点,且满足ECD ACB , AC 的延长线与△ABD 的外接圆交于点F . 证明:DFE AFB .证明由ABCD 是平行四边形及已知条件知ECDACB DAF .………5分又A 、B 、F 、D四点共圆,所以B D CA B D,………… ….10分所以△ECD ∽△DAF ,………15分所以ED CD AB DFAFAF.………20分又EDFBDF BAF ,所以△EDF ∽△BAF ,故DFE AFB .……………………25分五、(本题满分25分)设n 是整数,如果存在整数,,x y z 满足3333nxyzxyz ,则称n 具有性质P .FCA BDE(1)试判断1,2,3是否具有性质P ;(2)在1,2,3,…,2013,2014这2014个连续整数中,不具有性质P 的数有多少个?解取1x ,0y z ,可得3331103100,所以1具有性质P ;取1xy,0z,可得33321103110,所以2具有性质P ;…………………5分若3具有性质P ,则存在整数,,x y z 使得33()3()()xy z x yz xyyzzx ,从而可得33|()x y z ,故3|(x yz,于是有39|()3()()x y z x yz xyyzzx ,即9|3,这是不可能的,所以3不具有性质P .……………………10分(2)记333(,,)3f x y z xy zxyz ,则33(,,)()3()3f x y z x y zxy x y xyz 3()3()()3()xy z x y z x yz xy x y z =3()3()()xy z xy z xy yz zx 2221()()2x y z x yzxy yzzx 2221()[()()()]2xyz x y y z zx . 即(,,)f x y z 2221()[()()()]2xy z xy yz z x ①……………………15分不妨设xy z ,如果1,0,1x y y z x z ,即1,x z y z ,则有(,,)31f x y z z ;如果0,1,1x y y z x z ,即1x yz ,则有(,,)32f x y z z ;如果1,1,2xyyzxz,即2,1xz y z ,则有(,,)9(1)f x y z z ;由此可知,形如31k 或32k或9k(k 为整数)的数都具有性质P .……………………20分又若33|(,,)()3()()f x y z xyz x y z xy yz zx ,则33|()x y z ,从而3|()x yz ,进而可知39|(,,)()3()()f x y z xyz xyz xyyzzx .综合可知:当且仅当93n k 或96n k (k 为整数)时,整数n 不具有性质P .又2014=9×223+7,所以,在1,2,3,…,2013,2014这2014个连续整数中,不具有性质P 的数共有224×2=448个.…………………25分我们对服务人员的配备以有经验、有知识、有技术、懂管理和具有高度的服务意识为准绳,在此基础上建立一支高素质的物业管理队伍,为销售中心的物业管理创出优质品牌。
2014年全国初中数学联赛(初二组)初赛试卷(含答案)
四川省2014年全国初中数学联赛(初二组)初赛试卷(3 月7 日下午4:00 —6:00)题号 ---------- *■-二二-三四五合计得分评卷人复核人、选择题(本小题满分42分,每小题7 分)1、化简1.3 2的值是( )\ H J IJzzLACL-3 2A、0B、2、、3C、 2.3D、42、实数a、b c 满足a b c0,abc1,则a、b c中正数的个数是( ).开始时4、如图,在矩形ABCD 中, AB=2,BC=3,AE是/ BAD的平分线,EF垂直于A E贝U AF的长为5、方程x6、在△ABC中,锐角、2、、5、•: 10x 3 1的解的Z B和/C的角平分线交点是、直角、无数个I,则Z BIC 是(C 、钝角D 、无法确定FA、0B、1C、2D、33、在一个圆柱形水池内,有一个进水管和一个出水管,进水管流水速度是出水管流水速度的两倍有一满池水,出水管开始放水,至叶也水只有一半池时,打开进水管放水(此时出水管不关)直到放满池水V随时间t的变化关系的图像是关闭进水管,再由出水管放完池水。
则在这一过程水池中的水量、填空题(本大题满分28分,每小题7分)1用火柴棍按照如下图所示的规律搭建三角形,“…”表示按照前面的规律一直搭建下去,当搭建到第n 个编号三角形的时候,所用火柴棍的根数是(用含有n的式子表示).A3狂厂???厶)\2、若a为整数,则关于x的方程(a 1)x a 1的所有整数解的和是x 3 a b3、a b为常数,且对任何实数x,都有 = 2 2 2成立,则b a= ______________ .(x +1)(x 2) x 1 x 24、在长方形纸片ABCD中,AB 1 BC 2,设E为边BC的中点,现将纸片折叠,使A E重合,则折痕将长方形纸片分成两部分中,较大部分面积与较小部分面积之比的值为_____________ .(本大题满分20分)解不等式x 2 3x 1如图,在等腰梯形ABCD中,A D//BC, DE BC于E,若DE 3, BD 5 ,求梯形ABCD的面积.E2 3 3已知正整数a、b满足(a b) a b ,试求a、b的值2014年全国初中数学联合竞赛(初二组)初赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准 •第一试,选择题和填空题只设 7分和0分两档;第二试各题 请严格按照本评分标准规定的评分档次给分 ,不要再增加其他中间档次 •如果考生的解答方法和本解答不 同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次 ,给予相应的分数.一、选择题(本题满分42分,每小题7 分)1、C 2、B 3、B 4、D 5、D 6、C 二、填空题(本题满分 28分,每小题 7 分)1、 4n 1 2、4 3、 1 4、3三、(本大题满分20分)解不等式|X 2| 3X1解:(1)当X 2时,不等式化为2X 3X1,解此不等式得 X 3-故此时3X 2 ; (10 分)4 54(2)当X 2时,不等式化为X 23X 1, 解此不等式得X1 2此时X2.(15 分)3综上所述,不等式的解为:X . (20 分)4求梯形ABCD 的面积.因为a 、b 均为正整数,故四、(本大题满分25分)如图,在等腰梯形 ABCD 中,AD//BC ,DEBC 于 E .若 DE 3,BD 5 ,解:在直角△ BDE 中,由勾股定理有:BE .BD 2 DE 2 4 ;过D 作AC 的平行线交BC 的延长线于F ,连接DF 、CF , 则ACFD 是平行四边形,故 CF=AD , DF 所以DE 是等腰A DBF 底边上的高,故BF (5分)所以 S ABCD 1(BC AD)DE五、(本25分)已知正整数a 、 b 满足(a b ) 解:由已知得a ab b 则(a b)2 (a 1)2 (b 1)2AC2BE〔BF DE 122a 3b 3,试求 a 、 b , (5 分)2 .(10分)(25 分).b 的值. BD ,8 (15 分)(1)当 a=b 时,(a 1)2 (b 21) 1,即 a=b=2; (15 分)(2)当 ab 时,(a b)2从而(a 1)2 1 且(b 1)20 ;或者(a 1)20 且(b 1)2所以,a2,b1,b 2 . (20 分)综上所述,所求a,b的值是:a b 2;或者a 1,b 2 ;或者a 2,b 1 .(25分)。
2014年全国初中数学联赛答案及评分标准(初三)
2014年全国初中数学联赛(初三组)初赛评 分 细 则一、选择题(本题满分42分,每小题7分) 1、B . 2、C . 3、D . 4、C . 5、A . 6、D .二、填空题(本大题满分28分,每小题7分)12、 93 .3、 4 .4、512.三、(本大题满分20分) 解:由已知得2b a =-, 所以121a b ++2123122aa a a a =+=+---. ··················································· (10分) 显然0a ≠,由2240a a +-=得222aa -=-. ············································· (15分)所以233222a aa a a a ==-----, 所以121a b++2=-.······················································································ (20分) 四、(本大题满分25分)解:(1)因为CD 是AB 边上的中线, 所以CD =DB ,∠ABC =∠DCB =∠CAE , ∠ACB =∠ECA =90︒,所以△ACB ∽△ECA , ··················································································· (5分) 所以AC CBEC CA=, 所以2AC BC CE =⋅. ···················································································· (10分) (2)因为CD 是Rt △ABC 的中线, 所以CD=AD=BD 。
全国初中数学竞赛试题及答案(2014年)
2014年全国初中数学联合竞赛试题参考答案说明:第一试,选择题和填空题只设7分和0分两档;第二试各题,请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答不同,在评卷时请参照本评分标准划分的档次,给予相应的分数.第一试一、选择题:(本题满分42分,每小题7分) 1.已知,x y 为整数,且满足22441111211()()()3x y x y x y++=--,错误!未找到引用源。
则x y +的可能的值有( C )A. 1个B. 2个C. 3个D. 4个2.已知非负实数,,x y z 满足1x y z ++=,则22t xy yz zx =++的最大值为 ( A ) A .47 B .59 C .916 D .1225 3.在△ABC 中,AB AC =,D 为BC 的中点,BE AC ⊥于E ,交AD 于P ,已知3BP =,1PE =,则错误!未找到引用源。
=( B )A B C D 4.6张不同的卡片上分别写有数字2,2,4,4,6,6,从中取出3张,则这3张卡片上所写的数字可以作为三角形的三边长的概率是 ( B )A .12 B .25 C .23 D .345.设[]t 表示不超过实数t 的最大整数,令{}[]t t t =-.已知实数x 满足33118x x +=,则1{}{}x x+= ( D )A .12B .3C .1(32D .1 6.在△ABC 中,90C ∠=︒,60A ∠=︒错误!未找到引用源。
,1AC =,D 在BC 上,E 在AB 上,使得△A D E 为等腰直角三角形, 90ADE ∠=︒ ,则BE 的长为( A )A .4-B .2C .11)2D 1 二、填空题:(本题满分28分,每小题7分) 1.已知实数,,a b c 满足1a b c ++=,1111a b c b c a c a b++=+-+-+-,则abc =__0__.2.使得不等式981715n n k <<+错误!未找到引用源。
2014年全国初中数学联赛(初二年级组)试题及参考答案详解
2014年全国初中数学联合竞赛(初二年级)试题第一试一、选择题:(本题满分42分,每小题7分)1.若0x >,0y >= )A. 1B. 2C. 3D. 42.已知△ABC 中,2AB AC ==,点D 在BC 边的延长线上,4AD =,则错误!未找到引用源。
=( ) A .16 B .15 C .13 D .12 3.已知,x y 为整数,且满足22441111211()()()3x y x y x y++=--,错误!未找到引用源。
则x y +的可能的值有( )A. 1个B. 2个C. 3个D. 4个4.用1g 、3g 、6g 、30g 的砝码各一个,在一架没有刻度的天平上称量重物,如果天平两端均可放置砝码,那么,可以称出的不同克数的重物的种数为 ( ) A .21 B .20 C .31 D .305.已知实数,,x y z 1()2x y z =++,则xyz 的值为 ( ) A .6 B .4 C .3 D .不确定6.已知△ABC 的三边长分别为2,3,4,M 为三角形内一点,过点M 作三边的平行线,交各边于D 、E 、F 、G 、P 、Q (如图),如果DE FG PQ x ===,则x = ( )A .1813B .2013C .2213 D .2413 二、填空题:(本题满分28分,每小题7分)1.如果关于x 的方程|3||2||1|x x x a -+---=恰好只有一个解,则实数a =___________. 2.使得不等式981715n n k <<+错误!未找到引用源。
对唯一的整数k 成立的最大正整数n 为 ___________. 3.已知P 为等腰△ABC 内一点,AB BC =,108BPC ∠=︒,D 为AC 的中点,BD 与PC 交于点E ,如果点P 为△ABE 的内心(三角形的三条内角平分线的交点),则PAC ∠=___________.4.已知n 为正整数,且432261225n n n n ++++为完全平方数,则n =___________.第二试一、(本题满分20分)设b 为正整数,a 为实数,记221145224M a ab b a b =-++-+,在,a b 变动的情况下,求M 可能取得的最小整数值,并求出M 取得最小整数值时,a b 的值.二、(本题满分25分)在直角△ABC 中,D 为斜边AB 的中点,E 、F 分别在AC 、BC 上,90EDF ∠=︒,已知4CE =,2AE =,32BF CF -=,求AB .三、(本题满分25分)设不全相等的非零实数,,a b c 满足2221222bc ac aba bcb ac c ab++=+++,求a b c++的值.2014年全国初中数学联合竞赛(初二年级)试题参考答案第一试一、选择题:(本题满分42分,每小题7分)1.若0x >,0y >= )A. 1B. 2C. 3D. 42.已知△ABC 中,2AB AC ==,点D 在BC 边的延长线上,4AD =,则错误!未找到引用源。
2014年全国初中数学竞赛试题和答案解析
20XX 全国初中数学竞赛试题和答案解析一、选择题:〔本题满分42分,每小题7分〕 1.已知,x y 为整数,且满足22441111211()()()3x y x y x y++=--,则x y +的可能的值有〔 〕A.1个B. 2个C. 3个D.4个 [答] C.由已知等式得2244224423x y x y x y xy x y x y ++-⋅=⋅,显然,x y 均不为0,所以x y +=0或32()xy x y =-.若32()xy x y =-,则(32)(32)4x y +-=-.又,x y 为整数,可求得12,x y =-⎧⎨=⎩,或21.x y =-⎧⎨=⎩,所以1x y +=或1x y +=-. 因此,x y +的可能的值有3个.2.已知非负实数,,x y z 满足1x y z ++=,则22t xy yz zx =++的最大值为 〔 〕A .47B .59C .916D .1225[答] A.21222()2()()4t xy yz zx x y z yz x y z y z =++=++≤+++212(1)(1)4x x x =-+-2731424x x =-++2734()477x =--+,易知:当37x =,27y z ==时,22t xy yz zx =++取得最大值47.3.在△ABC 中,AB AC =,D 为BC 的中点,BE AC ⊥于E ,交AD 于P ,已知3BP =,1PE =,则AE= 〔 〕ACD[答] B .因为AD BC ⊥,BE AC ⊥,所以,,,P D C E 四点共圆,所以12BD BC BP BE ⋅=⋅=,又2BC BD =,所以BD =DP =.又易知△AEP∽△BDP,所以AE PEBD DP=,从而可得PEAE BDDP=⋅==4.6X不同的卡片上分别写有数字2,2,4,4,6,6,从中取出3X,则这3X卡片上所写的数字可以作为三角形的三边长的概率是〔〕A.12B.25C.23D.34[答] B.若取出的3X卡片上的数字互不相同,有2×2×2=8种取法;若取出的3X卡片上的数字有相同的,有3×4=12种取法.所以,从6X不同的卡片中取出3X,共有8+12=20种取法.要使得三个数字可以构成三角形的三边长,只可能是:〔2,4,4〕,〔4,4,6〕,〔2,6,6〕,〔4,6,6〕,由于不同的卡片上所写数字有重复,所以,取出的3X卡片上所写的数字可以作为三角形的三边长的情况共有4×2=8种.因此,所求概率为82205=.5.设[]t表示不超过实数t的最大整数,令{}[]t t t=-.已知实数x满足33118xx+=,则1{}{}xx+=〔〕A.12B.3.1(32D.1[答] D.设1x ax+=,则32223211111()(1)()[()3](3)x x x x x a ax x x x x+=++-=++-=-,所以2(3)18a a-=,因式分解得2(3)(36)0a a a-++=,所以3a=.由13xx+=解得1(32x=,显然10{}1,0{}1xx<<<<,所以1{}{}xx+=1.6.在△ABC中,90C∠=︒,60A∠=︒,1AC=,D在BC上,E在AB上,使得△ADE为等腰直角三角形,90ADE∠=︒,则BE的长为〔〕A.4-B.2-C.11)2D1[答] A.过E作EF BC⊥于F,易知△ACD≌△DFE,△EFB∽△ACB.设EF x=,则2BE x=,22AE x=-,)DE x=-,A1 DF AC==,故2221)]x x+=-,即2410x x-+=.又01x<<,故可得2x=故24BE x==-二、填空题:〔本题满分28分,每小题7分〕1.已知实数,,a b c满足1a b c++=,1111a b c b c a c a b++=+-+-+-,则abc=____.[答] 0.由题意知1111121212c a b++=---,所以(12)(12)(12)(12)(12)(12)(12)(12)(12)a b b c a c a b c--+--+--=---整理得22()8a b c abc-++=,所以abc=0.2.使得不等式981715nn k<<+对唯一的整数k成立的最大正整数n为.[答]144.由条件得7889kn<<,由k的唯一性,得178kn-≤且189kn+≥,所以2118719872k kn n n+-=-≥-=,所以144n≤.当144n=时,由7889kn<<可得126128k<<,k可取唯一整数值127.故满足条件的正整数n的最大值为144.3.已知P为等腰△ABC内一点,AB BC=,108BPC∠=︒,D为AC的中点,BD与PC交于点E,如果点P为△ABE的内心,则PAC∠=.[答]48︒.由题意可得PEA PEB CED AED∠=∠=∠=∠,而180PEA PEB AED∠+∠+∠=︒,所以60PEA PEB CED AED∠=∠=∠=∠=︒,从而可得30PCA∠=︒.又108BPC∠=︒,所以12PBE∠=︒,从而24ABD∠=︒.所以902466BAD∠=︒-︒=︒,11()(6630)1822PAE BAD CAE∠=∠-∠=︒-︒=︒,所以183048PAC PAE CAE∠=∠+∠=︒+︒=︒.4.已知正整数,,a b c满足:1a b c<<<,111a b c++=,2b ac=,则b=.[答]36.D设,a c 的最大公约数为(,)a c d =,1a a d =,1c c d =,11,a c 均为正整数且11(,)1a c =,11a c <,则2211b ac d a c ==,所以22|d b ,从而|d b ,设1b b d =〔1b 为正整数〕,则有2111b a c =,而11(,)1a c =,所以11,a c 均为完全平方数,设2211,a m c n ==,则1b mn =,,m n均为正整数,且(,)1m n =,m n <.又111a b c ++=,故111()111d a b c ++=,即22()111d m n mn ++=. 注意到222212127m n mn ++≥++⨯=,所以1d =或3d =.若1d =,则22111m n mn ++=,验算可知只有1,10m n ==满足等式,此时1a =,不符合题意,故舍去.若3d =,则2237m n mn ++=,验算可知只有3,4m n ==满足等式,此时27,36,48a b c ===,符合题意.因此,所求的36b =.三、〔本题满分20分〕设实数,a b 满足22(1)(2)40a b b b a +++=,(1)8a b b ++=,求2211a b+的值. 解由已知条件可得222()40a b a b ++=,()8ab a b ++=.设a b x +=,ab y =,则有2240x y +=,8x y +=, …………5分 联立解得(,)(2,6)x y =或(,)(6,2)x y =. ………10分 若(,)(2,6)x y =,即2a b +=,6ab =,则,a b 是一元二次方程2260t t -+=的两根,但这个方程的判别式2(2)24200∆=--=-<,没有实数根; ……………15分若(,)(6,2)x y =,即6a b +=,2ab =,则,a b 是一元二次方程2620t t -+=的两根,这个方程的判别式2(6)8280∆=--=>,它有实数根.所以2222222222211()262282a b a b ab a b a b a b ++--⨯+====. ………20分四、.〔本题满分25分〕如图,在平行四边形ABCD 中,E 为对角线BD 上一点,且满足ECD ACB ∠=∠, AC 的延长线与△ABD 的外接圆交于点F . 证明:DFE AFB ∠=∠.证明 由ABCD 是平行四边形与已知条件知ECD ACB DAF ∠=∠=∠.………5分 又A 、B 、F 、 D 四点共圆,所以BDC ABD AFD ∠=∠=∠,…………….10分所以△ECD ∽△DAF , ………15分所以ED CD AB DF AF AF==. ………20分 又EDF BDF BAF ∠=∠=∠,所以△EDF ∽△BAF ,故 DFE AFB ∠=∠.……………………25分五、〔本题满分25分〕设n 是整数,如果存在整数,,x y z 满足3333n x y z xyz =++-,则称n 具有性质P .〔1〕试判断1,2,3是否具有性质P ;〔2〕在1,2,3,…,2013,2014这2014个连续整数中,不具有性质P 的数有多少个?解取1x =,0y z ==,可得33311003100=++-⨯⨯⨯,所以1具有性质P ; 取1x y ==,0z =,可得33321103110=++-⨯⨯⨯,所以2具有性质P ;…………………5分若3具有性质P ,则存在整数,,x y z 使得33()3()()x y z x y z xy yz zx =++-++++,从而可得33|()x y z ++,故3|()x y z ++,于是有39|()3()()x y z x y z xy yz zx ++-++++,即9|3,这是不可能的,所以3不具有性质P . ……………………10分〔2〕记333(,,)3f x y z x y z xyz =++-,则33(,,)()3()3f x y z x y z xy x y xyz =++-+- 3()3()()3()x y z x y z x y z xy x y z =++-+++-++=3()3()()x y z x y z xy yz zx ++-++++2221()()2x y z x y z xy yz zx =++++--- 2221()[()()()]2x y z x y y z z x =++-+-+-. FBD即(,,)f x y z 2221()[()()()]2x y z x y y z z x =++-+-+-① ……………………15分不妨设x y z ≥≥,如果1,0,1x y y z x z -=-=-=,即1,x z y z =+=,则有(,,)31f x y z z =+; 如果0,1,1x y y z x z -=-=-=,即1x y z ==+,则有(,,)32f x y z z =+; 如果1,1,2x y y z x z -=-=-=,即2,1x z y z =+=+,则有(,,)9(1)f x y z z =+; 由此可知,形如31k +或32k +或9k 〔k 为整数〕的数都具有性质P .……………………20分又若33|(,,)()3()()f x y z x y z x y z xy yz zx =++-++++,则33|()x y z ++,从而3|()x y z ++,进而可知39|(,,)()3()()f x y z x y z x y z xy yz zx =++-++++.综合可知:当且仅当93n k =+或96n k =+〔k 为整数〕时,整数n 不具有性质P . 又2014=9×223+7,所以,在1,2,3,…,2013,2014这2014个连续整数中,不具有性质P 的数共有224×2=448个. …………………25分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三数学竞赛试题中国教育学会中学数学教学专业委员会
2014年全国初中数学竞赛试题
题号
一
二
三
总分
1~5
6~10
11
12
13
14
得分
评卷人
复查人
答题时注意:
1.用圆珠笔或钢笔作答;
2.解答书写时不要超过装订线;
3.草稿纸不上交.
一、选择题(共5小题,每小题7分,共35分.每道小题均给出了代号为A,B,C,D的四个选项,其中有且只有一个选项是正确的.请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)
1.设非零实数,,满足则的值为().(A)
(B)
(C)
(D)
2.已知关于的不等式组
恰有个整数解,则的取值范围是().(A)<<
(B)≤<
(C)<≤
(D)≤≤
(A)OD
(B)OE
(C)DE
(D)AC
(A)3
(B)4
(C)6
(D)8
5.对于任意实数x,y,z,定义运算“*”为:
,
且,则的值为().
(A)
(B)
(C)
(D)
二、填空题(共5小题,每小题7分,共35分)
6.设,是的小数部分,是的小数部分,则的值为.
7.一个质地均匀的正方体的六个面上分别标有数1,2,3,4,5,6.掷这个正方体三次,则其朝上的面的数和为3的倍数的概率是.
8.已知正整数a,b,c满足,,则的最大值为.
11.如图,抛物线,顶点为E,该抛物线与轴交于A,B两点,与轴交于点C,且OB=OC=3OA.直线与轴交于点D.求∠DBC∠CBE.
12.设△的外心、垂心分别为,若共圆,对于所有的△,求所有可能的度数.
14.如果将正整数M放在正整数m左侧,所得到的新数可被7整除,那么称M为m的“魔术数”(例如,把86放在415的左侧,得到的数86415能被7整除,所以称86为415的魔术数).求正整数n的最小值,使得存在互不相同的正整数,满足对任意一个正整数m,在中都至少有一个为m的魔术数.
中国教育学会中学数学教学专业委员会
2013年全国初中数学竞赛试题参考答案
一、选择题
1.A
解:由已知得,故.于是,所以.
2.C
解:根据题设知不等式组有解,解得,<<.
由于不等式组恰有个整数解,这个整数解只能为,,,,,因此≤<,解得
<≤.
3.D
解:因AD,DB,CD的长度都是有理数,所以,OA=OB=OC=是有理数.于是,OD=OA-AD 是有理数.
由Rt△DOE∽Rt△COD,知,都是有理数,而AC=不一定是有理数.
4.C
连接CE,因为DE//CF,即DE//BF,所以
S△DEB = S△DEC,
因此原来阴影部分的面积等于△ACE的面积.
连接AF,因为EF//CD,即EF//AC,所以
S△ACE = S△ACF.
因为,所以S△ABC = 4S△ACF.故阴影部分的面积为6.
5.C
解:设,则
,
于是
.
二、填空题
6.2
解:由于,故,.所以
.
7.
解:掷三次正方体,朝上的面的数和为3的倍数的是3,6,9,12,15,18,且
3=1+1+1,
6=1+1+4=1+2+3=2+2+2,
9=1+2+6=1+3+5=1+4+4=2+2+5=2+3+4=3+3+3,
12=1+5+6=2+4+6=2+5+5=3+3+6=3+4+5=4+4+4,
15=3+6+6=4+5+6=5+5+5,
18=6+6+6.
记掷三次正方体面朝上的数分别为,,.则使++为3的倍数的(,,)中,3个数都不相等的有8组,恰有两个相等的有6组,3个数都相等的有6组.
故所求概率为
.
8.
解:由已知,消去c,
并整理得.由a为正整数及≤66,可得1≤a≤3.
若,则,无正整数解;
若,则,无正整数解;
若,则,于是可解得,.
()若,则,从而可得;
()若,则,从而可得.
综上知的最大值为.
9.,(为任意实数)
解:由韦达定理得
由上式,可知.
若,则,,进而.
若,则,有(为任意实数).
经检验,数组与(为任意实数)满足条件.
10.
解:设,那么
.
上式对,2,…,99求和,得
原式.
三、解答题
11.解:将分别代入,知,D(0,1),C(0,),所以B(3,0),A(,0).直线过点B.将点C(0,)的坐标代入,得.
…………5分
BC=,CE=,BE=.
因为BC2+CE2=BE2,所以,△BCE为直角三角形,.
…………10分
因此tan==.又tan∠DBO=,则∠DBO=.
所以,.
…………20分
12.解:分三种情况讨论.
()若△为锐角三角形.
因为,所以由,可得,于是.
…………5分
()若△为钝角三角形.
当时,因为,所以由,可得,于是;当时,不妨假设,因为,所以由
,
可得,于是.
…………15分
()若△为直角三角形.
当时,因为为边的中点,不可能共圆,所以不可能等于;当时,不妨假设,此时点B与H重合,于是总有共圆,因此可以是满足的所有角.
综上可得,所有可能取到的度数为所有锐角及.
…………20分
13.
,①
即
.②
…………5分
由E为的中点知,∠∠,△∽△,所以
,③
即
.④
由∥,知.
又因为,所以△∽△,则有
.⑤
…………10分
由为△的内心,连接CI,由
知.由式,,得
,
即
.⑥
由式,④,得
.⑦
由式,得
,
…………15分
于是∥.又∥,故点与重合,即点在直线上.从而,点与重合,即点S在△的外接圆上.
…………20分
14.解:若n≤6,取1,2,…,7,根据抽屉原理知,必有中的一个正整数M是≤<≤7的公共的魔术数,即7|(),7|().则有7|(),但0<≤6,矛盾.
故n≥7.
…………10分
又当为1,2,…,7时,对任意一个正整数m,设其为位数(为正整数).则(…,7)被7除的余数两两不同.若不然,存在正整数,≤<≤7,满足7|[(,即,从而7|,矛盾.
故必存在一个正整数≤≤7,使得7|(,即为m的魔术数.
所以,n的最小值为7.
…………20分。