简单重复序列标记名词解释
《园艺植物育种学》形考3参考答案
《园艺植物育种学》形考3参考答案一、名词解释(30)每题5分倍性育种:采用人工诱变的方法,成倍的改变染色体基数,育成新品种的途径。
多倍体:体细胞中含有三套或三套以上染色体的植物。
单倍体:体细胞中含有该物种配子染色体数的生物个体。
二、填空题(24)每空6分请用给出的关键词填空。
同源多倍体分子生物学DNA序列浸渍法1.多倍体按其来源可分为同源多倍体和异源多倍体两大类。
2.秋水仙素处理的具体方法,依处理的器官、药剂溶媒的不同而有多种,主要有浸渍法、涂抹法、滴液法、套罩法四种。
3.细胞工程是应用细胞生物学和分子生物学的方法,通过类似于工程学的步骤在细胞整体水平或细胞器水平上,遵循细胞的遗传和生理活动规律,有目的地制造细胞产品的一门生物技术。
4.分子标记是继形态标记、细胞标记和生化标记之后发展起来的一种新的较为理想的遗传标记,它通过遗传物质DNA序列的差异进行标记。
填空题(24 分) (请按题目中的空缺顺序依次填写答案)三、单项选择题(18分)每题6分1.原生质体融合获得多倍体属于多倍体人工培育途径中的(D)。
单选题(6 分) A.化学诱变B.物理方法C.有性杂交培育多倍体D.离体培养获得多倍体2.拟南芥油菜的获得是利用了细胞工程技术中的(B)。
单选题(6 分)A.突变体筛选技术B.体细胞杂交技术C.单倍体诱导技术D.组培快繁技术3.简单重复序列标记是DNA分子标记技术中的(D)。
单选题(6 分)A.RFLP标记B.RAPD标记C.AFLP标记D.SSR标记四、问答题(28分)请用给出的关键词填空。
育种材料选择效果效率化学药剂花粉子房育种年限孤雌生殖双生苗简述单倍体在遗传育种中的作用及获得单倍体的方法。
作用:(1)提供遗传研究和育种材料(2)提高选择效果(3)缩短育种年限,节省人力、物力(4)提高育种效率获得单倍体的方法:(1)远缘花粉刺激孤雌生殖(2)辐射、处理诱导孤雌生殖(3)从双生苗中选择(4)花药、花粉培养(5)未受精子房培养填空题(18 分) (请按题目中的空缺顺序依次填写答案) 请用给出的关键词填空。
ssr标记原理
ssr标记原理
SSR标记,即简单重复序列标记,是一种以特异引物PCR为基础的分子标记技术。
它利用了DNA序列中的简单重复序列,这些重复序列通常由1-6个碱基组成,形成长串重复。
由于这些重复序列在不同个体间的数量存在差异,因此能揭示比其他标记技术更高的多态性。
SSR标记的基本原理是,根据微卫星序列两端互补序列设计引物,通过PCR反应扩增微卫星片段。
由于核心序列串联重复数目不同,能够用PCR的方法扩增出不同长度的PCR产物。
将这些产物进行凝胶电泳,根据分离片段的大小决定基因型并计算等位基因频率。
SSR 标记具有一些优点,如一般检测到的是一个单一的多等位基因位点、微卫星呈共显性遗传,可鉴别杂合子和纯合子、所需DNA量少等。
在采用SSR技术分析微卫星DNA多态性时,必须知道重复序列两端的DNA序列的信息。
RNA-seq基础知识
RNA-seq基础知识1.RNA-Seq名词解释2.测序名词解释3.高通量测序常用名词解释4.转录组测序问题集锦RNA-Seq名词解释1.index 测序的标签,用于测定混合样本,通过每个样本添加的不同标签进行数据区分,鉴别测序样品。
2.碱基质量值(Quality Score或Q-score)是碱基识别(Base Calling)出错的概率的整数映射。
碱基质量值越高表明碱基识别越可靠,碱基测错的可能性越小。
3.Q30 碱基质量值为Q30代表碱基的精确度在99.9%。
4.FPKM(Fragments Per Kilobase of transcript per Millionfragments mapped)每1百万个map上的reads中map到外显子的每1K个碱基上的fragment个数。
计算公式为公式中,cDNAFragments 表示比对到某一转录本上的片段数目,即双端Reads数目;Mapped Reads(Millions)表示Mapped Reads总数,以10为单位;Transcript Length(kb):转录本长度,以kb个碱基为单位。
5.FC(Fold Change)即差异表达倍数。
6.FDR(False Discovery Rate)即错误发现率,定义为在多重假设检验过程中,错误拒绝(拒绝真的原(零)假设)的个数占所有被拒绝的原假设个数的比例的期望值。
通过控制FDR来决定P值的阈值。
7.P值(P-value)即概率,反映某一事件发生的可能性大小。
统计学根据显著性检验方法所得到的P 值,一般以P<0.05为显著,P<0.01为非常显著,其含义是样本间的差异由抽样误差所致的概率小于0.05或0.01。
8.可变剪接(Alternative splicing)有些基因的一个mRNA前体通过不同的剪接方式(选择不同的剪接位点)产生不同的mRNA剪接异构体,这一过程称为可变剪接(或选择性剪接,alternative splicing)。
真核基因组 重复序列
真核基因组重复序列
一、概述
真核基因组中的重复序列是指基因组中重复出现的DNA片段。
这些重复序列可以是简单的重复,例如多次重复的短序列,也可以是复杂的重复,例如转座子、反转录转座子等。
真核基因组中的重复序列在基因组中占据了相当大的比例,并且在基因组的进化、基因表达调控、细胞分化等方面发挥了重要作用。
二、分类
1.简单重复序列:由多个相同的短序列组成,如CGGCGCGGCGC等。
简单重
复序列可以形成DNA的二级结构,影响基因的表达。
2.复杂重复序列:包括转座子、反转录转座子等。
这些序列可以在基因组中
移动位置,造成基因组的重排和进化。
三、功能
1.基因表达调控:一些重复序列可以作为顺式作用元件,影响基因的表达。
例如,一些重复序列可以作为增强子或沉默子,调节基因的表达水平。
2.细胞分化:一些重复序列在特定类型的细胞中特异性表达,参与细胞分化
过程。
例如,一些重复序列在精子或卵细胞中特异性表达,影响生殖细胞的分化。
3.基因组进化:复杂重复序列可以在基因组中移动位置,造成基因组的重排
和进化。
此外,一些重复序列可以产生新的基因或基因变异,促进物种的进化。
四、研究方法
目前对于真核基因组重复序列的研究方法主要包括高通量测序和生物信息学分析。
通过这些方法可以获得基因组的序列信息,并对重复序列进行定位、分类和功能分析。
同时,这些方法也可以用于研究重复序列的进化和表达调控机制。
分子生物名词解释
分子生物学之迟辟智美创作名词解释:1.基因组(genome):指生物体或细胞中,一套完整单体的所有遗传物质的总和;或指原核生物染色体、质粒,真核生物的单倍染色体组、细胞器,病毒中所含有的一整套基因组.2.顺式作用元件(cis-acting element):具有调节功能的特定DNA序列只能影响同一分子中的相关基因,发生在一个序列中的突变不会改变其他染色体上等位基因的表达,这样的序列称为顺式作用元件.3.反式作用因子(trans-acting factor):与顺式作用元件相反的调节卵白,可通过扩散结合于细胞内的多个靶位点,当发生突变后将同时影响分歧染色体上等位基因的表达,暗示出反式作用的调节卵白.4.可读框(ORF):指从起始密码子到终止密码子的一般连续的密码子区域,或DNA序列测定中,由计算机识别出的可能的编码区域.5.癌基因:其基因产物具有转化真核细胞的能力,使之与肿瘤细胞相同的方式生长.即一类与癌的生成有关的基因.控制细胞分裂的基因由于突变或肿瘤病毒的入侵而失去调节功能,原癌基因转酿成癌基因.6.核酶(ribozyme):泛指一类具有催化功能的RNA分子,一般指无需卵白质介入或不与卵白质结合,就具有催化功能的RNA分子.7.管家基因(house-keeping genes):为组成型基因,指在各种细胞中都能表达的一类基因,其产物是维持细胞基本生命活动所需的物质.8.ESTS(表达序列标签):从一个随机选择的cDNA克隆,进行5’端和3’端单一次测序挑选出来获得的短的cDNA部份序列,代表一个完整基因的一小部份.在数据库其标准从20~7000bp不等.9.GMO(Genetcallly Modified Organisms):基因修饰生物,在不导入外源基因的情况下,通过对生物体自己遗传物质的加工、敲除、屏蔽等方法以改变生物体的遗传特性,获得人们希望获得的性状.10.Terminator(终止子):是DNA分子中决定转录产物3’-OH端酶分子停止聚合,释放出已合成的RNA分子的位点.11.Zinc Finger region(锌指结构):是一种常呈现在DNA结合卵白中的结构.由一个含有年夜约30个氨基酸的环和一个与环上的4个Cys或2个His配位的Zn构成,结构似指状.它有一个α-螺旋和一个β-螺旋,与DNA双螺旋的年夜沟结合影响转录.12.rho factor(P因子):为一种单体分子质量为46Kda的卵白质,通常以同源年夜聚体的活性形式存在,分子质量约为275Kda.它是RNA聚合酶的一种重要的卵白质辅助因子,只在转录的终止过程中发挥作用.13.nucleosome(核小体):核小体是构成真核生物染色质的基本结构单元.由组卵白核心和盘旋其上的DNA共同构成的紧密结构形成.(4种组卵白(H2A, H2B, H3 和 H4)以八聚体的形式形成核心颗粒,DNA环绕纠缠在颗粒概况形成核小体).14.Hybridization(分子杂交):利用双螺旋结构的各种性质在DNA复性后可以获得恢复加持性,可以将两个分歧来源的互补序列退火形成双链的过程叫分子杂交.posite transpasons(复合型转座子):一类除有转座酶基因外,还带有抗药性基因标识表记标帜,其两末端由相同的IS序列或末端由38bp的反向重复序列组成的结构.年夜而复杂的转座子.16.冈崎片段(Okazaki fragment):指在半不连续复制中,新合成链方向为3’→5’端,实际上是由许多5’→3’方向合成的DNA片段连接起来的,首先沿5’→3’方向合成的较短的DNA片段,随后被连接成完整的方向为3’→5’DNA的新链.17.TM(解链温度):DNA发生变性时,使DNA双螺旋链结构解开一半或e(P)吸收值到最高值的一半时的温度.melting temperature.18.Pribnow box:又称-10序列,细菌启动子起始点上游约-10处找到的6bp的守旧序列TATAAT,是转录的解链区.19.SSR(简单序列重复):也称微卫星DNA,一种简单串连重复DNA序列,其重复单元为1~6个核苷酸,由10~50个变性单元串连组成,在整个基因组中分布且密度高,在遗传图和物理图的研究中有重要作用.20.antisemseRNA(反义RNA):通过碱基互补配对与特定mRNA上包括SD序列、起始密码子AUG及部份N端密码子的序列结合,抑制mRNA翻译的一类RNA.21.replion(复制子、复制单元):基因组中能自力进行复制的单元.包括复制起始点到终止点的一段DNA序列.22.SDS reaction(应急反应):由许多能造成DNA损伤或抑制DNA复制的过程引起的一系列复杂的诱导效应,这种效应称为应急效应.23.promoter(启动子):是RNA聚合酶识别、结合和开始转录的一段DNA序列,含有RNA聚合酶特异性结合和转录起始所需的守旧序列位点,不被转录.24.Operon(操纵子):是原核生物在分子水平上基因表达调控的单元,与功能相关的基因相连,由同一控制区控制转录,这些基因包括结构基因、操纵子基因、启动调节基因几部份.25.Enhancer(增强子):是指能使和它连锁的基因转录效率明显增加的DNA序列.26.SD sequence(SD序列):mRNA上位于起始密码子AUG序列上游10个碱基左右的区域能与16S核糖体RNA3’端反SD序列7个嘧啶碱基互补识别,以帮手从起始AUG处开始翻译的一段富含嘌呤碱基的序列.27.cDNA和cccDNA:cDNA:加工成熟的mRNA经逆转录合成互补的DNA.cccDNA:自力于细菌及某些真核细胞染色体外的共价闭合环状DNA.28.RNA剪接:基因的外显子和内含子都转录在一条原初转录本RNA分子中.在加工过程中切除内含子、连接外显子发生成熟RNA分子的过程叫RNA splicing.29.ITS(内转录间隔区):真核生物基因组中编码核糖体的基因,包括28SrDNA,5SrDNA,18SrDNA和5.8SrDNA四种.它们在染色体上头尾相连,串连排列,相互间由间隔区分开.30.gratuitous inducer(抚慰诱导物):能够诱导酶合成,但又不能被所诱导酶分解的分子.31.triplet codons(三联体密码子):mRNA链上决定一个特定的氨基酸的三个连续的核苷酸序列.(mRNA上特定的核苷酸序列对应卵白质链上特定的氨基酸序列)32.STS(序列标签位点):基因组物理图谱中起标识作用的位置已知的共同的小段单拷贝DNA序列.长度一般为300~500bp.在染色体上有一定的位置.33.intron and exon(内含子、外显子):内含子:不连续基因中无编码功能的区段,或者说,在初始转录产物hnRNA加工发生成熟的mRNA时,被切除的非编码序列.外显子:在不连续基因中有编码功能的区段,与mRNA的序列行对应.34.sence strand(有义链):在体内DNA的两条链仅有一条用于转录,或某些区段以这条链转录,这时,不用于转录的链称为非模板链,又称有义链.非模板链与合成的RNA产物链从一个方向阅读时,序列完全相同,所以又称编码链.35.衰减子(弱化子):attenuator:对色氨酸操纵子的转录水平进行微调DNA中可招致转录过早终止的一段核苷酸序列.36.CAP卵白超级调控因子:CAP是E.coli分解代谢物基因活化卵白,这种卵白可将葡萄糖饥饿信号传递给许多操纵子,使细菌在缺乏葡萄糖时可利用其他碳源.。
SSR分子标记.
SSR分子标记的步骤
B.银染法操作: 固 定 30min → 去 离 子 水 洗 涤 30s , 2 次 → 染 色 30min→去离子水洗涤2次(每次不超过30S) →显色 至所要程度→去离子水洗30s终止显影。
SSR分子标记的步骤
第五步:结果分析
图1为一对引物对多对玉米亲本SSR电泳图
SSR分子标记引物设计
Thank you !
共显性:说白了就是可以分辨出纯合的和杂合的。 (如图示)
对于RAPD是随机引物,(可以理解只有正向引物, 没有反向引物。)因此,它扩增出来的为引物结合位 点到终点的长度。当然一条链上会有很多该引物结合 位点,也就出现了很多片段。对于一个特定位点,我 们可以理解只有一条正链可被扩增。因此,在该链上 只有2种情况,有和没有。
SSR标记
SSR标记是一种通过直接分析遗传物质的多 态性来鉴别生物内在的核苷酸排布及其外在 状态表现规律的技术。
SSR分子标记的分子学基础
微卫星在真核生物的基因组中的含 量非常丰富,而且常常是随机分布 于核DNA中。微卫星中重复单位的 数目存在高度变异,这些变异表现 为微卫星数目的整倍性变异或重复 单位序列中的序列有可能不完全相 同,因而造成多个位点的多态性。 如果能够将这些变异揭示出来,就 能发现不同的SSR在不同的种甚至 不同个体间的多态性,基于这一想 法,人们发展了SSR标记。
SSR分子标记原理
根据两端序列的保守性,设计引物;进行 PCR,电泳分离,染色显带以检测、分析微卫 星序列多态性;并确定基因排布序列及表型, 最终达到成功鉴定的目的。
简而言之,就是通过对样本DNA多态性的分 析,从而来得到样本DNA序列以及在遗传性状 上的调控和差异。
SSR标记原理示意图
分子生物学名词解释
转化:一种生物由于接受了另一种生物的遗传物质而表现出后者的遗传性状,或发生遗传性状改变的现象叫做转化熔解温度Melting temperature :即通过加热由双链变为单链这一系列温度的位于中部的那点复性Renaturation(annealing):DNA双螺旋分子变性后的互补单链再结合成双链的过程称为复性点突变:是包括单碱基改变的一种变化回复突变Revertants :通过逆转已发生变化的突变细胞或有机体而获得自发突变Spontaneous mutations :是由于自然界的影响而发生,其产生原因是由于DNA复制发生错误或是由于环境的损伤转换Transition:是一种突变,即指一种嘧啶被另一种嘧啶代替,一种嘌呤被另一种嘌呤代替,G-C对被A-T对替换,或者相反如亚硝酸作为氧化脱氨基试剂将胞嘧啶转化为尿嘧啶颠换Transversion :是一种突变,即嘌呤被嘧啶代替或者相反,因此A-T对变成了T-A或C-G 突变热点:是突变发生频率高的位点或重组频率高的那些位点修饰碱基Modified bases :是除了那些在DNA(T、C、A、G)、RNA(U、C、A、G) 合成时的四种通用碱基之外的一些碱基,由核酸合成后修饰产生等位基因Allele:是指位于染色体同一位置分别控制两种不同性状的基因。
eg:现有一基因型Aa,A和a就互为等位基因。
同位基因:是指位于染色体上同一位置控制同一性状的基因。
eg:现有一基因型AA,A和A就互为同位基因。
(染色体上同一基因座上的基因,相互作用主要表现为显性、隐性和共显性)。
共显性:一对等位基因的两个成员在杂合体中都表达的遗传现象——人类的ABO血型。
互补测验:比较顺式和反式构型个体的表型以判断两突变是否发生在一个基因座内的测验,称为互补测验又称顺反测验功能获得型突变Gain-of-function mutation :表示使蛋白质获得新的活性(或功能),这种性质显性的无效突变Null mutation:一个基因被确定后,可以构建一个缺失该基因的体系来检测它的功能。
重复序列名词解释
重复序列名词解释
1、重复序列名词解释:重复序列系指基因组中重复出现的DNA序列。
2、重复序列(repeated sequence): 基因序列的多拷贝。
自然状态下,重复序列并不发生失活现象,基因工程中转基因失活与多拷贝有关,它可串联排列在染色体同一位点,也可以分散在都能造成转基因失活。
可能是重复序列之间通过异位配对形成染色体构型的不同染色体位置,变化,使重复序列位点染色体发生收缩(是染色质化),从空间上阻碍了转录因子与转基因的接触,使基因处于关闭状态。
3、DNA序列可按照其在基因组中出现的次数分为单一序列和重复序列。
重复序列系指基因组中重复出现的DNA序列,占人基因组至少50%。
根据重复次数可以分为,中度重复序列(10^2~10^5)和高度重复序列。
根据来源和分布特点又可以分为串联重复和分散重复。
分子标记技术的种类
分子标记技术的种类根据不同的核心技术基础,DNA分子标记技术大致可分为三类: 第一类以Southern杂交为核心, 其代表性技术为RFLP;第二类以PCR技术为核心,如RAPD、SSR、AFLP、STS、SRAP、TRAP等;第三类以DNA序列(mRNA或单核苷酸多态性)为核心,其代表性技术为EST标记、SNP标记等。
理想的分子标记应达到以下的要求:①具有高的多态性;②共显性遗传;③能够明确辨别等位基因;④分布于整个基因组中;⑤选择中性(即无基因多效性);⑥检测手段简单、快速;⑦开发成本和使用成本尽量低廉;⑧在实验室内和实验室间重复性好。
目前,没有任何一种分子标记均满足以上的要求,它们均具有各自的优点和不足。
其特点比较见表一。
1限制性内切酶片段长度多态性标记(Restriction Fragment Length Polymorphism,RFLP)1974年,Grozdicker 等人鉴定温度敏感表型的腺病毒DNA突变体时,发现了经限制性内切酶酶解后得到的DNA片段产生了差异,由此首创了第一代DNA分子标记技术——限制性内切酶片段长度多态性标记(RFLP)。
其原理是由于不同个体基因型中内切酶位点序列不同(可能由碱基插入、缺失、重组或突变等造成),利用限制性内切酶酶解基因组DNA时,会产生长度不同的DNA酶切片段,通过凝胶电泳将DNA片段按各自的长度分开,通过Southern印迹法,将这些大小不同的DNA片段转移到硝酸纤维膜或尼龙膜上,再用经同位素或地高辛标记的探针与膜上的酶切片段分子杂交,最后通过放射性自显影显示杂交带,即检出限制性片段长度多态性。
进行RFLP时,酶切要彻底,注意内切酶的选择,对于亲缘关系很近的物种,可增加内切酶的使用种类。
目前RFLP的使用领域很广泛,其具有以下优点:①RFLP标记源于基因组DNA的自身变异,理论上可覆盖整个基因组,能提供丰富的遗传信息;②标记不受组织、环境和发育阶段的影响;③呈共显性,即杂交时等位DNA片段均呈现带,能区分纯合基因型和杂合基因型,F2表现出 1∶2∶1的孟德尔分离定律[3],提供标记座位完全的遗传信息;④由于限制性内切酶的专一性使结果稳定可靠,重复性好。
分子标记技术
CAPACITY
RFLPs
HiSpeed sequ
DArT SNPs Multi-SSRs SRAP, TRAP SSRsAFLPs RAPDs
1985
1990
1995
2000
2 分子标记来源于DNA水平的突变
突变(Mutation)是指DNA水平的可遗传的变异,不
管这种DNA变异能不能导致可检测的表型或生化改 变,突变产生的变异是自然选择的基础,可遗传 的突变在群体中扩散从而产生多态性。
7. 近10年来,在人类基因组研究计划的 推动下,分子标记的研究与应用得到迅 速的发展。
分子标记的历史
第一代分子标记技术
RFLP (Restriction Fragment Length Polymorphism,限制性片段长度多态性)
第二代分子标记技术
RAPD(Random Amplified Polymorphic DNA,
RFLP
原理:
DNA
限制性内切酶酶切
电泳
转移到硝酸纤维素滤膜
同位素或非放射标记(如地高辛等)的探针杂交
胶片放射自显影,显示酶切片段大小
RFLP的应用
1.遗传学图的构建 结合RFLP连锁图, 任何能用RFLP探针检测出的基因及其 DNA片段都可以通过回交,快速有效地 进行转移。
2.基因定位 利用RFLP技术能够准确地 标记定位种质中的目标基因,结合杂交, 回交及组织培养等技术就可以快速有效的 将所需目标基因的DNA片段引入栽培品 种中,实现品种改良。
都有害; ✓ 探针的制备、保存和发放也很不方便; ✓ 分析程序复杂、技术难度大、费时、成本高。
2.随意扩增多态性DNA标记—RAPD
Random Amplified Polymorphismic DNA
MAS育种学名词解释
MAS育种学名词解释
分子标记是以个体间遗传物质内核苷酸序列变异为基础的遗传标记,分子标记是DNA水平遗传多态性的反映。
分子标记大致分为三类,现阶段常用的分子标记有简单序列重复标记(简称SSR标记)及单核苷酸多态性(简称SNP标记)等,特别是SNP标记,由于其可进行高通量检测,越来越受到欢迎。
分子标记辅助育种(简称MAS)在我国应用已经有现阶段,分子标记辅助育种在科研育种,尤其是主粮作物水稻上的应用更是十分成熟。
分子标记辅助育种是利用分子标记与传统育种相结合,从而选育出符合预设目标的作物新品种的过程,分子标记辅助育种提高选择效率、缩短育种年限及确保育种有效性上具有重要意义;另外,分子标记辅助育种在农作物种子质量检测上也具有重要作用,且速度快,节时省工。
分子标记
遗传材料的基因组DNA如果在特定引物结合区域发生DNA 片段插入、缺失或碱基突变,就有可能导致引物结合位 点的分布发生相应的变化,导致PCR产物增加、缺少或 发生分子量变化。增加或缺少的PCR产物则为RAPD标记。
1990, Williams, et al. found.
4
RAPD
Williams等1990年创立。 RAPD 标记技术就是用一个(有时用两个)随 机引物(一般8-10个碱基)非定点地扩增基因 组DNA,然后用凝胶电泳分开扩增片段。遗传 材料的基因组DNA如果在特定引物结合区域发 生DNA片段插入、缺失或碱基突变,就有可能 导致引物结合位点的分布发生相应的变化,导 致PCR产物增加、缺少或发生分子量变化。若 PCR产物增加或缺少,则产生RAPD标记。
1974, Grodzicker, et al. found.
基本步骤
DNA提取 DNA限制性内切酶消化 凝胶电泳分离限制性片段 将这些片段按原来的顺序和 位臵转移到易操作的滤膜上
用放射性同位素或非放射性 物质标记的DNA作探针与膜 上的DNA杂交(Southern blot)
放射性自显影或酶学检测 显示出不同材料对该探针 的限制性酶切片段多态性
SF - seminal fluid DNA; MB - Matina Brunswick's DNA; S1 - DNA from suspect one; S2 - DNA from suspect two; FD - DNA from Fiona Dandenong as a control. a. Sean Upfield b. Suspect 1 c. Suspect 2 d. Fiona Dandenong e. Matina Brunswick
什么是简单重复序列(SSR)
生物的基因组中,特别是高等生物的基因组中含有大量的重复序列,根据重复序列在基因组中的分布形式可将其分为串联重复序列(Tandem Repeats Sequence,TRS)和散布重复序列(Dispersed Repeats Sequence,DRS)。
其中,串联重复序列是由相关的重复单位首位相连、成串排列而成的。
目前发现的串联重复序列主要有两类:一类是由功能基因组成的(如rRNA和组蛋白基因);另一类是由无功能的序列组成的。
根据重复序列的重复单位的长度,可将串联重复序列分为卫星DNA、微卫星DNA、小卫星DNA等。
微卫星DNA又叫简单重复序列(Simple Sequence Repeat,SSR),指的是基因组中由1-6个核苷酸组成的基本单位重复多次构成的一段DNA,广泛分布于基因组的不同位置,长度一般在200 bp以下。
研究表明,微卫星在真核生物的基因组中的含量非常丰富,而且常常是随机分布于核DNA中。
在植物中通过对拟南芥、玉米、水稻、小麦等的研究表明微卫星在植物中也很丰富,均匀分布于整个植物基因组中,但不同植物中微卫星出现的频率变化是非常大的,如在主要的农作物中两种最普遍的二核苷酸重复单位(AC)n和(GA)n在水稻、小麦、玉米、烟草中的数量分布频率是不同的。
在小麦中估计有3000个(AC)n序列重复和约6000个(G A)n序列重复,两个重复之间的距离平均分别为704 kb、440 kb,而在水稻中,(AC)n 序列重复约有1000个左右,(GA)n 重复约有2000个,重复之间的平均距离分别为450 kb、225 kb。
另外在植物中也发现一些三核苷酸和四核苷酸的重复,其中最常见的是(AAG)n、(AAT)n。
在单子叶和双子叶植物中SSR数量和分布也有差异,平均分别为64.6 kb和21.2 kb中有一个SSR。
研究还发现,单核苷酸及二核苷酸重复类型的SSR主要位于非编码区,而有部分三核苷酸类型位于编码区。
微卫星标记简述
微卫星标记的简述微卫星标记(microsatellite),又称为短串联重复序列(simple tandem repeats, STRs)或简单重复序列(simple sequence repeats),是均匀分布于真核生物基因组中的简单重复序列,由2~6个核苷酸的串联重复片段构成,由于重复单位的重复次数在个体间呈高度变异性并且数量丰富,因此微卫星标记的应用非常广泛。
微卫星位点通常通过PCR扩增,扩增产物通过电泳分析并根据大小分离等位基因进行检测。
PCR扩增后的等位微卫星可以用多种方法检测,如荧光标记、银染。
微卫星存在于大多数生物的基因组中,被广泛的应用于遗传杂交育种和绘制染色体遗传图谱等领域。
高度多态的微卫星还可以用来在人群进行个体识别。
实验步骤1. 客户收集标本(血液或组织等标本)并提取DNA。
2. 设计引物序列并扩增,琼脂糖电泳检测结果。
3. 合成荧光标记引物。
4. 进行PCR扩增,产物通过测序仪器电泳检测, 获得扩增片段大小。
5. 分析测序仪器读出的数据,给结果图谱。
微卫星DNA 也称简单串联重复序列( Simple Sequence Repeats,简称SSRs)或简单串联重复序列多态性(Short Tandem Repeat Polymorphism,简称STRP)。
微卫星DNA 是真核生物基因组重复序列中的主要组成部分,主要由串联重复单元组成,每单元长度在1-10bp 之间,1 个SSR 的总长度可达几十到几百个bp。
每个微卫星DNA 都由核心序列和侧翼序列组成,其核心序列呈串联重复排列。
侧翼DNA 序列位于核心序列的两端,为保守的特异单拷贝序列,能使微卫星特异地定位于染色体常染色质区的特定部位。
Weber 将微卫星分为3 类:单纯(pure) SSR、复合(compound) SSR,和间隔(interrupted) SSR。
所谓单纯SSR 是指由单一的重复单元所组成的序列,如(AT) n;复合SSR 则是由2 个或多个重复单元组成的序列,如(GT)n(AT)m;间隔SSR 在重复序列中有其它核苷酸夹杂其中,如(GT)nGG(GT)m。
SSR分子标记
SSR简单序列重复标记(Simple sequence repeat, 简称SSR标记),也叫微卫星序列重复,是由一类由几个核苷酸(1-5个)为重复单位组成的长达几十个核苷酸的重复序列,长度较短,广泛分布在染色体上。
由于重复单位的次数的不同或重复程度的不完全相同,造成了SSR长度的高度变异性,由此而产生SSR标记或SSLP标记。
虽然SSR在基因组上的位置不尽相同,但是其两端序列多是保守的单拷贝序列,因此可以用微卫星区域特定顺序设计成对引物,通过PCR技术,经聚丙烯酰胺凝胶电泳,即可显示SSR位点在不同个体间的多态性。
优点:(1)标记数量丰富,具有较多的等位变异,广泛分布于各条染色体上;(2)是共显性标记,呈孟德尔遗传;(3)技术重复性好,易于操作,结果可靠。
缺点:开发此类标记需要预先得知标记两端的序列信息,而且引物合成费用较高。
操作程序:取叶片→磨样→提取DNA→PCR扩增→电泳检测→染色→读带标记1、DNA提取按照Doyle和Dickson(1987)CTAB法(`Cetyl triethyl ammonium bromide)并略加改进的程序进行,具体步骤如下:①成熟期取叶片加液氮研磨成粉末状,转入1.5ml离心管中,-20℃冰箱保存;②加入600ul 65℃的2×CTAB混匀并置于65℃水浴中保温30~60分钟;③取出,冷却,上下摇匀后,加入600微升24:1的氯仿异戊醇;④12000转/分钟离心10分钟,取上清液于另一个1.5ml的离心管中;⑤加异丙醇,12000转/分钟离心10分钟,倒掉上清液;⑥干后用100%的洒精清洗,干后加适量TE2、PCR扩增模板DNA的浓度大约25ng/ul,扩增反应体系为20ul。
具体如下:Sterile ddH2O 11ulPCR Buffer 3uldNTP-mix 0.5ulPrimer1 1ulPrimer2 1ulTaq polymerase 0.5ul(2U/μL)DNA 3ulPCR扩增程序为:(2h30min)①预变性:94℃,5分钟;②变性:94℃,40秒;③退火:55℃40秒;④延伸:72℃,1分钟;⑤循环:从2到4共38个循环;⑥72℃下最后延伸5分钟;4℃5min,扩增产物置于4℃的冰箱保存。
简述分子遗传标记的概念及分子遗传标记类型
简述分子遗传标记的概念及分子遗传标记类型分子遗传标记是DNA分子上的一段特定序列,可以用来区分不同个体或品系之间的遗传差异。
这些标记通常通过PCR扩增和电泳等方法检测到,并且可以用于遗传图谱、基因定位和基因组学研究等方面。
分子遗传标记类型包括以下几种:
1. RFLP(限制性片段长度多态性):利用特定酶切割DNA,从而产生不同的长度片段,通过电泳分离不同长度的DNA片段,从而检测样本中的遗传变异。
2. AFLP(扩增性DNA指纹):利用PCR扩增某些随机选取的DNA 片段,从而形成染色体DNA指纹图谱,用于遗传多样性分析。
3. SSR(简单重复序列):也称为微卫星,是由重复的2-6个碱基单元构成的DNA序列,通过PCR扩增后利用电泳等方法检测分子量大小的差异,用于遗传地图和种质资源鉴定等方面。
4. SNP(单核苷酸多态性):是指在基因组中单个核苷酸的突变,通过PCR扩增和测序等方法检测SNP位点的不同碱基,用于基因组遗传变异和个体差异分析。
5. CNV(拷贝数变异):是指在基因组中某些区域的拷贝数发生改变,通过PCR扩增和荧光定量PCR等方法检测CNV位点的不同拷贝数,用于基因组结构变异和疾病易感性分析。
SSR技术原理-方法及步骤
SSR技术1. SSR简介说明:简单重复序列(Simple Sequence Repeat,SSR),简单重复序(SSR)也称微卫星DNA,其串联重复的核心序列为1-6 bp,其中最常见是双核苷酸重复,即(CA) n和(TG) n每个微卫星DNA的核心序列结构相同,重复单位数目10-60个,其高度多态性主要来源于串联数目的不同。
SSR标记的基本原理:根据微卫星序列两端互补序列设计引物,通过PCR反应扩增微卫星片段,由于核心序列串联重复数目不同,因而能够用PCR的方法扩增出不同长度的PCR 产物,将扩增产物进行凝胶电泳,根据别离片段的大小决定基因型并计算等位基因频率。
在真核生物中,存在许多2-5bp简单重复序列,称为“微卫星DNA”其两端的序列高度保守,可设计双引物进行PCR扩增,揭示其多态性。
SSR具有以下一些优点:(l)一般检测到的是一个单一的多等位基因位点;(2)微卫星呈共显性遗传,故可鉴别杂合子和纯合子;(3)所需DNA量少。
显然,在采用SSR技术分析微卫星DNA多态性时必须知道重复序列两端的DNA序列的信息。
如不能直接从DNA数据库查寻则首先必须对其进行测序。
SSR的分类:根据SSR核心序列排列方式的不同,可分为3种类型:1〕完全型(perfect),指核心序列以不间断的重复方式首尾相连构成的DNA。
如:ATATATATATATATATATATATATATATATATAT;2〕不完全型(imperfect),指在SSR的核心序列之间有3个以下的非重复碱基,但两端的连续重复核心序列重复数大于3 。
如:ATATATATGGATATATATATCGATATATATATATATATGGATATATATAT;3〕复合型(compound) ,指2个或2个以上的串联核心序列由3个或3个以上的连续的非重复碱基分隔开,但这种连续性的核心序列重复数不少于5 。
如:ATATATATATATATGGGATATATATATATA 。
栽培花生变种的简单序列重复标记
会造成土地淹没或积水 , 而降低作物生产 从
力。在 日本 为 了最大 限度地 提高 土地 生产
力, 通常把玉米栽培在陆稻 田问; 在这种情况 春末至初夏季节。为 了提高积水土壤中的作
土壤表面的不定根形成是对土壤 淹没或积水 的一种最重 要 的适 应 性状。本试 验将 玉米
( e asL B 4 与 墨 西 哥 玉 米 ( . as Zam y . 6 ) z m y
谢 国禄摘 译 自 E pyi 4 ( 2 , 0 u hta12 1— )2 5 c 0
栽培花 生变种的简单
序列重复标记
花 生 ( rci hpge . 是 全 世 界 栽 Aahs yoaaL )
控制墨西哥玉 米幼苗在淹水 条件下不定根形成的 Q L T
在潮湿的温带和亚热带地 区过多的降雨
维普资讯
技 术 与 方 法
变种 hpg e yoaa和 hr t iu s a特有 的, 个 S R标 1 S
记 是 变 种 prv n e i a和 aqaoin ua eu t aa特 有 的 。 r
很多二倍体实生茁 ; 这些实生苗生长旺盛, 具 有‘ 晚白柚 ’ 品种形态特征 的翼叶。并且对 ‘ 清 见’ 品种与单倍体植株杂交而衍生的 1 株实生
维普资讯
执 术 与 方 法
F 代的大量分离体进行 了扩增片断长度多态 3
( F P 分析 , 果鉴定到 8个标 记, 中 4 AL ) 结 其
和复合间隔制图分析表明, 不定根形成的 Q L T 位于染色体 8 b . ) 上(i 8o 。用来 自相同杂交 n 5
此外 , 花生的 3 个表达序列标记 ( S ) E T 与假设 基因有关 。因为变种具 有不 同的表型性状 ,
分子生物学名词解释
1、3’-、5’- 1、viroid2、A C T G 2、PSTV3、Melting Temperature 3、prion PrP c PrP sc3、Spontaneous Mutation4、scrapie4、Transition Transversion5、allele5、Hotspot6、Modified bases7、Denaturation renaturation(annealing)1、DMD 1、shot-gun approach2、DHFR 2、linker3、Translocation 3、TdT4、5’UTR 3’UTR 4、Saccharomyces cerevisiae5、Globin 5、C.elegans6、Rubisco 6、gene amplification7、transformation1、plasmid λ-phage cosmid 1、PLoS2、GATA 2、redundancy3、Genome 3、biochip4、Genetic map(linkage map) 4、SAGE5、Genetic polymorphism 5、DD法6、SNP 6、EST7、Genetic markers 7、HDA8、SSR PAPD AFLP 8、RACE9、Genomics TRanscriptomisc Proteomics 9、mtRNA1、gene family 1、cistronMet2、Alu family 2、tRNAf3、VNTR(STR) 3、PABP4、globin 4、RRF5、cryptic satellite 5、RF6、buoyant density7、DNA fingerprinting1、U D I A 1、trans-acting factor2、Suppressor 2、cis-acting elegent3、Chaperones 3、structural genes4、Self-assembly 4、CRP5、Protein translocation 5、ReIA6、SRP 6、idling reaction7、Translocon 7、ppGpp pppGpp8、TRAM 8、alarmone9、TOM TIM TOC TIC SecYEG Sec61 9、stringent response10、Pores NPC 10、attenuation attenuator11、Proteasome 11、microRNAs12、E1、E2、E3 12、RNAi RNA silencing13、Coding strand 35 hexamer 13、siRNA RISC10 hexamer intrinsic terminator 14、lytic infectionLysis prophage lysogeny integration episome plasmidInduction of prophage immunity of phageOR、PRM、clear plaque、PR/OR、PL/ OL、tR1、tL1、cI、cro、N、PR15、Crown gall disease,Ti plasmid ,OpineNopaline plasmids,Agrobacteria,octopine plasmids,agropine plasmids Ri plasmids,Chimeric,teratoma1、3′—end and 5′—end:DNA或RNA单链带有游离3’-羟基或其磷酸酯的一段叫做3’端;DNA或RNA单链带有游离5’-羟基或其磷酸酯的一段叫做5’端。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简单重复序列标记(Simple Sequence Repeat,SSR)是一种基于PCR技术的分子标记技术,用于检测DNA序列中的重复序列。
这些重复序列通常由几个到几十个核苷酸组成,并且在基因组中以串联的形式重复出现。
SSR标记的原理是利用PCR技术扩增这些重复序列,并通过凝胶电泳或毛细管电泳检测扩增产物的大小,从而确定不同个体或种群之间的遗传多样性。
SSR标记具有多态性高、重复性好、共显性等优点,因此在遗传学、基因组学、进化生物学和遗传育种等领域得到了广泛应用。
例如,SSR标记可以用于研究物种的遗传多样性、亲缘关系和系统发育,也可以用于基因定位和分子标记辅助育种。
在SSR标记的应用中,通常需要设计特定的引物来扩增特定的重复序列。
这些引物可以通过已知的基因组序列或EST序列来设计,也可以通过生物信息学的方法来预测和设计。
在PCR扩增后,可以通过凝胶电泳或毛细管电泳来分离扩增产物,并通过一些特定的软件来分析扩增产物的大小和数量,从而确定不同个体或种群之间的遗传多样性。
此外,SSR标记还可以用于法医鉴定、亲子鉴定和人类遗传学研究等领域。
例如,通过检测犯罪现场遗留的DNA样本中的SSR标记,可以确定犯罪嫌疑人的身份或亲缘关系。
在人类遗传学研究中,SSR标记可以用于研究人类基因组的遗传多样性和进化历程。
总之,简单重复序列标记是一种重要的分子标记技术,在多个领域得到了广泛应用。
随着技术的不断发展和完善,SSR标记的应用前景将更加广阔。