晶体管发展史
中国半导体的发展历史
中国半导体的发展历史中国半导体发展可以大致分成四个阶段:萌芽期(1956 - 1965),稳步发展期(1966 - 1978),缓滞-复苏期(1978 - 2000)以及大发展时期(2000 –至今)。
萌芽期阶段(1956 - 1965):1956年中央提出了“向科学进军”的口号,周总理亲自制定了1956 –1967年这12年的科学技术发展远景规划,把半导体、计算机、自动化和电子学这四个在国际上发展迅速而国内急需发展的高新技术列为四大紧急措施。
在此背景下,中科院半导体于1957年11月成功拉制成第一根锗单晶,并与1958年成功研制第一只锗晶体管。
锗晶体管半导体晶体管的成功研制,促成了我国晶体管计算机和晶体管收音机的诞生,在国内产生了很大的影响,那时候的收音机被叫做半导体的原因就在这里。
1958年,中国第一个半导体器件生产厂诞生,代号“109”,它就是后来中科院微电子研究所的前身。
同样是1958年,天津109厂的科研人员借助研制锗单晶的经验,自行研制了硅单晶并进行了设备调试,经过反复试验,并在7月,成功拉制成我国第一根硅单晶,成为当时继美苏之后第三个拉制出单晶硅的国家。
在此基础上,研究人员提高材料质量和改进技术工艺,并于1959年实现了硅单晶的实用化。
单晶硅随着研究的深入,我国逐步在外延工艺,光刻技术等领域取得了进展,并于1963年制造出国产硅平面型晶体管。
这些技术的成功,打下了我国硅集成电路研究的基础。
稳步发展期(1966 - 1978)到了1966年,10年风波开始。
我国工农业发展陷入大规模停滞,但我国半导体工业建设并未停下脚步。
1968年,北京组建国营东光电工厂(878厂),上海组建无线电十九厂,形成当时中国集成电路产业中的南北两强格局。
1968年,国防科委在四川永川县,成立固体电路研究所(即永川半导体研究所,现中电24所),是中国唯一的模拟集成电路研究所。
同年,上海无线电十四厂首次制成PMOS电路。
电子元件的发展历史
电子元件的发展历史第一阶段:早期电子元件(18世纪-19世纪)在18世纪末和19世纪初,随着电学的诞生,早期电子元件开始出现。
最早的电子元件是电子管,它是由一个或多个电子真空管构成的。
电子管的发明推动了无线电通信和电子技术的发展。
此后,电阻器、电和电感器等简单的元件也被开发出来,用于控制和调节电流和电压。
第二阶段:晶体管时代(20世纪40年代-50年代)20世纪40年代,晶体管的发明改变了电子元件的面貌。
与电子管相比,晶体管更小、更节能,且寿命更长。
它还比电子管更容易制造和操作。
这些特性使晶体管成为计算机和通信系统等领域的关键元件。
这一时期的电子元件技术成为信息时代的基石。
第三阶段:集成电路的出现(20世纪60年代-70年代)20世纪60年代,集成电路的出现引领了电子元件的又一次飞跃。
集成电路是一种将许多晶体管、电和电阻器等元件集成在一小块半导体芯片上的技术。
它使得电子元件的集成度提高,功耗降低,速度提高,体积更小。
集成电路的问世加速了电子产品的革命,推动了计算机、通信、娱乐等领域的发展。
第四阶段:微纳电子元件(21世纪至今)21世纪以来,随着纳米技术的发展,微纳电子元件开始崭露头角。
微纳电子元件以纳米技术为基础,能够在纳米尺度上实现更高的性能和更小的尺寸。
纳米级材料、纳米电路和纳米加工技术的应用使得电子元件的功能更加多样化和高效化。
微纳电子元件的出现为可穿戴设备、人工智能、物联网等领域带来了新的机遇和挑战。
结论电子元件的发展历史见证了科技的进步和人类智慧的结晶。
从早期的电子管到现代的微纳电子元件,每一次技术的突破都推动了电子产品的发展和人类社会的进步。
随着科技的不断创新,我们可以期待未来电子元件技术的更大突破和应用。
cpu发展历史过程
cpu发展历史过程CPU(Central Processing Unit)是计算机中的核心部件,负责执行计算机程序的指令,控制和协调计算机的各种操作。
随着计算机技术的发展,CPU也经历了多个阶段的演进和发展。
本文将从早期的计算机CPU开始,逐步介绍CPU的发展历史过程。
一、早期计算机的CPU早期的计算机CPU采用的是电子管技术,这种技术具有高功耗、体积庞大、易损坏等缺点。
该阶段的计算机CPU运算速度较慢,主要用于科学计算和军事应用。
代表性的早期计算机有ENIAC、EDVAC 等。
二、晶体管时代的CPU20世纪50年代末,晶体管技术的发展使得计算机CPU得以进一步改进。
晶体管比电子管体积小、寿命长、功耗低,使得计算机性能得到显著提升。
该时期的计算机CPU采用了冯·诺依曼结构,即将指令和数据存储在同一内存中。
代表性的计算机有IBM System/360等。
三、集成电路时代的CPU20世纪60年代,集成电路技术的出现使得计算机CPU集成度大幅提高,体积缩小,功耗进一步降低。
这一时期的计算机CPU开始出现微处理器,即将多个功能模块集成在一颗芯片上,实现更高的性能和更小的体积。
代表性的计算机有Intel 4004、Intel 8008等。
四、个人计算机时代的CPU20世纪70年代末,个人计算机的出现使得计算机CPU得到大规模普及。
此时的计算机CPU采用了更加先进的微处理器架构,性能大幅提升。
代表性的计算机有IBM PC、Apple Macintosh等。
五、多核处理器时代的CPU21世纪初,多核处理器技术的出现使得计算机CPU能够同时处理多个任务。
这种技术通过在一颗芯片上集成多个处理核心,实现更高的并行计算能力。
代表性的计算机有Intel Core系列、AMD Ryzen系列等。
六、现代计算机时代的CPU随着科技的不断发展,计算机CPU在性能、功耗和集成度方面都取得了巨大的进步。
现代计算机CPU采用了更加先进的制程工艺和架构设计,如14纳米、10纳米工艺、超标量架构、超线程技术等。
双极型晶体管发展历史
双极型晶体管发展历史晶体管是现代电子技术中的重要组成部分,而双极型晶体管则是最早应用广泛的一种晶体管。
它的发展历史可以追溯到二十世纪中叶,经历了多次重要的突破和进展。
双极型晶体管,又称为晶体管或BJT(Bipolar Junction Transistor),是由三层半导体材料构成的。
它有三个区域:发射区(Emitter Region)、基区(Base Region)和集电区(Collector Region)。
通过控制基区电流,可以在集电区和发射区之间调制电流,从而实现信号放大和开关控制。
双极型晶体管的发展可以追溯到1947年,当时美国贝尔实验室的三位科学家约翰·巴丁(John Bardeen)、威廉·肖克利(William Shockley)和沃尔特·布拉汉姆(Walter Brattain)合作发明了第一款晶体管。
他们的发现被称为晶体管的诞生,这是对二十世纪电子技术发展的重要里程碑。
早期的晶体管是基于半导体材料的PN结构,通过对硅和锗等半导体材料进行掺杂和组合,形成P型和N型材料之间的结构,实现电流的控制。
这种早期的双极型晶体管通常被称为晶体管的第一代。
然而,第一代晶体管存在一些问题,如电流放大能力有限、噪声较大、体积较大等。
为了克服这些问题,人们进行了长时间的研究和改进,最终在20世纪60年代和70年代取得了重大的突破。
第二代晶体管的发展是在20世纪60年代开始的。
为了改进电流放大能力和工作频率,研究人员开始使用P型和N型半导体材料的更高级别的掺杂,以增加晶体管的电流放大系数。
这种改进使得晶体管能够更好地应对高频率和大功率的应用需求。
此外,第二代晶体管还采用了较小的尺寸和改进的封装技术,使得晶体管的体积和功耗都得到了显著的降低。
到了20世纪70年代,第三代晶体管的发展又带来了一系列的改进。
在这一时期,研究人员引入了新的材料和结构,例如绝缘栅双极型晶体管(Insulated-Gate Bipolar Transistor,IGBT)和金属氧化物半导体场效应晶体管(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET)。
晶体管和集成电路的成长史
晶体管和集成电路的成长史
1.晶体管的发明与应用
晶体管是一种半导体设备,它能够在电子器件中转换和放大电信号。
于1947年由肖克利在皮尔斯实验室首次发明,并应用于电子电路中。
晶体管相较于真空管有诸多优点,如尺寸小、功耗低、发热更少等,而被广泛使用于电视机、音响、电脑、手机等电子产品中。
2.集成电路的发明与进展
早在1958年,芯片就在美国德克萨斯仪器公司被发明。
集成电路是一种将数千到数百万的电子器件集成到一个小芯片上的技术。
这种技术让电子器件的尺寸缩小,并使得电路强度和速度得到了极大的提高。
1961年的美国电子展上,第一部商业化的集成电路问世,其数字逻辑门电路有3个晶体管和2个二极管构成,并且仅仅只有“M”那么小。
集成电路因为是电子器件的集合所以还被描述为“电子计算机”或“电子集成”。
3.晶体管和集成电路的关系
晶体管是集成电路的核心。
晶体管的出现与发展使得集成电路得以应用。
早期的集成电路都是很简单的晶体管或者管阵列,后来为了经济和生产方便,人们发明了单片集成电路,它可以包含几个或几十个晶体管和其它电子器件,完成更复杂的功能。
集成电路不断发展,出现了SEM、DRAM、CMOS等芯片技术,并被广泛应用于电脑、手机、摄像机等技术领域中。
4.结语
随着科技的不断进步,晶体管和集成电路的技术也在快速发展。
从早期的所谓“电子计算机”到现在的手持智能手机,晶体管和集成
电路都扮演着重要且不可替代的角色。
随着集成电路设计的不断深化,人们对它的依赖性也越来越高,我们可以期待着在未来的发展中,集
成电路将在越来越多的领域中发挥重大的作用。
集成电路发展历史
世界集成电路发展历史1947年:美国贝尔实验室的约翰·巴丁、布拉顿、肖克莱三人发明了晶体管,这是微电子技术发展中第一个里程碑;1950年:结型晶体管诞生1950年:R Ohl和肖克莱发明了离子注入工艺1951年:场效应晶体管发明1956年:C S Fuller发明了扩散工艺1958年:仙童公司Robert Noyce与德仪公司基尔比间隔数月分别发明了集成电路,开创了世界微电子学的历史;1960年:H H Loor和E Castellani发明了光刻工艺1962年:美国RCA公司研制出MOS场效应晶体管1963年:F.M.Wanlass和C.T.Sah首次提出CMOS技术,今天,95%以上的集成电路芯片都是基于CMOS工艺1964年:Intel摩尔提出摩尔定律,预测晶体管集成度将会每18个月增加1倍1966年:美国RCA公司研制出CMOS集成电路,并研制出第一块门阵列(50门),为现如今的大规模集成电路发展奠定了坚实基础,具有里程碑意义1967年:应用材料公司(Applied Materials)成立,现已成为全球最大的半导体设备制造公司1971年:Intel推出1kb动态随机存储器(DRAM),标志着大规模集成电路出现1971年:全球第一个微处理器4004由Intel公司推出,采用的是MOS工艺,这是一个里程碑式的发明1974年:RCA公司推出第一个CMOS微处理器18021976年:16kb DRAM和4kb SRAM问世1978年:64kb动态随机存储器诞生,不足0.5平方厘米的硅片上集成了14万个晶体管,标志着超大规模集成电路(VLSI)时代的来临1979年:Intel推出5MHz 8088微处理器,之后,IBM基于8088推出全球第一台PC。
晶体管的发展历史
晶体管的发展历史自20世纪初期发现半导体特性以来,晶体管已经被广泛应用于计算机、通信、电力电子等领域,成为现代电子技术中不可缺少的一部分。
下面就让我们来简要了解一下晶体管的发展历史吧。
晶体管的诞生:1947年12月16日,贝尔实验室的肖克利、巴丁和布拉顿3位研究员成功地制造出第一只晶体管,从而开启了半导体器件时代的大门。
这项发明将射极和基极(或称为控制极)之间的阻挡区域,用一块半导体来代替了之前使用的金属结构,将信号转化为比之前更小的电磁波,从而出现了晶体管的三极管原理,也就是由n型半导体和p型半导体构成的pn结。
第一代晶体管:1948年,美国特拉华大学研制出了第一只由单面铝电极、氧化层等组成的金属氧化物场效应管,即MOSFET管(金属氧化物半导体场效应管),这种管子的特点是用金属门与半导体之间的氧化层作为门电介质,通过改变门极电位来控制漏电流大小。
这种技术极大地推动了半导体器件的发展,由此走向了大规模的集成电路时代。
第二代晶体管:第二代晶体管是以NPN晶体管为主的系列,其主要特点是优化了电路拓扑结构,模块化操作更加便捷,并增加了硅材料的使用。
在这个阶段,许多新的结构被发明出来,如耐压晶体管、双极晶体管、场效应晶体管等。
此时,晶体管被广泛使用于放大、开关等电路领域,应用面进一步扩大。
第三代晶体管:第三代晶体管是以高电压、高频的技术为主,主要特点是在前两代晶体管的基础上进一步改进,使用更高性能的材料,例如碳化硅、硅酸铝和硅等,可以实现更高的电压和频率。
同时,第三代晶体管还采用了新型的封装和设计方式,尤其在通信和工业自动化方面,成为了不可或缺的核心组件。
总结:随着新技术和新材料的不断出现,晶体管已经成为半导体器件的主要代表,逐渐取代了易受外界干扰或电磁波的旧式管子,如真空管和氧化物小信号管。
今天,在各种行业中,晶体管已经占据着重要地位,一切数字电路都依赖于晶体管作为基本器件,而它的诞生和发展则彰显了人类智慧的伟大史诗。
世界芯片制程发展史
世界芯片制程发展史引言:芯片,作为现代电子设备的核心组成部分,扮演着至关重要的角色。
它的发展史可以追溯到上世纪50年代,经历了几代技术革新,不断推动着电子科技的进步。
本文将简要介绍世界芯片制程的发展史,以及其中的关键技术突破和影响。
第一代芯片制程:晶体管技术20世纪50年代末,晶体管技术的出现标志着芯片制程的诞生。
晶体管是一种半导体器件,可以放大和开关电信号。
早期的芯片制程采用的是小规模集成电路(SSI)制造技术,即将几个晶体管集成到一个芯片上。
这种制程技术虽然简单,但限制了芯片的功能和规模。
第二代芯片制程:大规模集成电路(LSI)技术20世纪60年代,随着集成度的提高,大规模集成电路(LSI)技术应运而生。
LSI技术采用新的制造工艺,可以在一个芯片上集成数千个晶体管。
这种技术的出现极大地提高了芯片的功能和性能,使电子设备更加小型化和高效化。
第三代芯片制程:超大规模集成电路(VLSI)技术20世纪70年代,超大规模集成电路(VLSI)技术的问世,将集成度推向了一个新的高度。
VLSI技术可以在一个芯片上集成数十万个晶体管,进一步提高了芯片的功能和性能。
这种技术的应用使得计算机产业得以快速发展,推动了信息时代的到来。
第四代芯片制程:互联集成电路(SOC)技术20世纪80年代末,随着微电子技术的不断进步,互联集成电路(SOC)技术应运而生。
SOC技术是将整个系统集成到一个芯片上,包括处理器、存储器、输入输出接口等。
这种技术的出现使得芯片的功能更加丰富多样,为移动通信、嵌入式系统等领域的快速发展提供了有力支持。
第五代芯片制程:纳米技术21世纪初,纳米技术的突破使得芯片制程迈入了一个新的阶段。
纳米技术可以在纳米尺度上进行精密加工,使得芯片的集成度进一步提高,性能更加强大。
同时,纳米技术还带来了更低的功耗和更小的尺寸,推动了移动设备和智能物联网的迅猛发展。
未来芯片制程展望随着科技的不断进步和创新,芯片制程将继续迎来新的突破。
晶体管和集成电路的成长史
晶体管和集成电路的成长史
晶体管和集成电路是现代电子工业的基础。
它们的发展历程不仅是一段技术革命史,更是人类智慧和创新的结晶。
本文将带您回顾晶体管和集成电路的成长史。
20世纪40年代,美国贝尔实验室的三位科学家沃尔顿·布拉顿、约翰·巴丁和威廉·肖克利发明了第一台晶体管。
晶体管的发明标志着电子器件从真空管时代进入了半导体时代。
晶体管的小型化、可靠性和低功耗等特点,极大地提高了电子器件的性能,也为计算机、通讯、医疗、工业控制等领域的发展带来了巨大的帮助。
20世纪60年代,集成电路的发明更是让电子工业迎来了一次革命。
美国德州仪器公司的杰克·基尔比和罗伯特·劳斯特发明了第一块集成电路,它将多个晶体管、电容器、电阻器等元器件集成在一块硅片上,从而实现了电路的小型化和集成化。
这种新型电路不仅减少了电路的体积和重量,还能提高电路的可靠性和稳定性。
20世纪70年代,随着半导体技术的不断发展,集成电路的规模不断扩大,从几十个晶体管到数百万个晶体管,从单片集成电路到超大规模集成电路,电子器件的性能和功能得到了极大的提升,为人类社会的发展带来了无限的可能。
总之,晶体管和集成电路的发明和发展,让人们看到了电子科技的巨大潜力,也让人们更加相信科技对人类社会的推动作用。
而我们今天所拥有的各种高科技产品,也离不开晶体管和集成电路的成果。
- 1 -。
晶体管的发展历史
晶体管的发展历史1947年12月,由XXX、XXX和XXX组成的研究小组在XXX制造出了第一个点接触型的锗晶体管。
这一发明被认为是20世纪的一项重大发明,为微电子革命的先声。
晶体管的问世使得人们可以用一个小巧、功率消耗低的电子器件来代替体积大、功率消耗大的电子管。
晶体管的发明为后来集成电路的降生奠定了基础。
晶体管的发明可以追溯到1929年,当时工程师XXX取得了一项晶体管的专利。
然而,由于当时的技术水平限制,制造这种器件的材料无法达到足够的纯度,因此这种晶体管无法制造出来。
在为这种器件命名时,XXX想到了它的电阻变换特性,即它是靠一种从“低电阻输入”到“高电阻输出”的转移电流来工作的,于是取名为trans-resister(转换电阻),后来缩写为transister,中文译名为晶体管。
1956年,XXX、巴丁、XXX三人因发明晶体管同时荣获诺贝尔物理学奖。
晶体管的发展历史及其重要里程碑如下:1947年12月16日:XXX、XXX和XXX在XXX实验室制造出第一个晶体管。
1950年:XXX开发出双极晶体管(XXX),这是现在通行的标准的晶体管。
1953年:第一个采用晶体管的商业化设备投入市场,即助听器。
1954年10月18日:第一台晶体管收音机Regency TR1投入市场,仅包含4只锗晶体管。
1961年4月25日:第一个集成电路专利被授予XXX。
1965年:摩尔定律诞生,XXX预测未来一个芯片上的晶体管数量每年将翻一倍。
1968年7月:XXX和XXX创立了XXX,英文名XXX为“集成电子设备(integrated XXX)”的缩写。
亿个晶体管,采用XXX65纳米制程技术生产。
这个处理器的推出标志着XXX在多核处理器领域的领先地位。
2006年11月14日:XXX发布了“英特尔酷睿2四核处理器”,采用XXX65纳米制程技术生产,含有6.2亿个晶体管。
这个处理器的推出使得多核处理器成为主流。
2011年4月19日:XXX发布了“英特尔酷睿i7 2600K”处理器,采用XXX32纳米制程技术生产,含有1.16亿个晶体管。
DRAM技术发展史年表
DRAM技术发展史年表1959 年,美国德州仪器(TI )公司Kilby 在一块Ge衬底上做成两个以上的晶体管, 标志着世界上第一块集成电路的诞生。
1960年,H H Loor 和E Castellani 发明了光刻工艺。
1963年,F.M.Wanlass和C.T.Sah首次提出CMOS技术,今天,95%以上的集成电路芯片都是基于CMOS工艺。
1968年,IBM的R.H.Dennard发明了DRAM的核心记忆单位1T1C(1个晶体管搭配一个电容器)。
这个结构成为所有计算机内最主要的读写元件,至今未曾改变。
1969年,英特尔推出了64位的SRAM芯片(双极静态随机存取存储器),由于其成本缩减到了磁心存储器成本的l/10 ,因此获得了巨大的成功。
1970年,英特尔利用MOS工艺开发出1kb 动态随机存取存储器(DRAM—) 1103 型存储器。
硅片直径为50mm芯, 片面积为8.5mm2,集成度为5000,采用的主要技术为三晶体管单元和刷新技术。
相对于双极技术,MOS技术不仅能耗少而且集成度高,因此DRAM就成为了计算机存储指令和数据的主流技术。
在整个20 世纪70 年代,DRAM一直是英特尔的核心产品和主要利润来源,为其之后的发展奠定了雄厚的资金基础。
1972年,4 kb DRAM问世。
硅片直径为75mm芯, 片面积为15.9mm2,集成度为11000,采用的主要技术为单晶体管单元、差分读出技术和地址多路选择技术。
1975年,16kb DRAM问世。
硅片直径为75-100mm,芯片面积为16.2mm2,集成度为37000,采用的主要技术为二层多晶硅技术。
1978年,64kb DRAM问世,标志着超大规模集成电路(VLSI)时代的来临。
硅片直径为100-125mm,芯片面积为26.6mm2,集成度为155000,采用的主要技术为循环位线、折叠数据线等技术。
1980年,256kb DRAM问世。
硅片直径为125-150mm,芯片面积为34.8mm2,集成度为555000,采用的主要技术为三层多晶硅和冗余技术。
薄膜晶体管
薄膜晶体管目录简介发展历史现状原理发展前景图书信息简介薄膜晶体管 (英文名称为Thin-film transistor,简称TFT)是场效应晶体管的种类之一,大略的整理方式是在基板上沉积各种不同的薄膜,如半导体主动层、介电层和金属电极层。
薄膜晶体管是液晶显示器的关键器件,对显示器件的工作性能具有十分重要的作用.发展历史及现状人类对TFT的研究工作已经有很长的历史. 早在1925年,Julius Edger Lilienfeld首次提出结型场效应晶体管(FET)的基本定律,开辟了对固态放大器的研究.1933年,Lilienfeld 又将绝缘栅结构引进场效应晶体管(后来被称为 MISFET).1962 年,Weimer用多晶CaS薄膜做成TFT;随后,又涌现了用CdSe,InSb,Ge等半导体材料做成的TFT器件.二十世纪六十年代,基于低费用,大阵列显示的实际需求,TFT的研究广为兴起.1973年,Brody等人136光子技术2006年9月首次研制出有源矩阵液晶显示(AMLCD),并用CdSe TFT作为开关单元.随着多晶硅掺杂工艺的发展,1979年后来许多实验室都进行了将 AMLCD LeComber,Spear和Ghaith 用a-Si:H做有源层,做成TFT 器件.以玻璃为衬底的研究.二十世纪八十年代,硅基TFT在AMLCD 中有着极重要的地位,所做成的产品占据了市场绝大部分份额.1986年Tsumura等人首次用聚噻吩为半导体材料制备了有机薄膜晶体管(OTFT),OTFT技术从此开始得到发展.九十年代,有机半导体材料作为活性层成为新的研究热点.由于在制造工艺和成本上的优势,OTFT被认为将来极可能应用在LCD,OLED的驱动中.近年来,OTFT的研究取得了突破性的进展.1996 年,飞利浦公司采用多层薄膜叠合法整理了一块15微克变成码发生器(PCG);即使当薄膜严重扭曲,仍能正常工作.1998 年,无定型金属氧化物锆酸钡作为并五苯有机薄膜晶体管的栅绝IBM 公司用一种新型的具有更高的介电常数缘层,使该器件的驱动电压降低了4V,迁移率达到0.38cm2V-1s-1.1999年,Bell实验室的Katz和他的研究小组制得了在室温下空气中能稳定存在的噻吩薄膜,并使器件的迁移率达到0.1cm2V-1s-1.Bell实验室用并五苯单晶制得这向有机集成了一种双极型有机薄膜晶体管, 该器件对电子和空穴的迁移率分别达到2.7cm2V-1s-1和1.7cm2V-1s-1,电路的实际应用迈出了重要的一步.最近几年,随着透明氧化物研究的深入,以ZnO,ZIO等半导体材料作为活性层整理薄膜晶体管,因性能改进显着也吸引了越来越多的兴趣.器件制备工艺很广泛,比如:MBE,CVD,PLD等,均有研究.ZnO-TFT 技术也取得了突破性进展.2003 年,Nomura等人使用单晶 InGaO3(ZnO)5获得了迁移率为80 cm2V-1s-1的TFT器件.美国杜邦公司采用真空蒸镀和掩膜挡板技术在聚酰亚铵柔性衬底上开发了ZnO-TFT,这是在聚酰亚铵柔性衬底上首次研制成功了高迁移率的ZnO-TFT,这预示着在氧化物TFT子迁移率为50cm2V-1s-1.2006 年,Cheng领域新竞争的开始.2005年,ChiangHQ等人利用ZIO作为活性层制得开关比10薄膜晶体管.HC等人利用CBD方法制得开关比为105,迁移率为0.248cm2V-1s-1的TFT,这也显示出实际应用的可能.[1]原理薄膜晶体管是一种绝缘栅场效应晶体管.它的工作状态可以利用 Weimer表征的单晶硅MOSFET工作原理来描述.以n沟MOSFE为例. 当栅极施以正电压时,栅压在栅绝缘层中产生电场,电力线由栅电极指向半导体表面,并在表面处产生感应电荷.随着栅电压增加,半导体表面将由耗尽层转变为电子积累层,形成反型层.当达到强反型时(即达到开启电压时),源,漏间加上电压就会有载流子通过沟道.当源漏电压很小时,导电沟道近似为一恒定电阻,漏电流随源漏电压增加而线性增大.当源漏电压很大时,它会对栅电压产生影响,使得栅绝缘层中电场由源端到漏端逐渐减弱,半导体表面反型层中电子由源端到漏端逐渐减小,沟道电阻随着源漏电压增大而增加.漏电流增加变得缓慢,对应线性区向饱和区过渡.当源漏电压增到一定程度,漏端反型层厚度减为零,电压在增加,器件进入饱和区.在实际LCD生产中,主要利用a-Si:H TFT的开态(大于开启电压)对像素电容快速充电,利用关态来保持像素电容的电压,从而实现快速响应和良好存储的统一.发展前景未来TFT技术将会以高密度,高分辨率,节能化,轻便化,集成化为发展主流,从本文论述的薄膜晶体管发展历史以及对典型 TFT 器件性能分析来看,虽然新型OTFT,ZnO-TFT的研究已经揭示出优良的特性,甚至有的已经开始使用化,但实现大规模的商业化以及进一步降低成本等方面,还需要很多努力.因此在很长一段时间内将会与硅基材料器件并存.我国大陆的显示技术处于刚开始阶段,对新型TFT器件的研发以及显示技术的应用带来了重大的机遇和挑战.相信在不久的将来,OTFT和ZnO-TFT等新型器件为基础的产品会推动下一代光电子学的突飞猛进.图书信息书名:薄膜晶体管出版社: 电子工业出版社; 第1版 (2008年3月1日)平装: 450页正文语种: 简体中文开本: 16商品尺寸: 23.4 x 18.2 x 2.4 cm品牌: 电子工业出版社发行部TFT是如何工作的?TFT也就是薄膜晶体管,是用来主动控制每一个像素光通过量的元件。
从10μm-45nm 英特尔CPU制程发展史
首先我们来了解一下摩尔定律,是由Intel的创始人戈登摩尔(Gordon Moore)通过长期的对比,研究后发现:CPU中的部件(我们现在所说的晶体管)在不断增加,其价格也在不断下降。“随着单位成本的降低以及单个集成电 路集成的晶体管数量的增加;到1975年,从经济学来分析,单个集成电路应该集成65000个晶体管。”Intel此后几年的发展都被摩尔提前算在了纸 上,使人们大为惊奇,“摩尔定律”也名声大振。为了让人们更直观地了解摩尔定律,摩尔及其同事总结出一句极为精练的公式 “集成电路所包含的晶体管每18个月就会翻一番”。
从10μm-45nm 英特尔CPU制程发展史
(2009-06-13 205433)
转载
从10μm-45nm 英特尔CPU制程发展史
[ 来源工作站之 家 作者 工作站之家新闻组 时间2008-09-09 180605 收藏本文 ] 【大 中 小】
自1947年晶体管发明迄今,科技进步的速度惊 人,催生了功能更为先进强大,又能兼顾成本效益和耗电量的产品。虽然科技进展迅速,但晶体管产生的废热和漏电,仍是缩小设计及延续摩尔定律 (Moore ' s Law) 的最大障碍,因此业界必须以新材料取代过去40年来制作晶体管的材料。
1995年后,半导体行业已普遍采用0.35微米(350nm)工艺进行主流芯片的生产。从 Pentium 133开始,Intel也开始采用0.35微米制程断提高,功耗降低,性能也相应提高了。
双极型晶体管发展历史
双极型晶体管发展历史一、引言双极型晶体管,简称双极晶体管或BJT,是半导体电子器件的一种,主要用于信号放大、逻辑门电路和各类电流开关应用。
它的发明和应用对现代电子工业的发展起到了关键的推动作用。
本文将详细探讨双极型晶体管的发展历程,从早期的探索、商业化应用到成熟与改进,再到现代的发展与展望。
二、早期研究与探索双极型晶体管的研究可以追溯到20世纪初。
在1926年,美国科学家克林顿·戴维在贝尔实验室开始了对半导体材料的研究。
随后,在1930年代,英国物理学家央斯基在无线电通讯领域发现了重要的射频放大现象,这为双极晶体管的发明奠定了基础。
三、早期商业化应用1940年代初,美国贝尔实验室的威廉·肖克利、约翰·巴丁和沃尔特·布拉顿组成的研究团队,首次成功研制出双极晶体管。
这一发明被视为固体电子学发展的里程碑之一。
不久后,这种器件开始被商业化生产,并广泛应用于雷达、通信和电子对抗等领域。
四、成熟与改进在随后的数十年中,随着半导体技术和工艺的不断进步,双极晶体管的性能得到了显著提升。
同时,随着各类集成电路技术的发展,双极晶体管在数字逻辑电路、计算机和微处理器等领域的应用也日益广泛。
五、现代发展与展望进入21世纪,随着新材料、新工艺和新结构的不断涌现,双极晶体管的设计和制造技术也在不断革新。
例如,采用硅基材料和先进制程技术制造的高性能双极晶体管,具有更低的功耗、更高的速度和更好的稳定性。
此外,新型的双极晶体管结构如异质结双极晶体管(HBT)和穿通晶体管(BTT)也取得了重要的突破,使器件性能进一步得到提升。
在未来,双极晶体管将继续在各类电子系统中发挥重要作用。
随着物联网、人工智能和5G通信等新兴技术的发展,双极晶体管将在这些领域中发挥关键作用。
例如,在5G通信中,双极晶体管的高频率和大电流特性使其成为功率放大器的重要选择。
同时,随着环保意识的增强和绿色能源需求的增加,双极晶体管在太阳能逆变器、风力发电系统和电动车电机控制器等领域也将发挥越来越大的作用。
晶体管的发展史
晶体管的发展史晶体管是现代电子技术的基础元件之一,其发展历程经历了几个重要的阶段。
本文将从晶体管的诞生开始,逐步介绍晶体管的发展历史。
第一阶段:晶体管的诞生与初步发展(1947-1954年)1947年12月23日,贝尔实验室的三位科学家肖克利、巴丁和布拉顿成功制造出了第一枚晶体管。
这一发现引起了轰动,被誉为电子技术史上的里程碑。
这种新型的电子元件取代了早期使用的电子管,具有体积小、功耗低、可靠性高等优势。
在接下来的几年里,科学家们不断改进晶体管的结构和性能,逐步实现了对信号的放大和开关控制。
第二阶段:晶体管的工艺发展与商业化应用(1955-1969年)在上世纪50年代,随着对晶体管的深入研究,人们逐渐发现了半导体材料的重要性。
晶体管的材料从最初的锗(Ge)发展到了硅(Si),使得晶体管的性能得到了显著提升。
此外,人们还发现了PN结的重要作用,通过控制PN结的电场,实现了晶体管的放大与开关。
这些技术的突破使得晶体管的工艺得到了长足的发展。
随着晶体管技术的成熟,商业化应用也逐渐展开。
1956年,IBM公司发布了第一款商业化的晶体管计算机,标志着晶体管技术在计算机领域的应用。
而在通信领域,晶体管的应用也得到了广泛推广,使得电视、收音机等电子产品的性能得到了极大提升。
第三阶段:集成电路的兴起与微型化时代(1970-至今)进入上世纪70年代,集成电路(IC)的概念提出,即在单个芯片上集成多个晶体管和其他电子元件。
这一技术的出现,使得电子设备的体积进一步缩小,性能得到了更大的提升。
随着集成电路技术的不断发展,芯片上晶体管的数量也不断增加,从最初的几十个到现在的数十亿个。
晶体管的尺寸也在不断缩小。
20世纪80年代,人们实现了微米级晶体管的制造,进入微型化时代。
随着纳米技术的发展,如今已经实现了纳米级晶体管的制造,使得电子设备更加微型化、高集成化。
结语晶体管的发展史见证了人类电子技术的巨大进步。
从晶体管的诞生到集成电路的兴起,再到微型化时代的到来,晶体管不断演变和创新,为现代电子技术的发展提供了坚实的基础。
中国晶体管发展历史
中国晶体管发展历史
晶体管是一种电子元器件,相比于电子管具有更小体积、更低功耗、更长寿命等优点。
中国晶体管的研发历程可以追溯到上世纪50年代。
上世纪50年代初,在中国科学院物理研究所,陈启宏等人开始
了晶体管材料的研发工作。
经过不断的实验探索,他们终于在1955年
制备出了我国第一台晶体管。
1956年,中国第一次在华北实现了晶体管的批量生产。
但是,由于设备原材料等方面的限制,国产晶体管很快被进口的产品所取代。
随着国家对科学技术研发投入的不断增加,中国的晶体管研究也
得到了发展。
上世纪60年代,中国成立了晶体管厂,开展了晶体管的
大规模生产。
进入21世纪,中国的晶体管产业已经形成了比较完善的产业链,涵盖从芯片设计到封装测试等环节。
目前,中国的一些晶体管企业已
经拥有了自主知识产权,并且其晶体管产品在国内市场通行。
未来,中国的晶体管产业将会面临更多的发展机遇和挑战,但是
在不断的创新和技术升级中,中国的晶体管产业将会更加进步和壮大。
世界集成电路发展简史
历史上第一个晶体管于60年前—1947年12月16日诞生于美国新泽西州的贝尔实验室(Bell Laboratories )。
发明者威廉 ·肖克利(William Shockley )、约翰 ·巴丁(John Bardeen )和沃尔特 ·布拉顿(Walter Brattain )为此获得了1956年的诺贝尔物理学奖。
固态半导体(solid-state )的发明使得之后集成电路的发明成为可能。
这一杰出成就为世界半导体产业的发展奠定了基础。
之后的60年里,半导体技术的发展极大地提升了劳动生产力,促进了世界经济的发展,改善了人们的生活水平。
美国半导体协会(SIA )总裁乔治·斯卡利思(George Scalise )曾经说过:“60年前晶体管的发明为这个不断发展的世界带来了巨大的变革,这一历史性的里程碑式的发明,意义不容小觑。
晶体管是无数电子产品的关键组成部分,而这些电子产品几乎对人类生活的各个方面都带来了革命性的变化。
2007年,全世界的微电子行业为地球上每一个男人、女人和小孩各生产出9亿个晶体管—总计达6,000,000,000,000,000,000(六百亿亿)个, 产业销售额超过2570亿美元”。
回顾晶体管的发明和集成电路产业的发展历程, 我们可以看到,60年前晶体管的发明并非一个偶然事件,它是在世界一流的专业技术人才的努力下,在鼓励大胆创新的环境中,在政府的鼓励投资研发的政策支持下产生的。
同时,我们也可以看到集成电路产业从无到有并高速发展是整个业界相互合作和共同创新的结果。
前言SEMICONDUCTOR INDUSTRY ASSOCIATION资料来源:美国半导体生产商协会(SIA )发现和研究半导体效应1833年,英国物理学家迈克尔·法拉第(Michael Faraday)在研究硫化银晶体的导电性时,发现了硫化银晶体的电导率随温度升高而增加这一“特别的现象”。
晶体管技术的发展史
晶体管技术的发展史晶体管是一种电子元件,它曾经是许多电网设备中必不可少的部分。
虽然现在有很多更现代化的装置和工具可以代替它,但是晶体管仍然是电学科技中至关重要的一环。
本文将探讨晶体管技术的发展史。
1. 贴片晶体管的诞生1945年,物理学家John Bardeen、Walter Brattain和William Shockley在贝尔实验室合作发明了第一个晶体管。
这个晶体管由三个层面构成:一个n型半导体和两个p型半导体。
很快,技术就被改进为贴片晶体管。
如今,贴片晶体管虽然已经淘汰了,但它成为了后来的传统晶体管的基础。
2. 金属氧化物半导体场效应晶体管20世纪60年代初,Dawon Kahng和Martin Atalla创造了金属氧化物半导体场效应晶体管(MOSFET)。
这种晶体管的重要特点是使用氧化物作为绝缘层。
与传统晶体管不同的是,MOSFET通过改变绝缘层和晶体管之间通电的电压来进行控制电流的功能。
MOSFET是许多现代计算机中的核心部件。
3. 互补型场效应晶体管20世纪70年代,CMOS技术被广泛使用,成为电子电路的核心。
互补型场效应晶体管(CMOS)使用n型和p型晶体管来实现逻辑门的控制。
它比MOSFET更有效率,更强大。
如今,大多数电路的设计都使用CMOS技术,因为它的功耗更低、稳定性更好,所带来的制造成本也更低。
4. 集成电路和微处理器20世纪60年代,科学家们将晶体管集成到一个完整的半导体芯片上,产生了第一个集成电路(IC)。
20世纪70年代,微型处理器横空出世,并开始性能的迅猛提升。
这些技术的发展为现代计算机设备的出现以及数字技术的高速发展提供了稳定的基础。
5. 现代晶体管技术现代晶体管技术已经开始探索新领域,例如,给出了密码学研究所需的新型逻辑门类型。
同样,晶体管技术逐渐向着量子领域发展。
在数据处理和存储、信息安全和其他应用领域,晶体管技术所带来的创新和优势还有很多待发掘。
总结晶体管技术一直被认为是电子学的基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电子技术发展的里程碑——晶体管谈到晶体管,也许很多人会感到很陌生.然而,就是小小的晶体管的发明给电子学带来了一场革命.这场革命发展之迅速、波及范围之广泛,完全超出了人们的想象.现在晶体管和微型电路几乎无所不能,无处不在.小到人们日常生活中的助听器、收音机、录音机和电视机,大到实验室仪器、工业生产及国防设备、计算机、机器人、宇宙飞盘等,都离不开晶体管.可以毫不夸张地说,晶体管奠定了现代电子技术的基础.可是,晶体管究竟是什么样的?它又是怎样发明出来的?必不可少的一步——电子管的问世1883年,闻名世界的大发明家爱迪生发明了第一只白炽照明灯.电灯的发明,给一直生活在黑暗之中的人们送去了光明和温暖.就在这个过程中,爱迪生还发现了一个奇特的现象:一块烧红的铁会散发出电子云.后人称之为爱迪生效应.1884年的一天,一位叫弗莱明的英国发明家,远涉重洋,风尘仆仆地来到美国,拜会了他慕名已久的爱迪生.就在这两位大发明家的会见中,爱迪生再次展示了爱迪生效应.遗憾的是,由于当时技术条件的限制,不论是爱迪生,还是弗莱明,都对这一效应百思不得其解,不知道利用这一效应能做些什么.20世纪初,有线电报问世了.这一发明给人们带来了很多便利.有线电报发出的信号是高频无线电波,收信台必须进行整流,才能从听筒中听出声音来.当时的整流器结构复杂,功效又差,亟待改进.正在研究高频整流器的弗莱明灵机一动,他想,如果把爱迪生效应应用在检波器上,结果会怎样呢?就这样,引出了一个新的发明.1904年弗莱明在真空中加热的电丝(灯丝)前加了一块板极,从而发明了第一只电子管.他把这种装有两个极的电子管称为二极管.利用新发明的电子管,可以给电流整流,使电话受话器或其它记录装置工作起来.如今,打开一架普通的电子管收音机,我们很容易看到灯丝烧得红红的电子管.它是电子设备工作的心脏,是电子工业发展的起点.弗莱明的二极管是一项崭新的发明.它在实验室中工作得非常好.可是,不知为什么,它在实际用于检波器上却很不成功,还不如同时发明的矿石检波器可靠.因此,对当时无线电的发展没有产生什么冲击.此后不久,贫困潦倒的美国发明家德福雷斯特,在二极管的灯丝和板极之间巧妙地加了一个栅板,从而发明了第一只真空三极管.这一小小的改动,竟带来了意想不到的结果.它不仅反应更为灵敏、能够发出音乐或声音的振动,而且,集检波、放大和振荡三种功能于一体.因此,许多人都将三极管的发明看作电子工业真正的诞生起点.德福雷斯特自己也非常惊喜,认为“我发现了一个看不见的空中帝国”.电子管的问世,推动了无线电电子学的蓬勃发展.到1960年前后,西方国家的无线电工业年产10亿只无线电电子管.电子管除应用于电话放大器、海上和空中通讯外,也广泛渗透到家庭娱乐领域,将新闻、教育节目、文艺和音乐播送到千家万户.就连飞机、雷达、火箭的发明和进一步发展,也有电子管的一臂之力.三条腿的魔术师电子管在电子学研究中曾是得心应手的工具.电子管器件历时40余年一直在电子技术领域里占据统治地位.但是,不可否认,电子管十分笨重,能耗大、寿命短、噪声大,制造工艺也十分复杂.因此,电子管问世不久,人们就在努力寻找新的电子器件.第二次世界大战中,电子管的缺点更加暴露无遗.在雷达工作频段上使用的普通的电子管,效果极不稳定.移动式的军用器械和设备上使用的电子管更加笨拙,易出故障.因此,电子管本身固有的弱点和迫切的战时需要,都促使许多科研单位和广大科学家,集中精力,迅速研制成功能取代电子管的固体元器件.早在30年代,人们已经尝试着制造固体电子元件.但是,当时人们多数是直接用模仿制造真空三极管的方法来制造固体三极管.因此这些尝试毫无例外都失败了.年6月的一天,在美国贝尔实验室的一个房间里,一架样式很普通的收音机正在播放着轻柔的音乐,许多参观者在它面前驻足不前.为什么大家都对这台收音机情有独钟呢?原来这是第一架不用电子管,而代之以一种新的固体元件——晶体管的收音机.虽然人们对这架收音机显露出浓厚的兴趣.然而,他们对晶体管本身却不以为然.美国《纽约先驱论坛报》的记者在报道中写道:“这一器件还在实验室阶段,工程师们都认为它在电子工业中的革新是有限的.”事实上,晶体管发明以后,在不长的时间内,它的深远影响便很快地显示出来.它在电子学领域完成了一场真正的革命.什么是晶体管呢?通俗地说,晶体管是半导体做的固体电子元件.像金银铜铁等金属,它们导电性能好,叫做导体.木材、玻璃、陶瓷、云母等不易导电,叫做绝缘体.导电性能介于导体和绝缘体之间的物质,就叫半导体.晶体管就是用半导体材料制成的.这类材料最常见的便是锗和硅两种.半导体是19世纪末才发现的一种材料.当时人们并没有发现半导体的价值,也就没有注重半导体的研究.直到二次大战中,由于雷达技术的发展,半导体器件——微波矿石检波器的应用日趋成熟,在军事上发挥了重要作用,这才引起了人们对半导体的兴趣.许多科学家都投入到半导体的深入研究中.经过紧张的研究工作,美国物理学家肖克利、巴丁和布拉顿三人捷足先登,合作发明了晶体管——一种三个支点的半导体固体元件.晶体管被人们称为“三条腿的魔术师”.它的发明是电子技术史中具有划时代意义的伟大事件,它开创了一个崭新的时代——固体电子技术时代.他们三人也因研究半导体及发现晶体管效应而共同获得1956年最高科学奖——诺贝尔物理奖.肖克利小组与晶体管美国人威廉·肖克利,1910年2月13日生于伦敦,曾在美国麻省理工学院学习量子物理,1936年得到该校博士学位后,进入久负盛名的贝尔实验室工作.贝尔实验室是电话发明人贝尔创立的.在电子、特别在通讯领域是最有名气的研究所,号称“研究王国”.早在1936年,当时的研究部主任,后来的贝尔实验室总裁默文·凯利就对肖克利说过,为了适应通讯不断增长的需要,将来一定会用电子交换取代电话系统的机械转换.这段话给肖克利留下了不可磨灭的印象,激起他满腔热情,把毕生精力投入到推进电子技术进步的事业中.沃尔特·布拉顿也是美国人,1902年2月10日出生在中国南方美丽的城市厦门,当时他父亲受聘在中国任教.布拉顿是实验专家,1929年获得明尼苏达大学的博士学位后,进入贝尔研究所从事真空管研究工作.温文儒雅的美国人巴丁是一个大学教授的儿子,1908年在美国威斯康星州的麦迪逊出生,相继于1928年和1929年在威斯康星大学获得两个学位.后来又转入普林斯顿大学攻读固体物理,1936年获得博士学位.1945年来到贝尔实验室工作.默文·凯利是一位颇有远见的科技管理人员.他从30年代起,就注意寻找和采用新材料及依据新原理工作的电子放大器件.在第二次世界大战前后,敏锐的科研洞察力促使他果断地决定加强半导体的基础研究,以开拓电子技术的新领域.于是,1945年夏天,贝尔实验室正式决定以固体物理为主要研究方向,并为此制定了一个庞大的研究计划.发明晶体管就是这个计划的一个重要组成部分.1946年1月,贝尔实验室的固体物理研究小组正式成立了.这个小组以肖克利为首,下辖若干小组,其中之一包括布拉顿、巴丁在内的半导体小组.在这个小组中,活跃着理论物理学家、实验专家、物理化学家、线路专家、冶金专家、工程师等多学科多方面的人才.他们通力合作,既善于汲取前人的有益经验,又注意借鉴同时代人的研究成果,博采众家之长.小组内部广泛开展有益的学术探讨.“有新想法,新问题,就召集全组讨论,这是习惯”.在这样良好的学术环境中,大家都充满热情,完全沉醉在理论物理领域的研究与探索中.开始,布拉顿和巴丁在研究晶体管时,采用的是肖克利提出的场效应概念.场效应设想是人们提出的第一个固体放大器的具体方案.根据这一方案,他们仿照真空三极管的原理,试图用外电场控制半导体内的电子运动.但是事与愿违,实验屡屡失败.人们得到的效应比预期的要小得多.人们困惑了,为什么理论与实际总是矛盾的呢?问题究竟出在那里呢?经过多少个不眠之夜的苦苦思索,巴丁又提出了一种新的理论——表面态理论.这一理论认为表面现象可以引起信号放大效应.表面态概念的引入,使人们对半导体的结构和性质的认识前进了一大步.布拉顿等人乘胜追击,认真细致地进行了一系列实验.结果,他们意外地发现,当把样品和参考电极放在电解液里时,半导体表面内部的电荷层和电势力发生了改变,这不正是肖克利曾经预言过的场效应吗?这个发现使大家十分振奋.在极度兴奋中,他们加快了研究步伐,利用场效应又反复进行了实验.谁知,继续实验中突然发生了与以前截然不同的效应.这接踵而至的新情况大大出乎实验者的预料.人们的思路被打断了,制作实用器件的原计划不能不改变了,渐趋明朗的形势又变得扑朔迷离了.然而肖克利小组并没有知难而退.他们紧紧循着茫茫迷雾中的一丝光亮,改变思路,继续探索.经过多次地分析、计算、实验,1947年12月23日,人们终于得到了盼望已久的“宝贝”.这一天,巴丁和布拉顿把两根触丝放在锗半导体晶片的表面上,当两根触丝十分靠近时,放大作用发生了.世界第一只固体放大器——晶体管也随之诞生了.在这值得庆祝的时刻,布拉顿按捺住内心的激动,仍然一丝不苟地在实验笔记中写道:“电压增益100,功率增益40,电流损失1/2.5……亲眼目睹并亲耳听闻音频的人有吉布尼、摩尔、巴丁、皮尔逊、肖克利、弗莱彻和包文.”在布拉顿的笔记上,皮尔逊、摩尔和肖克利等人分别签上了日期和他们的名字表示认同.巴丁和布拉顿实验成功的这种晶体管,是金属触丝和半导体的某一点接触,故称点接触晶体管.这种晶体管对电流、电压都有放大作用.晶体管发明之后基于严谨的科学态度,贝尔实验室并没有立即发表肖克利小组的研究成果.他们认为,还需要时间弄清晶体管的效应,以便编写论文和申请专利.此后一段时间里,肖克利等人在极度紧张的状态中忙碌地工作着.他们心中隐藏着一丝忧虑.如果别人也发明了晶体管并率先公布了,他们的心血就付之东流了.他们的担心绝非多虑,当时许多科学家都在潜心于这一课题的研究.1948年初,在美国物理学会的一次会议上,柏杜大学的布雷和本泽报告了他们在锗的点接触方面所进行的实验及其发现.当时贝尔实验室发明晶体管的秘密尚未公开,它的发明人之一——布拉顿此刻就端坐在听众席上.布拉顿清楚地意识到布雷等人的实验距离晶体管的发明就差一小步了.因此,会后布雷与布拉顿聊天时谈到他们的实验时,布拉顿立刻紧张起来.他不敢多开口,只让对方讲话,生怕泄密给对方,支吾几句就匆匆忙忙地走开了.后来,布雷曾惋惜地说过:“如果把我的电极靠近本泽的电极,我们就会得到晶体管的作用,这是十分明白的.”由此可见,当时科学界的竞争是多么的激烈!实力雄厚的贝尔实验室在这场智慧与技能的角逐中,也不过略胜一筹.晶体管发明半年以后,在1948年6月30日,贝尔实验室首次在纽约向公众展示了晶体管.这个伟大的发明使许多专家不胜惊讶.然而,对于它的实用价值,人们大都表示怀疑.当年7月1日的《纽约时报》只以8个句子、201个文字的短讯形式报道了本该震惊世界的这条新闻.在公众的心目中,晶体管不过是实验室的珍品而已.估计只能做助听器之类的小东西,不可能派上什么大用场.的确,当时的点接触晶体管同矿石检波器一样,利用触须接点,很不稳定,噪声大,频率低,放大功率小,性能还赶不上电子管,制作又很困难.难怪人们对它无动于衷.然而,物理学家肖克利等人却坚信晶体管大有前途,它的巨大潜力还没有被人们所认识.于是,在点接触式晶体管发明以后,他们仍然不遗余力,继续研究.又经过一个多月的反复思索,肖克利瘦了,眼中也布满了血丝.一个念头却在心中越来越明晰了,那就是以往的研究之所以失败,根本原因在于人们不顾一切地盲目模仿真空三极管.这实际上走入了研究的误区.晶体管同电子管产生于完全不同的物理现象,这就暗示晶体管效应有其独特之处.明白了这一点,肖克利当即决定暂时放弃原来追求的场效应晶体管,集中精力实现另一个设想——晶体管的放大作用.正确的思想终于开出了最美的花朵.1948年11月,肖克利构思出一种新型晶体管,其结构像“三明治”夹心面包那样,把N型半导体夹在两层P型半导体之间.这是一个多么富有想象力的设计啊!可惜的是,由于当时技术条件的限制,研究和实验都十分困难.直到1950年,人们才成功地制造出第一个PN结型晶体管.电子技术发展史上一座里程碑晶体管的出现,是电子技术之树上绽开的一朵绚丽多彩的奇葩.同电子管相比,晶体管具有诸多优越性:①晶体管的构件是没有消耗的.无论多么优良的电子管,都将因阴极原子的变化和慢性漏气而逐渐劣化.由于技术上的原因,晶体管制作之初也存在同样的问题.随着材料制作上的进步以及多方面的改善,晶体管的寿命一般比电子管长100到1000倍,称得起永久性器件的美名.②晶体管消耗电子极少,仅为电子管的十分之一或几十分之一.它不像电子管那样需要加热灯丝以产生自由电子.一台晶体管收音机只要几节干电池就可以半年一年地听下去,这对电子管收音机来说,是难以做到的.③晶体管不需预热,一开机就工作.例如,晶体管收音机一开就响,晶体管电视机一开就很快出现画面.电子管设备就做不到这一点.开机后,非得等一会儿才听得到声音,看得到画面.显然,在军事、测量、记录等方面,晶体管是非常有优势的.④晶体管结实可靠,比电子管可靠100倍,耐冲击、耐振动,这都是电子管所无法比拟的.另外,晶体管的体积只有电子管的十分之一到百分之一,放热很少,可用于设计小型、复杂、可靠的电路.晶体管的制造工艺虽然精密,但工序简便,有利于提高元器件的安装密度.正因为晶体管的性能如此优越,晶体管诞生之后,便被广泛地应用于工农业生产、国防建设以及人们日常生活中.1953年,首批电池式的晶体管收音机一投放市场,就受到人们的热烈欢迎,人们争相购买这种收音机.接着,各厂家之间又展开了制造短波晶体管的竞赛.此后不久,不需要交流电源的袖珍“晶体管收音机”开始在世界各地出售,又引起了一个新的消费热潮.由于硅晶体管适合高温工作,可以抵抗大气影响,在电子工业领域是最受欢迎的产品之一.从1967年以来,电子测量装置或者电视摄像机如果不是“晶体管化”的,那么就别想卖出去一件.轻便收发机,甚至车载的大型发射机也都晶体管化了.另外,晶体管还特别适合用作开关.它也是第二代计算机的基本元件.人们还常常用硅晶体管制造红外探测器.就连可将太阳能转变为电能的电池——太阳能电池也都能用晶体管制造.这种电池是遨游于太空的人造卫星的必不可少的电源.晶体管这种小型简便的半导体元件还为缝纫机、电钻和荧光灯开拓了电子控制的途径.从1950年至1960年的十年间,世界主要工业国家投入了巨额资金,用于研究、开发与生产晶体管和半导体器件.例如,纯净的锗或硅半导体,导电性能很差,但加入少量其它元素(称为杂质)后,导电性能会提高许多.但是要想把定量杂质正确地熔入锗或硅中,必须在一定的温度下,通过加热等方法才能实现.而一旦温度高于摄氏75度,晶体管就开始失效.为了攻克这一技术难关,美国政府在工业界投资数百万美元,以开展这项新技术的研制工作.在这样雄厚的财政资助下,没过多久,人们便掌握了这种高熔点材料的提纯、熔炼和扩散的技术.特别是晶体管在军事计划和宇宙航行中的威力日益显露出来以后,为争夺电子领域的优势地位,世界各国展开了激烈的竞争.为实现电子设备的小型化,人们不惜成本,纷纷给电子工业以巨大的财政资助.自从1904年弗莱明发明真空二极管,1906年德福雷斯特发明真空三极管以来,电子学作为一门新兴学科迅速发展起来.但是电子学真正突飞猛进的进步,还应该是从晶体管发明以后开始的.尤其是PN结型晶体管的出现,开辟了电子器件的新纪元,引起了一场电子技术的革命.在短短十余年的时间里,新兴的晶体管工业以不可战胜的雄心和年轻人那样无所顾忌的气势,迅速取代了电子管工业通过多年奋斗才取得的地位,一跃成为电子技术领域的排头兵.现代电子技术的基础诚然,电子管的发明使电子设备发生了革命性变化.但是电子管体大易碎,费电又不可靠.因此,晶体管的问世被誉为本世纪最伟大的发明之一,它解决了电子管存在的大部分问题.可是单个晶体管的出现,仍然不能满足电子技术飞速发展的需要.随着电子技术应用的不断推广和电子产品发展的日趋复杂,电子设备中应用的电子器件越来越多.比如二次世界大战末出现的B29轰炸机上装有1千个电子管和1万多个无线电元件.电子计算机就更不用说了.1960年上市的通用型号计算机有10万个二极管和2.5万个晶体管.一个晶体管只能取代一个电子管,极为复杂的电子设备中就可能要用上百万个晶体管.一个晶体管有3条腿,复杂一些的设备就可能有数百万个焊接点,稍一不慎,就极有可能出现故障.为确保设备的可靠性,缩小其重量和体积,人们迫切需要在电子技术领域来一次新的突破.1957年苏联成功地发射了第一颗人造卫星.这一震惊世界的消息引起了美国朝野的极大震动,它严重挫伤了美国人的自尊心和优越感,发达的空间技术是建立在先进的电子技术基础上的.为夺得空间科技的领先地位,美国政府于1958年成立了国家航空和宇航局,负责军事和宇航研究,为实现电子设备的小型化和轻量化,投入了天文数字的经费.就是在这种激烈的军备竞赛的刺激下,在已有的晶体管技术的基础上,一种新兴技术诞生了,那就是今天大放异彩的集成电路.有了集成电路,计算机、电视机等与人类社会生活密切相关的设备不仅体积小了,功能也越来越齐全了,给现代人的工作、学习和娱乐带来了极大便利.那么,什么是集成电路呢?集成电路是在一块几平方毫米的极其微小的半导体晶片上,将成千上万的晶体管、电阻、电容、包括连接线做在一起.真正是立锥之地布千军.它是材料、元件、晶体管三位一体的有机结合.集成电路的问世是离不开晶体管技术的,没有晶体管就不会有集成电路.本质上,集成电路是最先进的晶体管——外延平面晶体制造工艺的延续.集成电路设想的提出,同晶体管密切相关.1952年,英国皇家雷达研究所的一位著名科学家达默,在一次会议上曾指出:“随着晶体管的出现和对半导体的全面研究,现在似乎可以想象,未来电子设备是一种没有连接线的固体组件.”虽然达默的设想并未付诸实施,但是他为人们的深入研究指明了方向.后来,一个叫基尔比的美国人步达默的后尘,走上了研究固体组件这条崎岖的小路.基尔比毕业于伊利诺斯大学电机工程系.1952年一个偶然机会,基尔比参加了贝尔实验室的晶体管讲座.富于创造性的基尔比一下子就被晶体管这个小东西迷住了.当时,他在一家公司负责一项助听器研究计划.心系晶体管的基尔比不由自主地想把晶体管用在助听器上,他果然获得了成功.他研究出一种简便的方法,将晶体管直接安装在塑料片上,并用陶瓷密封.初步的成功使他对晶体管的兴趣与日俱增.为寻求更大的发展,基尔比于1958年5月进入得克萨斯仪器公司.当时,公司正参与美国通信部队的一项微型组件计划.基尔比非常希望能在这一计划中一显身手.强烈的自尊促使他决心凭自己的智慧和努力进入这一计划.于是,他常常一个人埋头在工厂,思考采用半导体制造整个电路的途径.记不清多少次苦苦思索,多少回实验,多少次挫折,经过长时间的孤军奋战,到1959年,一块集成电路板终于在基尔比的手中诞生了.同年3月,这一产品被拿到无线电工程师协会上展出.得克萨斯公司当时的副总裁谢泼德自豪地宣布,这是“硅晶体管后得克萨斯仪器公司最重要的开发成果”.在晶体管技术基础上迅速发展起来的集成电路,带来了微电子技术的突飞猛进.微电子技术的不断进步,极大降低了晶体管的成本,在1960年,生产1只晶体管要花10美元,而今天,1只嵌入集成电路里的晶体管的成本还不到1美分.这使晶体管的应用更为广泛了.不仅如此,微电子技术通过微型化、自动化、计算机化和机器人化,将从根本上改变人类的生活.它正在冲击着人类生活的许多方面:劳动生产、家庭、政治、科学、战争与和平.晶闸管又叫可控硅,有阳极、阴极和控制极,其内有四层PNPN半导体,三个PN结。