2013年全国初中数学竞赛九年级复赛试题及答案
全国初中数学竞赛试题及解答
ABCD全国初中数学竞赛试卷及解析一、选择题(本题共6小题,每小题5分,满分30分.每小题均给出了代号为A ,B ,C ,D 的四个结论,其中只有一个是正确的。
请将正确答案的代号填在题后的括号里)1、设a ,b ,c 的平均数为M ,a ,b 的平均数为N ,N ,c 的平均数为P ,若c b a ,则M 与P 的大小关系是( )A 、P MB 、P MC 、P MD 、不确定 答案:B 解析:∵3c b a M ,2b a N ,222c b a c N P ,122cb a P M ∵c b a ∴0122122c c c c b a P M ,即0 P M ,即P M 2、某人骑车沿直线旅行,先前进了a 千米,休息了一段时间,又原路返回b 千米(a b ),再前进c 千米,则此人离起点的距离S 与时间t 的关系示意图是( )答案:C解析:因为图(A )中没有反映休息所消耗的时间;图(B )虽表明折返后S 的变化,但没有表示消耗的时间;图(D )中没有反映沿原始返回的一段路程,唯图(C )正确地表述了题意。
3、甲是乙现在的年龄时,乙10岁;乙是甲现在的年龄时,甲25岁,那么( ) A 、甲比乙大5岁 B 、甲比乙大10岁 C 、乙比甲大10岁 D 、乙比甲大5岁 答案:A解析:由题意知3×(甲-乙)151025 ∴甲-乙=5。
4、一个一次函数图象与直线49545x y 平行,与x 轴、y 轴的交点分别为A 、B ,并且过点(-1,-25),则在线段AB 上(包括端点A 、B ),横、纵坐标都是整数的点有( )A 、4个B 、5个C 、6个D 、7个 答案:B解析:在直线AB 上,横、纵坐标都是整数的点的坐标是N x 41 ,N y 525 ,(N 是整数).在线段AB 上这样的点应满足041 N ,且0525 N ,∴541N ,即1 N ,2,3,4,55、设a ,b ,c 分别是ABC 的三边的长,且cb a ba b a,则它的内角A 、B 的关系是( )A 、AB 2 B 、A B 2C 、A B 2D 、不确定 答案:B解析:由c b a b a b a得c a bb a ,延长CB 至D ,使AB BD ,于是c a CD 在ABC 与DAC 中,C C ,且DC ACAC BC∴ABC ∽DAC ,D BAC ∵D BAD∴BAC D BAD D ABC 226、已知ABC 的三边长分别为a ,b ,c ,面积为S ,111C B A 的三边长分别为1a ,1b ,1c ,面积为1S ,且1a a ,1b b ,1c c ,则S 与1S 的大小关系一定是( )A 、1S SB 、1S SC 、1S SD 、不确定 答案:D解析:分别构造ABC 与111C B A 如下:①作ABC ∽111C B A ,显然1211a a S S ,即1S S ;②设101b a ,20c ,则1 c h ,10 S ,10111 c b a ,则10100431S ,即1S S ;③设101 b a ,20 c ,则1 c h ,10 S ,2911 b a ,101 c ,则2 c h ,101 S ,即1S S ;因此,S 与1S 的大小关系不确定。
2002~2013年全国初中数学竞赛试题及答案(完整版)
2002年全国初中数学竞赛试题一、选择题1.设a <b <0,a 2+b 2=4ab ,则ba ba -+的值为【 】 A 、3 B 、6 C 、2 D 、32.已知a =1999x +2000,b =1999x +2001,c =1999x +2002,则多项式a 2+b 2+c 2-ab -bc -ca 的值为【 】A 、0B 、1C 、2D 、33.如图,点E 、F 分别是矩形ABCD 的边AB 、BC 的中点,连AF 、CE 交于点G ,则ABCDAGCD S S 矩形四边形等于【 】A 、65 B 、54 C 、43 D 、32ABC DEF G4.设a 、b 、c 为实数,x =a 2-2b +3π,y =b 2-2c +3π,z =c 2-2a +3π,则x 、y 、z 中至少有一个值【 】A 、大于0B 、等于0C 、不大于0D 、小于0 5.设关于x 的方程ax 2+(a +2)x +9a =0,有两个不等的实数根x 1、x 2,且x 1<1<x 2,那么a 的取值范围是【 】A 、72-<a <52 B 、a >52 C 、a <72- D 、112-<a <06.A 1A 2A 3…A 9是一个正九边形,A 1A 2=a ,A 1A 3=b ,则A 1A 5等于【 】 A 、22b a + B 、22b ab a ++ C 、()b a +21D 、a +b 二、填空题7.设x 1、x 2是关于x 的一元二次方程x 2+ax +a =2的两个实数根,则(x 1-2x 2)(x 2-2x 1)的最大值为 。
8.已知a 、b 为抛物线y =(x -c)(x -c -d)-2与x 轴交点的横坐标,a <b ,则b c c a -+-的值为 。
9.如图,在△ABC 中,∠ABC =600,点P 是△ABC 内的一点,使得∠APB =∠BPC =∠CPA ,且PA =8,PC =6,则PB = 。
2013年全国初中数学竞赛试题(附详细答案)
2013年全国初中数学竞赛试题及参考答案一、选择题1.设非零实数a ,b ,c 满足2302340a b c a b c ++=⎧⎨++=⎩,,则222ab bc caa b c ++++的值为( ). (A )12-(B )0 (C )12(D )1【答案】A【解答】由已知得(234)(23)0a b c a b c a b c ++=++-++=,故2()0a b c ++=.于是2221()2ab bc ca a b c ++=-++,所以22212ab bc ca a b c ++=-++.2.已知a ,b ,c 是实常数,关于x 的一元二次方程20ax bx c ++=有两个非零实根1x ,2x ,则下列关于x 的一元二次方程中,以211x ,221x 为两个实根的是( ). (A )2222(2)0c x b ac x a +-+= (B )2222(2)0c x b ac x a --+= (C )2222(2)0c x b ac x a +--= (D )2222(2)0c x b ac x a ---=【答案】B【解答】由于20ax bx c ++=是关于x 的一元二次方程,则0a ≠.因为12bx x a+=-,12c x x a =,且120x x ≠,所以0c ≠,且 221212222221212()2112x x x x b a c x x x x c +--+==,22221211a x x c⋅=, 于是根据方程根与系数的关系,以211x ,221x 为两个实根的一元二次方程是222220b ac a x x c c--+=,即2222(2)0c x b ac x a --+=. 3.如图,在Rt △ABC 中,已知O 是斜边AB 的中点,CD ⊥AB ,垂足为D ,DE ⊥OC ,垂足为E .若AD ,DB ,CD 的长度都是有理数,则线段OD ,OE ,DE ,AC 的长度中,不一定...是有理数的为( ).(A )OD (B )OE (C )DE(D )AC(第3题)【答案】D【解答】因AD ,DB ,CD 的长度都是有理数,所以,OA =OB =OC =2AD BD+是有理数.于是,OD =OA -AD 是有理数.由Rt △DOE ∽Rt △COD ,知2OD OE OC=,·DC DO DE OC =都是有理数,而AC4.如图,已知△ABC 的面积为24,点D 在线段AC 上,点F 在线段BC 的延长线上,且4BC CF =,DCFE 是平行四边形,则图中阴影部分的面积为( ).(A )3 (B )4 (C )6 (D )8【答案】C【解答】因为DCFE 是平行四边形,所以DE //CF ,且EF //DC.连接CE ,因为DE //CF ,即DE //BF ,所以S △DEB = S △DEC , 因此原来阴影部分的面积等于△ACE 的面积.连接AF ,因为EF //CD ,即EF //AC ,所以S △ACE = S △ACF .因为4BC CF =,所以S △ABC = 4S △ACF .故阴影部分的面积为6.5.对于任意实数x ,y ,z ,定义运算“*”为:()()32233333451160x y x y xy x y x y +++*=+++-,且()x y z x y z **=**,则2013201232****的值为( ).(A )607967(B )1821967(C )5463967(D )16389967【答案】C【解答】设201320124m ***=,则()20132012433m ****=*32323339274593316460m m m m m m ⨯+⨯+⨯+==++++-, 于是()201320123292****=*3223333923929245546310360967⨯⨯+⨯⨯+⨯+==+-.(第3题答题)(第4题答题)(第4题)二、填空题6.设a =b 是2a 的小数部分,则3(2)b +的值为 . 【答案】9【解答】由于2123a a <<<<,故222b a =-=,因此33(2)9b +==. 7.如图,点D ,E 分别是△ABC 的边AC ,AB 上的点,直线BD 与CE 交于点F ,已知△CDF ,△BFE ,△BCF 的面积分别是3,4,5,则四边形AEFD 的面积是 .【答案】20413【解答】如图,连接AF ,则有:45=3AEF AEF BFE BCF AFD AFD CDF S S S BF S S S FD S ∆∆∆∆∆∆∆++===,354AFD AFD CDF BCF AEF AEF BEF S S S CF S S S FE S ∆∆∆∆∆∆∆++====,解得10813AEF S ∆=,9613AFD S ∆=. 所以,四边形AEFD 的面积是20413. 8.已知正整数a ,b ,c 满足2220+--=a b c ,2380-+=a b c ,则abc 的最大值为 .【答案】2013【解答】由已知2220+--=a b c ,2380-+=a b c 消去c ,并整理得()228666b a a -++=.由a 为正整数及26a a +≤66,可得1≤a ≤3.若1a =,则()2859b -=,无正整数解; 若2a =,则()2840b -=,无正整数解;若3a =,则()289b -=,于是可解得11=b ,5b =. (i )若11b =,则61c =,从而可得311612013abc =⨯⨯=; (ii )若5b =,则13c =,从而可得3513195abc =⨯⨯=. 综上知abc 的最大值为2013.(第7题答题)(第7题)9.实数a ,b ,c ,d 满足:一元二次方程20x cx d ++=的两根为a ,b ,一元二次方程20x ax b ++=的两根为c ,d ,则所有满足条件的数组(),,,a b c d 为 .【答案】(1212),,,--,(00),,,-t t (t 为任意实数)【解答】由韦达定理得,,,.+=-⎧⎪=⎪⎨+=-⎪=⎪⎩a b c ab d c d a cd b由上式,可知b a c d =--=. 若0b d =≠,则1==d a b ,1==bc d,进而2b d a c ==--=-. 若0b d ==,则c a =-,有()(00),,,,,,=-a b c d t t (t 为任意实数). 经检验,数组(1212)--,,,与(00),,,-t t (t 为任意实数)满足条件. 10.小明某天在文具店做志愿者卖笔,铅笔每支售4元,圆珠笔每支售7元.开始时他有铅笔和圆珠笔共350支,当天虽然笔没有全部卖完,但是他的销售收入恰好是2013元.则他至少卖出了 支圆珠笔.【答案】207【解答】设x ,y 分别表示已经卖出的铅笔和圆珠笔的支数,则472013350,,+=⎧⎨+<⎩x y x y所以201371(5032)44y y x y -+==-+, 于是14y +是整数.又20134()343503x y y y =++<⨯+, 所以204y >,故y 的最小值为207,此时141x =.三、解答题11.如图,抛物线y=23ax bx+-,顶点为E,该抛物线与x轴交于A,B两点,与y轴交于点C,且OB=OC=3OA.直线113y x=-+与y轴交于点D.求∠DBC-∠CBE.【解答】将0x=分别代入y=113x-+,23y ax bx=+-知,D(0,1),C(0,3-),所以B(3,0),A(1-,0).直线y=113x-+过点B.将点C(0,3-)的坐标代入y=(1)(3)a x x+-,得1a=.抛物线223y x x=--的顶点为E(1,4-).于是由勾股定理得BC=CE BE=因为BC2+CE2=BE2,所以,△BCE为直角三角形,90BCE∠=︒.因此tan CBE∠=CECB=13.又tan∠DBO=13ODOB=,则∠DBO=CBE∠.所以,45DBC CBE DBC DBO OBC∠-∠=∠-∠=∠=︒.(第11题答题)(第11题)12.设△ABC 的外心,垂心分别为O H ,,若B C H O ,,,共圆,对于所有的△ABC ,求BAC ∠所有可能的度数.【解答】分三种情况讨论. (i )若△ABC 为锐角三角形.因为1802BHC A BOC A ∠=︒-∠∠=∠,,所以由BHC BOC ∠=∠,可得1802A A ︒-∠=∠,于是60A ∠=︒.(ii )若△ABC 为钝角三角形.当90A ∠>︒时,因为()1802180BHC A BOC A ∠=︒-∠∠=︒-∠,,所以由180BHC BOC ∠+∠=︒,可得()3180180A ︒-∠=︒,于是120A ∠=︒。
历年初中数学竞赛真题库含答案
1991年全国初中数学联合竞赛决赛试题第一试一、选择题本题共有8个小题,每小题都给出了(A )、(B )(C )、(D )四个答案结论,其中只有一个是正确的.请把正确结论的代表字母写在题后的圆括号内.1. 设等式y a a x a y a a x a ---=-+-)()(在实数范围内成立,其中a ,x ,y 是两两不同的实数,则22223yxy x y xy x +--+的值是 (A )3 ; (B )31; (C )2; (D )35. 答( )2. 如图,AB ‖EF ‖CD ,已知AB =20,CD =80,BC =100,那么EF 的值是(A ) 10; (B )12;(C ) 16; (D )18.答( )3. 方程012=--x x 的解是(A )251±; (B )251±-; (C )251±或251±-; (D )251±-±. 答( )4.已知:)19911991(2111n n x --=(n 是自然数).那么n x x )1(2+-,的值是(A)11991-; (B)11991--;(C)1991)1(n -; (D)11991)1(--n .答( )5. 若M n 1210099321=⨯⨯⨯⨯⨯ ,其中M为自然数,n 为使得等式成立的最大的自然数,则M(A)能被2整除,但不能被3整除;(B)能被3整除,但不能被2整除;(C)能被4整除,但不能被3整除;(D)不能被3整除,也不能被2整除.答( )6. 若a ,c ,d 是整数,b 是正整数,且满足c b a =+,d c b =+,a d c =+,那么 d c b a +++的最大值是(A)1-;(B)5-;(C)0;(D)1.答( )7. 如图,正方形OPQR 内接于ΔABC .已知ΔAOR 、ΔBOP 和ΔCRQ 的面积分别是11=S ,32=S 和13=S ,那么,正方形OPQR 的边长是 (A)2;(B)3;(C)2 ;(D)3.答( )8. 在锐角ΔABC 中,1=AC ,c AB =, 60=∠A ,ΔABC 的外接圆半径R ≤1,则 (A)21< c < 2 ; (B)0< c ≤21; 答( )(C )c > 2; (D )c = 2.答( )二、填空题1.E是平行四边形ABCD 中BC 边的中点,AE 交对角线BD 于G ,如果ΔBEG 的面积是1,则平行四边形ABCD 的面积是 . 2.已知关于x 的一元二次方程02=++c bx ax 没有实数解.甲由于看错了二次项系数,误求得两根为2和4;乙由于看错了某一项系数的符号,误求得两根为-1和4,那么,=+ac b 32 .3.设m ,n ,p ,q 为非负数,且对一切x >0,qpn m x x x x )1(1)1(+=-+恒成立,则 =++q p n m 22)2( .4.四边形ABCD 中,∠ ABC 135=,∠BCD 120=,AB 6=,BC 35-=,CD = 6,则AD = .第二试x + y , x - y , x y , yx 四个数中的三个又相同的数值,求出所有具有这样性质的数对(x , y ).二、ΔABC中,AB<AC<BC,D点在BC上,E点在BA的延长线上,且BD=BE=AC,ΔBDE的外接圆与ΔABC的外接圆交于F点(如图).求证:BF=AF+CF三、将正方形ABCD分割为2n个相等的小方格(n是自然数),把相对的顶点A,C染成红色,把B,D染成蓝色,其他交点任意染成红、蓝两色中的一种颜色.证明:恰有三个顶点同色的小方格的数目必是偶数.1992年全国初中数学联合竞赛决赛试题第一试一.选择题本题共有8个题,每小题都给出了(A), (B), (C), (D)四个结论,其中只有一个是正确的.请把正确结论的代表字母写在题后的圆括号内.1.满足1=+-ab b a 的非负整数),(b a 的个数是(A)1; (B)2; (C)3; (D)4.2.若0x 是一元二次方程)0(02≠=++a c bx ax 的根,则判别式ac b 42-=∆与平方式20)2(b ax M +=的关系是(A)∆>M (B)∆=M (C)∆>M ; (D)不确定.3.若01132=+-x x ,则44-+x x 的个位数字是(A)1; (B)3; (C)5; (D)7.答( )4.在半径为1的圆中有一内接多边形,若它的边长皆大于1且小于2,则这个多边形的边数必为(A)7; (B)6; (C)5; (D)4.答( )5.如图,正比例函数)0(>==a ax y x y 和的图像与反比例函数)0(>=k xk y 的图像分别相交于A 点和C 点.若AOB Rt ∆和COD ∆的面积分别为S 1和S 2,则S 1与S 2的关系是 (A)21S S > (B)21S S =(C)21S S < (D)不确定 答( )6.在一个由88⨯个方格组成的边长为8的正方形棋盘内放一个半径为4的圆,若把圆周经过的所有小方格的圆内部分的面积之和记为1S ,把圆周经过的所有小方格的圆内部分的面积之和记为2S ,则21S S 的整数部分是 (A)0; (B)1; (C)2; (D)3.答( )7.如图,在等腰梯形ABCD 中, AB //CD , AB=2CD ,︒=∠60A ,又E 是底边AB 上一点,且FE=FB=AC , FA=AB .则AE :EB 等于(A)1:2 (B)1:3(C)2:5 (D)3:10答( )8.设9321,,,,x x x x ⋅⋅⋅均为正整数,且921x x x <⋅⋅⋅<<,220921=+⋅⋅⋅++x x x ,则当54321x x x x x ++++的值最大时,19x x -的最小值是(A)8; (B)9; (C)10; (D)11.答( )二.填空题1.若一等腰三角形的底边上的高等于18cm ,腰上的中线等15cm ,则这个等腰三角形的面积等于________________.2.若0≠x ,则x x x x 44211+-++的最大值是__________.3.在ABC ∆中,B A C ∠∠=∠和,90 的平分线相交于P 点,又AB PE ⊥于E 点,若3,2==AC BC ,则=⋅EB AE .4.若b a ,都是正实数,且0111=+--b a b a ,则=+33)()(ba ab . 第二试一、设等腰三角形的一腰与底边的长分别是方程062=+-a x x 的两根,当这样的三角形只有一个时,求a 的取值范围.二、如图,在ABC ∆中,D AC AB ,=是底边BC 上一点,E 是线段AD 上一点,且A CED BED ∠=∠=∠2.求证:CD BD 2=.三、某个信封上的两个邮政编码M 和N 均由0,1,2,3,5,6这六个不同数字组成,现有四个编码如下:A :320651B :105263C :612305D :316250已知编码A 、B 、C 、D 各恰有两个数字的位置与M 和N 相同.D 恰有三个数字的位置与M 和N 相同.试求:M 和N.1993年全国初中数学联合竞赛决赛试题第一试一.选择题本题共有8个小题,每小题都给出了(A), (B), (C), (D)四个结论,其中只有一个是正确的.请把正确结论的代表字母写在题后的圆括号内.1.多项式1612+-x x 除以12-x 的余式是(A)1; (B)-1; (C)1-x ; (D)1+x ;2.对于命题Ⅰ.内角相等的圆内接五边形是正五边形.Ⅱ.内角相等的圆内接四边形是正四边形,以下四个结论中正确的是(A )Ⅰ,Ⅱ都对 (B )Ⅰ对,Ⅱ错 (C )Ⅰ错,Ⅱ对. (D )Ⅰ,Ⅱ都错.3.设x 是实数,11++-=x x y .下列四个结论:Ⅰ.y 没有最小值;Ⅱ.只有一个x 使y 取到最小值;Ⅲ.有有限多个x (不止一个)使y 取到最大值;Ⅳ.有无穷多个x 使y 取到最小值.其中正确的是(A )Ⅰ (B )Ⅱ (C )Ⅲ (D )Ⅳ4.实数54321,,,,x x x x x 满足方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=++=++=++=++=++.;;;;52154154354324321321a x x x a x x x a x x x a x x x a x x x其中54321,,,,a a a a a 是实常数,且54321a a a a a >>>>,则54321,,,,x x x x x 的大小顺序是(A)54321x x x x x >>>>; (B )53124x x x x x >>>>;(C )52413x x x x x >>>>; (D )24135x x x x x >>>>.5.不等式73)1(12+<-<-x x x 的整数解的个解(A )等于4 (B )小于4 (C )大于5 (D )等于56.在ABC ∆中,BC AO O A =∠,,是垂心是钝角,则)cos(OCB OBC ∠+∠的值是 (A)22- (B)22 (C)23 (D)21-. 答( )7.锐角三角ABC 的三边是a , b , c ,它的外心到三边的距离分别为m , n ,p ,那么m :n :p 等于 (A)c b a 1:1:1; (B)c b a :: (C)C B A cos :cos :cos (D)C B A sin :sin :sin .答( )8.13333)919294(3-+-可以化简成 (A))12(333+; (B))12(333- (C)123- (D)123+答( )二.填空题1. 当x 变化时,分式15632212++++x x x x 的最小值是___________. 2.放有小球的1993个盒子从左到右排成一行,如果最左面的盒里有7个小球,且每四个相邻的盒里共有30个小球,那么最右面的盒里有__________个小球.3.若方程k x x =--)4)(1(22有四个非零实根,且它们在数轴上对应的四个点等距排列,则k =____________.4.锐角三角形ABC 中,︒=∠30A .以BC 边为直径作圆,与AB , AC分别交于D , E ,连接DE , 把三角形ABC 分成三角形ADE 与四边形BDEC ,设它们的面积分别为S 1, S 2,则S 1:S 2=___________. 第二试一.设H 是等腰三角形ABC 垂心,在底边BC 保持不变的情况下让顶点A 至底边BC 的距离变小,这时乘积HBC ABC S S ∆∆⋅的值变小,变大,还是不变?证明你的结论.二.ABC ∆中, BC =5, AC =12, AB =13, 在边AB ,AC 上分别取点D , E , 使线段DE 将ABC ∆分成面积相等的两部分.试求这样的线段DE 的最小长度.三.已知方程0022=++=++b cx x c bx x 及分别各有两个整数根21,x x 及21,x x '',且,021>x x 021>''x x . (1)求证:;0,0,0,02121<'<'<<x x x x (2)求证:1-b ≤c ≤1+b ; (3)求c b ,所有可能的值.1994年全国初中数学联赛试题第一试(4月3日上午8:30—9:30)考生注意:本试共两道大题,满分80分.一、选择题(本题满分48分,每小题6分)本题共有8个小题都给出了A,B、C,D,四个结论,其中只有一个是正确的,请把你认为正确结论的代表字母写在题后答案中的圆括号内,每小题选对得6分;不选、选错或选出的代表字母超过一个(不论是否写在圆括号内),一律得0分.〔答〕( )2.设a,b,c是不全相等的任意实数,若x=a2-bc,y=b2-ca,z=c2-ab,则x,y,zA.都不小于0B.都不大于0C.至少有一个小0于D.至少有一个大于0〔答〕( )3.如图1所示,半圆O的直径在梯形ABCD的底边AB上,且与其余三边BC,CD,DA相切,若BC=2,DA=3,则AB的长A.等于4B.等于5C.等于6D.不能确定〔答〕( )A.1 B.-1 C.22001D.-22001〔答〕( )5.若平行直线EF,MN与相交直线AB,CD相交成如图2所示的图形,则共得同旁内角A.4对B.8对C.12对D.16对〔答〕( )〔答〕( )7.设锐角三角形ABC的三条高AD,BE,CF相交于H。
2013年全国数学竞赛试题详细参考答案
中国教育学会中学数学教学专业委员会“《数学周报》杯”2013年全国初中数学竞赛试题参考答案一、选择题(共5小题,每小题6分,满分30分. 以下每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里. 不填、多填或错填都得0分)1.已知实数x y ,满足 42424233y y x x -=+=,,则444y x+的值为( ).(A )7 (B )(C )(D )5 【答】(A )解:因为20x >,2y ≥0,由已知条件得212184x ==,21122y --+==, 所以444y x +=22233y x ++- 2226y x=-+=7. 另解:由已知得:2222222()()30()30x x y y ⎧-+--=⎪⎨⎪+-=⎩,显然222y x -≠,以222,y x -为根的一元二次方程为230t t +-=,所以 222222()1,()3y y x x-+=--⨯=- 故444y x +=22222222[()]2()(1)2(3)7y y x x-+-⨯-⨯=--⨯-= 2.把一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先后投掷2次,若两个正面朝上的编号分别为m ,n ,则二次函数2y x mx n =++的图象与x 轴有两个不同交点的概率是( ).(A )512 (B )49 (C )1736(D )12【答】(C )解:基本事件总数有6×6=36,即可以得到36个二次函数. 由题意知∆=24m n ->0,即2m >4n .通过枚举知,满足条件的m n ,有17对. 故1736P =. 3.有两个同心圆,大圆周上有4个不同的点,小圆周上有2个不同的点,则这6个点(第3题)E可以确定的不同直线最少有( ).(A )6条 (B ) 8条 (C )10条 (D )12条【答】(B )解:如图,大圆周上有4个不同的点A ,B ,C ,D ,两两连线可以确定6条不同的直线;小圆周上的两个点E ,F 中,至少有一个不是四边形ABCD 的对角线AC 与BD 的交点,则它与A ,B ,C ,D 的连线中,至少有两条不同于A ,B ,C ,D 的两两连线.从而这6个点可以确定的直线不少于8条.当这6个点如图所示放置时,恰好可以确定8条直线. 所以,满足条件的6个点可以确定的直线最少有8条.4.已知AB 是半径为1的圆O 的一条弦,且1AB a =<.以AB 为一边在圆O 内作正△ABC ,点D 为圆O 上不同于点A 的一点,且DB AB a ==,DC 的延长线交圆O 于点E ,则AE 的长为( ).(A)2 (B )1 (C )2(D )a 【答】(B )解:如图,连接OE ,OA ,OB . 设D α∠=,则 120ECA EAC α∠=︒-=∠.又因为()1160180222ABO ABD α∠=∠=︒+︒-120α=︒-,所以ACE △≌ABO △,于是1AE OA ==. 另解:如图,作直径EF ,连结AF ,以点B 为圆心,AB 作⊙B ,因为AB =BC =BD ,则点A ,C ,D 都在⊙B 上,由11603022F EDA CBA ∠=∠=∠=⨯︒=︒所以2301AE EF sim F sim =⨯∠=⨯︒=5.将1,2,3,4,5三个数之和都能被这三个数中的第一个数整除,那么满足要求的排法有( ).(A )2种 (B )3种 (C )4种 (D )5种 【答】(D )解:设12345a a a a a ,,,,是1,2,3,4,5的一个满足要求的排列.首先,对于1234a a a a ,,,,不能有连续的两个都是偶数,否则,这两个之后都是偶数,(第4题)(第8题)与已知条件矛盾.又如果i a (1≤i ≤3)是偶数,1i a +是奇数,则2i a +是奇数,这说明一个偶数后面一定要接两个或两个以上的奇数,除非接的这个奇数是最后一个数.所以12345a a a a a ,,,,只能是:偶,奇,奇,偶,奇,有如下5种情形满足条件: 2,1,3,4,5; 2,3,5,4,1; 2,5,1,4,3; 4,3,1,2,5; 4,5,3,2,1. 二、填空题(共5小题,每小题6分,满分30分)6.对于实数u ,v ,定义一种运算“*”为:u v uv v *=+.若关于x 的方程1()4x a x **=-有两个不同的实数根,则满足条件的实数a 的取值范围是 .【答】0a >,或1a <-.解:由1()4x a x **=-,得21(1)(1)04a x a x ++++=,依题意有 210(1)(1)0a a a +≠⎧⎨∆=+-+>⎩,, 解得,0a >,或1a <-.7.小王沿街匀速行走,发现每隔6分钟从背后驶过一辆18路公交车,每隔3分钟从迎面驶来一辆18路公交车.假设每辆18路公交车行驶速度相同,而且18路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是 分钟.【答】4.解:设18路公交车的速度是x 米/分,小王行走的速度是y 米/分,同向行驶的相邻两车的间距为s 米.每隔6分钟从背后开过一辆18路公交车,则 s y x =-66. ① 每隔3分钟从迎面驶来一辆18路公交车,则s y x =+33. ② 由①,②可得 x s 4=,所以4=xs. 即18路公交车总站发车间隔的时间是4分钟.8.如图,在△ABC 中,AB =7,AC =11,点M 是BC 的中点, AD 是∠BAC 的平分线,MF ∥AD ,则FC 的长为 . 【答】9.解:如图,设点N 是AC 的中点,连接MN ,则MN ∥AB . 又//MF AD ,所以 FMN BAD DAC MFN ∠=∠=∠=∠,(第9题答案)D 所以 12FN MN AB ==. 因此 1122FC FN NC AB AC =+=+=9.另解:如图,过点C 作AD 的平行线交BA 的延长线为E ,延长MF AE 于点N.则E BAD DAC ACE ∠=∠=∠=∠所以11AE AC ==. 又//FN CE ,所以四边形CENF 是等腰梯形, 即11(711)922CF EN BE ===⨯+=9.△ABC 中,AB =7,BC =8,CA =9,过△ABC 的内切圆圆心I 作DE ∥BC ,分别与AB ,AC 相交于点D ,E ,则DE 的长为 .【答】163. 解:如图,设△ABC 的三边长为a ,b ,c ,内切圆I 的半径为r , BC 边上的高为a h ,则11()22a ABC ah S abc r ==++△, 所以a r ah a b c=++. 因为△ADE ∽△ABC ,所以它们对应线段成比例,因此a a h r DEh BC-=, 所以 (1)(1)a a a h r r aDE a a a h h a b c-=⋅=-=-++()a b c a b c +=++, 故 879168793DE ⨯+==++().另解: ABC S rp∆===(这里2a bcp ++=)所以12r == 2ABC a S ha ===△由△ADE ∽△ABC,得23a a h r DE BC h -===,即21633DE BC === 10.关于x ,y 的方程22208()x y x y +=-的所有正整数解为 .【答】481603232.x x y y ==⎧⎧⎨⎨==⎩⎩,,, 解:因为208是4的倍数,偶数的平方数除以4所得的余数为0,奇数的平方数除以4所得的余数为1,所以x ,y 都是偶数.设2,2x a y b ==,则22104()a b a b +=-,同上可知,a ,b 都是偶数.设2,2a c b d ==,则2252()c d c d +=-,所以,c ,d 都是偶数.设2,2c s d t ==,则2226()s t s t +=-,于是 22(13)(13)s t -++=2213⨯, 其中s ,t 都是偶数.所以222(13)213(13)s t -=⨯-+≤2222131511⨯-<.所以13s -可能为1,3,5,7,9,进而2(13)t +为337,329,313,289,257,故只能是2(13)t +=289,从而13s -=7.于是62044s s t t ==⎧⎧⎨⎨==⎩⎩,,;,因此 481603232.x x y y ==⎧⎧⎨⎨==⎩⎩,,,另解:因为222(104)(104)210421632x y -++=⨯= 则有2(104)21632,y +≤ 又y 正整数,所以 143y ≤≤令22|104|,|104|,21632a x b y a b =-=++= 则 因为任何完全平方数的个位数为:1,4,5,6,9由2221632a b +=知22,a b 的个位数只能是1和1或6和6;当22,a b 的个位数是1和1时,则,a b 的个位数字可以为1或9但个位数为1和9的数的平方数的十位数字为偶数,与22a b +的十位数字为3矛盾。
全国初中数学竞赛试题参考答案
全国初中数学竞赛试题参考答案一、选择题(共5小题,每小题6分,满分30分。
以下每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的。
请将正确选项的代号填入题后的括号里。
不填、多填或错填均得0分)1.在高速公路上,从3千米处开始,每隔4千米经过一个限速标志牌;并且从10千米处开始,每隔9千米经过一个速度监控仪.刚好在19千米处第一次同时经过这两种设施,那么第二次同时经过这两种设施的千米数是( )(A )36 (B )37 (C )55 (D )902.已知21+=m ,21-=n ,且)763)(147(22--+-n n a m m =8,则a 的值等于( )(A )-5 (B )5 (C )-9 (D )93.Rt △ABC 的三个顶点A ,B ,C 均在抛物线2x y =上,并且斜边AB 平行于x 轴.若斜边上的高为h ,则( )(A )h<1 (B )h=1 (C )1<h<2 (D )h>24.一个正方形纸片,用剪刀沿一条不过任何顶点的直线将其剪成两部分;拿出其中一部分,再沿一条不过任何顶点的直线将其剪成两部分;又从得到的三部分中拿出其中之一,还是沿一条不过任何顶点的直线将其剪成两部分……如此下去,最后得到了34个六十二边形和一些多边形纸片,则至少要剪的刀数是( )(A )2004 (B )2005 (C )2006 (D )20075.如图,正方形ABCD 内接于⊙O ,点P 在劣弧AB 上,连结DP ,交AC 于点Q .若QP=QO ,则QA QC 的值为( ) (A )132-; (B )32(C )23+; (D )23+二、填空题 (共5小题,每小题6分,满分30分)6.已知a ,b ,c 为整数,且a +b=2006,c -a=2005.若a<b ,则a +b +c的最大值为 .7.如图,面积为c b a -的正方形DEFG 内接于面积为1的正三角形ABC,D CBA G E其中a ,b ,c 为整数,且b 不能被任何质数的平方整除,则bc a -的值等于 . 8.正五边形广场ABCDE 的周长为2000米.甲、乙两人分别从A 、C 两点同时出发,沿A →B →C →D →E →A →…方向绕广场行走,甲的速度为50米/分,乙的速度为46米/分.那么出发后经过 分钟,甲、乙两人第一次行走在同一条边上.9.已知0<a<1,且满足122918303030a a a ++++++=⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,则[]10a 的值等于 .([]x 表示不超过x 的最大整数)10.小明家电话号码原为六位数,第一次升位是在首位号码和第二位号码之间加上数字8,成为一个七位数的电话号码;第二次升位是在首位号码前加上数字2,成为一个八位数的电话号码.小明发现,他家两次升位后的电话号码的八位数,恰是原来电话号码的六位数的81倍,则小明家原来的电话号码是 .三、解答题(共4题,每小题15分,满分60分) 11.已知a b x =,a ,b 为互质的正整数(即a ,b 是正整数,且它们的最大公约数为1),且a ≤8,1312-<<-x .(1)试写出一个满足条件的x ;(2)求所有满足条件的x .12.设a ,b ,c 为互不相等的实数,且满足关系式14162222++=+a a c b ①245bc a a =-- ②求a 的取值范围.13.如图,点P 为⊙O 外一点,过点P 作⊙O 的两条切线,切点分别为A ,B .过点A 作PB 的平行线,交⊙O 于点C .连结PC ,交⊙O 于点E ;连结AE ,并延长AE 交PB 于点K .求证:PE ·AC=CE ·KB .14.10个学生参加n 个课外小组,每一个小组至多5个人,每两个学生至少参加某一个小组,任意两个课外小组,至少可以找到两个学生,他们都不在这两个课外小组中.求n 的最小值.C A参考答案一、选择题(共5小题,每小题6分,满分30分。
2013年全国初中数学竞赛九年级预赛试题(含答案)
M(第2题图)中国教育学会中学数学教学专业委员会20XX 年全国初中数学竞赛九年级预赛试题(本卷满分120分,考试时间120 分钟)一、选择题(本大题共6个小题,每小题5分,共30分)在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号填入题后的括号里,不填、多填或错填均为零分.1. 从长度是2cm ,2cm ,4cm ,4cm 的四条线段中任意选三条线段,这三条线段能够组成等腰三角形的概率是( ) A .41 B .31C .21D .12.如图,M 是△ABC 的边BC 的中点,AN 平分∠BAC ,AN =15,MN =3,则△ABC 的周长为( ) A .38B .39C .40D . 413.已知1≠xy ,且有09201152=++x x ,05201192=++y y ,则yx的值等于( ) A .95 B .59C .52011-D .92011- 4.已知直角三角形的一直角边长是4,以这个直角三角形的三边为直径作三个半圆(如图所示),已知两个月牙形(带斜线的阴影图形)的面积之和是10,那么以下四个整数中,最接近图中两个弓形(带点的阴影图形)面积之和的是( ) A .6B . 7C .8D .95.设a ,b ,c 是△ABC 的三边长,二次函数2)2(2ba cx xb a y ----=在1=x 时取最小值b 58-,则△ABC 是( ) A .等腰三角形B .锐角三角形C .钝角三角形D .直角三角形6.计算机中的堆栈是一些连续的存储单元,在每个堆栈中数据的存入、取 出按照“先进后出”的原则,如图,堆栈(1)中的2个连续存储单元 已依次存入数据b ,a ,取出数据的顺序是a ,b ;堆栈(2)的3个 连续存储单元已依次存入数据e ,d ,c ,取出数据的顺序是c ,d ,e ,现在要从这两个堆栈中取出5个数据(每次取出1个数据),则不同顺序的取法的种数有( ) A .5种B .6种C .10种D .12种二、填空题(本大题共6个小题,每小题5分,共30分)7.若04122=---x x ,则满足该方程的所有根之和为 .8.(人教版考生做)如图AABCD 中,过A,B ,C 三点的圆交AD 于E ,且与CD相切,若AB =4,BE =5,则DE 的长为 .8.(北师大版考生做)如图B ,等边三角形ABC 中,D ,E 分别为AB ,BC 边上的两个动点,且总使AD=BE ,AE 与CD 交于点F ,AG ⊥CD 于点G ,则FGAF=. 9.已知012=--a a ,且3222322324-=-++-axa a xa a ,则=x . 10.元旦期间,甲、乙两人到特价商店购买商品,已知两人购买商品的件数相同,且每件商品的单价只有8元和9元两种.若两人购买商品一共花费了172元,则其中单价为9元的商品有 件.11.如图,已知电线杆AB 直立于地面上,它的影子恰好照在土坡的坡面CD 和地面BC 上,如果CD 与地面成o 45,∠A =o 60,CD =4m ,BC =)2264(-m ,则电线杆AB 的长为 _______m .12.实数x 与y ,使得y x +,y x -,xy ,yx四个数中的三个有相同的数值,则所有具有这样性质的数对),(y x 为 .(1) (2)(第5题图)(第11题图)ABCD(第8题图A )GFECBA(第8题图B )D三、解答题(本大题共3个小题,每小题20分,共60分) 13.(本题满分20分)已知:))(())(())((a x c x c x b x b x a x ++++++++是完全平方式. 求证: c b a ==.14.(本题满分20分)如图,将OA = 6,AB = 4的矩形OABC 放置在平面直角坐标系中,动点M ,N 以每秒1个单位的速度分别从点A ,C 同时出发,其中点M 沿AO 向终点O 运动,点N 沿CB 向终点B 运动,当两个动点运动了t 秒时,过点N 作NP ⊥BC ,交OB 于点P ,连接MP .(1)点B 的坐标为 ;用含t 的式子表示点P 的坐标为 ; (2)记△OMP 的面积为S ,求S 与t 的函数关系式(0 < t < 6);并求t 为何值时,S 有最大值?(3)试探究:当S 有最大值时,在y 轴上是否存在点T ,使直线MT 把△ONC 分割成三角形和四边形两部分,且三角形的面积是△ONC 面积的31?若存在,求出点T 的坐标;若不存在,请说明理由.(备用图)(第14题图)15.(本题满分20分)对于给定的抛物线b ax x y ++=2,使实数p ,q 适合于)(2q b ap +=. (1)证明:抛物线q px x y ++=2通过定点;(2)证明:下列两个二次方程,02=++b ax x 与02=++q px x 中至少有一个方程有实数根.参考答案一、选择题(每小题5分,共30分) 1—6 C D B A D C二、填空题(每小题5分,共30分): 7. 62-; 8. A :516;B :12; 9. 4; 10. 12; 11. 26; 12. )1,21(-)1,21(--. 三、解答题:(每题20分,共60分)13. 证明:把已知代数式整理成关于x 的二次三项式,得原式=3x 2+2(a +b +c )x +ab +ac +bc ∵它是完全平方式, ∴△=0. 即4(a +b +c )2-12(ab +ac +bc )=0. ∴ 2a 2+2b 2+2c 2-2ab -2bc -2ca =0,(a -b )2+(b -c )2+(c -a )2=0.要使等式成立,必须且只需:⎪⎩⎪⎨⎧=-=-=-000a c cb b a解这个方程组,得c b a ==.14. 解:(1)(6,4);(2,3t t ).(其中写对B 点得1分)………………………………3分(2)∵S △OMP =12×OM ×23t , ∴S =12×(6 -t )×23t =213t -+2t =21(3)33t --+(0 < t <6).∴当3t =时,S 有最大值.…………………………………………8分(3)存在.由(2)得:当S 有最大值时,点M 、N 的坐标分别为:M (3,0),N (3,4), 则直线ON 的函数关系式为:43y x =. 设点T 的坐标为(0,b ),则直线MT 的函数关系式为:3b y x b =-+,解方程组433y x b y x b⎧=⎪⎪⎨⎪=-+⎪⎩得3444b x b b y b ⎧=⎪⎪+⎨⎪=⎪+⎩ ∴直线ON 与MT 的交点R 的坐标为34(,)44b bb b++. ∵S △OCN =12×4×3=6,∴S △ORT =13 S △OCN =2. ················· …………………10分当点T 在点O 、C 之间时,分割出的三角形是△OR 1T 1, 如图,作R 1D 1⊥y 轴,D 1为垂足,则S △OR 1T 1=12••••RD 1•OT =12•34b b +•b =2.∴234160b b --=, b.∴b 1b 2此时点T 1的坐标为(0). ········· ……………………………………………15分 ② 当点T 在OC 的延长线上时,分割出的三角形是△R 2NE ,如图,设MT 交CN 于点E , ∵点E 的纵坐标为4,∴由①得点E 的横坐标为312b b-, 作R 2D 2⊥CN 交CN 于点D 2,则 S △R 2NE =12•EN •D 2 =12•312(3)b b --•4(4)4b b -+96(4)b b =+=2. ∴24480b b +-=,b2=±.∴b 1=2,b 2=2-(不合题意,舍去). ∴此时点T 2的坐标为(0,2). 综上所述,在y 轴上存在点T 1(0,23+),T 2(0,2)符合条件.…20分 15. 证明:(1)∵)(2q b ap +=∴b ap q -=2代入抛物线q px x y ++=2中,得0)2(2=++-+-ax p b x y 得⎪⎩⎪⎨⎧=+=-+-0202a x b x y 解得:⎪⎪⎩⎪⎪⎨⎧-=-=4422ba y a x , 故抛物线q px x y ++=2通过定点)44,2(2b a a --……………………10分(2)∵b ap q 22-=,∴)2(2224222b ap p q p q p --=⋅-=-(备用图)=b ap p 422+-=b a a ap p 42222+-+- =)4()(22b a a p ---∴0)()4()4(222≥-=-+-a p b a q p ∴q p 42-与b a 42-中至少有一个非负.∴02=++b ax x 与02=++q px x 中至少有一个方程有实数根.…………20分。
全国初中数学竞赛试题及答案
全国初中数学竞赛试题及答案This manuscript was revised on November 28, 2020中国教育学会中学数学教学专业委员会全国初中数学竞赛试题一、选择题(共5小题,每小题6分,共30分.)1(甲).如果实数a ,b ,c 在数轴上的位置如图所示,那么代数式22||()||a a b c a b c -++-++可以化简为( ).(A )2c a - (B )22a b - (C )a - (D )a 1(乙).如果22a =-+11123a+++的值为( ).(A )2- (B 2(C )2 (D )22(甲).如果正比例函数y = ax (a ≠ 0)与反比例函数y =x b(b ≠0 )的图象有两个交点,其中一个交点的坐标为(-3,-2),那么另一个交点的坐标为( ).(A )(2,3) (B )(3,-2) (C )(-2,3) (D )(3,2)2(乙). 在平面直角坐标系xOy 中,满足不等式x 2+y 2≤2x +2y 的整数点坐标(x ,y )的个数为( ).(A )10 (B )9 (C )7 (D )53(甲).如果a b ,为给定的实数,且1a b <<,那么1121a a b a b ++++,, ,这四个数据的平均数与中位数之差的绝对值是( ). (A )1 (B )214a - (C )12(D )143(乙).如图,四边形ABCD 中,AC ,BD 是对角线,△ABC 是等边三角形.30ADC ∠=︒,AD = 3,BD = 5,则CD 的长为( ). (A )23 (B )4 (C )52 (D )OAB CED4(甲).小倩和小玲每人都有若干面值为整数元的人民币.小倩对小玲说:“你若给我2元,我的钱数将是你的n 倍”;小玲对小倩说:“你若给我n 元,我的钱数将是你的2倍”,其中n 为正整数,则n 的可能值的个数是( ). (A )1 (B )2 (C )3 (D )44(乙).如果关于x 的方程 20x px q p q --=(,是正整数)的正根小于3, 那么这样的方程的个数是( ).(A ) 5 (B ) 6 (C ) 7 (D ) 85(甲).一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,3,4,5,6.掷两次骰子,设其朝上的面上的两个数字之和除以4的余数分别是0,1,2,3的概率为0123p p p p ,,,,则0123p p p p ,,,中最大的是( ). (A )0p (B )1p (C )2p (D )3p5(乙).黑板上写有111123100, , ,, 共100个数字.每次操作先从黑板上的数中选取2个数a b ,,然后删去a b ,,并在黑板上写上数a b ab ++,则经过99次操作后,黑板上剩下的数是( ).(A )2012 (B )101 (C )100 (D )99 二、填空题(共5小题,每小题6分,共30分) 6(甲).按如图的程序进行操作,规定:程序运行从“输入一个值x ”到“结果是否>487”为一次操作. 如果操作进行四次才停止,那么x 的取值范围是 . 6(乙).如果a ,b ,c 是正数,且满足9a b c ++=,111109a b b c c a ++=+++,那么a b cb c c a a b+++++的值为 .7(甲).如图,正方形ABCD 的边长为215,E ,F 分别是AB ,BC 的中点,AF 与DE ,DB 分别交于点M ,N ,则△DMN 的面积是 . 7(乙).如图所示,点A 在半径为20的圆O 上,以OA为一条对角线作矩形OBAC ,设直线BC 交圆O 于D 、E 两点,xyO ECABD若12OC =,则线段CE 、BD 的长度差是 。
全国初中数学竞赛试题及答案
中国教育学会中学数学教学专业委员会全国初中数学竞赛试题一、选择题〔共5小题,每题6分,共30分.〕1〔甲〕.如果实数a ,b ,c 22||()||a a b c a b c ++-+可以化简为〔 〕.〔A 〕2c a - 〔B 〕22a b - 〔C 〕a - 〔D 〕a 1〔乙〕.如果22a =- 〕.〔A 〕2- 〔B 2 〔C 〕2 〔D 〕22〔甲〕.如果正比例函数y = ax 〔a ≠ 0〕及反比例函数y =xb 〔b ≠0 〕的图象有两个交点,其中一个交点的坐标为〔-3,-2〕,那么另一个交点的坐标为〔 〕. 〔A 〕〔2,3〕 〔B 〕〔3,-2〕 〔C 〕〔-2,3〕 〔D 〕〔3,2〕2〔乙〕. 在平面直角坐标系xOy 中,满足不等式x 2+y 2≤2x +2y 的整数点坐标〔x ,y 〕的个数为〔 〕. 〔A 〕10 〔B 〕9 〔C 〕7 〔D 〕53〔甲〕.如果a b ,为给定的实数,且1a b <<,那么1121a a b a b ++++,, ,这四个数据的平均数及中位数之差的绝对值是〔 〕. 〔A 〕1 〔B 〕 〔C 〕12 〔D 〕143〔乙〕.如图,四边形ABCD 中,AC ,BD 是对角线, △ABC 是等边三角形.30ADC ∠=︒,AD = 3,BD = 5, 那么CD 的长为〔 〕. 〔A 〕23 〔B 〕4 〔C 〕52 〔D 〕4〔甲〕.小倩和小玲每人都有假设干面值为整数元的人民币.小倩对小玲说:“你假设给我2元,我的钱数将是你的n 倍〞;小玲对小倩说:“你假设给我n 元,我的钱数将是你的2倍〞,其中n 为正整数,那么n 的可能值的个数是〔 〕.OAB CED〔A 〕1 〔B 〕2 〔C 〕3 〔D 〕44〔乙〕.如果关于x 的方程 20x px q p q --=(,是正整数〕的正根小于3, 那么这样的方程的个数是〔 〕.〔A 〕 5 〔B 〕 6 〔C 〕 7 〔D 〕 85〔甲〕.一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,3,4,5,6.掷两次骰子,设其朝上的面上的两个数字之和除以4的余数分别是0,1,2,3的概率为0123p p p p ,,,,那么0123p p p p ,,,中最大的是〔 〕.〔A 〕0p 〔B 〕1p 〔C 〕2p 〔D 〕3p5〔乙〕.黑板上写有共100个数字.每次操作先从黑板上的数中选取2个数a b ,,然后删去a b ,,并在黑板上写上数a b ab ++,那么经过99次操作后,黑板上剩下的数是〔 〕. 〔A 〕2021 〔B 〕101 〔C 〕100 〔D 〕99二、填空题〔共5小题,每题6分,共30分〕6〔甲〕.按如图的程序进展操作,规定:程序运行从“输入一个值x 〞到“结果是否>487?〞为一次操作. 如果操作进展四次才停顿,那么x 的取值范围是 .6〔乙〕.如果a ,b ,c 是正数,且满足9a b c ++=,111109a b b c c a ++=+++,那么的值为 . 7〔甲〕.如图,正方形ABCD 的边长为215, E ,F 分别是AB ,BC 的中点,AF 及DE ,DB分别交于点M ,N ,那么△DMN 的面积是 . 7〔乙〕.如下图,点A 在半径为20的圆O 上,以OA 为一条对角线作矩形OBAC ,设直线BC 交圆O 于D 、E 两点,假设12OC =,那么线段CE 、BD 的长度差是 。
全国初中数学联合竞赛试题 及详细 解答(含一试二试)
全国初中数学联合竞赛试题第一试(A)一、选择题(本题满分42分,每小题7分)(本题共有6个小题,每题均给出了代号为A ,B ,C ,D 的四个答案,其中有且仅有一个是正确的.将你所选择的答案的代号填在题后的括号内.每小题选对得7分;不选、选错或选出的代号字母超过一个(不论是否写在括号内),一律得0分.)1.已知实数a,b,c 满足213390a b c ++=,3972a b c ++=,则32b c a b+=+ ( ) A. 2 B. 1 C. 0 D. -1 2.已知△ABC 的三边长分别是a,b,c ,有以下三个结论:(1a b c(2)以222,,a b c 为边长的三角形一定存在;(3)以为1,1,1a b b c c a -+-+-+为边长的三角形一定存在.其中正确结论的个数为 ( )A .0B .1C .2D .33.若正整数a,b,c 满足a b c ≤≤且=2()abc a b c ++,则称()a b c ,,为好数组.那么,好数组的个数为 ( )A. 1 B .2 C .3 D .44.设O 是四边形ABCD 的对角线AC 、BD 的交点,若0180BAD ACB ∠+∠=,且BC=3,AD=4,AC=5 ,AB=6 ,则DO OB= ( ) A. 10/9 B .8/7 C .6/5 D .4/3第4题图 第5题图5.设A 是以BC 为直径的圆上的一点,AD ⊥BC 于点D ,点E 在线段DC 上,点F 在CB 的延长线上, 满足BAF CAE ∠=∠.已知BC=15,BF=6,BD=3,则AE = ( ) A. 43 B. 213 C. 214 D. 2156.对于正整数n ,设a n 是最接近n 的整数,则1232001111...a a a a ++++=( ) A. 191/7 B .192/7 C .193/7 D .194/7二、填空题(本题满分28分,每小题7分)(本题共有4个小题,要求直接将答案写在横线上.)1.使得等式31+1+a a =成立的实数a 的值为______ _.2.如图,平行四边形ABCD 中,072ABC ∠=,AF BC ⊥于点F ,AF 交BD 于点E ,若DE=2AB ,则AED ∠=______.3.设m,n 是正整数,且m>n. 若9m 与9n 的末两位数字相同,则m-n 的最小值为 .4.若实数x,y满足3331+的最小值为.x y++=,则22x y xy第一试(B)一、选择题(本题满分42分,每小题7分)1.已知二次函数y ax2bx c(c 0)的图象与x轴有唯一交点,则二次函数y a3 x2b3x c3的图象与x 轴的交点个数为()A.0 B.1 C.2 D.不确定.2.题目与(A)卷第1 题相同.3. 题目与(A)卷第3 题相同.4.已知正整数a,b,c满足a26b 3c 9 0,6a b2 c 0,则a2 b2c2=()A. 424B. 430C. 441D. 460.5.设O是四边形ABCD的对角线AC、BD的交点,若BAD ACB 180,且BC 3,AD 4,AC 5,AB 6,则DO/OB=()A. 4/3B. 6/5C. 8/7D. 10/96.题目与(A)卷第5 题相同.二、填空题:(本题满分28 分,每小题7 分)1.题目与(A)卷第1 题相同.2.设O是锐角三角形ABC的外心,D,E分别为线段BC,OA的中点,∠=∠,则OED∠=_________.ABC OED∠=∠,57ACB OED3. 题目与(A )卷第3 题相同.4. 题目与(A )卷第4 题相同第二试 (A )一、(本题满分20 分)已知实数x,y 满足x+y=3,221112x y x y +=++ ,求55x y +的值.二、(本题满分25分)如图,△ABC 中,AB AC ,BAC 45,E 是BAC 的外角平分线与△ABC 的外接圆的交点,点F 在AB 上且EF AB .已知AF 1,BF 5,求△ABC 的面积.三、(本题满分25分)求所有的正整数数对(a, b),使得34938b a =⨯+第二试 (B )一、(本题满分20分)已知实数a,b,c 满足a b c ≤≤,++=16a b c ,2221+++=1284a b c abc , 求c 的值.二、(本题满分25 分)求所有的正整数m ,使得212-2+1m m -是完全平方数.三、(本题满分25分)如图,O 为四边形ABCD 内一点,OAD OCB ,OA OD ,OB OC .求证: AB 2 CD 2 AD 2 BC 2 .。
2013年全国初中数学竞赛决赛(初三)试题及参考答案
2013年全国初中数学竞赛试题参考答案一、选择题:(每题7分,共35分)1.【 】 2222222(234)(23)0.1()0().21.().2a b c a b c a b c a b c ab bc ca a b c ab bc ca A a b c ++=++-++=++=++=-++++=-++由已知可得,因此,,则:故,选 2.12121212222121222222222121212222222122222000.11()22111120.(2)0.().x x x b c a x x x x x x c a ax x x x b ac a x x x x c x x cb ac a x x x x c cc x b ac x a B ≠+=-=≠≠+--+==⋅=--+=--+=由于关于的二次方程有两个非零实根、,则:,且,;且,从而又,因此,以、为实根的一元二次方程为:即,故,选 3. Rt ABC O AB CD AB AB D DE OC ∆⊥⊥如图,在中,为斜边中点,交于点,交.OC E AD DB CD ODOE DE AC 于点若、和的长度为有理数,则:线段、、和 的长度中,不一定为有理数的是 【 】()()()().A OD B OE C DE D AC ;;;221().2...().AD DB CD OA OB OC AD DB OD OA DA OD OD DC OE DE OC OCAC AD AB AC D ===+=-⋅===⋅=由于、和为有理数,则:为有理数也是有理数又也是有理数;也是有理数而,则:不一定是有理数故,选4. 24ABC D AC F BC ∆如图,已知的面积为,点在线段上,点在线段延长线上,4BC CF DCEF=且,四边形为平行四边形,则:图中阴影部分面积为 【 】()3()4()6()8.A B C D ;;;12121212121()2()2()424.26.().ADE BDE ABC S S S ADE BDE DE h h DE AB h h ABC BC S BC h h CF h h DE h h S S C ∆∆∆=+∆∆+∆=⋅+=⋅+=⋅+=== 图中阴影部分面积,设、中,底边上的高分别为、;由于,因此,为底边上的高.又因此,阴影部分的面积故,选5.】()()323232233320132012433392745201320124339331646039239292455463201320123292.10360967m m m m mm m m ***=⨯+⨯+⨯+****=*==++++-⨯⨯+⨯⨯+⨯+****=*==+- 设,则:,因此, 二、填空题:(每题7分,共35分)6. 2232322(2)9.a b a b b <=<=-⇒+=+=由于,因此,7. 3FCD D E ABC AC AB BD CE F S ∆∆=如图,、分别是的边、上的点,、交于点,若, 45________F B E F B C S S A E F D ∆∆==,,则:四边形的面积为312.551235.12454586412864204..65565134=FDE FCD FDE FEB FFBC ADE ACE ADE DEB BBCE AEFD AEF AEF BFE BCF AFD AFD S S DE S S S x S AE S x S x S EB S x S S S S BF S AF S S FD S ∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆==⇒=++====++==+=++==四边形【方法一】:连接,则:记,则:,即:因此,则:【方法二】:连接,则:5.33510896.41313204.13CDF AFD AFD CDF BCF AEF AFD AEF AEF BEF S S S CF S S S S S FE S AEFD ∆∆∆∆∆∆∆∆∆∆=++====⇒==,因此,四边形的面积为 8. 22220380.a b c a b c a b c +--=-+=已知正整数、、满足:,则:__________.abc 的最大值为 2222222212(1)220380(8)666666.1 3.(2)1(8)592(8)403(8)9511.351331161.311a b c a b c c b a a a a a a a b a b a b b b a b c a b c abc +--=-+=-++=⇒+≤≤≤=-==-==-=========⨯从,两式中消去可得:又为正整数,则,当时,,没有正整数解;当时,,没有正整数解;当时,,则:,而,当,时,;当,时,因此,的最大值为132013.⨯=9. 2200a b c d x cx d a b x ax b ++=++=实数、、、满足:方程的两根为、;方程()___________.a b a b c d =的两根为、,则满足条件的所有,,,..(1)0(2)01 2.()(1212)(00).a b c ab d b d c d a cd bb d ac bd a c b d a b c d k k +=-=⎧=⎨+=-=⎩===-=≠====-=---,根据题意可得,由此可得,,当时,;当时,,且因此,满足条件的所有,,,,,,或,,,10. 小明某天在文具店做志愿者卖笔,铅笔每支售4元,圆珠笔每支售7元.开始时他有铅笔和圆珠笔共350支,当天虽然笔没有全部卖完,但是他的销售收入恰好是2013元.则他至少卖出了 支圆珠笔.min 472013.350201371(5032).144420134()343503204.207141.x y x y x y y y x y y x y y y y y x +=⎧⎨+<⎩-+==-+⇒+=++<⨯+⇒>==设小明卖出铅笔与圆珠笔分别为支和支,则:因此,为的倍数.而,因此,;此时三、计算题:(每题20分,共80分)11..DBC CBE-∠221(1)031(03)(01).3(2)3(10)(30).301.2 3.93302(14).(3)30x yax bx y x C DOB OC OA A B a b ay x x a b b E BC x yE BCF E d ==+-=-+-==---==⎧⎧⇒=--⎨⎨+-==-⎩⎩---==将分别代入和可得:,、,由于,则:,、,因此,故,抛物线方程为从而可得,,直线的方程为:,过点作直线的垂线,垂足为;则,点到该直线的距离(.)()..45.F CEF BE Rt BEF Rt BEC Rt BOD EFODEF OD Rt BEF Rt BOD BE OB BE OB CBE OBD CBD CBE CBO ===∆∆∆====∆∆∠=∠∠-∠=∠= 实际上,点与点重合即,和中,有,,故,因此,则:,因此, 12. ABC O H B C H O ∆如图,设的外心、垂心分别为、,如果、、、四点共圆,.ABC BAC ∆∠对所有,求:的所有可能角度图(一) 图(二) 图(三)(1)180.2.60.(2)901802(180).180120.ABC H ABC BHC A O ABC BOC A B H O C BHC BOC A ABC A BHC A A BOC BOC BHC A ABC ∆∆∠=-∠∆∠=∠∠=∠⇒∠=∆∠>∠=-∠∠=-∠∠+∠=⇒∠=∆ 分三种情况讨论:如果为锐角三角形:由于为的垂心,则:又为的外心,则:由于点、、、共圆,因此,如果为钝角三角形,且,同样有,;但而如果为钝角三角形9090.(.)2.180.60.(3)9090.9090A B H ABC A BHC O ABC BOC A B H O C BHC BOC A ABC A A H O BC B C O H A A B B H ∠<∠>∆∠=∠∆∠=∠∠+∠=∠=∆∠=∠≠∠<∠= ,且,不妨设见图三因为的垂心,则:;为的外心,则:又点、、、共圆,则:因此,如果为直角三角形,当时,与重合,点为中点,此时点、、、不可能共圆;故,当时,不妨设,此时点与重合,此时090.120.B C O H A A ∠∠ 点、、、一定可以共圆,因此,可以取到之间的任何值综上可得,可以去任何锐角或13.2222111()()().22211(1)()().222123(13.)242)16910.3a y z b x z c x y z z z y a y z z z z a z a z z z a z z z z z y z x b c z =+=+=++==+=+=∙+=∙=-======+====-【方法一】:不能构成三角形.由条件可得,,,又,则:由于为整数,为素数;当为偶数时,有因子,则:;当为奇数时,有因子,则:或均不可能当时,,;从而,,与条件矛盾当222317.(0).2.20.18(21).11(1)232a b c a b c z a b c y c a b y z a z a b c z y z z a z a b c a b c z a k k k a k k a k a ===+-=<=+-⎧+=⎨=+-⎩=+-=⇒=+-=+=+==+====时,,,;不能构成三角形实际上,总之,、、不能构成三角形【方法二】:由可得,又,则:由于、、为素数,则:为整数故,,为正整数当时,不是素数;由此可得,当时,;2 3.3.392251117.224169.2z k a x z z y x b c x z z y x b ⎧⎪=-⎨⎪≥⎩+=-==⇒====+=====由此可得,或当时,不是素数当时,,,不能构成三角形.当时,,;不是素数14. 7M m M 如果将正整数放在正整数左侧,所得到的新数可被整除,则,称为 1212(8641586415786415)n n m a a a a a a n m m 的“魔术数”例如,把放在的左侧,得到的数能被整除,所以称为的魔术数.求:正整数的最小值,,,…,,使得存在,…,互不相同的正整数,满足对任意一个正整数,在中都至少有一个为的“魔术数”.(1)103mod(7)206mod(7)302mod(7)405mod(7)501mod(7)604mod(7)700mod(7).7.[]7(06).(2)606(1)[].0(1)i i k k k k n k a i n k k a i n ≡≡=≡≡≡≡≤≤≤≤≤≤≤=≤≤由于,,,,,,这些数被除后所得余数均不相等记:为正整数被除后所得余数为,即余数为的同余类如果,则:一定存在使得每个均不在中不妨令,则在所有后面添加12(17) ”.7|(10)7|(10)7771077(1)7.6127(3)(17|().7.)i i i n m a a a a a M i j i j M i M j j i n a i n n m a m m M p ⋯<≤<≤++=+≤≤≤==≤≤-≥ ,,,中的一个数是的共同的魔术数从而有,,,因此,得到矛盾;因此,所得的数一定不能被整除;也就是说,均不是的“魔术数”【或】:如果,分别取,,,,根据“抽屉原理”又当时,对任意一个正整数,设其为位数10(17)7.177|[(10)(10)]7|10().7|().16.7|(10).7.p p p p m M m m i j j M i M j i j i j i a m m M n +≤≤≤<≤+-+--<-≤=+⇒,则:被除后所得余数两两互异否则,存在使得,,从而因此,有但,这是不可能的因此,一定存在正整数使得,的最小值为。
全国初中数学竞赛复赛试题
当m=-3时,3m-1=-10 p=100
当m=2时,3m-1=5 p=25
2、D、a=20b,b=10ca=200c
3、A、设高速列车和普通列车的车速分别为x米8秒、y米/秒,则
x+y=600÷3=200(米/秒) 所以坐在普通列车上的乘客看见高速列车驶过窗口的时间是:400÷200=2(秒)
设抛物线 (a 0)与x轴负半轴相交于点D, 则点D的坐标为( ,0).
因为∠COD=∠BOD= ,所以∠COB= .
(i)将△ 绕点O顺时针旋转 ,得到△ .这时,点 ( ,2)是CO的中点,点 的坐标为(4, ).
延长 到点 ,使得 = ,这时点 (8, )是符合条件的点.
(ii)作△ 关于x轴的对称图形△ ,得到点 (1, );延长 到点 ,使得 = ,这时点E2(2, )是符合条件的点.
∴∠BDF=∠EDF-∠BDE=90°-15°=75°
8、± 根据根与系数的关系可得:
-1+m= -1+m=-1
∴m=1,a=± ∴
9、 C与A重合 EF是AC的垂直平分线
CG=
可证:△CFG≌△AEG FG=EG=
可证:△CFG∽△CAD FG:AD=CG:CD FG:2= :4
FG= ∴EF=
10、 延长AC交⊙O于点F,连结DF
7、一副三角板如图所示叠放在一起,则如中∠BDF的度数是
8、已知关于x 的方程 有一个根为-1,设这个方程另一个根为m,则 的值为。
9、如图,将一张边长分别为4和2的矩形纸片ABCD折叠,使点C与点A重合,则折痕EF的长为
交于点E,且DE∥BC,已知AE= ,AE= ,BC=6,则圆O的半径是
初三数学竞赛试题及答案精选
全国初中数学联赛试题第一试一、选择题1.已知a=355,b=444,c=533,则有[ ]A.a<b<c B.c<b<a C.c<a<b D.a<c<bA.1 B.2 C.3 D.43.如果方程(x-1)(x2-2x-m)=0的三根可以作为一个三角形的三边之长,那么实数m的取值范围是4.如果边长顺次为25、39、52与60的四边形内接于一圆,那么此圆的周长为[ ]A.62πB.63π C.64πD.65π5.设AB是⊙O的一条弦,CD是⊙O的直径,且与弦AB相交,记M=|S △CAB-S△DAB|,N=2S△OAB,则[ ]A.M>N B.M=N C.M<N D.M、N的大小关系不确定6.设实数a、b满足不等式||a|-(a+b)|<|a-|a+b||,则[ ]A.a>0且b>0 B.a<0且b>0C.a>0且b<0 D.a<0且b<0二、填空题1.在12,22,32…,952这95个数中,十位数字为奇数的数共有____个。
4.以线段AB为直径作一个半圆,圆心为O,C是半圆周上的点,且OC2=AC·BC,则∠CAB=______.第二试一、已知∠ACE=∠CDE=90°,点B在CE上,CA=CB=CD,经A、C、D三点的圆交AB于F(如图)求证F为△CDE的内心。
二、在坐标平面上,纵坐标与横坐标都是整数理由。
三、试证:每个大于6的自然数n,都可以表示为两个大于1且互质的自然数之和。
初中数学联赛参考答案第一试一、选择题1.讲解:这类指数幂的比较大小问题,通常是化为同底然后比较指数,或化为同指数然后比较底数,本题是化为同指数,有c=(53)11=12511<24311=(35)11=a<25611=(44)11=b。
选C。
利用lg2=0.3010,lg3=0.4771计算lga、lgb、lgc也可以,但没有优越性。
2.讲解:这类方程是熟知的。
先由第二个方程确定z=1,进而可求出两个解:(2,21,1)、(20,3,1).也可以不解方程组直接判断:因为x≠y(否则不是正整数),故方程组①或无解或有两个解,对照选择支,选B。
2013年全国初中数学竞赛试题参考答案
2013年全国初中数学竞赛试题参考答案一、选择题1.设非零实数a ,b ,c 满足2302340a b c a b c ++=⎧⎨++=⎩,,则222ab bc caa b c ++++的值为( ). (A )12-(B )0(C )12(D )1【答案】A【解答】由已知得(234)(23)0a b c a b c a b c ++=++-++=,故2()0a b c ++=.于是2221()2ab bc ca a b c ++=-++,所以22212ab bc ca a b c ++=-++. 2.已知a ,b ,c 是实常数,关于x 的一元二次方程20ax bx c ++=有两个非零实根1x ,2x ,则下列关于x 的一元二次方程中,以211x ,221x 为两个实根的是( ). (A )2222(2)0c x b ac x a +-+= (B )2222(2)0c x b ac x a --+= (C )2222(2)0c x b ac x a +--= (D )2222(2)0c x b ac x a ---=【答案】B【解答】由于20ax bx c ++=是关于x 的一元二次方程,则0a ≠.因为12bx x a+=-,12c x x a =,且120x x ≠,所以0c ≠,且 221212222221212()2112x x x x b ac x x x x c +--+==,22221211a x x c⋅=, 于是根据方程根与系数的关系,以211x ,221x 为两个实根的一元二次方程是222220b ac a x x c c--+=,即2222(2)0c x b ac x a --+=.3.如图,在Rt △ABC 中,已知O 是斜边AB 的中点,CD ⊥AB ,垂足为D ,DE ⊥OC ,垂足为E .若AD ,DB ,CD 的长度都是有理数,则线段OD ,OE ,DE ,AC 的长度中,不一定...是有理数的为( ).(A )OD (B )OE (C )DE(D )AC【答案】D【解答】因AD ,DB ,CD 的长度都是有理数,所以,OA =OB =OC =2AD BD+是有理数.于是,OD =OA -AD 是有理数.由Rt △DOE ∽Rt △COD ,知2OD OE OC =,·DC DODE OC=都是有理数,而AC4.如图,已知△ABC 的面积为24,点D 在线段AC 上,点F在线段BC 的延长线上,且4BC CF =,DCFE 是平行四边形,则图中阴影部分的面积为( ).(A )3 (B )4 (C )6(D )8【答案】C【解答】因为DCFE 是平行四边形,所以DE //CF ,且EF //DC . 连接CE ,因为DE //CF ,即DE //BF ,所以S △DEB = S △DEC , 因此原来阴影部分的面积等于△ACE 的面积.连接AF ,因为EF //CD ,即EF //AC ,所以S △ACE = S △ACF . 因为4BC CF =,所以S △ABC = 4S △ACF .故阴影部分的面积为6.(第3题答题)(第4题答题)(第3题)(第4题)5.对于任意实数x ,y ,z ,定义运算“*”为:()()32233333451160x y x y xy x y x y +++*=+++-,且()x y z x y z **=**,则2013201232****L 的值为( ).(A )607967 (B )1821967 (C )5463967 (D )16389967【答案】C【解答】设201320124m ***=L ,则()20132012433m ****=*L 32323339274593316460m m m m m m ⨯+⨯+⨯+==++++-, 于是()201320123292****=*L 3223333923929245546310360967⨯⨯+⨯⨯+⨯+==+-.二、填空题6.设a =b 是2a 的小数部分,则3(2)b +的值为 . 【答案】9【解答】由于2123a a <<<<,故222b a =-=,因此33(2)9b +==. 7.如图,点D ,E 分别是△ABC 的边AC ,AB 上的点,直线BD 与CE 交于点F ,已知△CDF ,△BFE ,△BCF 的面积分别是3,4,5,则四边形AEFD 的面积是 .【答案】20413【解答】如图,连接AF ,则有:(第7题)45=3AEF AEF BFE BCF AFD AFD CDF S S S BF S S S FD S ∆∆∆∆∆∆∆++===,354AFD AFD CDF BCF AEF AEF BEF S S S CF S S S FE S ∆∆∆∆∆∆∆++====,解得10813AEF S ∆=,9613AFD S ∆=. 所以,四边形AEFD 的面积是20413.8.已知正整数a ,b ,c 满足2220+--=a b c ,2380-+=a b c ,则abc 的最大值为 .【答案】2013【解答】由已知2220+--=a b c ,2380-+=a b c 消去c ,并整理得()228666b a a -++=.由a 为正整数及26a a +≤66,可得1≤a ≤3.若1a =,则()2859b -=,无正整数解; 若2a =,则()2840b -=,无正整数解;若3a =,则()289b -=,于是可解得11=b ,5b =. (i )若11b =,则61c =,从而可得311612013abc =⨯⨯=;(ii )若5b =,则13c =,从而可得3513195abc =⨯⨯=. 综上知abc 的最大值为2013.9.实数a ,b ,c ,d 满足:一元二次方程20x cx d ++=的两根为a ,b ,一元二次方程20x ax b ++=的两根为c ,d ,则所有满足条件的数组(),,,a b c d 为 .【答案】(1212),,,--,(00),,,-t t (t 为任意实数)(第7题答题)【解答】由韦达定理得,,,.+=-⎧⎪=⎪⎨+=-⎪=⎪⎩a b c ab d c d a cd b由上式,可知b a c d =--=. 若0b d =≠,则1==d a b ,1==bc d ,进而2b d a c ==--=-.若0b d ==,则c a =-,有()(00),,,,,,=-a b c d t t (t 为任意实数). 经检验,数组(1212)--,,,与(00),,,-t t (t 为任意实数)满足条件.10.小明某天在文具店做志愿者卖笔,铅笔每支售4元,圆珠笔每支售7元.开始时他有铅笔和圆珠笔共350支,当天虽然笔没有全部卖完,但是他的销售收入恰好是2013元.则他至少卖出了 支圆珠笔.【答案】207【解答】设x ,y 分别表示已经卖出的铅笔和圆珠笔的支数,则472013350,,+=⎧⎨+<⎩x y x y所以201371(5032)44y y x y -+==-+, 于是14y +是整数.又20134()343503x y y y =++<⨯+,所以204y >,故y 的最小值为207,此时141x =.三、解答题11.如图,抛物线y =23ax bx +-,顶点为E ,该抛物线与x 轴交于A ,B 两点,与y 轴交于点C ,且OB =OC =3OA .直线113y x =-+与y 轴交于点D .求∠DBC -∠CBE .【解答】将0x =分别代入y =113x -+,23y ax bx =+-知,D (0,1),C (0,3-),所以B (3,0),A (1-,0).直线y =113x -+过点B .将点C (0,3-)的坐标代入y =(1)(3)a x x +-,得1a =.…………5分抛物线223y x x =--的顶点为E (1,4-).于是由勾股定理得BC=CE,BE=因为BC 2+CE 2=BE 2,所以,△BCE 为直角三角形,90BCE ∠=︒.…………10分因此tan CBE ∠=CE CB =13.又tan ∠DBO =13OD OB =,则∠DBO =CBE ∠.…………15分所以,45DBC CBE DBC DBO OBC ∠-∠=∠-∠=∠=︒.…………20分(第11题答题)(第11题)12.设△ABC 的外心,垂心分别为O H ,,若B C H O ,,,共圆,对于所有的△ABC ,求BAC ∠所有可能的度数.【解答】分三种情况讨论. (i )若△ABC 为锐角三角形.因为1802BHC A BOC A ∠=︒-∠∠=∠,,所以由BHC BOC ∠=∠,可得1802A A ︒-∠=∠,于是60A ∠=︒.…………5分(ii )若△ABC 为钝角三角形. 当90A ∠>︒时,因为()1802180BHC A BOC A ∠=︒-∠∠=︒-∠,,所以由180BHC BOC ∠+∠=︒,可得()3180180A ︒-∠=︒,于是120A ∠=︒。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
答题时注意:1.用圆珠笔或钢笔作答;2.解答书写时不要超过装订线; 3.草稿纸不上交。
一.选择题(共5小题,每小题7分,共35分,每道小题均给出了代号为A ,B ,C ,D的四个选项其中有且只有一个选项是正确的,请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分) 1.对正整数n ,记n !=1×2×...×n,则1!+2!+3!+...+10!的末位数是( ). A .0 B .1 C .3 D .5【分析】5≥n 时,n !的个位数均为0,只考虑前4个数的个位数之和即可,1+2+6+4=13,故式子的个位数是3. 本题选C .2.已知关于x 的不等式组⎪⎪⎩⎪⎪⎨⎧<-+->-+x t x x x 235352恰好有5个整数解,则t 的取值范围是( ).2116.-<<-t A 2116.-<≤-t B 2116.-≤<-t C 2116.-≤≤-t D 【分析】2023235352<<-⇒⎪⎪⎩⎪⎪⎨⎧<-+->-+x t x t x x x ,则5个整数解是15,16,17,18,19=x .注意到15=x 时,只有4个整数解.所以2116152314-≤<-⇒<-≤t t ,本题选C中国教育学会中学数学数学专业委员会 2013年全国初中数学竞赛九年级复赛试题及答案3.已知关于x 的方程xx x a x x x x 22222--=-+-恰好有一个实根,则实数a 的值有( )个.A .1B .2C .3D .4 【分析】422222222+-=⇒--=-+-x x a xx x a x x x x ,下面先考虑增根: ⅰ)令0=x ,则4=a ,当4=a 时,0,1,022212===-x x x x (舍); ⅱ)令2=x ,则8=a ,当8=a 时,2,1,0422212=-==--x x x x (舍); 再考虑等根:ⅲ)对04222=-+-a x x ,270)4(84=→=--=∆a a ,当21,272,1==x a .故27,8,4=a ,21,1,1-=x 共3个.本题选C . 4.如图,已知△ABC 的面积为24,点D 在线段AC 上,点F 在线段BC 的延长线上,且BC=4CF ,DCFE 是平行四边形,则图中阴影部分的面积为( ). A .3 B .4 C .5 D .6【分析】设ABC ∆底边BC 上的高为h ,则DE CF CF BC h 121244848====,)(2121212121h h DE h DE h DE S S BDE ADE +⋅⋅=⋅⋅+⋅⋅=+∆∆本题选D .6122121=⋅⋅=⋅⋅=DE DE h DE5.在分别标有号码2,3,4,...,10的9个球中,随机取出两个球,记下它们的标号,则较大标号被较小标号整除的概率是( ).41.A 92.B 185.C 367.D【分析】9236811291214==+++=C C C P 本题选B . 二、填空题(共5小题,每小题7分,共35分)6.设33=a ,b 是a 2的小数部分,则3)2+b (的值为 . 【分析】考虑到33=a ,则33333332292,29,327982,93=+-==<<===b b a 则9)9()2333==+b ( 7.一个质地均匀的正方体的六个面上分别标有数1、2、3、4、5、6.掷这个正方体三次,则其朝上的面的数的和为3的倍数的概率是 .【分析】对第一次向上面为1时,后面两次所得数字与1的和是3的倍数有111,114,123,126,132,135,141,144,153,156,162,165共12种;对于首次掷得向上的面是2,3,4,5,6的,后面两次与首次的和为3的倍数是轮换对称的,故和为3的倍数共有612⨯,而总次数是666⨯⨯次,则其概率为31666612=⨯⨯⨯=P .8.已知正整数a 、b 、c 满足a+b 2-2c-2=0,3a 2-8b+c=0,则abc 的最大值为 . 【分析】先消去c ,再配方估算.24166)8()121(621662222+=-++⇒=-++b a b b a a 观察易知上式中3≤a ,故3,2,1=a ,经试算,2,1=a 时,b 均不是整数;当3=a 时,11,5=b ,于是有)61,11,3(),13,5,3(),,(=c b a ,故201361113m ax =⨯⨯=abc .9. 实数a 、b 、c 、d 满足:一元二次方程x 2+cx+d=0的两根为a 、b ,一元二次方程x 2+ax+b=0的两根为c 、d ,则所有满足条件的数组(a 、b 、c 、d )为 .【分析】由根与系数关系知b cd d ab d b a d c c b a ===⇒=++=++,,0,然后可得(a 、b 、c 、d )=(1,-2,1,-2)本题在化简过程中,总感觉还有,此处仅给出一组,好像不严谨,期待官方答案.10.小明某天在文具店做志愿者卖笔,铅笔每支售4元,园珠笔每支售7元,开始时他有铅笔和圆珠笔共350支,当天虽然没有全部卖完,但是他的销售收入恰好是2013元,则他至少卖出了 支圆珠笔. 【分析】设4元的卖x 支,7元的卖y 支,则350,201374<+=+y x y x4125031820124201374++-=⇒++-=⇒=+y y x y y x y x令1441-=⇒=+k y k y ,则k k k x 7505)14(2503-=+--=,又350≤+y x ,即523151350147505≥−−→−≥⇒≤-+-∈k k k k Nk ,207152414=-⨯≥-=k y即他至少卖了207支圆珠笔.三、解答题(共4题,每题20分,共80分)11.如图,抛物线y=ax 2+bx-3,顶点为E ,该抛物线与x 轴交于A 、B 两点,与y 轴交于点C ,且OB=OC=3OA .直线131+-=x y 与y 轴交于点D ,求∠DBC-∠CBE . 【分析】易知4)1(3222--=--=x x x y ,)4,1()3,0()0,3(),0,1(---D C B A ,,,作EF ⊥CO 于F ,连CE ,易知△OBC 、△CEF都是等腰直角三角形,则△CBE 是直角三角形.分别在Rt △OBD 、Rt △BCE 中运用正切定义,即有31232tan 31tan =====BC CE ,OB OD βα,则βα=从而可得∠DBC-∠CBE=45º.12.如图,已知AB 为圆O 的直径,C 为圆周上一点,D 为线段OB 内一点(不是端点),满足CD ⊥AB ,DE ⊥CO ,E 为垂足,若CE=10,且AD 与DB 的长均为正整数,求线段AD 的长.【分析】设圆O 半径为r ,则由相似或三角函数或射影定理可知,)10(1022-=⇒⋅=r DE OE CE DE ,又r r DE CE CD 10)10(10102222=-+=+=由相交弦定理(考虑垂径时)或连AC 、BC 用相似或三角函数,易知r CD BD AD 102==⋅①,而r BD AD 2=+②令y BD x AD ==,,①/②即155210-=⇒==+yx y r r y x xy ,显然有x y <<0,则10<<x y ,即1051150<<⇒<-<y y,y 为正整数,故9,8,7,6=y ,又x 也为正整数,经逐一试算,仅当30,6==x y 这一组是正整数,故30=AD . 13.设a 、b 、c 是素数,记c b a z b a c y a c b x -+=-+=-+=,,,当2,2=-=y x y z 时,a 、b 、c能否构成三角形的三边长?证明你的结论.【分析】281102222a z a z z yz a z y c b a z b a c y +±-=⇒=-+−−−→−==+⇒⎩⎨⎧-+=-+=a 、b 、c 是素数,则z c b a =-+为整数,则1281+=+k a ,k 为正整数.化简整理后,有a k k 2)1(=+⎩⎨⎧=+==+==⇒=+==+=⇒3121,2(121121,1a k k )a a k k 非质数2,332811-=−−→−=+±-=z a a z ⅰ)112,2529,9,3=⇒=-=⇒=-==b b z x x x y z ,c b a b =<=+=+=1720173,17不能围成三角形;ⅱ)是合数9,16,4,2====b x y z综上所述,以a 、b 、c 不能围成三角形.14.如果将正整数M 放在正整数m 左侧,所得到的新数可被7整除,那么称M 为m 的“魔术数”(例如,把86放在415的左侧,得到的数86415能被7整除,所以称86为415的魔术数) .求正整数n 的最小值,使得存在互不相同的正整数a 1,a 2,...,a n ,满足对任意一个正整数m ,在a 1,a 2,...,a n 中都至少有一个为m 的“魔术数”. 【分析】考虑到魔术数均为7的倍数,又a 1,a 2,...,a n 互不相等,不妨设n a a a <<<...21,余数必为1、2、3、4、5、6,0,设t k a i i +=7,(6,5,4,3,2,1,0;,...,3,2,1==t n i ),至少有一个为m 的“魔术数”.因为m a ki +⋅10(k 是m 的位数),是7的倍数,当6≤i 时,而ki a 10⋅除以7的余数都是0,1,2,3,4,5,6中的6个;当7=i 时,而ki a 10⋅除以7的余数都是0,1,2,3,4,5,6这7个数字循环出现,当7=i 时,依抽屉原理,ki a 10⋅与m 二者余数的和至少有一个是7,此时m a ki +⋅10被7整除,即n=7.。