上海市2019-2020学年高一第一学期数学期末考试复习卷(PDF版,无答案)
2019-2020学年上海市中学高一上学期期末数学试题及答案解析
2019-2020学年上海市中学高一上学期期末数学试题及答案解析一、单选题1.已知复数113z i =+,23z i =+(i 为虚数单位),在复平面内,12z z -对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】B【解析】利用复数的减法求出复数12z z -,即可得出复数12z z -对应的点所在的象限.【详解】复数113z i =+,23z i =+,()()1213322z z i i i ∴-=+-+=-+, 因此,复数12z z -在复平面内对应的点在第二象限. 故选B. 【点睛】本题考查复数的几何意义,同时也考查了复数的减法运算,利用复数的四则运算法则将复数表示为一般形式是解题的关键,考查计算能力,属于基础题.2.设点M 、N 均在双曲线22:143x y C -=上运动,1F 、2F 是双曲线C 的左、右焦点,则122MF MF MN +-的最小值为( ) A .B .4C .D .以上都不对【解析】根据向量的运算,化简得1212222MF MF MN MO MN NO+-=-=,结合双曲线的性质,即可求解. 【详解】由题意,设O 为12,F F 的中点, 根据向量的运算,可得122222MF MFMN MO MN NO+-=-=,又由N 为双曲线22:143x y C -=上的动点,可得NO a ≥,所以122224MF MFMN NO a +-=≥=,即122MF MFMN+-的最小值为4.故选:B. 【点睛】本题主要考查了向量的运算,以及双曲线的标准方程及简单的几何性质的应用,其中解答中利用向量的运算,合理化简,结合双曲线的几何性质求解是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题. 3.已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C交于A ,B 两点.若222AF F B =││││,1AB BF =││││,则C 的方程为A .2212x y += B .22132x y += C .22143x y += D .22154x y +=【答案】B【解析】由已知可设2F B n =,则212,3AF n BF AB n ===,得12AF n =,在1AF B △中求得11cos 3F AB ∠=,再在12AF F △中,由余弦定理得n =,从而可求解.法一:如图,由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22aBF BF n AF a AF n =+=∴=-=.在1AF B △中,由余弦定理推论得22214991cos 2233n n n F AB n n +-∠==⋅⋅.在12AF F △中,由余弦定理得2214422243n n n n +-⋅⋅⋅=,解得32n =. 2222423,3,312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .法二:由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在12AF F △和12BF F △中,由余弦定理得2221222144222cos 4,422cos 9n n AF F n n n BF F n⎧+-⋅⋅⋅∠=⎨+-⋅⋅⋅∠=⎩,又2121,AF F BF F ∠∠互补,2121cos cos 0AF F BF F ∴∠+∠=,两式消去2121cos cos AF F BF F ∠∠,,得223611n n +=,解得3n =.2222423,3,312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .【点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好的落实了直观想象、逻辑二、填空题4.椭圆22154x y +=的焦距等于________【答案】2【解析】根据椭圆方程,求出,a b ,即可求解. 【详解】设椭圆的焦距为2c ,椭圆方程为22154x y +=, 225,4,1a b c ∴==∴=.故答案为:2. 【点睛】本题考查椭圆标准方程及参数的几何意义,属于基础题.5.双曲线221169x y -=的两条渐近线的方程为________.【答案】34yx 【解析】令220169x y -=解得结果【详解】令220169x y -=解得两条渐近线的方程为34yx 【点睛】本题考查双曲线渐近线的方程,考查基本分析求解能力,属基础题.6.若线性方程组的增广矩阵是123c ⎛⎫⎪,其解为1x =⎧⎨,则12c c +=________【答案】6【解析】本题可先根据增广矩阵还原出相应的线性方程组,然后将解11x y =⎧⎨=⎩代入线性方程组即可得到1c 、2c 的值,最终可得出结果. 【详解】解:由题意,可知:此增广矩阵对应的线性方程组为:1223x y c y c +=⎧⎨=⎩, 将解11x y =⎧⎨=⎩代入上面方程组,可得:1251c c =⎧⎨=⎩. 126c c ∴+=.故答案为:6. 【点睛】本题主要考查线性方程组与增广矩阵的对应关系,以及根据线性方程组的解求参数.本题属基础题. 7.已知复数22iz i+=,则z 的虚部为________.【答案】-1【解析】先根据复数的除法中的分母实数化计算出z 的结果,然后根据z 的结果直接确定虚部. 【详解】 因为()22242122242i i i i z i i i i +⋅+-====-⋅-,所以z 虚部为1-.【点睛】(1)复数的除法运算,采用分母实数化的方法,根据“平方差公式”的形式完成分母实数化;(2)复数z a bi =+,则z 的实部为a ,虚部为b ,注意实、虚部都是数值.8.圆22240x y x y +-+=的圆心到直线3450x y +-=的距离等于________。
上海市光明中学2019-2020学年度高一数学第一学期期末考试(详解版)
光明中学2019学年第一学期期末考试高一数学试题命题人 向宪贵 审题人 蔡晓荣 2020.01考生注意: l .本试卷共有19道试题,满分100分.考试时间90分钟.2.答卷前,考生务必在答题纸上将学校、班级、姓名、学号、准考证号等填写清楚.友情提示: 诚实守信,沉着冷静,细致踏实,自信自强!一、填空题(本大题共有10道小题,1-6题填对得3分,7-10题填对得4分,满分34分)1、函数12()f x x =的定义域是 ;2、不等式111x <-的解集为 ; 3、函数2()1(0)f x x x =-≥的反函数1()f x -= ;4、函数()ln(2)f x x =-的递增区间为 ;5、方程96370x x -⋅-=的解是 ;6、已知函数()f x 为偶函数,且当0x >时2()1f x =x x -+,则当0x <时()f x = ; 7、已知函数⎩⎨⎧≥-<=)4(),1()4(,2)(x x f x x f x ,那么(5)f 的值为____________;8、函数2()f x x bx c =++与函数21()x x g x x ++=在区间1[,2]2上的同一点处取相同的最小值,则()f x 在区间1[,2]2上的最大值是 ;9、直线1y =与曲线2y x x a =-+有四个交点,则a 的取值范围是 ;10、设函数定义域为R ,对于给定的正数K ,定义函数取函数.当=时,函数的单调递增区间为 .二、单选题(本大题共有4道题,每道题只有一个正确选项,选对得4分,满分16分)11、下面四个条件中,使a b >成立的充分而不必要的条件是( ).A 1a b >+ .B 1a b >- .C 22a b > .D 33a b >()y f x =(),(),(),().K f x f x K f x K f x K ≤⎧=⎨>⎩()2x f x -=K 12()K f x12、定义域为R 的函数()f x 是奇函数,且在[0,5]x ∈上是增函数,在[5,)+∞上是减函数,又(5)2f =,则()f x ( ).A 在[5,0]x ∈-上增函数且有最大值-2 .B 在[5,0]x ∈-上增函数且有最小值-2.C 在[5,0]x ∈-上减函数且有最大值-2 .D 在[5,0]x ∈-上减函数且有最小值-213、若函数()f x 为R 上的偶函数,且()f x 在[)0+∞,上单调递减,则不等式(21)()f x f x -≥的解集为( )A. 113⎡⎤⎢⎥⎣⎦,B. [)1,1,3⎛⎤-∞+∞ ⎥⎝⎦U C. (][),11,-∞+∞U D. (],1-∞ 14、有下面四个命题:①奇函数一定是单调函数;②函数3(0)xy k k =⋅>(k 为常数)图像可由3x y =的图像平移得到;③若幂函数a y x =是奇函数,则a y x =是定义域上的增函数;④既是奇函数又是偶函数的函数是0()y x R =∈.其中正确的有( ).A 3个 .B 2个 .C 1个 .D 0个三、解答题(本大题共有5道题,满分50分)15、(本题满分8分,第一问4分,第二问4分) 已知1{|39}3x A x =<<, {}2|log 0B x x =>. (1)求A B ⋂和A B ⋃;(2)定义{|A B x x A -=∈且}x B ∉,求A B -和B A -.16、(本题满分10分,第一问4分,第二问6分)函数()2x f x =和3()g x x =的图像的示意图如图所示,两函数的图像在第一象限只有两个交点()()111212,,,,A x y B x y x x <(1)请指出示意图中曲线12C C 、分别对应哪一个函数;(2)设函数()()()h x f x g x =-,则函数()h x 的两个零点为12x x 、,如果12[,1],[,1]x a a x b b ∈+∈+,其中,a b 为整数,指出,a b 的值,并说明理由.17、(本题满分10分,第一问4分,第二问6分) 已知函数3()log 0,13m x f x m m x -=>≠+(). (1)判断()f x 的奇偶性并证明;(2)若12m =,试用定义法判断()f x 在3,+∞()的单调性.18、(本题满分10分,第一问3分,第二问7分)科学家发现某种特别物质的温度y (单位:摄氏度)随时间x (时间:分钟)的变化规律满足关系式:122x x y m -=⋅+(04x ≤≤,0m >).(1)若2m =,求经过多少分钟,该物质的温度为5摄氏度;(2)如果该物质温度总不低于2摄氏度,求m 的取值范围.19、(本题满分12分,第一问3分,第二问4分,第三问5分)已知函数1()22x xf x =-,()(4lg )lg ()g x x x b b R =-⋅+∈. (1)若()0f x >,求实数x 的取值范围;(2)若存在12,[1,)x x ∈+∞,使得12()()f x g x =,求实数b 的取值范围;(3)若()0<g x 对于(0,)x ∈+∞恒成立,试问是否存在实数x ,使得[()]f g x b =-成立?若存在,求出实数x 的值;若不存在,说明理由.上海市光明中学2019学年第一学期期终考试高一数学试题参考答案一、填空题(本大题共有10道小题,1-6题填对得3分,7-10题填对得4分,满分34分)1、[)0,+∞2、(,0)(2,)-∞+∞U 3、1(1)f x x -≥-4、()2,+∞5、3log 7x =6、2()1f x =x +x +7、88、49、5(1,)4 10、二、单选题(本大题共有4道题,每道题只有一个正确选项,选对得4分,满分16分)11、A 12、B 13、A 14、C三、解答题(本大题共有5道题,满分50分)15、(本题满分8分,第一问4分,第二问4分)解:(1)()1{|39}1,23x A x =<<=-; --------1分 {}()2|log 01,B x x =>=+∞ --------2分()1,2A B ⋂=, --------3分()1,A B ⋃=-+∞--------4分(2) (]1,1A B -=-, --------2分[)2,B A -=+∞--------4分16、(本题满分10分,第一问4分,第二问6分)【解】(1)C 1对应的函数为3()g x x =,--------2分C 2对应的函数为()2x f x =. --------4分(2)计算得1,9a b == --------1分理由如下:令3()()()2x x f x g x x ϕ=-=-, --------2分 (,1)-∞-由于93103(1)10,(2)40,(0,(10)210909)2h h h h =>=-<=<=->-,--------4分 则函数()x ϕ的两个零点2(1,2),(9,10)i x x ∈∈--------5分 因此整数1,9a b == --------6分17、(本题满分10分,第一问4分,第二问6分)【解】(1)()f x 是奇函数;证明如下: 由303x x -+>解得3,3x x <->或; 所以()f x 的定义域为(,3)(3,)-∞-+∞U 关于原点对称. --------1分∵()3333m m x x f x log log x x --+-==-+-=()13()3m x log f x x -+=--, --------3分 故()f x 为奇函数.--------4分(2)任取1212,3,x x x x ∈+∞<(),且 - ()()1212123333m m x x f x f x log log x x ---=-++=()()()()12123333m x x log x x -++-, --------2分 ∵()()()()()112221333036x x x x x x -+-+-=<-,∴()()()()121203333x x x x <-+<+-,即()()()()1212330133x x x x -+<+-<, -------4分 当12m =时,()()()()12112233033x x log x x -+>+-,即()12()f x f x >.--------5分 故()f x 在3,+∞()上单调递减.--------6分18、(本题满分10分,第一问3分,第二问7分)【解】(1)由题意,当2m =,令122222252x x x xy -=⋅+=⋅+=, 04x ≤≤Q 时,解得1x =, -------2分因此,经过1分钟时间,该物质的温度为5摄氏度;--------3分(2)由题意得1222x x m -⋅+≥对一切04x ≤≤恒成立,则由1222x x m -⋅+≥,得出22222x x m ≥-,--------2分 令2x t -=,则1116t ≤≤,且222m t t ≥-,--------4分构造函数()221122222f t t t t ⎛⎫=-=--+ ⎪⎝⎭, 所以当12t =时,函数()y f t =取得最大值12,则12m ≥.--------6分 因此,实数m 的取值范围是1,2⎡⎫+∞⎪⎢⎣⎭.--------7分19、(本题满分12分,第一问3分,第二问4分,第三问5分)【解】(1)()0f x >即22x x ->,∴x x >-,∴0x >.--------3分 (2)设函数()f x ,()g x 在区间[)1,+∞上的值域分别为A ,B ,因为存在[)12,1,x x ∈+∞,使得()()12f x g x =,所以A B ⋂≠∅,--------1分∵()122x x f x =-在[)1,+∞上为增函数,∴3,2A ⎡⎫=+∞⎪⎢⎣⎭,--------2分 ∵()()2lg 24g x x b =--++,[)1,x ∈+∞,∴()(],4g x b ∈-∞+,∴(],4B b =-∞+.--------3分 ∴342b +≥即52b ≥-.--------4分 (3)∵()()2lg 240g x x b =--++<对于()0,x ∈+∞恒成立,∴40b +<,4b <-,--------1分且()g x 的值域为(],4b -∞+.--------2分∵()122x x f x =-为增函数,--------3分 且0x <时,()0f x <,∴()0f g x ⎡⎤<⎣⎦.--------5分∴()0f g x b ⎡⎤+<⎣⎦,-------6分∴不存在实数x ,使得()f g x b ⎡⎤=-⎣⎦成立. --------7分。
2019-2020学年上海市高一(上)期末数学试卷 (2)
2019-2020 学年上海市高一(上)期末数学试卷题号 得分一 二 三 总分第 I 卷(选择题)一、选择题(本大题共 4 小题,共 20.0 分) 1. 下列选项中,表示的是同一函数的是( )A. B. D. ( ) = , ( ) = − 1)2( ) = 2, ( ) = ( 2 √2≥ 0C. = {, = | |( ) = √, ( ) = √ ( ) < 0√2. 设非零实数 ,则“ ≥ 2”是“ ≥ 3”成立的( )2A. C.B. D. 充分不必要条件 充要条件必要不充分条件 既不充分也不必要条件3. 函数的图象可能是( )B.D.C. 4. 若函数 的定义域是[−1,4],则 = − 1)的定义域是( )B. C. D.[−3,7]A. 5]2[−1,4] [−5,5][0, 第 II 卷(非选择题)二、填空题(本大题共 12 小题,共 36.0 分) 5. 函数= √的定义域是________.6. 集合 = {1,2,3}, = ∈ ,则用列举法表示 为________. 2B 7. 若 , ∈,且= 0,则的最小值为___________.x −8. 已知函数 =__________. = 2lg(的图象经过点(2,2 2),则 = + > 0且 ≠ 1)的图象恒过定点 2),则 +9. 若+),则log的值为__________√210. 若幂函数=________________.√11. 已知集合 = |围是__________. 1 = 0, ∈ ,若集合 是有限集,则实数 的取值范2A a 12. 函数=,< 2) 的反函数是______ .2 13. 若奇函数______ . 在(∞, 0)内是减函数,且= 0,则不等式 ⋅> 0的解集为√ √ ≥ 0< 014. 设函数 = {,若 = 2,则实数 =______. ++ > 0,若函数 = ≤ 0 15. 已知函数= { + 有且只有一个零点,则实2 2 +数 的取值范围是________. a 16. 若曲线 = |21|与直线 = 有两个公共点,则 的取值范围是____.b 三、解答题(本大题共 5 小题,共 38.0 分) 17. 已知集合 =1 ⩽ 2⩽ 32},集合 = < 2 或 > 2}.2(1)求 ∩ ; (2)若 = { | ≤1},且 ⊆ ,求实数 的取值范围.a 1+ 1, ≤ 0;(2)若 > 0,解关于 的不等式18. 已知 =+ 2(1)当 = 2时,解不等式≥ 0.x19.某厂生产某种产品的年固定成本为250万元,每生产万件,需另投入的成本为x单位:万元),当年产量小于80万件时,=1+;当年产量不小于231000−1450.假设每万件该产品的售价为50万元,且该厂80万件时,=+当年生产的该产品能全部销售完.(1)写出年利润万元)关于年产量万件)的函数关系式;(2)年产量为多少万件时,该厂在该产品的生产中所获利润最大?最大利润是多少?20.已知函数=是定义在上的奇函数,当>0时,=2−,其中∈R(1)求函数=(2)若函数=(3)当=0时,若的解析式;在区间(0,+∞)不单调,求出实数的取值范围;a∈(−1,1),不等式−+−2>0成立,求实2数的取值范围.k21.若函数=log−有零点,求实数a的取值范围.32答案和解析1.【答案】D【解析】【分析】本题主要考查同一函数的判断,结合条件分别判断两个函数的定义域和对应法则是否相同是解决本题的关键,属于基础题.分别判断两个函数的定义域和对应法则是否相同即可.【解答】解:的定义域是R,的定义域为[0,+∞),两个函数的定义域不相同,不是同一函数;B.两个函数的对应法则不相同,不是同一函数;+1≥0−1>0≥−1 >1C.由{,得{,即>1,由⩾0得>1或≤−1,两个函数的定义域不相同,不是同一函数;D.由已知有故选D.=,两个函数的定义域和对应法则相同,是同一函数.2.【答案】B【解析】只有当同号时,“2+2≥”才是“+≥3”成立的充要条件.而由+≥3可知同号,故+≥2.23.【答案】C【解析】【分析】本题考查函数的性质与函数图象的识别,属于中档题.根据函数值的符号即可选择出正确选项.【解答】解:当>0时,+1>1,+1|>0,故>0,即可排除A,B两项;当−2<<−1时,>0,即可排除D选项.4.【答案】A【解析】∵函数的定义域是[−1,4],∴函数=−1)的定义域满足−1≤−1≤4,∴0≤≤5,2∴=−1)的定义域是[0,5].25.【答案】(−∞,1)∪(1,4]【解析】【分析】本题主要考查定义域问题,分母和偶次下的取值问题.【解答】4−≥0解:由题意得{,−1≠0解得≤4且≠1.故答案为(−∞,1)∪(1,4].6.【答案】{3,6,11}【解析】【分析】本题考查了集合内的元素的特征,要满足:确定性,无序性,互异性,属于基础题.集合内的元素要满足:确定性,无序性,互异性.【解答】解:={1,2,3},=2+∈.∴={3,6,11}故答案为{3,6,11}.7.【答案】18【解析】【分析】本题考查利用基本不等式求最值,注意等号成立的条件,属于中档题.由题意,可得2+8=1,利用基本不等式即可求出+的最小值.∵ , ∈ ,且 = 0,− ∴ =,8= 1, = (∴ 2 ∴) · (28) =10 ≥ 2√ · 10 = 18,= 当且仅当 所以,即 = = 12时等号成立,的最小值为 18,故答案为 18. 8.【答案】3【解析】 【分析】本题考查指数函数的性质,关键是掌握该种题型的求解方法,是基础题. 由题知 恒过定点(2,1),∴= 2, = 1,= 3.【解答】解:由指数函数 = 的图象过定点(0,1),所以,函数 即 = 2,1= > 0且 ≠ 1)的图象恒过定点(2,1 = 3.,= 2,故故答案为:3. 9.【答案】4【解析】 【分析】 由= 2lg( −),先求出 的值,然后再求的值.本题考查对数的运算性质,解题时要认真审题,仔细解答,注意公式的灵活运用. 【解答】 解:∵ = 2lg( − ),∴ = ( − )2, > 0, > 0, − > 0,∴ ( ) − 5( ) 4 = 0, 解得 = 1(舍去)或 = 4,∴ l og= log 4 = 4 ∴−= 0,2 2 2 .√2√2故答案为4.10.【答案】27【解析】【分析】本题考查了求函数的解析式与计算函数值的应用问题,是基础题目.用待定系数法求出幂函数=的解析式,再计算的值.【解答】解:设幂函数==,∈,且图象过点(2,22),√∴2=2√2,3解得=,23 2;∴∴=3.=9=272故答案为27.11.【答案】≥−1【解析】当=0时,=−1,满足;当≠0时,由=4+得,≥−1.综上,实数的取值范围是≥−1.12.【答案】=−√>4)【解析】【分析】本题考查反函数的定义的应用,考查计算能力.直接利用反函数的定义求解即可.【解答】解:函数=2,<−2),则>4.可得=−,√所以函数的反函数为:=−√>4).故答案为:=−√>4).13.【答案】(−2,0) ∪ (0,2)【解析】解:奇函数 在(−∞, 0)内是减函数,则 且在(0, +∞)内是减函数. == 0,> 0> 0 =< 0< 0 =不等式 ⋅ > 0 > 0等价为 或 ,< 0,即有或 < 2 > −2 即有0 < < 2或−2 < < 0. 则解集为(−2,0) ∪ (0,2). 故答案为:(−2,0) ∪ (0,2) 奇函数 在(−∞, 0)内是减函数,则在(0, +∞)内是减函数.且 == 0,> 0< 0不等式 ⋅> 0等价为 或 ,运用单调性去掉 ,f> 0 =< 0 =解出它们,再求并集即可.本题考查函数的奇偶性和单调性的运用:解不等式,注意讨论 的范围,属于中档题.x 14.【答案】±1【解析】解:由分段函数可知 ∴由= 2得= 2 − 1 = 1.若 < 0,则√ = 1,解得 = −1.= 1,+若 ≥ 0,则√ = 1,解得 = 1, ∴ = ±1, 故答案为:±1.根据分段函数的表达式,解方程即可. 本题主要考查分段函数的应用,注意 自变量的取值范围.【解析】【分析】本题考查了函数的性质,图象的运用,利用函数的交点问题解决函数零点问题,属于中档题.化简构造得出= +>0与=≤02有且只有一个交点,利用函数的图象的交点求解即可.2+【解答】解+>0,若=≤0:∵函数=2+有且只有一个零点,2++>0与=≤0∴=2有且只有一个交点,2+根据图形得出:>1,∴<−1故答案为<−1.16.【答案】(0,1)【解析】【分析】画出图像可得解.【解答】解:曲线=−1|与直线=如图所示.由图像可得,的取值范围是(0,1).b故答案为(0,1).17.【答案】解:(1)∵=∴∩=(2,5];−1≤≤5},=<−2或>2},(2)∵⊆,且=≤−1},∴−1≥5,解得≥6,∴实数的取值范围为[6,+∞).a【解析】本题考查了描述法的定义,交集的定义及运算,子集的定义,考查了计算能力,属于基础题.(1)可以求出=−1≤≤5},然后进行交集的运算即可;(2)根据⊆即可得出−1≥5,解出的范围即可.a18.【答案】解:12= 2时,不等式化为− − 2) ≤ 0,∴ 1 ≤ ≤ 2,21 2≤≤ 2};∴不等式的解集为 (2)由题意得 =−− ),1 11};当0 << 1时, < ,不等式解集为≤ 或 ≥ 1 当 = 1时, = ,不等式解集为 ; R 1 1 }.≥ 或 ≤当 > 1时, > ,不等式解集为【解析】本题考查不等式的解法,考查分类讨论的数学思想,属于中档题.= 2时,不等式化为− 1− 2) ≤ 0,即可解不等式≤ 0,2(2)若 > 0,分类讨论解关于 的不等式≥ 0.x 19.【答案】【解答】解:(1)①当0 < < 80时,根据年利润=销售收入−成本, ∴=− 1−− 250 = − 1+2− 250;2 33 ②当 ≥ 80时,根据年利润=销售收入−成本, ∴=−− 10000 + 1450 − 250 = 1200 −+ 10000).− 1 + − 250(0 < < 80)2 综合①②可得,= { 3 ; 1200 − + 10000≥ 80) − 250(0 < < 80) − 1 + 2 (2)由(1)可知,= { 3 , 1200 − + 10000≥ 80)①当0 < < 80时,= − 2 +1− 250 = − 13− 60)2 + 950,3∴当 = 60时, ②当 ≥ 80时,取得最大值 = 950万元; = 1200 −+ 10000) ≤ 1200 −⋅ 10000 = 1200 − 200 = 1000, = 1000万元.当且仅当 = 10000,即 = 100时, 综合①②,由于950 < 1000,取得最大值∴当产量为 100 万件时,该厂在这一商品中所获利润最大,最大利润为1000 万元.【解析】【试题解析】本题主要考查函数模型的选择与应用,属于一般题目. (1)分两种情况进行研究,当0 < < 80时,投入成本为= 13+万元),根据 2 年利润=销售收入−成本,列出函数关系式,当 ≥ 80时,投入成本为 =+1450,根据年利润=销售收入−成本,列出函数关系式,最后写成分段函数的形式,从而得到答案;(2)根据年利润的解析式,分段研究函数的最值,当0 << 80时,利用二次函数求最值,当 ≥ 80时,利用基本不等式求最值,最后比较两个最值,即可得到答案.20.【答案】解:(1)由 是定义在 上的奇函数,所以R= 0,又 > 0时, =2 −,所以 < 0时, > 0, 所以==2 − ,− ≥ 02 所以函数的解析式为 = ; −< 02 (2)当 > 0时,=−,2 ①若 ≤ 0,由 = ⩽ 0知,在(0, +∞)上递增,不合题意;2> 0, = ∈ (0, +∞),2所以 在(0, +∞)上先减再增,符合函数在(0, +∞)上不单调,综上,实数 的取值范围为 > 0; a 2,≥ 0(3)当 = 0时, =,2, < 0可得函数 是定义域 上的单调递增,R又 是定义域 上的奇函数,R由 ∈ (−1,1), ∈ (−1,1),∈ (−1,1),2 − 2− + 2 − −> 0成立, 2)成立,可得 ∴> −>−2 2⇒ < −=− 3) − 92,2 8 16 ∵ ∈ (−1,1),∴ (−) ∈ [− 9 , 7),2 16【解析】本题主要考查了函数的解析式、不等式存在性问题,涉及函数的奇偶性、单调 性,属于中档题. (1)由函数的奇偶性先求导求得 < 0的解析式,总结可得(2)结合二次函数的单调性,分类讨论即可求得 的取值范围;= 0,在由 < 0转化为> 0,根据奇函数=在 上的解析式;R a = 0时,结合函数的单调性、奇偶性得到 不等式存在性问题即可求解. 21.【答案】解:因为 ∈ (−1,1), < − ,进而根据2 2 −有零点,= log 3所以log 3 2 −= 0有解,所以2 −= 1有解.当 = 0时, = −1; 当 ≠ 0时,若2 −− 1 = 0有解,1 则 = 1 +≥ 0,解得 ≥ − 且 ≠ 0.41 综上,实数 的取值范围是[ − ,+∞).a 4【解析】函数 = log 32 − 有零点,即 2 −= 1有解,讨论 = 0和 ≠ 0两种情况求解即可.本题主要考查函数模型的选择与应用,属于一般题目. (1)分两种情况进行研究,当0 < < 80时,投入成本为= 13+万元),根据 2 年利润=销售收入−成本,列出函数关系式,当 ≥ 80时,投入成本为 =+10000 −1450,根据年利润=销售收入−成本,列出函数关系式,最后写成分段函数的形式,从而得到答案;(2)根据年利润的解析式,分段研究函数的最值,当0 << 80时,利用二次函数求最值,当 ≥ 80时,利用基本不等式求最值,最后比较两个最值,即可得到答案.20.【答案】解:(1)由 是定义在 上的奇函数,所以R= 0,又 > 0时, =2 −,所以 < 0时, > 0, 所以==2 − ,− ≥ 02 所以函数的解析式为 = ; −< 02 (2)当 > 0时,=−,2 ①若 ≤ 0,由 = ⩽ 0知,在(0, +∞)上递增,不合题意;2> 0, = ∈ (0, +∞),2所以 在(0, +∞)上先减再增,符合函数在(0, +∞)上不单调,综上,实数 的取值范围为 > 0; a 2,≥ 0(3)当 = 0时, =,2, < 0可得函数 是定义域 上的单调递增,R又 是定义域 上的奇函数,R由 ∈ (−1,1), ∈ (−1,1),∈ (−1,1),2 − 2− + 2 − −> 0成立, 2)成立,可得 ∴> −>−2 2⇒ < −=− 3) − 92,2 8 16 ∵ ∈ (−1,1),∴ (−) ∈ [− 9 , 7),2 16【解析】本题主要考查了函数的解析式、不等式存在性问题,涉及函数的奇偶性、单调 性,属于中档题. (1)由函数的奇偶性先求导求得 < 0的解析式,总结可得(2)结合二次函数的单调性,分类讨论即可求得 的取值范围;= 0,在由 < 0转化为> 0,根据奇函数=在 上的解析式;R a = 0时,结合函数的单调性、奇偶性得到 不等式存在性问题即可求解. 21.【答案】解:因为 ∈ (−1,1), < − ,进而根据2 2 −有零点,= log 3所以log 3 2 −= 0有解,所以2 −= 1有解.当 = 0时, = −1; 当 ≠ 0时,若2 −− 1 = 0有解,1 则 = 1 +≥ 0,解得 ≥ − 且 ≠ 0.41 综上,实数 的取值范围是[ − ,+∞).a 4【解析】函数 = log 32 − 有零点,即 2 −= 1有解,讨论 = 0和 ≠ 0两种情况求解即可.。
上海市2019年数学高一上学期期末考试试题
上海市2019年数学高一上学期期末考试试题一、选择题1.若三棱锥P ABC -中,PA PB ⊥,PB PC ⊥,PC PA ⊥,且1PA =,2PB =,3PC =,则该三棱锥外接球的表面积为()A .72πB .14πC .28πD .56π2.对于函数f(x)=2sinxcosx ,下列选项中正确的是( )A .f(x)在(4π,2π)上是递增的 B .f(x)的图象关于原点对称 C .f(x)的最小正周期为2π D .f(x)的最大值为23.已知数列{}n a 的前n 项和为n S ,且11a =,3211242n n a a a a n -++++=,则8S =( ) A .127 B .129 C .255D .257 4.已知不同的两条直线m ,n 与不重合的两平面α,β,下列说法正确的是( )A.若m n ,m α,则n αB.若m α,αβ∥,则m βC.若m n ,m α⊥,则n α⊥D.若m n ⊥,m α⊥,则n α⊥5.把正方形ABCD 沿对角线AC 折起,当以A ,B ,C ,D 四点为顶点的三棱锥体积最大时,二面角B AC D --的大小为( )A.30°B.45°C.60°D.90° 6.设函数()22g x x =-()x ∈R ,()()()()()4,,,,g x x x g x f x g x x x g x ⎧++<⎪=⎨-≥⎪⎩则()f x 的值域是( ) A.()9,01,4⎡⎤-+∞⎢⎥⎣⎦U B.[)0,+∞ C.9,4⎡⎫+∞⎪⎢⎣⎭ D.()9,02,4⎡⎤-+∞⎢⎥⎣⎦U 7.某三棱锥的三视图如图所示,则该三棱锥的体积为( )A.20B.10C.30D.608.已知当x θ=时函数()sin 2cos f x x x =-取得最小值,则sin 22cos 2sin 22cos 2θθθθ+=-( ) A .-5 B .5 C .15 D .15- 9.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是( )A .2B .4C .6D .810.设12a =,数列{}1n a +是以3为公比的等比数列,则4a =( )A .80B .81C .54D .5311.在一个实心圆柱中挖去一个内接直三棱柱洞后,剩余部分几何体如右图所示,已知实心圆柱底面直径为2,高为3,内接直三棱柱底面为斜边长是2的等腰直角三角形,则剩余部分几何体的表面积为( )A.8π6++B.6π6++C.8π4++D.6π4++12.下列函数中,图象的一部分如图所示的是 ( )A .sin 6y x π⎛⎫=+ ⎪⎝⎭ B .sin 26y x π⎛⎫=- ⎪⎝⎭C .cos 43y x π⎛⎫=-⎪⎝⎭ D .cos 26y x π⎛⎫=- ⎪⎝⎭二、填空题 13.在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c .若a ,b ,c 成等比数列,且()1cos cos 2A CB -=+,则cos B =________.14.如图,圆锥型容器内盛有水,水深3dm ,水面直径放入一个铁球后,水恰好把铁球淹没,则该铁球的体积为________dm15.已知对数函数()f x 的图象过点()4,2-,则不等式()()f x 1f x 13--+>的解集______.16.设02x π≤<sin cos x x =-,则x 的取值范围是________.三、解答题17.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c .且满足cos sin 3a b C c B =+. (Ⅰ)求角B ;(Ⅱ)若ABC △,a c +=b . 18.已知数列{}n a 满足()2*12323n a a a na n n ++++=∈N . (1)求数列{}n a 的通项公式;(2)若()*1n n b n na =∈N ,n T 为数列{}1n n b b +的前n 项和,求证:12n T < 19.某家具厂有方木料903m ,五合板6002m ,准备加工成书桌和书橱出售.已知生产第张书桌需要方木料O.l 3m ,五合板22m ,生产每个书橱而要方木料0.22m ,五合板12m ,出售一张方桌可获利润80元,出售一个书橱可获利润120元.(1)如果只安排生产书桌,可获利润多少?(2)怎样安排生产可使所得利润最大?20.已知tan()7,cos 5αβα-=-=-,其中(0,),(0,)απβπ∈∈. (1)求tan β的值;(2)求αβ+的值.21.已知A ,B 均为锐角,3sin 5A =,5cos()13A B +=. (1)求cos2A 的值;(2)求sin()A B -的值.22.设向量(3sin ,sin )a x x =,()cos ,sin b x x =,0,2x π⎡⎤∈⎢⎥⎣⎦. (1)若||||a b =,求x 的值;(2)设函数()f x a b =⋅,求()f x 的最大值.【参考答案】***试卷处理标记,请不要删除一、选择题13.12 14.125π 15.9(1,)716.5[,]44ππ三、解答题17.(Ⅰ)3B π=;(Ⅱ)b =18.(1)21n n a n-=.(2)证明略 19.(1) 只安排生产书桌,最多可生产300张书桌,获得利润24000元;(2) 生产书桌100张、书橱400个,可使所得利润最大20.(1)13(2)34π 21.(1) 725 (2) 3632522.(1)6π;(2)32.。
2019-2020学年上海交大附中高一(上)期末数学试卷
2019-2020学年上海交大附中高一(上)期末数学试卷试题数:21.满分:01.(填空题.3分)弧度数为2的角的终边落在第___ 象限.2.(填空题.3分)若幂函数f (x )=x α图象过点 (2,12) .则f (3)=___ . 3.(填空题.3分)已知 sinα+cosαsinα−2cosα =2.则tanα的值为___ . 4.(填空题.3分) cos 23π8−sin 23π8=___ . 5.(填空题.3分)已知lg2=a.10b =3.则log 125=___ .(用a 、b 表示) 6.(填空题.3分)若tanα= 43 ;则cos (2α+ π2 )=___ . 7.(填空题.3分)已知函数f (x )= {(1−2a )x +3a ,x <12x−1,x ≥1的值域为R.则实数a 的取值范围是___ .8.(填空题.3分)已知θ∈(0. π2 ).2sin2θ=1+cos2θ.则tanθ=___ . 9.(填空题.3分)已知α∈(- π2.0).sin (π-2α)=- 12.则sinα-cosα=___10.(填空题.3分)已知锐角α.β满足sin (2α+β)=3sinβ.则tan (α+β)cotα=___ . 11.(填空题.3分)已知α.β∈(0.π).且tan (α-β)=2√33 .tanβ=- 5√311.2α-β的值为___ .12.(填空题.3分)已知f (x )是定义域为R 的单调函数.且对任意实数x.都有f[f (x )+34x +1 ]= 25.则f (log 2sin17π6)=___ . 13.(单选题.3分)“sinα<0”是“α为第三、四象限角”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件D.既不充分也不必要条件14.(单选题.3分)A 为三角形ABC 的一个内角.若sinA+cosA= 1225.则这个三角形的形状为( ) A.锐角三角形 B.钝角三角形 C.等腰直角三角形D.等腰三角形15.(单选题.3分)已知函数f(x)=log a(6-ax)在x∈[2.3)上为减函数.则a的取值范围是()A.(1.2)B.(1.2]C.(1.3)D.(1.3]16.(单选题.3分)设x1.x2分别是f(x)=x-a-x与g(x)=xlog a x-1(a>1)的零点.则x1+9x2的取值范围是()A.[8.+∞)B.(10.+∞)C.[6.+∞)D.(8.+∞)17.(问答题.0分)已知α∈(0. π2).β∈(0. π2).sinα= 4√37.cos(α+β)=- 1114.(1)求tan2α的值;(2)求cosβ的值.18.(问答题.0分)已知函数f(x)=3x-a•3-x.其中a为实常数;(1)若f(0)=7.解关于x的方程f(x)=5;(2)判断函数f(x)的奇偶性.并说明理由.19.(问答题.0分)高境镇要修建一个扇形绿化区域.其周长为400m.所在圆的半径为r.扇形的圆心角的弧度数为θ.θ∈(0.2π).(1)求绿化区域面积S关于r的函数关系式.并指数r的取值范围:(2)所在圆的半径为r取何值时.才能使绿化区域的面积S最大.并求出此最大值.20.(问答题.0分)已知函数y=f(x)的定义域为(1.+∞).对于定义域内的任意实数x.有f (2x)=2f(x)成立.且x∈(1.2]时.f(x)=log2x.(1)当x∈(1.23]时.求函数y=f(x)的最大值;(2)当x∈(1.23.7]时.求函数y=f(x)的最大值;(3)已知f(1200)=f(b)(实数b>1).求实数b的最小值.21.(问答题.0分)已知函数f(x)=log a(x+ √x2−1).x∈(1.+∞).a>0且a≠1.(1)若a为整数.且f(2a+2−a2)=2.试确定一个满足条件的a的值;(2)设y=f(x)的反函数为y=f -1(x).若f-1(n)<4n+4−n2(n∈N*).试确定a的取值范围;(3)若a=2.此时y=f(x)的反函数为y=f-1(x).令g(x)= 2f −1(x)+k2f−1(x)+1.若对一切实数x1.x2.x3.不等式g(x1)+g(x2)>g(x3)恒成立.试确定实数k的取值范围.2019-2020学年上海交大附中高一(上)期末数学试卷参考答案与试题解析试题数:21.满分:01.(填空题.3分)弧度数为2的角的终边落在第___ 象限.【正确答案】:[1]二【解析】:根据题意.分析可得π2<2<π.由象限角的定义分析可得答案.【解答】:解:根据题意. π2<2<π.则弧度数为2的角的终边落在第二象限.故答案为:二【点评】:本题考查象限角.涉及弧度制的应用.属于基础题.2.(填空题.3分)若幂函数f(x)=xα图象过点(2,12) .则f(3)=___ .【正确答案】:[1] 13【解析】:根据题意求出幂函数的解析式.再计算f(3)的值.【解答】:解:幂函数f(x)=xα图象过点(2,12) .则2α= 12.解得α=-1.∴f(x)=x-1;∴f(3)=3-1= 13.故答案为:13.【点评】:本题考查了幂函数的定义与应用问题.是基础题.3.(填空题.3分)已知sinα+cosαsinα−2cosα=2.则tanα的值为___ .【正确答案】:[1]5【解析】:利用同角三角函数基本关系式化简已知等式即可得解.【解答】:解:∵ sinα+cosαsinα−2cosα = tanα+1tanα−2=2.∴tanα=5.故答案为:5.【点评】:本题主要考查了同角三角函数基本关系式在三角函数化简求值中的应用.属于基础题.4.(填空题.3分)cos23π8−sin23π8=___ .【正确答案】:[1]- √22【解析】:利用二倍角公式、诱导公式.求得所给式子的值.【解答】:解:cos23π8−sin23π8=cos 6π8=-cos π4=- √22.故答案为:−√22.【点评】:本题主要考查二倍角公式、诱导公式的应用.属于基础题.5.(填空题.3分)已知lg2=a.10b=3.则log125=___ .(用a、b表示)【正确答案】:[1] 1−a2a+b【解析】:化指数式为对数式.把要求解的式子利用对数的换底公式化为含有lg2和lg3的代数式得答案.【解答】:解:∵10b=3.∴lg3=b.又lg2=a.∴log125= lg5lg12=lg102lg(3×4)=1−lg2lg3+2lg2=1−a2a+b.故答案为:1−a2a+b.【点评】:本题考查了对数的换底公式.考查了对数的运算性质.是基础题.6.(填空题.3分)若tanα= 43;则cos(2α+ π2)=___ .【正确答案】:[1]- 2425.【解析】:利用诱导公式.二倍角的正弦函数公式.同角三角函数基本关系式化简所求即可求解.【解答】:解:∵tanα= 43.∴cos(2α+ π2)=-sin2α= −2sinαcosαsin2α+cos2α= −2tanα1+tan2α= −2×431+169=- 2425.故答案为:- 2425 .【点评】:本题主要考查了诱导公式.二倍角的正弦函数公式.同角三角函数基本关系式在三角函数化简求值中的应用.属于基础题. 7.(填空题.3分)已知函数f (x )= {(1−2a )x +3a ,x <12x−1,x ≥1的值域为R.则实数a 的取值范围是___ .【正确答案】:[1][0. 12 )【解析】:根据分段函数的表达式.分别求出每一段上函数的取值范围进行求解即可.【解答】:解:当x≥1时.f (x )=2x-1≥1. 当x <1时.f (x )=(1-2a )x+3a.∵函数f (x )= {(1−2a )x +3a ,x <12x−1,x ≥1 的值域为R.∴(1-2a )x+3a 必须到-∞.即满足: {1−2a >01−2a +3a ≥1.解得0≤a < 12 .故答案为:[0. 12 ).【点评】:本题考查了函数的性质.运用单调性得出不等式组即可.难度不大.属于中档题. 8.(填空题.3分)已知θ∈(0. π2 ).2sin2θ=1+cos2θ.则tanθ=___ . 【正确答案】:[1] 12【解析】:利用二倍角公式.同角三角函数基本关系式化简即可得解.【解答】:解:∵θ∈(0. π2 ). ∴cosθ>0. ∵2sin2θ=1+cos2θ.∴4sinθcosθ=2cos 2θ.可得tanθ= 12. 故答案为: 12 .【点评】:本题主要考查了二倍角公式.同角三角函数基本关系式在三角函数化简求值中的应用.属于基础题.9.(填空题.3分)已知α∈(- π2 .0).sin (π-2α)=- 12 .则sinα-cosα=___ 【正确答案】:[1]- √62【解析】:由已知利用诱导公式化简可得sin2α=- 12.进而根据同角三角函数基本关系式即可化简求解.【解答】:解:∵α∈(- π2 .0).sin (π-2α)=sin2α=- 12 . ∴sinα<0.cosα>0.∴sinα-cosα=- √(sinα−cosα)2 =- √1−sin2α =- √1−(−12) =- √62. 故答案为:- √62 .【点评】:本题主要考查了诱导公式.二倍角公式.同角三角函数基本关系式在三角函数化简求值中的应用.属于基础题.10.(填空题.3分)已知锐角α.β满足sin (2α+β)=3sinβ.则tan (α+β)cotα=___ . 【正确答案】:[1]2【解析】:由题意利用2α+β=(α+β)+α.β=(α+β)-α.结合三角恒等变换公式计算即可.【解答】:解:sin (2α+β)=3sinβ.sin (α+β)cosα+cos (α+β)sinα=3[sin (α+β)cosα-cos (α+β)sinα]. 2sin (α+β)cosα=4cos (α+β)sinα. 又α、β为锐角.所以sinα≠0.cos (α+β)≠0. 所以tan (α+β)cotα= sin (α+β)cosαcos (α+β)sinα=2.故答案为:2.【点评】:本题考查了三角恒等变换应用问题.也考查了三角函数求值问题.是基础题. 11.(填空题.3分)已知α.β∈(0.π).且tan (α-β)= 2√33 .tanβ=- 5√311.2α-β的值为___ .【正确答案】:[1]- 2π3【解析】:由题意配角:α=(α-β)+β.利用两角和的正切公式算出tanα的值.再算出tan (2α-β)的值.根据α、β的范围与它们的正切值.推出2α-β∈(-π.0).即可算出2α-β的值.【解答】:解:由tan (α-β)=2√33 .tanβ=- 5√311. ∴tanα=tan[(α-β)+β]= tan (α−β)+tanβ1−tan (α−β)tanβ = 2√33−5√3111−2√33×(−5√311)= √39 . 由此可得tan (2α-β)=tan[(α-β)+α]= tan (α−β)+tanα1−tan (α−β)tanα = 2√33+√391−2√33×√39= √3 . 又α∈(0.π).且tanα= √39 <1. ∴0<α< π4 .又β∈(0.π).tanβ=- 5√311 <0. ∴ π2 <β<π.因此2α-β∈(-π.0).可得-π<2α-β<0. 所以2α-β=- 2π3 . 故答案为:- 2π3 .【点评】:本题考查了两角和与差的正切公式、特殊角的三角函数值等知识.是中档题.解题时注意在三角函数求值问题中“配角找思路”思想.12.(填空题.3分)已知f (x )是定义域为R 的单调函数.且对任意实数x.都有f[f (x )+34x +1]= 25 .则f (log 2sin17π6)=___ . 【正确答案】:[1]- 75【解析】:根据题意.分析可得f (x )+ 34x +1 为常数.设f (x )+ 34x +1 =t.变形可得f (x )=- 34x +1 +t.分析可得f (t )=- 34t +1 +t= 25 .解可得t 的值.即可得f (x )的解析式.将x=log 2sin 17π6代入可得答案.【解答】:解:根据题意.f (x )是定义域为R 的单调函数.且对任意实数x 都有f[f (x )+34x +1]= 25 .则f (x )+34x +1为常数.设f (x )+34x +1=t.则f (x )=-34x +1+t. 又由f[f (x )+ 34x +1 ]= 25 .即f (t )=- 34t +1 +t= 25 . 解可得t=1. 则f (x )=- 34x +1 +1. ∵sin17π6 = 12.则f (log 2 12 )=f (-1)=- 34−1+1 +1=- 75 ;故答案为:- 75 .【点评】:本题考查函数的单调性的性质以及应用.还考查了三角函数求值.诱导公式.对数的运算.换元法的思想.关键是求出函数的解析式.属于中档题. 13.(单选题.3分)“sinα<0”是“α为第三、四象限角”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件D.既不充分也不必要条件 【正确答案】:B【解析】:由α为第三、四象限角.可得sinα<0.反之不成立.即可判断出结论.【解答】:解:由α为第三、四象限角.可得sinα<0.反之不成立.例如 α=3π2. 故选:B .【点评】:本题考查了三角函数求值、简易逻辑的判定方法.考查了推理能力与计算能力.属于基础题.14.(单选题.3分)A 为三角形ABC 的一个内角.若sinA+cosA= 1225 .则这个三角形的形状为( ) A.锐角三角形 B.钝角三角形 C.等腰直角三角形 D.等腰三角形 【正确答案】:B【解析】:将已知式平方并利用sin 2A+cos 2A=1.算出sinAcosA=- 4811250 <0.结合A∈(0.π)得到A 为钝角.由此可得△ABC 是钝角三角形.【解答】:解:∵sinA+cosA= 1225 .∴两边平方得(sinA+cosA )2= 144625 .即sin 2A+2sinAcosA+cos 2A= 144625 . ∵sin 2A+cos 2A=1.∴1+2sinAcosA= 144625 .解得sinAcosA= 12 ( 144625 -1)=- 4811250 <0.∵A∈(0.π)且sinAcosA <0.∴A∈( π2 .π).可得△ABC 是钝角三角形 故选:B .【点评】:本题给出三角形的内角A 的正弦、余弦的和.判断三角形的形状.着重考查了同角三角函数的基本关系、三角形的形状判断等知识.属于基础题.15.(单选题.3分)已知函数f (x )=log a (6-ax )在x∈[2.3)上为减函数.则a 的取值范围是( ) A.(1.2) B.(1.2] C.(1.3) D.(1.3]【正确答案】:B【解析】:由已知中f (x )=log a (6-ax )在x∈[2.3)上为减函数.结合底数的范围.可得内函数为减函数.则外函数必为增函数.再由真数必为正.可得a 的取值范围.【解答】:解:若函数f (x )=log a (6-ax )在x∈[2.3)上为减函数. 则 {a >16−3a ≥0 解得:a∈(1.2].故选:B .【点评】:本题考查的知识点是复合函数的单调性.其中根据已知分析出内函数为减函数.则外函数必为增函数.是解答的关键16.(单选题.3分)设x 1.x 2分别是f (x )=x-a -x 与g (x )=xlog a x-1(a >1)的零点.则x 1+9x 2的取值范围是( ) A.[8.+∞) B.(10.+∞) C.[6.+∞) D.(8.+∞) 【正确答案】:B【解析】:函数的零点即方程的解.将其转化为图象交点问题.又有函数图象特点.得到交点的对称问题.从而求解.【解答】:解:由设x1.x2分别是函数f(x)=x-a-x和g(x)=xlog a x-1的零点(其中a>1).可知 x1是方程a x= 1x 的解;x2是方程1x=log a x 的解;则x1.x2分别为函数 y= 1x的图象与函数y=a x和函数y=log a x 的图象交点的横坐标;设交点分别为A(x1. 1x1).B(x2. 1x2)由 a>1.知0<x1<1;x2>1;又因为y=a x和y=log a x 以及 y= 1x的图象均关于直线y=x 对称. 所以两交点一定关于y=x 对称.由于点A(x1. 1x1).关于直线 y=x的对称点坐标为(1x1.x1).所以x1= 1x2.有x1x2=1.而x1≠x2则x1+9x2=x1+x2+8x2≥2 √x1x2 +8x2>2+8=10.即x1+9x2∈(10.+∞)故选:B.【点评】:本题考查了函数的概念与性质、对数函数以及指数函数.17.(问答题.0分)已知α∈(0. π2).β∈(0. π2).sinα= 4√37.cos(α+β)=- 1114.(1)求tan2α的值;(2)求cosβ的值.【正确答案】:【解析】:(1)利用同角三角函数基本关系式可求cosα.tanα的值.进而根据二倍角的正切函数公式可求tan2α的值.(2)利用同角三角函数基本关系式可求sin(α+β)的值.根据两角差的余弦函数公式可求cosβ的值.【解答】:解:(1)∵α∈(0. π2).sinα= 4√37.∴cosα= √1−sin2α = 17 .tanα= sinαcosα=4 √3 .∴tan2α= 2tanα1−tan2α = 2×4√31−(4√3)2=- 8√347.(2)∵α∈(0. π2).β∈(0. π2).sinα= 4√37.cos(α+β)=- 1114.∴α+β∈(0.π).sin(α+β)= √1−cos2(α+β) = 5√314.∴cosβ=cos[(α+β)-α]=cos(α+β)cosα+sin(α+β)sinα=(- 1114)× 17+ 5√314× 4√37= 12.【点评】:本题主要考查了同角三角函数基本关系式.二倍角的正切函数公式.两角差的余弦函数公式在三角函数化简求值中的应用.属于基础题.18.(问答题.0分)已知函数f(x)=3x-a•3-x.其中a为实常数;(1)若f(0)=7.解关于x的方程f(x)=5;(2)判断函数f(x)的奇偶性.并说明理由.【正确答案】:【解析】:(1)根据f(0)=7.求解a的值.再解方程f(x)=5即可.(2)根据奇偶性定义判断即可.【解答】:解:(1)由f(0)=7.即1-a=7.可得a=-6.那么3x+6•3-x=5.∴(3x-2)(3x-3)=0.解得x=1或x=log32.(2)由f(-x)=-a•3x+3-x.当a=-1时.可得f(-x)=f(x)此时f(x)是偶函数.当a=1时.f(-x)=-f(x)此时f(x)是奇函数.当a≠±1时.f(x)是非奇非偶函数.【点评】:本题考查了奇偶性的定义判断和指数函数的化简运算.属于基础题.19.(问答题.0分)高境镇要修建一个扇形绿化区域.其周长为400m.所在圆的半径为r.扇形的圆心角的弧度数为θ.θ∈(0.2π).(1)求绿化区域面积S关于r的函数关系式.并指数r的取值范围:(2)所在圆的半径为r取何值时.才能使绿化区域的面积S最大.并求出此最大值.【正确答案】:【解析】:(1)由扇形的周长求出θ的值.再根据题意求出r的取值范围.计算扇形的面积;(2)利用函数解析式求出S的最大值以及r的值.【解答】:解:(1)由题意知.扇形的周长为2r+θr=400.所以θ= 400−2rr;又θ∈(0.2π).所以200π+1<r<200;所以扇形的面积为S= 12θr2= 12• 400−2rr=-r2+200r.其中r的取值范围是(200π+1.200);(2)S(r)=-r2+200r=-(r-100)2+10000.当r=100时.S(r)取得最大值为10000.即半径为r=100m时.绿化区域的面积S最大.最大值10000m2.【点评】:本题考查了根据实际问题选择函数模型的应用问题.是基础题.20.(问答题.0分)已知函数y=f(x)的定义域为(1.+∞).对于定义域内的任意实数x.有f (2x)=2f(x)成立.且x∈(1.2]时.f(x)=log2x.(1)当x∈(1.23]时.求函数y=f(x)的最大值;(2)当x∈(1.23.7]时.求函数y=f(x)的最大值;(3)已知f(1200)=f(b)(实数b>1).求实数b的最小值.【正确答案】:【解析】:(1)根据条件.对任意的x∈(1.+∞).恒有f (2x )=2f (x )成立.所以f (x )=2f ( x2 );且x∈(1.2]时.f (x )=log 2x∈(0.1];所以当x∈(2.4]时.x2 ∈(1.2].f (x )=2f ( x 2 )=2log 2 x 2∈(0.2];同理可以依次推出当x∈(2n-1.2n ]时.f (x )的解析式.即可得当x∈(1.23]时函数y=f (x )的最大值;(2)当x∈(1.23.7]时.23≤23.7≤24.由(1)可得f (x )的解析式.即可得函数值; (3)根据f (1200)=f (b )(实数b >1).解出b 的值.进而求实数b 的最小值即可.【解答】:解:(1)对任意的x∈(1.+∞).恒有f (2x )=2f (x )成立.所以f (x )=2f ( x2 ); 且x∈(1.2]时.f (x )=log 2x∈(0.1];所以当x∈(2.4]时. x 2 ∈(1.2].f (x )=2f ( x 2 )=2log 2 x2 ∈(0.2]; 当x∈(4.8]时. x 2 ∈(2.4].f (x )=2f ( x 2 )=4log 2 x4 ∈(0.4]; 当x∈(8.16]时. x 2 ∈(4.8].f (x )=2f ( x 2 )=8log 2 x8 ∈(0.8]; …;当x∈(2n-1.2n ]时. x 2 ∈(2n-2.2n-1].f (x )=2f ( x 2 )=2n-1log 2 x2n−1 ∈(0.2n-1]; 所以x∈(2n-1.2n ]时.f (x )的最大值是2n-1;所以x∈(1.23]时.f (x )= { log 2x ,x ∈(1,2]2log 2x 2,x ∈(2,4]4log 2x 4,x ∈(4,8] .的最大值为f (23)=4log 2 2322 =4; (2)当x∈(1.23.7]时.23≤23.7≤24.所以f (x )的最大值为f (23.7)=23×log 2 23.723 =8×(3.7-3)=5.6; (3)由f (1200)=f (b )(实数b >1). 且1200=210× 7564 .210<210× 7564 <211. 所以f (1200)=210×log 2210×7564210 =210×log 2 7564 .f (b )=f (2× b2 )=2f ( b 2 )=22f ( b22 )=…=2n-1 f ( b2n−1 ); 当 b2n−1 ∈(1.2]时.∴f (b )=2n-1log 2 b2n−1 ;∵f (1200)=f (b ).则210×log 2 7564 =2n-1log 2 b2n−1 ;b=2n-1• (7564)211−n .1<n <11当n=10时.b2n−1 =( 7564 )2∈(1.2];b=29×( 7564)2;当n=9时. b 2n−1 =( 7564 )4∈(1.2];b=28×( 7564 )4;当n=8时. b2n−1 =(7564)8∉(1.2];…29×(7564)2>28×(7564)4;∴实数b的最小值为28×(7564)4=256×(7564)4.【点评】:本题考查了抽象函数及其应用.考查了计算能力.分析解决问题的能力.转化与化归的思想.属于中档题.21.(问答题.0分)已知函数f(x)=log a(x+ √x2−1).x∈(1.+∞).a>0且a≠1.(1)若a为整数.且f(2a+2−a2)=2.试确定一个满足条件的a的值;(2)设y=f(x)的反函数为y=f -1(x).若f-1(n)<4n+4−n2(n∈N*).试确定a的取值范围;(3)若a=2.此时y=f(x)的反函数为y=f-1(x).令g(x)= 2f −1(x)+k2f−1(x)+1.若对一切实数x1.x2.x3.不等式g(x1)+g(x2)>g(x3)恒成立.试确定实数k的取值范围.【正确答案】:【解析】:(1)由对数和指数的运算性质.化简可得所求值;(2)由反函数的定义和求解步骤.可得f -1(x)= a x+a−x2(若a>1.x>0;若0<a<1.x<0).再由指数函数和对勾函数的单调性.对a讨论.可得所求范围;(3)求得y=f-1(x)= 2x+2−x2(x>0).g(x)=1+ k−12x+2−x+1.对k讨论.分k=1.k>1.k<1.判断g(x)的单调性可得g(x)的值域.再由题意可得任意两个尽可能小的函数值不小于另一个尽可能大的函数值.解不等式可得所求范围》【解答】:解:(1)由f(x)=log a(x+ √x2−1).x>1.a>0且a≠1.可得f(2a+2−a2)=log a(2a+2−a2 + √4a+2+4−a4−1)=log a(2a+2−a2 + 2a−2−a2)=log a2a=2.即a2=2a.可得整数a=2或4;(2)由y=f(x)=log a(x+ √x2−1).x>1.可得a y=x+ √x2−1 .即a y-x= √x2−1 . 平方可得a2y-2xa y+1=0.即有x= a y+a−y2.可得f -1(x)= a x+a−x2(若a>1.x>0;若0<a<1.x<0).f-1(n)<4n+4−n2(n∈N*).即为a n+a−n2<4n+4−n2.若0<a<1.则a n+a-n单调递减.可得14<a<1;可得a的取值范围为(14.1)∪(1.4);(3)若a=2.此时y=f(x)的反函数为y=f-1(x)= 2x+2−x2(x>0).g(x)= 2f−1(x)+k2f−1(x)+1 = 2x+2−x+k2x+2−x+1=1+ k−12x+2−x+1.当k=1时.g(x)=1.符合题意;当k>1时.g(x)在x>0递减.可得g(x)∈(1.1+ k−13).对一切实数x1.x2.x3.不等式g(x1)+g(x2)>g(x3)恒成立.可得1+1≥1+ k−13.解得1<k≤4;当k<1时.g(x)在x>0递增.可得g(x)∈(1+ k−13.1).对一切实数x1.x2.x3.不等式g(x1)+g(x2)>g(x3)恒成立.可得2(1+ k−13)≥1.解得- 12≤k<1.综上可得k的范围是[- 12.4].【点评】:本题主要考查函数恒成立问题解法.注意运用函数的单调性和转化思想.考查反函数的求法.化简整理的运算能力.是一道难题.。
上海市复旦附中2019-2020学年度高一数学第一学期期末考试(详解版)
复旦大学附属中学2019-2020学年第一学期高一年级数学期末考试试卷 2020.01时间:120分钟 满分:150分一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分) 1. 函数12log (5)y x =-的定义域为________2. 函数2()1(1)f x x x =+≤-的反函数为_____________________ 3. 已知2log 3a =,试用a 表示9log 12=____________________ 4. 幂函数223()(1)(,)mm f x a x a m --=-∈¥为偶函数,且在(0,)+∞上是减函数,则a m += _______ 5. 函数23log ()y x x =-的递增区间为________________________ 6. 方程22log (95)log (32)2x x-=-+的解为x =________________7. 已知关于x 的方程2240x kx k k +++-=有两个实数根,且一根大于2,一根小于2,则实数k 的取值范围为___________ 8. 若函数()6,2,3log ,2,a x x f x x x -+≤⎧=⎨+>⎩(0a > 且1a ≠ )的值域是[)4,+∞ ,则实数a 的取值范围是______9. 已知1()(33)2x xf x -=-的反函数为1()f x -,当[3,5]x ∈-时,函数1()(1)1F x f x -=-+ 的最大值为M ,最小值为m ,则M m +=_______10. 对于函数(),y f x x D =∈,若对任意,,a b c D ∈,(),(),()f a f b f c 都可为某一三角形的三边长,则称()f x 为“三角形函数”。
已知()1x x e t f x e +=+是三角形函数,则实数t 的取值范围是____11. 若关于x 的方程54(4)|5|x x m x x+--=在(0,)+∞内恰好有三个实数根,则实数m 的取值范围是_____12. 已知函数2131()1log 12x x k x f x x x ⎧-++≤⎪=⎨-+>⎪⎩,2()lg(2)()1x g x a x a x =⋅++∈+R ,若对任意的{}12,|,2R x x x x x ∈∈>-,均有12()()f x g x ≤,则实数k 的取值范围是 .二、选择题(本大题共有4题,满分20分,每题5分)13. 若命题甲:10x -=,命题乙:2lg lg 0x x -=,则命题甲是命题乙的( ) A 、充分非必要条件 B 、必要非充分条件C 、充要条件 D 、既非充分也非必要条件 14.下列函数中既是偶函数,又在(0,+∞)上单调递增的是( )A 、y=||1x B 、2y x -= C 、2|log |y x = D 、23y x =15.设函数()f x 的定义域为R ,有下列三个命题:(1)若存在常数M ,使得对任意R x ∈, 有()f x M ≤,则M 是函数()f x 的最大值;(2)若存在0R x ∈, 使得对任意R x ∈, 且0x x ≠, 有0()()f x f x <,则0()f x 是函数()f x 的最大值;(3)若存在0R x ∈, 使得对任意R x ∈, 有0()()f x f x ≤,则0()f x 是函数()f x 的最大值. 这些命题中,真命题的个数是( ) A 、0个 B 、1个 C 、2个 D 、3个16. 已知函数nx x m x f x ++⋅=22)(,记集合},0)(|{R x x f x A ∈==,集合},0)]([|{R x x f f x B ∈==,若B A =,且都不是空集,则n m +的取值范围是( )A 、[0,4)B 、 [1,4)-C 、[3,5]-D 、[0,7)三、解答题(本大题共有5题,满分76分)17. (本题满分14分,第1小题满分6分,第2小题满分8分)已知函数1()421xx f x a +=-⋅+.(1)若1a =,解方程:()4f x =;(2)若()f x 在[1,1]-上存在零点,求实数a 的取值范围.18.(本题满分14分,第1小题满分6分,第2小题满分8分)已知函数21()log 1axf x x -=-的图像关于原点对称,其中a 为常数. (1)求a 的值; (2)设集合4={|1}7A x x≥-,2={|()log (1)}B x f x x m +-<,若A B ≠∅I ,求实数m 的取值范围.19.(本题满分14分,第1小题满分6分,第2小题满分8分)近年来,雾霾日趋严重,我们的工作、生活受到了严重的影响,如何改善空气质量已成为当今的热点问题.某空气净化器制造厂,决定投入生产某型号的空气净化器,根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产该型号空气净化器x (百台,其总成本为()P x (万元,其中固定成本为12万元,并且每生产1百台的生产成本为10万元总成本固定成本生产成本销售收入()Q x 万元满足20.522,(016)()224,(16)x x x Q x x ⎧-+≤≤=⎨>⎩,假定该产品产销平衡即生产的产品都能卖掉,根据上述统计规律,请完成下列问题:(1)求利润函数()y f x =的解析式利润销售收入总成本; (2)工厂生产多少百台产品时,可使利润最多?20.(本题满分16分,第1小题满分4分,第2小题满分6分,第3小题满分6分)若函数f (x )满足:对于其定义域D 内的任何一个自变量 x 0,都有函数值f (x 0)ÎD ,则称函数f (x )在D 上封闭. (1)若下列函数的定义域为 D =(0,1),试判断其中哪些在D 上封闭,并说明理由。
上海市上外附中2019-2020学年度高一数学第一学期期末考试(word无答案)
2019学年第一学期期末考试高一年级数学试卷 2020.01一、填空题(每题3分,共42分)1. 已知集合{}2,3A =,集合{}3,4,5B =,则A B ⋂=__________.2. 命题“若22am bm <,则a b <”的否命题是__________.3. 已知函数()3,11,1x x f x x x -⎧≥=⎨-<⎩,则()1f f ⎡⎤⎣⎦的值为__________.4. 函数()f x =__________.5. 已知函数()f x =,()g x =()()f x g x ⋅=__________.6. 已知指数函数()f x 的图像经过点()2,8,则它的解析式是()f x =__________.7. 已知函数()f x 是定义在R 上的奇函数,当0x ≥时,()23f x x x b =-+(b 为常数),则()1f -=__________.8. 若函数()22,0,0x x f x x m x ⎧≤=⎨-+>⎩的值域为(],1-∞,则实数m 的取值范围是__________.9. 已知实数0x >,0y >,且111x y+=,则2x y +的最小值是__________. 10. 已知函数()3133xx f x x =+-,若()()2120f a f a -+≤,则实数a 的取值范围是__________.11. 已知函数()9f x x a a x=+-+在区间[]1,9上的最大值是10,则实数a 的取值范围是__________.12. 若函数()21f x x x a =+-有三个不同的零点,则实数a 的取值范围为__________.13. 已知函数()f x 的定义域为R ,且()()1f x f x ⋅-=和()()114f x f x +⋅-=对任意的x R ∈成立,若当[]0,1x ∈时,()f x 的值域为[]1,2,则当[]9,9x ∈-时,函数()f x 的值域为__________.14. 函数()f x x =,()22g x x x =-+,若存在1211,,,0,2n x x x ⎡⎤∈⎢⎥⎣⎦L ,使得()()()()()()()()121121n n n n f x f x f x g x g x g x g x f x --++++=++++L L ,则正整数n 的最大值是__________.二、选择题(每题3分,共12分) 15.“21x>成立”是“2x <成立”的( )条件. (A )充分非必要 (B )必要非充分 (C )充要 (D )既不充分又不必要 16. 关于函数()232f x x =-的下列判断,其中正确的是( ) (A )函数()f x 的图像是中心对称图形 (B )函数()f x 的图像是轴对称图形 (C )当0x >时,函数()f x 是减函数 (D )函数()f x 有最大值17. 小明同学提出了如下两个命题:已知函数()f x 的定义域是D ,12,x x D ∈, ①若当()()120f x f x +=时,都有120x x +=,则函数()f x 是D 上的奇函数; ②若当()()12f x f x <时,都有12x x <,则函数()f x 是D 上的增函数。
2019-2020学年上海中学高一(上)期末数学试卷
2019-2020学年上海中学高一(上)期末数学试卷一、填空题1. 函数f(x)=√2−x +ln (x −1)的定义域为________.2. 设函数f(x)=(x+1)(x−a)x 为奇函数,则实数a 的值为________.3. 已知y =log a x +2(a >0且a ≠1)的图象过定点P ,点P 在指数函数y =f(x)的图象上,则f(x)=________.4. 方程92x+1=(13)x 的解为________.5. 对任意正实数x ,y ,f(xy)=f(x)+f(y),f(9)=4,则f(√3)=________.6. 已知幂函数f(x)=(m 2−5m +7)x m 是R 上的增函数,则m 的值为________.7. 已知函数f(x)={2x (x ≤0)log 2x(0<x ≤1)的反函数是f −1(x),则f −1(12)=________.8. 函数y =log 34|x 2−6x +5|的单调递增区间为________.9. 若函数f(x)=log a (x 2−ax +2)(a >0且a ≠1)满足:对任意x 1,x 2,当x 1<x 2≤a 2时,f(x 1)−f(x 2)>0,则a 的取值范围为________√2) .10. 已知x >0,定义f(x)表示不小于x 的最小整数,若f (3x +f(x))=f(6.5),则正数x 的取值范围为________.11. 已知函数f(x)=log a (mx +2)−log a (2m +1+2x )(a >0且a ≠1)只有一个零点,则实数m 的取值范围为________.12. 已知函数f(x)={log 12(1−x),−1≤x ≤n 22−|x−1|−3,n <x ≤m ,(n <m)的值域是[−1, 1],有下列结论:(1)n =0时,m ∈(0, 2];(2)n =12时,m ∈(12,2];(3)n =[0,12)时,m ∈(n, 2],其中正确的结论的序号为________.二、选择题下列函数中,是奇函数且在区间(1, +∞)上是增函数的是( )A.f(x)=3|x|B.f(x)=1x −xC.f(x)=−x 3D.f(x)=−log 2x+1x−1已知f(x)是定义在R 上的偶函数,且在区间(−∞, 0)上单调递增,若实数m 满足f(|m −1|)>f(−1),则m 的取值范围是( )A.(−∞, 0)∪(2, +∞)B.(−∞, 0)C.(0, 2)D.(2, +∞)如果函数f(x)在其定义域内存在实数x 0,使得f(x 0+1)=f(x 0)+f(1)成立,则称函数f(x)为“可拆分函数”,若f(x)=lg a 2x +1为“可拆分函数”,则a 的取值范围是( )A.(32,3)B.(12,32)C.(32,3]D.(3, +∞]定义在(−1, 1)上的函数f(x)满足f(x)=1f(x−1)+1,当x ∈(−1, 0]时,f(x)=1x+1−1,若函数g(x)=|f(x)−12|−mx −m 在(−1, 1)内恰有3个零点,则实数m 的取值范围是( )A.[14,916)B.(14,916)C.[14,12)D.(14,12) 三.解谷题已知函数f(x)=2x −1的反函数是y =f −1(x),g(x)=log 4(3x +1).(1)画出f(x)=2x −1的图象;(2)解方程f −1(x)=g(x).已知定义在R 上的奇函数f(x)=ka x −a −x ((a >0且a ≠1),k ∈R).(1)求k 的值,并用定义证明当a >1时,函数f(x)是R 上的增函数;(2)已知f(1)=32,求函数g(x)=a 2x +a −2x 在区间[0, 1]上的取值范围.松江有轨电车项目正在如火如荼的进行中,通车后将给市民出行带来便利,已知某条线路通车后,电车的发车时间间隔t (单位:分钟)满足2≤t ≤20,经市场调研测算,电车载客量与发车时间间隔t 相关,当10≤t ≤20时电车为满载状态,载客量为400人,当2≤t <10时,载客量会减少,减少的人数与(10−t)的平方成正比,且发车时间间隔为2分钟时的载客量为272人,记电车载客量为p(t).(1)求p(t)的表达式,并求当发车时间间隔为6分钟时,电车的载客量;(2)若该线路每分钟的净收益为Q =6p(t)−1500t −60(元),问当发车时间间隔为多少时,该线路每分钟的净收益最大?对于定义域为D 的函数y =f(x),若存在区间[a, b]⊂D ,使得f(x)同时满足,①f(x)在[a, b]上是单调函数,②当f(x)的定义域为[a, b]时,f(x)的值域也为[a, b],则称区间[a, b]为该函数的一个“和谐区间”.(1)求出函数f(x)=x 3的所有“和谐区间”[a, b];(2)函数f(x)=|4x −3|是否存在“和谐区间”[a, b]?若存在,求出实数a ,b 的值;若不存在,请说明理由;(3)已知定义在(2, k)上的函数f(x)=2m −4x−1有“和谐区间”,求正整数k 取最小值时实数m 的取值范围.定义在R 上的函数g(x)和二次函数ℎ(x)满足:g(x)+2g(−x)=e x +2e x −9,ℎ(−2)=ℎ(0)=1,ℎ(−3)=−2.(1)求g(x)和ℎ(x)的解析式;(2)若对于x 1,x 2∈[−1, 1],均有ℎ(x 1)+ax 1+5≥g(x 2)+3−e 成立,求a 的取值范围;(3)设f(x)={g(x),x >0ℎ(x),x ≤0,在(2)的条件下,讨论方程f[f(x)]=a +5的解的个数.参考答案与试题解析2019-2020学年上海中学高一(上)期末数学试卷一、填空题1.【答案】此题暂无答案【解析】此题暂无解析【解答】此题暂无解答2.【答案】此题暂无答案【解析】此题暂无解析【解答】此题暂无解答3.【答案】此题暂无答案【解析】此题暂无解析【解答】此题暂无解答4.【答案】此题暂无答案【解析】此题暂无解析【解答】此题暂无解答5.【答案】此题暂无答案【解析】此题暂无解析【解答】此题暂无解答6.【答案】此题暂无答案【解析】此题暂无解析此题暂无解答7.【答案】此题暂无答案【解析】此题暂无解析【解答】此题暂无解答8.【答案】此题暂无答案【解析】此题暂无解析【解答】此题暂无解答9.【答案】此题暂无答案【解析】此题暂无解析【解答】此题暂无解答10.【答案】此题暂无答案【解析】此题暂无解析【解答】此题暂无解答11.【答案】此题暂无答案【解析】此题暂无解析【解答】此题暂无解答12.【答案】此题暂无答案【解析】此题暂无解析【解答】此题暂无解答此题暂无答案【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【解析】此题暂无解析【解答】此题暂无解答三.解谷题【答案】此题暂无答案【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【解析】此题暂无解答【答案】此题暂无答案【解析】此题暂无解析【解答】此题暂无解答。
上海市上海中学2019_2020学年高一数学上学期期末考试试题含解析
上海市上海中学2019-2020学年高一数学上学期期末考试试题(含解析)一.填空题1.方程lg(21)lg 1x x +-=的解为_________.2.函数y =________.3.若幂函数图像过点(8,4),则此函数的解析式是y =________.4.若指数函数xy a =的定义域和值域都是[]2,4,则a =_________;5.函数2()4(0)f x x x x =-≤的反函数为_________;6.若233log 03a a+<+,则实数a 的取值范围是_______.7.己知函数()f x 定义域为R ,且恒满足()(2)0f x f x +-=,1(1)()f x f x +=-,则函数()f x 的奇偶性为________. 8.函数225xy x x =++单调递增区间为_______. 9.函数42()21x x xcf x ++=+在定义域上单调递增,则c 的取值范围__________. 10.关于x 的方程2282x m x -=+有两个不同解,则m 的取值范围为_________. 11.已知函数23()4f x ax =+,()ag x x x =+,对任意的1[1,2]x ∈,存在2[1,2]x ∈,使得()()12f x g x ≥恒成立,则a 的取值范围为__________.12.已知函数()||1||3|1|f x x x =----,若()246(4)f a a f a +=,则实数a 的取值范围为_______. 二.选择题13.设()f x 是定义域为R 的偶函数,且在(,0)-∞递增,下列一定正确的是( )A. 2332(0)22f f f --⎛⎫⎛⎫>>⎪ ⎪⎝⎭⎝⎭ B. ()2332322log 4f f f --⎛⎫⎛⎫>> ⎪ ⎪⎝⎭⎝⎭C. ()2332322log 4f f f --⎛⎫⎛⎫>> ⎪ ⎪⎝⎭⎝⎭D. 233231log 224f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭14.函数()f x 的反函数图像向右平移1个单位,得到函数图像C ,函数()g x 的图像与函数图像C 关于y x =成轴对称,那么()g x =( ) A. (1)f x + B. (1)f x - C. ()1f x + D. ()1f x -15.设方程3|ln |xx -=的两个根1x 、2x ,则( )A. 120x x <B. 121=x xC. 121x x >D. 121x x <16.己知函数()y f x =定义域为R ,满足(2)2()f x f x +=,且当2(]0,x ∈时,()(2)f x x x =-,若对任意(,]x m ∈-∞,都32()9f x ≤恒成立,则m 的取值范围为( ) A. 13,3⎛⎤-∞ ⎥⎝⎦B. 14,3⎛⎤-∞ ⎥⎝⎦C. 16,3⎛⎤-∞ ⎥⎝⎦ D.17,3⎛⎤-∞ ⎥⎝⎦三.解答题17.已知函数()f x 定义域为R ,当0x >时,2()lg 2f x x x x =--.(1)若()f x 是偶函数,求0x <时()f x 解析式;(2)若()f x 是奇函数,求x ∈R 时()f x 的解析式. 18.设关于x 的方程1936(5)0xx k k k +-+-=.(1)若常数3k =,求此方程的解;(2)若该方程在[0,2]内有解,求k 的取值范围.19.某环线地铁按内、外线同时运行,内、外环线的长均为30千米(忽略内、外环线长度差异),新调整的方案要求内环线列车平均速度为20千米/小时,外环线列车平均速度为30千米/小时,现内、外环线共有18列列车全部投入运行,其中内环投入x 列列车. (1)写出内、外环线乘客的最长候车时间(分钟)分别关于x 的函数解析式;(2)要使内、外环线乘客的最长候车时问之差距不超过1分钟,问内、外环线应各投入几列 列车运行?(3)要使内、外环线乘客的最长候车时间之和最小,问内、外环线应各投入几列列车运行?(2)()(2)f t f t f +=+.(1)判断函数()f x kx =(k 为常数)是否属于集合M ; (2)若2()ln1af x x =+属于集合M ,求实数a 的取值范围; (3)若2()2x f x bx =+,求证:对任意实数b ,都有()f x 属于集合M .20.已知集合M 是满足下列性质的函数()f x 的全体:在定义域内存在实数t ,使得 21.对于函数3()3||1f x x x c =--+.(1)当0,()c f x =向下和向左各平移一个单位,得到函数()g x ,求函数()g x 的零点; (2)对于常数c ,讨论函数()f x 的单调性; (3)当0c,若对于函数()f x 满足()()f x a f x +>恒成立,求实数a 取值范围.上海市上海中学2019-2020学年高一数学上学期期末考试试题(含解析)一.填空题1.方程lg(21)lg 1x x +-=的解为_________. 【答案】18x .【解析】 【分析】在保证对数式的真数大于0的前提下由对数的差等于商的对数去掉对数符号,求解分式方程得答案.【详解】因为lg(21)lg 1x x +-=,所以21lglg10x x+=,所以02102110x x x x⎧⎪>⎪+>⎨⎪+⎪=⎩,解得18x, 故答案为:18x. 【点睛】该题考查的是有关对数方程的求解问题,在解题的过程中,注意对数式有意义的条件,对数式的运算法则,属于基础题目.2.函数y =________. 【答案】[0,)+∞ 【解析】 【分析】根据指数函数的值域,结合根式有意义的条件,求得函数的值域,得到答案. 【详解】因为1()02x>,所以1()112x->-, 根据根式有意义,有1()102x-≥,所以y =[0,)+∞, 故答案为:[0,)+∞.【点睛】该题考查的是有关函数的值域的求解问题,属于基础题目. 3.若幂函数图像过点(8,4),则此函数的解析式是y =________. 【答案】23x 【解析】 【分析】先用待定系数法设出函数的解析式,再代入点的坐标,计算出参数的值即可得出正确选项. 【详解】设幂函数的解析式为y x α=, 由于函数图象过点(8,4),故有48α=,解得23α=,所以该函数的解析式是23y x =, 故答案为:23x .【点睛】该题考查的是有关应用待定系数法求幂函数的解析式的问题,属于基础题目.4.若指数函数xy a =的定义域和值域都是[]2,4,则a =_________;【解析】 【分析】讨论1a >和01a <<两种情况,根据函数的单调性计算值域得到答案.【详解】当1a >时:函数()xy f x a ==单调递增,()2422,(4)4f a f a a ====∴=当01a <<时:函数()xy f x a ==单调递减,()2424,(4)2f a f a ====,无解.综上所述:a =【点睛】本题考查了函数的定义域和值域,分类讨论是一种常用的方法,需要熟练掌握. 5.函数2()4(0)f x x x x =-≤的反函数为_________;【答案】20)x ≥【解析】 【分析】利用函数表达式解得)20x y =≥,得到反函数.【详解】())22()424(0)20y f x x x x x x y ==-=--≤∴=≥故函数的反函数为1()20)f x x -=≥故答案为20)x ≥【点睛】本题考查了反函数的计算,忽略掉定义域是容易发生的错误.6.若233log 03a a+<+,则实数a 的取值范围是_______.【答案】(0,1)【解析】 【分析】将0写成1的对数,之后根据函数的单调性整理出关于a 的不等式组,求得结果.【详解】因为233log 03a a +<+,所以2333log log 13a a+<+,因为函数3log y x =是(0,)+∞上的单调增函数,所以有23013a a+<<+,解得01a <<,所以a 的取值范围是(0,1), 故答案为:(0,1).【点睛】该题考查的是有关对数不等式的解法,在解题的过程中,注意结合函数有意义的条件,应用对数函数的单调性,属于简单题目.7.己知函数()f x 定义域为R ,且恒满足()(2)0f x f x +-=,1(1)()f x f x +=-,则函数()f x 的奇偶性为________. 【答案】奇函数 【解析】 【分析】 由1(1)()f x f x +=-,能导出()f x 是周期为2的周期函数,由此能够证明()f x 是奇函数,得到结果.【详解】由1(1)()f x f x +=-,得1(2)()(1)f x f x f x +=-=+, 所以()f x 是周期为2的周期函数,所以(2)()f x f x -=-,因为()(2)0f x f x +-=, 所以()()0f x f x +-=, 所以()f x 是奇函数, 故答案为:奇函数.【点睛】该题考查的是有关函数奇偶性的判断问题,在解题的过程中,注意借助于函数的周期性来完成,属于简单题目.8.函数225xy x x =++单调递增区间为_______.【答案】[ 【解析】 【分析】首先判断函数的定义域,得到其图象是不间断的,再讨论当0x ≠时,将函数解析式进行变形得到152y x x=++,再利用5u x x =+的单调区间,结合复合函数的单调性法则,确定出函数225xy x x =++本身的单调增区间,求得结果.【详解】因为函数225xy x x =++的定义域为R , 当0x ≠时,152y x x=++, 因为5u x x=+在(,-∞和)+∞上单调递增,在[0)和上单调递减, 根据复合函数单调性法则,可知152y x x=++应该在[0)和上单调递增, 而函数225xy x x =++本身在0x =处有意义,且函数图象不间断,所以函数225xy x x =++的增区间是[,故答案为:[.【点睛】该题考查的是有关函数单调区间的求解问题,涉及到的知识点有对勾函数的单调区间,复合函数单调性法则,属于简单题目.9.函数42()21x x xcf x ++=+在定义域上单调递增,则c 的取值范围__________. 【答案】(,1]-∞ 【解析】【分析】首先将函数解析式进行化简,之后令21(1,)xt +=∈+∞,将函数化为1cy t t=+-(1,)t ∈+∞,之后结合复合函数的单调性,求得参数的取值范围.【详解】422(21)()2(21)121212121x x x x x xx x x xc c c c f x ++++===+=++-++++, 令21(1,)xt +=∈+∞,且t 随x 的增大而增大,且当0c ≤时,cy t=在(1,)+∞上是增函数, 所以函数1cy t t=+-在(1,)+∞上是增函数, 所以函数42()21x x x cf x ++=+在定义域上是增函数,当0c >时,函数1cy t t=+-在)+∞上是增函数,1,即1c ≤, 所以c 的取值范围为(,1]-∞, 故答案为:(,1]-∞.【点睛】该题考查的是有关根据函数的单调性确定参数的取值范围的问题,涉及到的知识点有指数型函数的单调性,对勾函数的单调区间,复合函数单调性法则,属于中档题目. 10.关于x 的方程2282x m x -=+有两个不同解,则m 的取值范围为_________.【答案】1,14⎛⎤ ⎥⎝⎦【解析】 【分析】根据式子的意义,将式子转化为2228x m x +=-,将方程有两个不同的解转化为28t m t +=-只有一个正根,画出函数图象求得结果.【详解】因为220x +>恒成立,所以原式可化为2282x m x -=+,可知280x -≠,所以2228x m x +=-,因为方程有两个不同的解,所以0x =不是方程的根, 令2(0,8)(8,)x t =∈+∞,则方程28t m t +=-只有一个正根, 画出函数28t m t +=-的图象如图所示:可知所求m的取值范围是:1(,1]4,故答案为:1(,1]4.【点睛】该题考查的是有关根据方程根的情况求参数的取值范围的问题,在解题的过程中,注意将问题正确转化,注意应用函数图象解决问题,属于简单题目. 11.已知函数23()4f x ax =+,()ag x x x =+,对任意的1[1,2]x ∈,存在2[1,2]x ∈,使得()()12f x g x ≥恒成立,则a 的取值范围为__________. 【答案】5,42⎡⎤⎢⎥⎣⎦【解析】 【分析】对任意的1[1,2]x ∈,存在2[1,2]x ∈,使得()()12f x g x ≥恒成立,等价于min max ()()f x g x ≥在区间[1,2]上恒成立,对a 的取值进行分类讨论,利用单调性求出min ()f x 和min ()g x ,列出关于a 的不等式组求得答案.【详解】当0a <时,23()4f x ax =+在区间[1,2]上单调递减,min 3()(2)44f x f a ==+,()ag x x x =+在区间[1,2]上单调递增,min ()1g x a =+, 所以3414a a +≥+,解得112a ≥,因为0a <,所以无解;当0a ≥时,可知min 3()(1)4f x f a ==+,当01a ≤≤时,()ag x x x =+在区间[1,2]上单调递增,其最小值为(1)1g a =+,所以有01314a a a ≤≤⎧⎪⎨+≥+⎪⎩,无解, 当14a <<时,()ag x x x=+在区间上单调减,在4]上单调增,其最小值为g =,所以有1434a a <≤⎧⎪⎨+≥⎪⎩,解得542a ≤≤, 所以a 的取值范围是5[,4]2, 故答案为:5[,4]2.【点睛】该题考查的是有关根据恒成立求参数的取值范围的问题,涉及到的知识点有根据题意将恒成立问题向最值转化,求含参的函数在给定区间上的最值,属于中档题目.12.已知函数()||1||3|1|f x x x =----,若()246(4)f a a f a +=,则实数a 的取值范围为_______.【答案】13,24⎧⎫⎡⎫⋃⋃+∞⎨⎬⎪⎢⎩⎭⎣⎭⎣⎦. 【解析】 【分析】首先利用分类讨论将函数解析式进行化简,从而分析判断要使2(46)(4)f a a f a +=,会出现哪些情况,列出对应的式子求解即可.【详解】因为131,1()131131,13131,3x x xf x x x x x xx x x⎧-+--<⎪=----=-+--≤<⎨⎪--+-≥⎩,即3,1()25,131,3xf x x xx≤⎧⎪=-<<⎨⎪≥⎩,画出函数图象如图所示:可以看到(2)(3)1f f==,要使2(46)(4)f a a f a+=,则有以下几种情况:①246141a aa⎧+≤⎨≤⎩313313x---+≤≤;②22146 2.514 2.5464a aaa a a⎧<+≤⎪<≤⎨⎪+=⎩,无解;③222.54632.543464a aaa a a⎧<+≤⎪<≤⎨⎪+=⎩,无解.④2214631434645a aaa a a⎧<+≤⎪<≤⎨⎪++=⎩,无解;⑤246343a aa⎧+≥⎨≥⎩,解得34a≥,⑥246243a a a ⎧+=⎨≥⎩,无解;⑦246342a a a ⎧+≥⎨=⎩,解得12a =;所以a 的取值范围为3313[,][,)4424--⎧⎫+∞⎨⎬⎩⎭,故答案为:3313[][,)4424--⎧⎫+∞⎨⎬⎩⎭. 【点睛】该题考查的是有关根据函数值相等,求参数的取值范围的问题,涉及到的知识点有含有绝对值的式子的化简,函数值相等的条件,属于中档题目. 二.选择题13.设()f x 是定义域为R 的偶函数,且在(,0)-∞递增,下列一定正确的是( )A. 2332(0)22f f f --⎛⎫⎛⎫>>⎪ ⎪⎝⎭⎝⎭ B. ()2332322log 4f f f --⎛⎫⎛⎫>> ⎪ ⎪⎝⎭⎝⎭C. ()2332322log 4f f f --⎛⎫⎛⎫>> ⎪ ⎪⎝⎭⎝⎭ D. 233231log 224f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭【答案】C 【解析】 【分析】首先根据偶函数在(,0)-∞上递增,得到其在(0,)+∞上递减,将自变量放在同一个单调区间,借助于自变量大小,得到函数值的大小,从而得到结果【详解】因为函数()f x 是定义域为R 的偶函数,且在(,0)-∞上递增, 所以函数()f x 在(0,)+∞上递减,因为2332022--<<,所以2332(0)(2)(2)f f f -->>,所以A 项不正确;23323221log 4--<<<,所以23323(2)(2)(log 4)f f f -->>,又因为331log log 44=-,所以3331(log )(log 4)(log 4)4f f f =-=, 观察B 、C 、D 三项很明显C 项正确,故选:C.【点睛】该题考查的是有关根据偶函数在给定区间上的单调性,判断函数值的大小的问题,涉及到的知识点有偶函数图象的对称性,偶函数的定义,根据单调性比较函数值的大小,属于简单题目.14.函数()f x 的反函数图像向右平移1个单位,得到函数图像C ,函数()g x 的图像与函数图像C 关于y x =成轴对称,那么()g x =( ) A. (1)f x + B. (1)f x - C. ()1f x + D. ()1f x -【答案】C 【解析】 【分析】函数()f x 的反函数1()y f x -=图象向右平移1个单位,得到1(1)y f x -=-,再求反函数可得到结果.【详解】函数()f x 的反函数1()y f x -=图象向右平移1个单位,得到1(1)y fx -=-,则1()x f y -=1()y f x -=,1(1)y f x -=-的反函数为()1y f x =+即()()1g x f x =+, 故选:C.【点睛】该题考查的是有关函数解析式的求解问题,涉及到的知识点有点关于直线的对称点的求法,两个会反函数的函数图象关于直线y x =对称,属于简单题目. 15.设方程3|ln |xx -=的两个根1x 、2x ,则( )A. 120x x <B. 121=x xC. 121x x >D. 121x x <【答案】D 【解析】 【分析】作出函数图象,根据图象和对数的运算性质即可求出答案.【详解】作出函数图象如图所示:若方程3ln xx -=的两根为12,x x ,则1201x x <<<,12123ln ,3ln x x x x --==可得121212ln ln ln ln 330x x x x x x ---=--=->,所以12ln ln 0x x -->,即12ln 0x x <, 所以1201x x <<, 故选:D.【点睛】该题考查的是有关方程的根的大小的判断,涉及到的知识点有对数的运算法则,解决方程根的问题时,可以应用图象的交点来完成,属于简单题目.16.己知函数()y f x =定义域为R ,满足(2)2()f x f x +=,且当2(]0,x ∈时,()(2)f x x x =-,若对任意(,]x m ∈-∞,都32()9f x ≤恒成立,则m 的取值范围为( ) A. 13,3⎛⎤-∞ ⎥⎝⎦B. 14,3⎛⎤-∞ ⎥⎝⎦C. 16,3⎛⎤-∞ ⎥⎝⎦D.17,3⎛⎤-∞ ⎥⎝⎦【答案】B 【解析】 【分析】根据题意,首先求出函数()y f x =在区间(0,2]上的值域为[0,1],再根据条件(2)2()f x f x +=,判断当6(4],x ∈时()[0,4]f x ∈,32[0,4]9∈,并求解6(4],x ∈时()f x的解析式,和32()9f x =时对应的两根中较小根,即可得到m 的取值范围. 【详解】当2(]0,x ∈时,2()(2)(1)1f x x x x =-=--+, 可求得()[0,1]f x ∈,且在(0,1]上单调增,在[1,2]上单调减, 根据(2)2()f x f x +=,可知当(2,4]x ∈,()[0,2]f x ∈,当6(4],x ∈,()[0,4]f x ∈,且()f x 在(4,5]上单调增,在[5,6]上单调减, 因为32[0,4]9∈,当6(4],x ∈时,()2(2)4(4)f x f x f x =-=-, (42],0x -∈,2()4(4)4[(5)1]f x f x x =-=--+,令2324[(5)1]9x --+=,解得143x =或163x =, 所以对任意(,]x m ∈-∞,都32()9f x ≤恒成立,m 的取值范围为14(,]3-∞,故选:B.【点睛】该题以分段函数的形式考查了函数的值域,函数解析式的求解,以及利用恒成立求参数取值范围的问题,属于较难题目,解决该题的关键是利用条件可分析函数的图象,利用数形结合比较好分析. 三.解答题17.已知函数()f x 定义域为R ,当0x >时,2()lg 2f x x x x =--.(1)若()f x 是偶函数,求0x <时()f x 解析式;(2)若()f x 是奇函数,求x ∈R 时()f x 的解析式.【答案】(1)2()lg(2)f x x x x =+--;(2)22lg(2),(0)()0,(0)lg(2),(0)x x x x f x x x x x x ⎧-->⎪==⎨⎪--+-<⎩【解析】 【分析】(1)当0x <时,0x ->,代入函数解析式,根据偶函数的定义,求得相应区间上的()f x 的解析式;(2)当0x <时,0x ->,代入函数解析式,根据奇函数的定义,求得相应区间上的()f x 的解析式,再利用(0)0f =,进而求得()f x 在R 上的解析式.【详解】(1)因为()f x 为偶函数, 当0x <时,0x ->,则22()()()lg 2()lg(2)()f x x x x x x x f x -=-----=+--=, 所以当0x <时,2()lg(2)f x x x x =+--; (2)因为()f x 为奇函数, 当0x <时,0x ->,22()()()lg 2()lg(2)()f x x x x x x x f x -=-----=+--=-,所以2()lg(2)f x x x x =--+-, 且(0)0f =,所以22lg(2),(0)()0,(0)lg(2),(0)x x x x f x x x x x x ⎧-->⎪==⎨⎪--+-<⎩.【点睛】该题考查的是有关根据函数在某一区间上的解析式,结合函数奇偶性的定义,求得函数的解析式,属于简单题目. 18.设关于x 的方程1936(5)0xx k k k +-+-=.(1)若常数3k =,求此方程的解;(2)若该方程在[0,2]内有解,求k 的取值范围. 【答案】(1)3log 4x =;(2)182k ≤≤. 【解析】 【分析】(1)将3k =代入方程,得到3993120x x ⋅-⋅-=,将其整理得到(31)(34)0xx+-=,集合指数函数的值域,得到34x =,从而得到3log 4x =,求得结果; (2)将式子1936(5)0xx k k k +-+-=整理得出309336x xk =-⋅+,令3,[0,2]xt x =∈,则[1,9]t ∈,借助于二次函数在某个区间上的值域求得最后的结果.【详解】(1)当3k =时,方程1936(5)0xx k k k +-+-=即为3993120x x ⋅-⋅-=,化简得93340x x -⋅-=,即(31)(34)0x x+-=, 解得31x =-(舍去)或34x =,所以3log 4x =,所以,此方程的解为3log 4x =, (2)由1936(5)0xx k k k +-+-=可得1(936)30x k k +-+=,所以309336x x k =-⋅+,令3,[0,2]xt x =∈,则[1,9]t ∈,所以22315933636()24xxt t t -⋅+=-+=-+,由[1,9]t ∈可得当32t =时,2315()24t -+最小值为154,当9t =时,2315()24t -+的最大值为60,所以130303015609364x x +≤≤-+,即182k ≤≤,所以k 的取值范围是1[,8]2.【点睛】该题考查的是有关求方程的解或者方程在某个区间上有解求参数的取值范围的问题,在解题的过程中,注意换元思想的应用,以及二次函数在某个区间上的值域的求解方法,属于中档题目.19.某环线地铁按内、外线同时运行,内、外环线的长均为30千米(忽略内、外环线长度差异),新调整的方案要求内环线列车平均速度为20千米/小时,外环线列车平均速度为30千米/小时,现内、外环线共有18列列车全部投入运行,其中内环投入x 列列车. (1)写出内、外环线乘客的最长候车时间(分钟)分别关于x 的函数解析式;(2)要使内、外环线乘客的最长候车时问之差距不超过1分钟,问内、外环线应各投入几列列车运行?(3)要使内、外环线乘客的最长候车时间之和最小,问内、外环线应各投入几列列车运行? 【答案】(1)()*9060,117,18t t x x N x x==≤≤∈-外内;(2)内环线11列列车,外环线7列列车;(3)内环线10列列车,外环线8列列车.. 【解析】【分析】(1)根据题意,结合最长候车时间等于两列列车对应的时间差,列车式子得出结果,注意自变量的取值范围;(2)根据题意,列出对应的不等关系式,求解即可,在解的过程中,注意自变量的取值范围; (3)根据题意,列出式子,结合对勾函数的单调性,求得函数的变化趋势,最后求得取最值时x 的值.【详解】(1)根据题意可知,内环投入x 辆列车,则外环投入(18)x -辆列车, 从而可得内环线乘客的最长候车时间为30906020t x x=⨯=内分钟, 外环线乘客的最长候车时间为30606030(18)18t x x=⨯=--外分钟,根据实际意义,可知117,x x N *≤≤∈, 所以90t x =内,6018t x=-外(117,)x x N *≤≤∈; (2)由题意可得9060=118t t x x--≤-内外, 整理得221321620016816200x x x x ⎧+-≤⎨-+≤⎩所以16813222x --≤≤因为x N *∈,所以11x =,所以当内环线投入11列列车运行,外环线投入7列列车时,内外环线乘客的最长候车时间之差不超过1分钟; (3)令29060162030()+=1818xu x t t x x x x -=+=--内外 2230(54)30(54)18(54)90(54)3654x x x x x x --==--+-+⨯303036543654(54)9090[(54)]5454x x x x==⨯⨯-++--+--可以确定函数在[1,54-上单调递减,在[54-上单调递增,结合x N *∈的条件,可知当10x =时取得最小值,所以内环线10列列车,外环线8列列车时,内、外环线乘客的最长候车时间之和最小. 【点睛】该题考查的是有关函数的应用题,涉及到的知识点有建立函数模型,求解不等式,求函数的最小值,属于较难题目.20.已知集合M 是满足下列性质的函数()f x 的全体:在定义域内存在实数t ,使得(2)()(2)f t f t f +=+.(1)判断函数()f x kx =(k 为常数)是否属于集合M ; (2)若2()ln1af x x =+属于集合M ,求实数a 的取值范围; (3)若2()2x f x bx =+,求证:对任意实数b ,都有()f x 属于集合M .【答案】(1)属于;(2)[15a ∈-+;(3)证明见解析 【解析】 【分析】(1)利用()f x kx =时,方程(2)()(2)f t f t f +=+,此方程恒成立,说明函数()f x kx =(k 为常数)属于集合M ; (2)由2()ln1af x x =+属于集合M,推出22ln ln ln (2)115a a a x x =++++有实数解,即方程2(5)4550a x ax a -++-=有实数解,分5a =和5a ≠两种情况,得到结果;(3)当2()2x f x bx =+时,方程(2)()(2)f x f x f +=+有解,令()3244xg x bx =⋅+-,则()g x 在R 上的图象是连续的,当0b ≥时,当0b <时,判定函数是否有零点,证明对任意实数b ,都有()f x 属于集合M .【详解】(1)当()f x kx =时,方程(2)()(2)f t f t f +=+(2)2k t kt k ⇔+=+, 此方程恒成立,所以函数()f x kx =(k 为常数)属于集合M ; (2)由2()ln1af x x =+属于集合M ,可得方程22lnln ln (2)115a a ax x =++++有实数解,即222455(1)a a x x x =+++,整理得方程2(5)4550a x ax a -++-=有实数解, 当5a =时,方程有实根14-, 当5a ≠时,有2164(5)(55)0a a a ∆=---≥,解得155a -≤<或515a <≤+ 综上,实数a的取值范围为[15a ∈-+;(3)当2()2x f x bx =+时,方程(2)()(2)f x f x f +=+有解,等价于2222(2)244x x b x bx b +++=+++有解,整理得32440x bx ⋅+-=有解,令()3244xg x bx =⋅+-,则()g x 在R 上的图象是连续的, 当0b ≥时,(0)10,(1)420g g b =-<=+>, 故()g x 在(0,1)上有一个零点,当0b <时,11(0)10,()320b g g b=-<=⋅>,故()g x 在1(,0)b上至少有一个零点,故对任意的实数b ,()g x 在R 上都有零点,即方程(2)()(2)f x f x f +=+总有解, 所以对任意实数b ,都有()f x 属于集合M .【点睛】该题考查的是有关函数的问题,涉及到的知识点有新定义,方程有解转化为函数有零点,分类讨论思想,属于难题. 21.对于函数3()3||1f x x x c =--+.(1)当0,()c f x =向下和向左各平移一个单位,得到函数()g x ,求函数()g x 的零点; (2)对于常数c ,讨论函数()f x 的单调性; (3)当0c,若对于函数()f x 满足()()f x a f x +>恒成立,求实数a 取值范围.【答案】(1)1x =或1x =-;(2)当1c ≥,单调递增;当11c -≤<,在(,]c -∞上递增,[,1]c 上递减,[1,)+∞上递增;当1c <-,在(,1]-∞-递增,[1,1]-递减,[1,)+∞递增;(3)a >【解析】【分析】(1)将0c ,求得3()3||1f x x x =-+,利用图象变换原则求得3()(1)31g x x x =+-+,分类讨论去掉绝对值符号,求得函数的零点;(2)将函数解析式中的绝对值符号去掉,得到分段函数,利用导数,分类讨论求得函数的单调性;(3)化简函数解析式,将不等式转化,找出不等式恒成立的关键条件,得到结果.【详解】(1)因为0c ,所以3()3||1f x x x =-+, 根据题意,可得3()(1)31g x x x =+-+,令()0g x =,即3(1)310x x +-+=,当10x +≥时,原式化为2(1)(22)0x x x ++-=,解得1x =-或1x =,当10x +<时,原式化为2(1)(24)0x x x +++=,无解,所以函数()g x 的零点为1x =或1x =-; (2)333331,()31331,x x c x c f x x x c x x c x c⎧-++≥=--+=⎨+-+<⎩,当x c ≥时,3()331f x x x c =-++, 2'()333(1)(1)f x x x x =-=+-,当x c <时,3()331f x x x c =+-+, 2'()33f x x =+, 所以当1c ≥时,'()0f x ≥恒成立,()f x 在(,)-∞+∞上单调递增,当11c -≤<时,令'()0f x ≥,解得x c ≤或1x ≥,所以()f x 在(,]c -∞和[1,)+∞上单调递增,令'()0f x <,解得1c x ≤≤,所以所以()f x 在[,1]c 上单调递减。
上海闵行区2019-2020年高一上学期期末数学试题(解析版)word版
闵行区高一上期末数学试卷一、填空题1.函数()1fx x =-的定义域为___________. 2.函数()()0f x x x =-≤的反函数是_______.3.已知全集{|,||3}U x x Z x =∈…,集合{2,0,1,2}=-A ,{2,1,3}B =-,如图中阴影部分所表示的集合为________.4.已知奇函数()f x 的定义域为R ,(1)3f -=,那么(0)(1)f f +=________.5.已知函数25()log a f x x -=是增函数,则实数a的取值范围是_________.6.已知原命题的逆命题是:“若0xy =,则220x y +=”,试判断原命题的否命题的真假________.(填“真”或“假”)7.令lg 2a =,则用a 表示81lg 3lg 52+的结果为_________. 8.已知函数()f x 是偶函数,当0x >时,2()3f x x x =-,则当0x <时,()f x =________.9.2019年度,国内某电信企业甲投入科研经费115亿美元,国外一家电信企业乙投入科研经费156亿美元,从2020年开始,若企业甲的科研经费每年增加%x ,计划用3年时间超过企业乙的年投入量(假设企业乙每年的科研经费投入量不变).请写出一个不等式来表达题目中所描述的数量关系:__________.(所列的不等式无需化简)10.已知函数2()log f x x =,定义()(1)()f x f x f x ∆=+-,则函数()()(1)F x f x f x =∆++的值域为___________.11.已知()|1||1|f x x x =+--,()ag x x x=+,对于任意的m R ∈,总存在0x R ∈,使得()0f x m =或()0g x m =,则实数a 的取值范围是____________.12.设函数2()21k f x x x =-+(120191,,1,2,3,,2019k x k k k +⎡⎤∈-=⎢⎥⎣⎦L )的值域依次是1232019,,,,A A A A L ,则1232019A A A A ⋂⋂⋂⋂=L __________.二、选择题13.已知a ,b 都是实数,那么“33a b >”是“33a b >” 的( ) A. 充分不必要条件 B. 必要不充分条件 C .充要条件D. 既不充分也不必要条件14.如果12log 0.5log 0.50x x <<,那么( ) A. 2101x x <<< B. 1201x x <<<C. 121x x <<D. 211x x <<15.已知集合2121|,3232x x P x x R x x --⎧⎫==∈⎨⎬--⎩⎭,则下列集合中与P 相等的是( )A. 21|0,32x x x R x -⎧⎫>∈⎨⎬-⎩⎭B. {|(21)(32)0,}x x x x R --≥∈C. 21|lg32x x y x -⎧⎫=⎨⎬-⎩⎭D. {}0|(32)x y x =-16.若()()111f x f x +=+,当[0,1]x ∈时,()f x x = ,若在区间(]1,1-内,()()g x f x m =-有两个零点,则实数m 的取值范围是( ) A. 10,2⎡⎫⎪⎢⎣⎭B. 1,2⎡⎫+∞⎪⎢⎣⎭C. 10,3⎡⎫⎪⎢⎣⎭D. (]0,1三、解答题17.已知函数1()f x x x=-.判断()f x 在(,0)-∞上的单调性,并给予证明. 18.已知集合1|11A x x ⎧⎫=>⎨⎬-⎩⎭,()(){}|320,1B x x a x a a =--->≤. (1)求集合A 和B ;(2)若A B B ⋃=,求实数a 的取值范围.19.自2019年春季以来,在非洲猪瘟、环保禁养、上行周期等因素形成的共振条件下,猪肉价格连续暴涨.某养猪企业为了抓住契机,决定扩大再生产,根据以往的养猪经验预估:在近期的一个养猪周期内,每养x 百头猪(515)x ≤≤,所需固定成本为20万元,其它为变动成本:每养1百头猪,需要成本14万元,根据市场预测,销售收入()F x (万元)与x (百头)满足如下的函数关系:23040,(510)()4040,(1015)x x F x x x x -≤≤⎧=⎨-+-<≤⎩(注:一个养猪周期内的总利润()R x (万元)=销售收入-固定成本-变动成本).(1)试把总利润()R x (万元)表示成变量x (百头)的函数;(2)当x (百头)为何值时,该企业所获得的利润最大,并求出最大利润.20.设A 是由满足以下性质的函数()f x 构成的集合:对于()f x 的定义域内的任意两个不相等的实数1x 、2x ,不等式()()1212122x x f x f x f +⎛⎫+>⎡⎤ ⎪⎣⎦⎝⎭都成立. (1)已知函数()21xg x =+,求()g x 的反函数1()g x -,并指出1()g x -的定义域;(2)试判断(1)中的函数()g x 与1()g x -是否属于集合A ,并说明理由;(3)设()h x A ∈,且()h x 的定义域为(0,)+∞,值域为7(2,5),(1)2h <,试写出一个满足条件的函数()h x 的解析式(不用分段函数表示,不需要说明理由). 21.已知函数2()12xf x a=-+(a 是常数). (1)若1a =,求函数()f x 的值域;(2)若()f x 为奇函数,求实数a .并证明()f x 的图像始终在1()21x g x +=-的图像的下方;(3)设函数21()()1h x f x ⎡⎤=⎢⎥-⎣⎦,若对任意123,,[0,1]x x x ∈,以()()()123,,h x h x h x 为边长总可以构成三角形,求a 的取值范围.闵行区高一上期末数学试卷一、填空题1.函数()f x =___________. 【答案】[1,1]- 【解析】【详解】解析过程略 2.函数())0f x x =≤的反函数是_______.【答案】()20y xx =-≥【解析】 【分析】根据反函数的定义,从原函数式中解出x ,再进行x ,y 互换,即可得反函数的解析式. 【详解】∵()0y x x =-≤,则0y ≥, ∴()20x yy -=≥,即()20x y y =-≥,∴将x ,y 互换,得()20y x x =-≥.故答案为:()20y xx =-≥.【点睛】本题考查反函数的求法,要会求一些简单函数的反函数,掌握互为反函数的函数图象间的关系,属于基础题.3.已知全集{|,||3}U x x Z x =∈„,集合{2,0,1,2}=-A ,{2,1,3}B =-,如图中阴影部分所表示的集合为________.【答案】{0,2,3} 【解析】 【分析】求出全集{}{}|,||33,2,1,0,1,2,3U x x Z x =∈=---„,{}3,1,3U A =--ð, {}3,1,0,2U B =--ð,图中阴影部分所表示的集合为()()U U A B B A ⋂⋃⋂痧.【详解】由题意得全集{}{}|,||33,2,1,0,1,2,3U x x Z x =∈=---„, 又集合{}2,0,1,2A =-,{}2,1,3B =-,所以,{}3,1,3U A =--ð,{}3,1,0,2U B =--ð, 故{}0,2U A B =I ð,{}3U B A =I ð, 所以,图中阴影部分所表示的集合为()(){}0,2,3U UA B B A =I U I痧.故答案为:{}0,2,3.【点睛】本题考查集合的求法,考查交集、补集、Venn 图等基础知识,考查运算求解能力,属于基础题. 4.已知奇函数()f x 的定义域为R ,(1)3f -=,那么(0)(1)f f +=________. 【答案】3- 【解析】 【分析】根据奇函数的性质可知()00f =,()()11f f =--,代入即可求解. 【详解】由题意,()f x 为R 上的奇函数,则()00f =,()()11f f =--, 又()13f -=,故()()113f f =--=-, 所以()()01033f f +=-=-. 故答案为:3-.【点睛】本题主要考查了利用奇函数的定义及性质求解函数值,属于基础题. 5.已知函数25()log a f x x -=是增函数,则实数a 的取值范围是_________. 【答案】(2,2)- 【解析】 【分析】结合对数函数的单调性可知,251a ->,解不等式即可. 【详解】由题意可得,251a ->, 解得:22a -<<. 故答案为:()2,2-.【点睛】本题主要考查了对数函数的单调性的应用,属于基础题.6.已知原命题的逆命题是:“若0xy =,则220x y +=”,试判断原命题的否命题的真假________.(填“真”或“假”) 【答案】假 【解析】 【分析】原命题的逆命题与否命题互为逆否命题,它们的真假性相同,即只需判断原命题逆命题的真假性就可得出结论.【详解】原命题的逆命题是:“若0xy =,则220x y +=”与原命题的否命题互为逆否命题,它们的真假性相同,所以,只需要判断原命题的逆命题的真假即可,若0xy =,则可能0x =,0y ≠,此时220x y +≠,即原命题的逆命题是假命题, 所以,原命题的否命题是假命题. 故答案为:假.【点睛】本题考查命题的真假关系,属于基础题. 7.令lg 2a =,则用a 表示81lg 3lg 52+的结果为_________. 【答案】1a - 【解析】 【分析】利用对数的运算性质化简即可. 【详解】()81lg3lg lg8lg53lg 23lg 21lg 23lg 2lg 21152a +=--=---=-=-. 故答案为:1a -.【点睛】本题主要考查了对数的运算性质,属于基础题.8.已知函数()f x 是偶函数,当0x >时,2()3f x x x =-,则当0x <时,()f x =________.【答案】23x x + 【解析】 【分析】设0x <,则0x ->,代入已知函数解析式,再结合偶函数的定义即可求解. 【详解】由题意,当0x >时,()23f x x x =-,设0x <,则0x ->,此时()()()2233f x x x x x -=---=+, 又函数()f x 是偶函数,可得()()f x f x =-,所以,()23f x x x =+.故答案为:23x x +.【点睛】本题主要考查了利用偶函数的定义求解函数解析式,属于基础题.9.2019年度,国内某电信企业甲投入科研经费115亿美元,国外一家电信企业乙投入科研经费156亿美元,从2020年开始,若企业甲的科研经费每年增加%x ,计划用3年时间超过企业乙的年投入量(假设企业乙每年的科研经费投入量不变).请写出一个不等式来表达题目中所描述的数量关系:__________.(所列的不等式无需化简)【答案】3115(1%)156x +> 【解析】 【分析】由题意可得:()31151%156x +>.【详解】由题意,企业甲的科研经费每年增加%x ,用3年时间超过企业乙的年投入量, 所以,不等式表达题目的数量关系为:()31151%156x +>. 故答案为:()31151%156x +>.【点睛】本题主要考查了函数的实际运用,属于基础题.10.已知函数2()log f x x =,定义()(1)()f x f x f x ∆=+-,则函数()()(1)F x f x f x =∆++的值域为___________. 【答案】[)2,+∞ 【解析】 【分析】根据题意以及对数的运算性质得出()21log 2F x x x ⎛⎫=++⎪⎝⎭,进而可由基本不等式可得出124x x ++≥,从而可得出函数()F x 的值域.【详解】由题意,()()()()22212log 1log F x f x f x x x =+-=+-,即()222211log log 2x x F x x x x ++⎛⎫==++ ⎪⎝⎭,由题意知,0x >,由基本不等式得12x x +≥=(当且仅当1x =时取等号), 所以124x x ++≥(当且仅当1x =时取等号),即221log 2log 42x x ⎛⎫++≥= ⎪⎝⎭,所以()F x 的值域为[)2,+∞. 故答案为:[)2,+∞.【点睛】本题考查了函数值域的定义及求法,对数的运算性质,基本不等式的运用,考查了计算能力,属于基础题.11.已知()|1||1|f x x x =+--,()ag x x x=+,对于任意的m R ∈,总存在0x R ∈,使得()0f x m =或()0g x m =,则实数a 的取值范围是____________.【答案】(,1]-∞ 【解析】 【分析】通过去掉绝对值符号,得到分段函数的解析式,求出值域,然后求解()ag x x x=+的值域,结合已知条件推出a 的范围即可.【详解】由题意,对于任意的m R ∈,总存在0x R ∈,使得()0f x m =或()0g x m =,则()f x 与()g x 的值域的并集为R ,又()2,1112,112,1x f x x x x x x ≥⎧⎪=+--=-<<⎨⎪-≤-⎩,结合分段函数的性质可得,()f x 的值域为[]22-,, 当0a ≥时,可知()ag x x x=+的值域为(),⎡-∞-+∞⎣U ,所以,此时有2≤,解得01a ≤≤, 当0a <时,()ag x x x=+的值域为R ,满足题意, 综上所述,实数a范围为(],1-∞.故答案为:(],1-∞.【点睛】本题考查函数恒成立条件的转化,考查转化思想的应用,注意题意的理解是解题的关键,属于基础题.12.设函数2()21kf x x x =-+(120191,,1,2,3,,2019k x k k k +⎡⎤∈-=⎢⎥⎣⎦L )的值域依次是1232019,,,,A A A A L ,则1232019A A A A ⋂⋂⋂⋂=L __________.【答案】2220190,1010⎡⎤⎢⎥⎣⎦【解析】 【分析】求出二次函数的对称轴,判断函数的最小值与最大值,然后求解值域的交集即可.【详解】函数()221k f x x x =-+的对称轴为1x =,开口向上,所以函数的最小值为()10f =,函数2()21k f x x x =-+(120191,,1,2,3,,2019k x k k k +⎡⎤∈-=⎢⎥⎣⎦L )的值域依次是 1232019,,,,A A A A L ,它们的最小值都是0,函数值域中的最大值为:当12019111k k k +⎛⎫--=- ⎪⎝⎭,即1010k =时,此时111010x =-, 所以,值域中的最大值中的最小值为22112019111101010101010f ⎛⎫⎛⎫⎛⎫-=--= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以,212320192010220190,1010A A A A A ⎡⎤==⎢⎥⎣⎦I I I L I .故答案为:2220190,1010⎡⎤⎢⎥⎣⎦.【点睛】本题考查二次函数的性质,函数的最值,考查分析问题解决问题的能力,涉及集合的交集计算,属于基础题.二、选择题13.已知a ,b 都是实数,那么“33a b >”是“33a b >” 的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件【答案】C 【解析】【分析】根据题意构造指数函数与幂函数,利用函数的单调性结合充分条件和必要条件的定义进行判断即可. 【详解】对于“33a b >”,考查函数y=3x 在R 上单调递增,所以“33a b >”与“a>b”等价; 同样对于“33a b >”,考查函数y=3x 在R 上单调递增,所以“33a b >”与“a>b”也等价; 所以“33a b >”是“33a b >” 的充要条件,故选C.【点睛】本题主要考查充分条件和必要条件的判断,根据指数函数及幂函数的单调性是解决本题的关键. 14.如果12log 0.5log 0.50x x <<,那么( ) A. 2101x x <<< B. 1201x x <<<C. 121x x <<D. 211x x <<【答案】C 【解析】 【分析】直接利用对数解得即可.【详解】由12log 0.5log 0.50x x <<,得211x x >>. 故选:C.【点睛】本题考查对数函数的性质,属于基础题. 15.已知集合2121|,3232x x P x x R x x --⎧⎫==∈⎨⎬--⎩⎭,则下列集合中与P 相等的是( )A. 21|0,32x x x R x -⎧⎫>∈⎨⎬-⎩⎭B. {|(21)(32)0,}x x x x R --≥∈C. 21|lg 32x x y x -⎧⎫=⎨⎬-⎩⎭D. {}0|(32)x y x =-【答案】D 【解析】 【分析】利用集合相等的定义即可判断. 【详解】集合212121|,|0323232x x x P x x R x x x x ⎧--⎫-⎧⎫==∈=≥⎨⎬⎨⎬---⎩⎭⎩⎭,所以()(){|21320P x x x =--≥且}320x -≠,故A 、B 选项不正确; 选项C :2121|lg |03232x x x y x x x --⎧⎫⎧⎫==>⎨⎬⎨⎬--⎩⎭⎩⎭,故C 不正确; 选项D:{}()(){0|(32)|21320x y x x x x =-=--≥且}320x -≠,故D 选项正确. 故选:D.【点睛】本题主要考查了集合相等的定义,属于基础题. 16.若()()111f x f x +=+,当[0,1]x ∈时,()f x x = ,若在区间(]1,1-内,()()g x f x m =-有两个零点,则实数m 的取值范围是( ) A. 10,2⎡⎫⎪⎢⎣⎭B. 1,2⎡⎫+∞⎪⎢⎣⎭C. 10,3⎡⎫⎪⎢⎣⎭D. (]0,1【答案】D 【解析】 【分析】先求函数的解析式, 把在区间(]1,1-内,函数()()g x f x m =-有两个零点,转化为函数()y f x =与y m =的图象由两个不同的交点,结合图象,即可求解.【详解】由题意知,当()1,0x ∈-,则()10,1x +∈, 又因为当[]0,1x ∈时,()f x x = ,所以()11f x x +=+,所以()()111111f x f x x =-=-++,所以(),0111,101x x f x x x ≤≤⎧⎪=⎨--<<⎪+⎩,要使得在区间(]1,1-内,函数()()g x f x m =-有两个零点, 即函数()y f x =与y m =的图象由两个不同的交点, 在同一坐标系内作出两个函数的图象,如图所示,要使得两函数的图象有两个不同的交点,则实数m 的取值范围是01m <≤,故选D .【点睛】本题主要考查了函数的解析式的求解,以及利用函数的零点问题求解参数的取值范围,其中解答中正确求解函数的解析式,把函数的零点问题转化为两个函数的图象的交点问题,结合图象求解是解答关键,着重考查了数形结合思想,以及转化思想的应用,属于中档试题.三、解答题17.已知函数1()f x x x=-.判断()f x 在(,0)-∞上的单调性,并给予证明. 【答案】单调递减,证明见解析. 【解析】 【分析】直接利用单调性的定义,作差比较即可判断. 【详解】()f x 在(),0-∞上单调递减. 证明如下: 设120x x <<,则()()()121212122112121211111x x f x f x x x x x x x x x x x x x ⎛⎫⎛⎫+-=---=--+=-⋅ ⎪ ⎪⎝⎭⎝⎭,由120x x <<,则210x x ->,120x x ⋅>,1210x x +⋅>, 所以()12211210x x x x x x +-⋅>,即()()120f x f x ->, 故()f x 在(),0-∞上单调递减.【点睛】本题主要考查了单调性的定义在判断函数单调性中的应用,属于基础题.18.已知集合1|11A x x ⎧⎫=>⎨⎬-⎩⎭,()(){}|320,1B x x a x a a =--->≤. (1)求集合A 和B ;(2)若A B B ⋃=,求实数a 的取值范围.【答案】(1)()0,1A =,()(),32,B a a =-∞++∞U ;(2)(]1,2,13⎡⎤-∞-⎢⎥⎣⎦U . 【解析】 【分析】(1)利用不等式的性质即可求出集合A 和B ;(2)由A B B ⋃=,得A B ⊆,解不等式组,进而得出实数a 的取值范围. 【详解】(1)集合{}1|1|0|0111x A x x x x x x ⎧⎫⎧⎫=>=>=<<⎨⎬⎨⎬--⎩⎭⎩⎭, 因1a ≤,则32a a ≤+,所以集合()(){}{320,1|3B x x a x a a x x a =---≤=<或}2x a >+. 即集合()0,1A =,()(),32,B a a =-∞++∞U .(2)由(1)知,集合()0,1A =,()(),32,B a a =-∞++∞U , 由A B B ⋃=,得A B ⊆, 所以131a a ≤⎧⎨≥⎩或120a a ≤⎧⎨+≤⎩,解得113a ≤≤或2a ≤-,故实数a 的取值范围为(]1,2,13⎡⎤-∞-⎢⎥⎣⎦U .【点睛】本题考查集合、实数的取值范围的求法,考查交集、并集定义等基础知识,考查运算求解能力,属于基础题.19.自2019年春季以来,在非洲猪瘟、环保禁养、上行周期等因素形成的共振条件下,猪肉价格连续暴涨.某养猪企业为了抓住契机,决定扩大再生产,根据以往的养猪经验预估:在近期的一个养猪周期内,每养x 百头猪(515)x ≤≤,所需固定成本为20万元,其它为变动成本:每养1百头猪,需要成本14万元,根据市场预测,销售收入()F x (万元)与x (百头)满足如下的函数关系:23040,(510)()4040,(1015)x x F x x x x -≤≤⎧=⎨-+-<≤⎩(注:一个养猪周期内的总利润()R x (万元)=销售收入-固定成本-变动成本).(1)试把总利润()R x (万元)表示成变量x (百头)的函数;(2)当x (百头)为何值时,该企业所获得的利润最大,并求出最大利润. 【答案】(1)21660,(510)()2660,(1015)x x R x x x x -⎧=⎨-+-<⎩剟…;(2)13x =,最大利润为109万元.【解析】 【分析】(1)根据题意即可求出函数()R x 的解析式;(2)分段求出最大值,再比较即可求出当13x =时,该企业所获得的利润最大,从而求出最大利润.【详解】(1)由题意可得:()()23040,510()4040,1015x x F x x x x ⎧-≤≤⎪=⎨-+-<≤⎪⎩所以,总利润()()()()()21660,51014202660,1015x x R x F x x x x x ⎧-≤≤⎪=-+=⎨-+-<≤⎪⎩.(2)当510x ≤≤时,()1660R x x =-,当10x =时,()R x 的值最大,最大值为100, 当1015x <≤时,()22660R x x x =-+-,当()261321x =-=⨯-时,()R x 的值最大,最大值为109,综上所述,当13x =时,该企业所获得的利润最大,最大利润为109万元. 【点睛】本题主要考查了函数的实际运用,属于基础题.20.设A 是由满足以下性质的函数()f x 构成的集合:对于()f x 的定义域内的任意两个不相等的实数1x 、2x ,不等式()()1212122x x f x f x f +⎛⎫+>⎡⎤ ⎪⎣⎦⎝⎭都成立. (1)已知函数()21xg x =+,求()g x 的反函数1()g x -,并指出1()g x -的定义域; (2)试判断(1)中的函数()g x 与1()g x -是否属于集合A ,并说明理由;(3)设()h x A ∈,且()h x 的定义域为(0,)+∞,值域为7(2,5),(1)2h <,试写出一个满足条件的函数()h x 的解析式(不用分段函数表示,不需要说明理由).【答案】(1)12()log (1),1g x x x -=->(2)1()g x A -∉;详见解析(3)62,032y x x =+>+.(答案不唯一) 【解析】 【分析】(1)利用反函数的定义直接求出即可; (2)根据题意,利用作差比较法判断即可; (3)根据题意,答案不唯一,满足条件即可.【详解】(1)由题意,()21x g x =+,即21x y =+,得1y >, 所以()2log 1x y =-,1y >,故()()12log 1gx x -=-,其定义域为()1,+∞;(2)对于()g x :任取12,x x R ∈且12x x ≠,则122222xx≠,()()()()12121221211212121222x x x x x x g x g x g +⎛⎫+⎛⎫⎡⎤+-=+++-+⎡⎤ ⎪ ⎪⎣⎦⎣⎦⎝⎭⎝⎭12122122222x x x x +⎛⎫=+-⋅ ⎪⎝⎭1222212202x x⎛⎫=-> ⎪⎝⎭, 即()()12121,()22x x g x g x g g x A +⎛⎫+>∈⎡⎤ ⎪⎣⎦⎝⎭; 对于1()g x -:任取12,(1,)x x ∈+∞且12x x ≠,则121210,10,102x x x x +->->->, ()()()()1111212122122211log 1log 1log 12222x x x x g x g x g x x ---++⎛⎫⎛⎫⎡⎤+-=-+--⎡⎤ ⎪ ⎪⎣⎦⎣⎦⎝⎭⎝⎭()()()()()121212222212121211111log log 221124x x x x x x x x x x x x ---++==++⎛⎫--++ ⎪⎝⎭∵()()()()22121212121211044x x x x x x x x x x +--++--++=>⎡⎤⎣⎦,且()()()21212121210,104x x x x x x x x +-++>-++>,∴()()()12122121210114x x x x x x x x -++<<+-++,∴()()11112121022x x g x g x g ---+⎛⎫⎡⎤+-< ⎪⎣⎦⎝⎭, 即()()111112121,()22x x g x g x g g x A ----+⎛⎫⎡⎤+<∉ ⎪⎣⎦⎝⎭; (3)①112,03x y x -⎛⎫=+> ⎪⎝⎭;②62,032y x x =+>+.(答案不唯一)【点睛】本题考查函数与反函数的关系,判断不等式的大小关系,属于中档题.21.已知函数2()12xf x a=-+(a 是常数). (1)若1a =,求函数()f x 的值域;(2)若()f x 为奇函数,求实数a .并证明()f x 的图像始终在1()21x g x +=-的图像的下方;(3)设函数21()()1h x f x ⎡⎤=⎢⎥-⎣⎦,若对任意123,,[0,1]x x x ∈,以()()()123,,h x h x h x 为边长总可以构成三角形,求a 的取值范围.【答案】(1)(1,1)-(2)1a =;证明见解析(3)(,3)a ∈-∞--⋃+∞ 【解析】 【分析】(1)把1a =代入后反解可得1201x y y --=>-,解分式不等式即可; (2)直接利用奇函数的定义代入即可求解,利用作差法即可证明结论;(3)由题意可得min max 2()()h x h x >,结合()221()()124xf a h x x ⎡⎤=⎢⎥-⎣+=⎦,利用换元法转化为()24t a y +=,[]1,2t ∈,再结合二次函数的性质即可.【详解】(1)由题意,2()12xf x a=-+(a 是常数), 当1a =时,此时21()21x x f x -=+,即2121x x y -=+,整理可得121xy y --=-,因20x >,则101y y -->-,即()()110y y +-<, 解得11y -<<,故函数()f x 的值域为()1,1-.(2)由题意,()f x 为奇函数,则()()0f x f x +-=,即2211022x xa a--+-=++, 化简得()2(1)22(1)0x xa a --++-=,∵22x x -+恒不零,∴10a -=且2(1)0a -=,解得1a =,此时21()21x x f x -=+,∴()211212()()2102121x x x x x f x g x ++--=--=-<++,即()f x 的图像始终在1()21x g x +=-的图像的下方. (3)由题意,得min max 2()()h x h x >,()2211()2()14xh x a f x ⎡⎤==+⎢⎥-⎣⎦, 令2,[1,2]x t t =∈,则21(),[1,2]4y t a t =+∈,其对称轴为t a =-, ①当2-≥a ,即2a ≤-时,此时21(),[1,2]4y t a t =+∈单调递减,∴min max 2()()h x h x >,即22112(2)(1)44a a ⋅+>+,解得3a <--3a >-+,∴3a <- ②当322a ≤-<,即322a -<≤-时,此时21(),[1,2]4y t a t =+∈先减后增左端点高,∴min max 2()()h x h x >即2120(1)4a ⋅>+,无解; ③当312a <-<,即312a -<<-时,此时21(),[1,2]4y t a t =+∈先减后增右端点高,∴min max 2()()h x h x >即2120(2)4a ⋅>+,无解;④当1a -≤,即1a ≥-时,此时21(),[1,2]4y t a t =+∈单调递增,∴min max 2()()h x h x >即22112(1)(2)44a a ⋅+>+,解得a <a >∴a >综上,(),3a ∈-∞-+∞U.【点睛】本题综合考查了函数的奇偶性,二次函数闭区间最值的求解,体现了分类讨论思想及转化思想的应用,还考查了一定的逻辑推理的能力,属于中档题.。
上海中学2019-2020学年高一上学期期末数学试卷 (有解析)
上海中学2019-2020学年高一上学期期末数学试卷一、选择题(本大题共4小题,共12.0分)1. 下列函数中,既是奇函数又在(0,+∞)上单调递增的是( )A. f(x)=−1xB. f(x)=3xC. f(x)=x 2+1D. f(x)=sinx2. 已知f(x)是偶函数,且在(−∞,0]上是增函数.若f(lnx)<f(1),则x 的取值范围是( )A. (e,+∞)B. (1e ,e)C. (e,+∞)∪(0,1e )D. (1e ,e)∪(e,+∞) 3. 若定义在R 上的函数f(x),其图象是连续不断的,且存在常数λ(λ∈R)使得f(x +λ)+λf(x)=0对任意的实数x 都成立,则称f(x)是一个“λ−特征函数”.下列结论中正确的个数为( ) ①f(x)=0是常数函数中唯一的“λ−特征函数”; ②f(x)=2x +1不是“λ−特征函数”; ③“13−特征函数”至少有一个零点; ④f(x)=e x 是一个“λ−特征函数”. A. 1 B. 2 C. 3 D. 44. 已知函数f(x)=x|x|−mx +1有三个零点,则实数m 的取值范围是( )A. (0,2)B. (2,+∞)C. (−∞,−2)D. [2,+∞)二、填空题(本大题共12小题,共36.0分)5. 函数y =√3x −1+lg (1−x )的定义域是__________.6. 若函数f(x)=x 2+(a+1)x+a x 为奇函数,则实数a =______.7. 函数f(x)=log a (2x −3)+1(a >0且a ≠1)的图像过定点________________8. 已知3a =4,3b =5则3a+b 的值为__________.9. 已知定义在R 上的函数f(x)满足:对于任意的实数x ,y ,都有f(x −y)=f(x)+y(y −2x +1),且f(−1)=3,则函数f(x)的解析式为________.10. 若幂函数f (x )=(m 2−4m +4)·x m 2−6m+8在(0,+∞)上为增函数,则m 的值为________.11. 已知函数f(x)={−x 2,x ≥02−x −1,x <0,则f −1[f −1(−9)]=______12. 已知函数f(x)=log 12(x 2−6x +5)在(a,+∞)上是减函数,则函数a 的取值范围是________ .13. 已知函数f(x)=log 2(−x 2+ax +3)在(2,4)上是单调递减的,则a 的取值范围是_____________.14. 已知函数f (x )={−x,x ≤0,x 2−2x,x >0,则满足f(x)<1的x 的取值范围是________ 15. 已知函数f(x)=log 12(x +1)+log 2(x −1),对任意x ∈[3,5],f(x)≥m −2x 恒成立,则实数m 取值范围是__________.16. 已知函数,有如下结论:①,有;②,有;③,有;④,有.其中正确结论的序号是__________.(写出所有正确结论的序号)三、解答题(本大题共5小题,共60.0分) 17. 求下列函数的反函数:(1)y =1+log 2(x −1)(2)y =x 2−1(−1≤x ≤0)18. 已知函数f(x)=a x −1a x +1(a >1).(1)根据定义证明:函数f(x)在(−∞,+∞)上是增函数;(2)根据定义证明:函数f(x)是奇函数.19.为了在夏季降温和冬季供暖时减少能源消耗,可在建筑物的外墙加装不超过10厘米厚的隔热层.某幢建筑物要加装可使用20年的隔热层,每厘米厚的隔热层的加装成本为6万元,该建筑(0≤物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:厘米)满足关系:C(x)=k3x+5 x≤10).若不加装隔热层,每年能源消耗费用为8万元,设f(x)为隔热层加装费用与20年的能源消耗费用之和.(Ⅰ)求k的值及f(x)的表达式;(Ⅱ)隔热层加装厚度为多少厘米时,总费用f(x)最小?并求出最小总费用.20.已知函数f(x)=√x2−1+p.(1)求函数f(x)的定义域;(2)若存在区间,当x∈[m,n]时以f(x)的值域为[m2,n2],求实数p的取值范围.21. 已知函数f(x)={2x −1,x ≥0ax 2+bx,x <0,且f(−1)=f(1)、f(−2)=f(0), (1)求函数f(x)的解析式;(2)若函数g(x)=f(x)−m 有3个零点,求m 的取值范围.-------- 答案与解析 --------1.答案:A解析:本题考查函数的奇偶性和单调性判断,属于基础题.逐项判断即可.是奇函数,且在(0,+∞)上单调递增,∴该选项正确;解:A.f(x)=−1xB.f(x)=3x是非奇非偶函数,∴该选项错误;C.f(x)=x2+1是偶函数,不是奇函数,∴该选项错误;D.f(x)=sinx在(0,+∞)上没有单调性,∴该选项错误.故选:A.2.答案:C解析:解:∵f(x)是偶函数,且在(−∞,0]上是增函数,∴f(lnx)<f(1),等价为f(|lnx|)<f(1),即|lnx|>1,得lnx>1或lnx<−1,解得x>e或0<x<1,e故选C根据函数奇偶性和单调性之间的关系,即可得到结论.本题主要考查不等式的求解,根据函数奇偶性和单调性之间的关系将不等式进行等价转化是解决本题的关键.3.答案:C解析:本题考查函数的概念及构成要素,考查函数的零点,正确理解λ−特征函数的概念是关键,属于中档题.利用新定义“λ−特征函数”,对A、B、C、D四个选项逐个判断即可得到答案.解:对于①设f(x)=C是一个“λ−特征函数”,则(1+λ)C=0,当时,可以取实数集,因此f(x)=0不是唯一一个常数“λ−特征函数”,故①错误;对于②,∵f(x)=2x+1,∴f(x+λ)+λf(x)=2(x+λ)+1+λ(2x+1)=0,即,∴当时,;λ≠−1时,f(x+λ)+λf(x)=0有唯一解,∴不存在常数λ(λ∈R)使得f(x+λ)+λf(x)=0对任意实数x都成立,∴f(x)=2x+1不是“λ−特征函数”,故②正确;对于③,令x=0得f(13)+13f(0)=0,所以,若f(0)=0,显然f(x)=0有实数根;若f(x)≠0,.又∵f(x)的函数图象是连续不断的,∴f(x)在(0,13)上必有实数根,因此任意的“λ−特征函数”必有根,即任意“13−特征函数”至少有一个零点,故③正确;对于④,假设f(x)=e x是一个“λ−特征函数”,则e x+λ+λe x=0对任意实数x成立,则有e x+λ= 0,而此式有解,所以f(x)=e x是“λ−特征函数”,故④正确.综上所述,结论正确的是②③④,共3个.故选C.4.答案:B解析:本题主要考查函数与方程的应用,考查利用参数分离法以及数形结合思想,属于中档题.f(x)=x|x|−mx+1得x|x|+1=mx,利用参数分离法得m=|x|+1x ,构造函数g(x)=|x|+1x,转化为两个函数的交点个数问题进行求解即可.解:由f(x)=x|x|−mx+1得x|x|+1=mx,当x =0时,方程不成立,即x ≠0,则方程等价为m =|x|+1x ,设g(x)=|x|+1x ,当x <0时,g(x)=−x +1x 为减函数,当x >0时,g(x)=x +1x ,则g(x)在(0,1)上为减函数,则(1,+∞)上为增函数,即当x =1时,函数取得最小值g(1)=1+1=2,作出函数g(x)的图象如图:要使f(x)=x|x|−mx +1有三个零点,则等价为m =|x|+1x 有三个不同的根,即y =m 与g(x)有三个不同的交点,则由图象知m >2,故实数m 的取值范围是(2,+∞),故选:B . 5.答案:[13,1)解析:本题考查函数的定义域,根据题意可得{3x −1≥01−x >0,解不等式组即可求得结果. 解:根据题意可得{3x −1≥01−x >0, 解得13≤x <1,因此函数的定义域为[13,1).故答案为[13,1). 6.答案:−1解析:利用奇函数的性质即可得出.本题考查了函数的奇偶性,属于基础题.解:∵函数f(x)=x2+(a+1)x+ax为奇函数,∴f(−x)+f(x)=x2−(a+1)x+a−x +x2+(a+1)x+ax=0,化为(a+1)x=0,∴a+1=0,解得a=−1.故答案为:−1.7.答案:(2,1)解析:本题考查对数函数恒过定点问题,属于基础题.熟练掌握是解决此类问题的关键.解:∵当2x−3=1即x=2时,此时y=1,∴函数f(x)=log a(2x−3)+1(a>0且a≠1)的图象恒过定点(2,1).故答案为(2,1).8.答案:20解析:本题考查指数的运算.由同底数幂的运算法则进行计算即可.解:∵3a=4,3b=5,∴3a+b=3a×3b=20.故答案为20.9.答案:f(x)=x2−x+1解析:本题考查抽象函数解析式的求解,属于中档题目.解:令x=0,y=−x,得f(x)=f(0)+x2−x.把x=−1代入上式,得f(0)=f(−1)−2=1,从而有f(x)=x 2−x +1.故答案为f(x)=x 2−x +1.10.答案:1解析:本题考查了幂函数的定义与性质,由函数f(x)为幂函数可知m 2−4m +4=1,解出m 的值,再根据函数在(0,+∞)上为增函数判断出满足条件的m 值.解:函数f(x)为幂函数,所以m 2−4m +4=1,解得m =1或m =3,又因为f (x )=(m 2−4m +4)·x m 2−6m+8在(0,+∞)上为增函数,所以m 2−6m +8>0,解得m >4或m <2,综上可知m =1,故答案为1.11.答案:−2解析:解:∵函数f(x)={−x 2,x ≥02−x −1,x <0, ∴x ≥0时,y =−x 2,x =√−y ,x ,y 互换,得f −1(x)=√−x ,x ≤0,x <0时,y =2−x −1,x =−log 2(y +1),x ,y 互换得f −1(x)=−log 2(x +1),x >0,∴f −1(x)={√−x,x ≤0−log 2(x +1),x >0, ∴f −1(−9)=3,f −1[f −1(−9)]=f −1(3)=−2.故答案为:−2.推导出f −1(x)={√−x,x ≤0−log 2(x +1),x >0,从而f −1(−9)=3,进而f −1[f −1(−9)]=f −1(3),由此能求出结果.本题考查函数值的求法,考查函数性质、反函数的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.12.答案:[5,+∞)解析:本昰考查对数函数的单调区间的求法,解题时要认真审题,仔细解答,注意对数函数性质的灵活运用.设t=x2−6x+5,由x2−6x+5>0,解得x<1或x>5.在(5,+∞)t=x2−6x+5是递增的,y=log12x也是递减的,所以f(x)=log 12(x2−6x+5)在(5,+∞)上是单调递减的,由此求得a≥5.解:设t=x2−6x+5x2−6x+5>0,解得x<1或x>5.在(−∞,1)上t=x2−6x+5是递减的,y=log 12x也是递减的,所以f(x)=log 12(x2−6x+5)在(−∞,1)上是单调递增的,在(5,+∞)t=x2−6x+5是递增的,y=log 12x也是递减的,所以f(x)=log12(x2−6x+5)在(5,+∞)上是单调递减的,所以a≥5.故答案为[5,+∞).13.答案:[134,4]解析:本题考查了复合函数的单调性及对数函数的性质,是基础题.由复合函数的单调性可知内函数在(2,4)上为减函数,则需要其对称轴小于等于2且当函数在x=4时的函数值大于等于0,由此联立不等式组得答案.解:令t=−x2+ax+3,则原函数化为y=log2t,为增函数,∴t=−x2+ax+3在(2,4)是单调递减,对称轴为x=a2,∴a2⩽2且−42+4a+3⩾0,解得:134⩽a⩽4,∴a的范围是[134,4].故答案为[134,4].14.答案:解析:本题考查了一元二次不等式的解法,考查了分类讨论的数学思想方法,属中档题.解:因为函数f (x )={−x,x ≤0,x 2−2x,x >0,则f(x)<1等价于{x ≤0−x <1①或{x >0x 2−2x <1②. 解得①得−1<x ≤0,解②得0<x <1+√2√2.所以f(x)<1的x 的取值范围是(−1,1+√2).故答案为.15.答案:(−∞,7]解析:函数f(x)的定义域是(1,+∞),f(x)=log 12(x +1)+log 2(x −1)=log 2x−1x+1=log 2(1−2x+1),因为y =1−2x+1在(1,+∞)上递增,所以函数f(x)在(1,+∞)上递增,f(x)≥m −2x ,即m ≤f(x)+2x ,知y =f(x)+2x 在[3,5]上递增,所以m ≤7. 16.答案:②③④解析:因为:,所以,所以①不正确,②正确;因为y =ln(1+x)在(−1,1)递增,y =ln(1−x)在(−1,1)递减,所以函数在 上为增函数,所以③正确;又因为,所以在是增函数且函数图象上升的越来越快,呈下凸状态,所以,有,所以④正确.所以答案应填:②③④. 17.答案:解:(1)由y =1+log 2(x −1),化为:x −1=2y−1,即x =1+2y−1,把x 与y 互换可得反函数:y =1+2x−1,(y >1).(2)y =x 2−1,−1≤x ≤0,可得y ∈[−1,0],解得x =−√y +1.把x 与y 互换可得反函数为:y =−√x +1,x ∈[−1,0],解析:(1)(2)利用方程的解法,用y 表示x ,求出其范围,再把x 与y 互换即可得出.本题考查了反函数的求法、函数的单调性,考查了推理能力与计算能力,属于中档题.18.答案:证明:(1)f(x)=1−2a x+1,令m<n,则f(m)−f(n)=1−2a m+1−1+2a n+1=2(a m−a n)(a n+1)(a m+1),∵a>1,m<n,则a m<a n,(a n+1)(a m+1)>0,故2(a m−a n)(a n+1)(a m+1)<0,故f(m)−f(n)<0,故f(x)在R递增;(2)由题意函数的定义域是R,关于原点对称,又f(−x)=a −x−1a−x+1=−a x−1a x+1=−f(x),故f(x)是奇函数.解析:(1)根据函数的单调性的定义证明函数的单调性即可;(2)根据函数的奇偶性的定义证明函数的奇偶性即可.本题考查了函数的单调性和函数的奇偶性问题,考查定义的应用,是一道基础题.19.答案:解:(Ⅰ)由已知,当x=0时,C(x)=8,即k5=8,∴k=40.则C(x)=403x+5,又加装隔热层的费用为:D(x)=6x,∴f(x)=20C(x)+D(x)=20×403x+5+6x=8003x+5+6x,x∈[0,10];(Ⅱ)∵0≤x≤10,∴3x+5>0,f(x)=8003x+5+6x=8003x+5+(6x+10)−10≥2√8003x+5⋅(6x+10)−10=80−10=70.当且仅当8003x+5=6x+10,即x=5取等号.∴当隔热层加装厚度为5厘米时,总费用f(x)最小,最小总费用为70万元.解析:(Ⅰ)由C(0)=8求得k ,得到C(x)=403x+5,又加装隔热层的费用为:D(x)=6x ,可得f(x)的解析式;(Ⅱ)直接利用基本不等式求最值得答案.本题考查简单的数学建模思想方法,训练了利用基本不等式求最值,是中档题. 20.答案:解:(1)依题意,x 2−1≥0,解得x ≤−1或x ≥1,故函数f(x)的定义域为(−∞,−1]∪[1,+∞).(2)任取x 1,x 2∈[1,+∞)且x 1<x 2,则f (x 1)−f (x 2)=√x 12−1−√x 22−1=1212√x 1−1+√x 2−1<0,即f (x 1)<f (x 2), ∴f(x)在[1,+∞)上单调递增.若存在区间[m,n]⊆[1,+∞),当x ∈[m,n ]时,f(x)的值域为[m 2,n 2],可转化为f (m )=m 2,f (n )=n 2,∴g (x )=x 2,即√x 2−1+p =x 2在[1,+∞)上至少有两个不相等的实数根.令√x 2−1=u ,u ≥0,方程可化为u 2+1=u +p ,即u 2−u +1−p =0在[0,+∞)上至少有两个不相等的实数根.记ℎ(u )=u 2−u +1−p ,ℎ(u )的对称轴为直线u =12,∴{Δ=1−4(1−p )>0ℎ(0)≥0,解得34<p ≤1, 即P 的范围为(34,1].解析:本题主要考查定义域和值域,属于中档题.(1)根据被开方数非负可得x 2−1≥0,进而得出定义域即可;(2)根据题意可得f (m )=m 2,f (n )=n 2,即√x 2−1+p =x 2在[1,+∞)上至少有两个不相等的实数根,令√x 2−1=u ,u ≥0,方程可化为u 2+1=u +p ,进而得出u 2−u +1−p =0在[0,+∞)上至少有两个不相等的实数根,进而得出不等式组{Δ=1−4(1−p )>0ℎ(0)≥0,解出a 即可.21.答案:解:(1)由题意,{f(−1)=a −b =f(1)=1f(−2)=4a −2b =f(0)=0, 解得,a =−1,b =−2;故f(x)={2x −1,x ≥0−x 2−2x,x <0; (2)函数g(x)=f(x)−m 有3个零点可化为y =f(x)与y =m 有3个不同的交点,作f(x)的图象如下,则由图象可知,0<m <1.解析:本题考查了函数解析式的求法及函数图象的作法及应用,属于中档题.(1)由题意,{f(−1)=a −b =f(1)=1f(−2)=4a −2b =f(0)=0,从而解出a ,b ; (2)函数g(x)=f(x)−m 有3个零点可化为y =f(x)与y =m 有3个不同的交点,作出f(x)的图象,从而由图象可得.。
上海市浦东新区2019-2020学年高一上学期期末考试数学试题 Word版含解析
浦东新区高一上期末数学试卷一、填空题1.已知集合{}2|20A x x x =--=,用列举法可表示为A =_________.【答案】{}1,2-【解析】【分析】解方程220x x --=得1x =-或2x =,用列举法表示,即可.【详解】方程220x x --=的解为:1x =-或2x = ∴{}{}2|201,2A x x x =--==-故答案为:{}1,2-【点睛】本题考查集合的表示方法,属于容易题.2.函数()lg(2)f x x =-的定义域是____________.【答案】(2,+∞)【解析】 【详解】∵20x ->,∴2x >.3.命题“若1x >,则0x >”的逆否命题是________.【答案】若0x ≤,则1x ≤【解析】【分析】 根据命题“若p ,则q ”的逆否命题为“若q ⌝,则p ⌝”,写出即可. 【详解】命题“若1x >,则0x >”的逆否命题是“若0x ≤,则1x ≤”故答案为:若0x ≤,则1x ≤ 【点睛】本题考查命题的四种形式,属于容易题.4.若函数()()11()31x x f x x x ⎧>⎪=⎨-+≤⎪⎩,则()1f f -=⎡⎤⎣⎦________. 【答案】3【解析】【分析】先求解()14f -=,再求()4f ,即可.【详解】当1x ≤时()3f x x =-+,则()()1134f -=--+=.当1x >时()1f x =,则()()1413f f f -===⎡⎤⎣⎦.故答案为:3【点睛】本题考查分段函数求值,属于较易题.5.已知集合{}{}2,1,2,1,A B a =-=,且B A ⊆,则实数a的值为_________. 【答案】2±【解析】【分析】 根据题意可知,a A ∈,根据元素的互异性可知1a ≠,求解即可.【详解】若使得B A ⊆成立,则需1a A a ∈⎧⎨≠⎩,即2a =-或2a = 故答案为:2±【点睛】本题考查集合之间的关系,属于容易题.6.已知集合{}2|60A x x px =-+=,若3A ∈,则方程15x p -=的解为__________. 【答案】2x =【解析】【分析】由题意可知,3是方程260x px -+=的根,解得5p =.方程15x p -=等价变形为155x -=,解得,即可.【详解】3A ∈∴3是方程260x px -+=的根,即23360p -+=,解得5p =. 又方程155x p -==11x ∴-=,解得2x =.故答案为:2x =【点睛】本题考查元素与集合的关系以及实数指数幂的运算,属于较易题.7.函数()2log f x x x =+零点个数为_________.【答案】1【解析】【分析】函数()2log f x x x =+的零点个数,等价于方程()0f x =根的个数,等价于函数2log y x =与y x =-交点的个数,在同一坐标系下,画出函数图象,确定交点个数即可.【详解】由题意可知,在同一坐标系下,画出2log y x =与y x =-的函数图象,如图所示由图可知,函数2log y x =与y x =-有一个交点,则函数()2log f x x x =+有一个零点. 故答案为:1【点睛】本题考查函数的零点个数,属于较易题. 8.设函数()11f x x =-的反函数为()1f x -,则()11f -=_________. 【答案】2【解析】【分析】根据原函数与反函数的关系,解方程111x =-,即可. 【详解】令()111f x x ==-解得2x = 函数()11f x x =-的反函数为()1f x -. ∴()112f -=故答案为:2【点睛】本题考查反函数,属于较易题.9.若函数()2f x ax bx c =++是定义域为()23,1a -的偶函数,则a b +=_________. 【答案】1【解析】【分析】根据函数()f x 为偶函数,则定义域关于原点的对称,且0b =,列方程组得23100a b -+=⎧⎨=⎩,解方程组即可. 【详解】函数()2f x ax bx c =++是定义域为()23,1a -的偶函数 ∴23100a b -+=⎧⎨=⎩,解得1a =,0b = 即1a b +=故答案为:1【点睛】本题考查函数的奇偶性,定义域关于原点对称是解决本题的关键,属于较易题.10.方程2lg 3lg 20x x -+=的解为_________.【答案】10或100【解析】【分析】令lg t x =,则方程2lg 3lg 20x x -+=变形为2320t t -+=,解得1t =或2t =,即lg 1x =或lg 2x =,解方程即可.【详解】令lg t x =,则方程2lg 3lg 20x x -+=变形为2320t t -+=.解得1t =或2t =,即lg 1x =或lg 2x =,解得10x =或100x =故答案为:10或100【点睛】本题考查解对数方程,属于较易题.11.己知函数()221f x x ax a =-++-在区间[]01,上的最大值是2,则实数a =______. 【答案】1-或2.【解析】【分析】由函数对称轴与区间关系,分类讨论求出最大值且等于2,解关于a 的方程,即可求解.【详解】函数()22221()1f x x ax a x a a a =-++-=--+-+, 对称轴方程为为x a =;当0a ≤时,max ()(0)12,1f x f a a ==-==-;当2max 01,()()12a f x f a a a <<==-+=,即2110,2a a a --==(舍去),或152a (舍去); 当1a ≥时,max ()(1)2f x f a ===,综上1a =-或2a =.故答案为:1-或2.【点睛】本题考查二次函数的图像与最值,考查分类讨论思想,属于中档题.12.已知()f x 为奇函数,且在[)0,+∞上是减函数,若不等式()()12f ax f x -≤-在[]1,2x ∈上都成立,则实数a 的取值范围是___________.【答案】0a ≤【解析】【分析】根据()f x 为奇函数,且在[)0,+∞上是减函数,可知12ax x -≤-,即11a x ≤-,令11y x =-,根据函数11y x=-在[]1,2x ∈上单调递增,求解a 的取值范围,即可. 【详解】()f x 为奇函数,且在[)0,+∞上是减函数∴()f x 在R 上是减函数.∴12ax x -≤-,即11a x ≤-. 令11y x =-,则11y x=-在[]1,2x ∈上单调递增. 若使得不等式()()12f ax f x -≤-在[]1,2x ∈上都成立. 则需min111101a x ⎛⎫≤-=-= ⎪⎝⎭. 故答案为:0a ≤【点睛】本题考查函数的单调性与奇偶性的应用,属于中档题.二、选择题13.下列四组函数中,表示同一函数的是( )A. ()()21,11x f x g x x x -==+- B. ()()0,1f x x g x ==C. ()(),f x x g x ==D. ()()0,0x x f x x g x x x >⎧==⎨-<⎩【答案】C【解析】【分析】根据函数的两要素,定义域与对应法则,判断两个函数是否为同一函数,即可.【详解】选项A ,()f x 的定义为{}1x x ≠,()g x 的定义为R 不相同,不是同一函数. 选项B ,()f x 的定义为{}0x x ≠,()g x 的定义为R 不相同,不是同一函数.选项C ,()f x 的定义为R ,()g x 的定义为R 相同,()()f x g x x ==,是同一函数. 选项D ,()f x 的定义为R ,()g x 的定义为{}0x x ≠不相同,不是同一函数.故选:C【点睛】本题考查函数的两要素,属于较易题. 14.已知集合{}2,1,0,1,2A =--,102x B x x ⎧⎫+=<⎨⎬-⎩⎭,则A B =( ) A. {}1,0-B. {}0,1C. {}1,0,1-D. {}0,1,2 【答案】B【解析】【分析】 解不等式102x x +<-,得12x -<<,即{}12B x x =-<<,与集合A ,求交集,即可. 【详解】{}10122x B x x x x ⎧⎫+=<=-<<⎨⎬-⎩⎭,{}2,1,0,1,2A =-- {}0,1A B ∴⋂=故选:B【点睛】本题考查集合的运算,属于容易题.15.设命题甲为“0<x <3”,命题乙为“|x -1|<2“,那么甲是乙的( )A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分又非必要条件 【答案】A【解析】【分析】化简命题乙,再利用充分必要条件判断出命题甲和乙的关系.【详解】命题乙为“|x -1|<2,解得-1<x <3.又命题甲为“0<x <3”,因为{|03}x x << {|13}x x -<<那么甲是乙的充分不必要条件.故选A .【点睛】本题考查了不等式的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.16.下列函数中,值域是()0,∞+的是( )A. 13y x =B. y =C. ||31x y =-D. 2y x 【答案】D【解析】【分析】先求解四个选项对应函数的定义域,再根据定义域求解值域,即可. 【详解】因为函数13y x =的定义域为R ,值域为R ,不是()0,∞+所以选项A 不符合题意.因为函数y =={1x x ≤-或}3x ≥所以值域为[)0,+∞,不是()0,∞+,选项B 不符合题意. 因为函数31x y =-的定义域为R 关于原点对称,3131x x y --==- 所以函数31x y =-为偶函数.当0x ≥时3131xx y =-=-,单调递增当0x <时3131x x y -=-=-,单调递减所以0min 310y =-= 即函数31xy =-值域为[)0,+∞,不是()0,∞+,所以选项C 不符合题意. 因为函数2y x 的定义域为{}0x x ≠关于原点对称, ()22x x ---= 所以函数2y x 为偶函数.当0x >时2210y x x -==>,单调递减 当0x <时2210y x x -==>,单调递减 即函数2y x 值域为()0,∞+,所以选项D 符合题意.故选:D 【点睛】本题考查求函数的值域,属于中档题.三、解答题17.已知函数()(),1xf x a a =>在区间[]1,2上的最大值比最小值大2,求实数a 的值. 【答案】2【解析】【分析】由题意可知,函数()f x 在[]1,2单调递增,则()()212f f -=,解方程,即可. 【详解】函数()(),1xf x a a => ∴函数()f x 在[]1,2单调递增即()()2max 2f x f a ==,()()min 1f x f a == 又函数()(),1x f x a a =>在区间[]1,2上的最大值比最小值大2.∴()()2212f f a a -=-=,解得2a =或1a =-(舍去)综上所述:2a =【点睛】本题考查指数函数的单调性,属于较易题.18.已知函数()f x =.求:(1)函数()f x 的定义域;(2)判断函数()f x 的奇偶性,并加以证明.【答案】(1)[)(]1,00,1-;(2)偶函数,证明见解析.【解析】【分析】 (1)根据分式分母不为0,开偶次方的根式,被开方式大于或者等于0,列不等式组,求解即可.(2)根据函数奇偶性的定义,证明即可. 【详解】(1)若使得函数()f x =有意义 则需2010x x ≠⎧⎨-≥⎩解得10x -≤<或01x <≤. 所以函数()f x 的定义域为[)(]1,00,1-.(2)由(1)可知,函数()f x 的定义域为[)(]1,00,1-关于原点对称()()f x f x x-=== ∴函数()f x 为偶函数.【点睛】本题考查函数的奇偶性,属于较易题.19.甲乙两地的高速公路全长166千米,汽车从甲地进入该高速公路后匀速行驶到乙地,车速[]70,120v ∈(千米/时).已知汽车每小时...的运输成本(以元为单位)由可变部分和固定部分组成:可变部分为20.02v ,固定部分为220元.(1)把全程运输成本y (元)表示为速度v (千米/时)的函数,并指出这个函数的定义域;(2)汽车应以多大速度行驶才能使全程运输成本最小?最小运输成本为多少元?(结果保留整数)【答案】(1)()[]20.0270,120166220,y v v v =+∈;(2)当105v =时,最小运输成本为696元.【解析】【分析】(1)由题意可知,汽车的行驶时间为166v(小时),汽车每小时...的运输成本为20020.20v +,从而确定全程运输成本y (元)表示为速度v (千米/时)的函数关系,即可.(2)由(1)可知,()216684110000.0222025y v v v v ⎛⎫=+=+ ⎪⎝⎭,根据对号函数,求解即可. 【详解】(1)因为汽车从甲地进入该高速公路后匀速行驶到乙地,车速[]70,120v ∈(千米/时). 所以汽车的行驶时间为166v(小时) 又汽车每小时...的运输成本(以元为单位)由可变部分和固定部分组成:可变部分为20.02v ,固定部分为220元所以汽车每小时...的运输成本为20022.20v +(元) 则全程运输成本()[]20.0270,120166220,y v vv =+∈ (2) 由(1)可知,()216684110000.0222025y v v v v ⎛⎫=+=+ ⎪⎝⎭当v ⎡∈⎣时,函数841100025y v v ⎛⎫=+ ⎪⎝⎭单调递减当v ⎡⎤∈⎣⎦时,函数841100025y v v ⎛⎫=+ ⎪⎝⎭单调递增所以,当105v =≈时,全程运输成本取得最小值 即最小运输成本为()2min 1660.02105220696105y =⨯+≈元. 【点睛】本题考查函数的实际应用,属于中档题.20.已知m 是整数,幂函数()22m m f x x -++=在[)0,+∞上是单调递增函数.(1)求幂函数()f x 的解析式;(2)作出函数()()1g x f x =-的大致图象;(3)写出()g x 的单调区间,并用定义法证明()g x 在区间[)1,+∞上的单调性.【答案】(1)()2f x x =;(2)图象见解析;(3)减区间为(][],1,0,1-∞-;增区间为[][)1,0,1,-+∞,证明见解析.【解析】【分析】(1)根据幂函数()22mm f x x -++=在[)0,+∞上是单调递增函数,可知220m m -++>,解不等式即可.(2)由(1)可知()2f x x =,则()21g x x =-,先画出21y x =-的图象,再将该图象x 轴下方的部分翻折到x 轴上方,即可.(3)根据(2)图象写出单调区间,再根据定义法证明函数单调性,即可.【详解】(1)由题意可知,220m m -++>,即12m -<<因为m 是整数,所以0m =或1m =当0m =时,()2f x x = 当1m =时,()2f x x = 综上所述,幂函数()f x 的解析式为()2f x x =.(2) 由(1)可知()2f x x =,则()21g x x =- 函数()g x 的图象,如图所示:(3)由(2)可知,减区间为(][],1,0,1-∞-;增区间为[][)1,0,1,-+∞当[)1,x ∈+∞时,()2211g x x x =-=- 设任意的1x ,[)21x ∈+∞,且120x x ->则()()()()()()2222121212121211g x g x x x x x x x x x -=---=-=-+ 又1x ,[)21x ∈+∞,且120x x ->∴()()120g x g x ->即()g x 在区间[)1,+∞上单调递增.【点睛】本题考查求幂函数的解析式以及画函数图象,单调性的定义法证明.属于中档题.21.已知函数()()()4log 1,0,1a f x x a a =+->≠的反函数()1fx -的图象经过点()5,1P -,函数()2(),21x g x b b R =-∈+为奇函数. (1)求函数()f x 的解析式;(2)求函数()()22xF x g x =+-的零点; (3)设()g x 的反函数为()1g x -,若关于x 的不等式()()1g k x f x -+<在区间()1,0-上恒成立,求正实数k 的取值范围.【答案】(1)()()24log 1f x x =+-;(2)4log 3x =;(3)(]0,4.【解析】【分析】(1)根据原函数与反函数的关系可知,函数()f x 过点()1,5-,代入求解a 值,即可.(2)由题意可知()00g =,解得1b =,从而确定()22121x x F x =-+-+,令()0F x =,即()()21212x x -+=,即43x =,解方程,即可.(3)由题意可知,()()121log ,1,11x g x x x-+=∈--,则不等式()()1g k x f x -+<变形为()2214log 1x k x -<++,令()1,0,1t x t =+∈,则244log 4k t t ⎛⎫<++- ⎪⎝⎭,令244log 4y t t ⎛⎫=++- ⎪⎝⎭,根据函数的单调性,可知244log 44y t t ⎛⎫=++-> ⎪⎝⎭,从而求解正实数k 的取值范围.【详解】(1)由题意,()f x 过点(1,5)-,即()14log 25a f -=+=,解得2a = 所以()()24log 1f x x =+-. (2)()g x 为R 上的奇函数∴()0201021g b b =-=-=+,解得1b =,即()2121x g x =-+ 则()()22x F x g x =+-令()0F x =,即221021x x -+-=+ 则()()()2212121412x x x x -+=-=-=即43x =,解得4log 3x =.(3)由(2)可知()2121x g x =-+ ∴()()121log ,1,11x g x x x-+=∈-- 即()()()12214log 1log 1xk f x g x x x -+<-=+---()()()2222114144log 4log 11x x x x x -+-++=+=+++令()1,0,1t x t =+∈,则2224444log 4log 4t t k t t t -+⎛⎫<+=++- ⎪⎝⎭令244log 4y t t ⎛⎫=++- ⎪⎝⎭,()0,1t ∈ 244log 4y t t ⎛⎫=++- ⎪⎝⎭在()0,1t ∈单调递减 ∴22444log 44lo 41g 14y t t ⎛⎫⎛⎫=++->++-= ⎪ ⎪⎝⎭⎝⎭若关于x 的不等式()()1gk x f x -+<在区间()1,0-上恒成立,则4k ≤ 又k 为正实数∴(0,4]k ∈.【点睛】本题考查求函数的解析式,函数的零点,以及恒成立问题求参数取值范围,属于较难的题.。
2019-2020学年上海市高一(上)期末数学试卷
2019-2020学年上海市高一(上)期末数学试卷第I卷(选择题)一、选择题(本大题共4小题,共12.0分)1.“x2<1”是“x<1”的()条件.A. 充分不必要B. 必要不充分C. 充要D. 既不充分也不必要2.下列函数中,既是偶函数,又在(−∞,0)上单调递减的是()A. y=1xB. y=e−xC. y=1−x2D. y=x23.设函数f(x)=e x−e−x,g(x)=lg(mx2−x+14),若对任意x1∈(−∞,0],都存在x2∈R,使得f(x1)=g(x2),则实数m的最小值为()A. −13B. −1 C. −12D. 04.设f(x)=x2+bx+c(b,c∈R),且A={x|x=f(x),x∈R},B={x|x=f[f(x)],x∈R},如果A是只有一个元素的集合,则A与B的关系为()A. A=BB. A⫋BC. B⫋AD. A∩B=⌀第II卷(非选择题)二、填空题(本大题共12小题,共36.0分)5.函数y=ln(3−2x)的定义域是______ .6.函数f(x)=x2,(x<−2)的反函数是______ .7.设实数a满足log2a=4.则log a2=______ .8.幂函数f(x)=(m2−m−1)x m2+m−3在(0,+∞)上为减函数,则m=______ .9.函数y=log2[(x−2)2+1]的单调递增区间是________10.方程:log2(22x+1−6)=x+log2(2x+1)的解为______ .11.已知关于x的方程2kx2−2x−5k−2=0的两个实数根一个小于1,另一个大于1,则实数k的取值范围是______.12. 已知a >0且a ≠1,设函数f(x)={x −2,x ⩽32+log a x,x >3的最大值为1,则实数a 的取值范围为____________.13. 设f(x)的反函数为f −1(x),若函数f(x)的图象过点(1,2),且f −1(2x +1)=1,则x =__________.14. 已知函数f(x)=2|x |+x 2在区间[−2,m]上的值域是[1,8],则实数m 的取值范围是__________.15. 若关于x 的方程ln(x −2)+ln(5−x)=ln(m −x)有实根,实数m 的取值范围是______ .16. 函数f(x)=lnx −14x +34x −1.g(x)=−x 2+2bx −4,若对任意的x 1∈(0,2),x 2∈[1,2]不等式f(x 1)≥g(x 2)恒成立,则实数b 的取值范围是 .三、解答题(本大题共5小题,共60.0分)17. 设函数f (x )=4x 2+4x, (1)用定义证明:函数f (x )是R 上的增函数;(2)化简f (t )+f (1−t ),并求值:f (110)+f (210)+f (310)+⋯+f (910);(3)若关于x 的方程k ⋅f (x )=2x 在(−1,0]上有解,求k 的取值范围.18. 设集合A ={x|log 12(x 2−5x +6)=−1},B ={x|a x−2<(1a )2x−7,a >1},求A ∩B .19.某商场经调查得知,一种商品的月销售量Q(单位:吨)与销售价格(单位:万元/吨)的关系可用下图的一条折线表示.(1)写出月销售量Q关于销售价格的函数关系式;(2)如果该商品的进价为5万元/吨,除去进货成本外,商场销售该商品每月的固定成本为10万元,问该商品每吨定价多少万元时,销售该商品的月利润最大?并求月利润的最大值.20.求下列函数的定义域(1).f(x)=log3(x−5)(2)f(x)=√x+2+11−x21.已知函数g(x)=ax2−2ax+1+b,(a≠0,b>1)在区间[2,3]上的最大值为4,最.小值为1,设函数f(x)=g(x)x(1)求a,b的值及函数f(x)的解析式;(2)若不等式f(2x)−2x−k≥0在x∈[−1,1]时恒成立,求实数k的取值范围.答案和解析1.【答案】A【解析】【分析】本题主要考查充分条件与必要条件,基础题.根据充分必要条件的定义,分别证明充分性,必要性,从而得出答案.【解答】解:由x2<1解得−1<x<1⇒x<1,但x<1不能推出−1<x<1,所以“x2<1”是“x<1”成立的充分不必要条件.故选A.2.【答案】D是奇函数;y=e−x,不是偶函数;y=1−x2是偶函数,但是在(−∞,0)【解析】解:y=1x上单调递增,y=x2满足题意.故选:D.判断函数的奇偶性以及函数的单调性即可.本题考查二次函数的性质,函数的奇偶性以及函数的单调性,是基础题.3.【答案】A【解析】解:∵f(x)=e x−e−x在(−∞,0]为增函数,∴f(x)≤f(0)=0,∵∃x2∈R,使f(x1)=g(x2),∴g(x)=lg(mx2−x+1)的值域包含(−∞,0],4),显然成立;当m=0时,g(x)=lg(−x+14)的值域包含(−∞,0],当m≠0时,要使g(x)=lg(mx2−x+14的最大值大于等于1,则mx2−x+14∴{m<04m×14−(−1)24m≥1,解得−13≤m<0,综上,−13≤m≤0,∴实数m的最小值−13故选:A.由题意求出f(x)的值域,再把对任意x1∈R,都存在x2∈R,使f(x1)=g(x2)转化为函数g(x)的值域包含f(x)的值域,进一步转化为关于m的不等式组求解.本题考查函数的值域,体现了数学转化思想方法,正确理解题意是解答该题的关键,是中档题.4.【答案】A【解析】【分析】本题考查集合的相等,但关键难点是二次函数和复合函数的的解的问题,属中高档试题,难度较大,A只有一个元素,所以f(x)=x只有一个实数解,记作x0,则f(x)−x= (x−x0)2,f(x)=(x−x0)2+x,由此得出f[f(x)]=x,化简并提取公因式,可以证明此方程也有且只有一个零点x0,即可证明A=B.【解答】解:∵A只有一个元素,∴f(x)=x只有一个实数解,记作x0,则f(x)−x=x2+(b−1)x+c=(x−x0)2,∴f(x)=(x−x0)2+x,∴f[f(x)]=[(x−x0)2+x−x0]2+[(x−x0)2+x]=(x−x0)4+2(x−x0)3+2(x−x0)2+x,令f[f(x)]=x,即(x−x0)4+2(x−x0)3+2(x−x0)2+x=x(∗),则(x−x0)4+2(x−x0)3+2(x−x0)2=0,即[(x−x0)2+2(x−x0)+2](x−x0)2=0,∵(x−x0)2+2(x−x0)+2=0的判别式△=4−8=−4<0,∴无解,∴方程(∗)也只有一个实数解x0,综上所述A=B,故选A.5.【答案】(−∞,32)【解析】解:由3−2x>0,得x<32.∴原函数的定义域为(−∞,32).故答案为:(−∞,32).直接由对数式的真数大于0求解x的取值范围得答案.本题考查了函数的定义域及其求法,是基础题.6.【答案】y=−√x,(x>4)【解析】【分析】本题考查反函数的定义的应用,考查计算能力.直接利用反函数的定义求解即可.【解答】解:函数f(x)=x2,(x<−2),则y>4.可得x=−√y,所以函数的反函数为:y=−√x,(x>4).故答案为:y=−√x,(x>4).7.【答案】14【解析】解:∵实数a满足log2a=4,∴a=24=16,∴log a2=log162=lg2lg16=lg24lg2=14.故答案为:14.利用对数性质、运算法则、换底公式求解.本题考查对数式求值,是基础题,解题时要认真审题,注意对数性质、运算法则、换底公式的合理运用.8.【答案】−1【解析】解:知m2−m−1=1,则m=2或m=−1.当m=2时,f(x)=x3在(0,+∞)上为增函数,不合题意,舍去;当m=−1时,f(x)=x−3在(0,+∞)上为减函数,满足要求.故答案为−1根据幂函数的定义列出方程求出m的值;将m的值代入f(x)检验函数的单调性.本题考查幂函数的定义:形如y=xα的函数是幂函数;考查幂函数的单调性与α的正负有关.9.【答案】[2,+∞)【解析】【分析】本题主要考查复合函数的单调性.设t=(x−2)2+1,则y=log2t,分别找出函数t和y 的单调区间,利用同增异减即可求出结果.【解答】解:∵函数y=log2[(x−2)2+1],∴函数的定义域为R,设t=(x−2)2+1,则y=log2t,∵t在x∈(−∞,2)上单调递减,在[2,+∞)上单调递增,又∵y=log2t在定义域上单调递增,∴函数y=log2[(x−2)2+1]的单调增区间为[2,+∞).故答案为[2,+∞).10.【答案】{log23}【解析】解:由22x+1−6>0,得2×4x>6,即4x>3,则方程等价为log2(22x+1−6)=x+log2(2x+1)=log22x+log2(2x+1)=log22x(2x+1),即22x+1−6=2x (2x +1),即2(2x )2−6=(2x )2+2x ,即(2x )2−2x −6=0,则(2x +2)(2x −3)=0,则2x −3=0即2x =3,满足4x >3,则x =log 23,即方程的解为x =log 23,故答案为:{log 23}根据对数的运算法则进行化简,指数方程进行求解即可.本题主要考查对数方程的求解,根据对数的运算法则进行转化,结合指数方程,一元二次方程进行转化求解是解决本题的关键.11.【答案】(−∞,−43)∪(0,+∞)【解析】【分析】本题考查二次函数根的分布问题,属于中档题.利用二次函数的性质即可求解.【解答】解:令f(x)=2kx 2−2x −5k −2,因为关于x 的方程2kx 2−2x −5k −2=0的两个实数根一个小于1,另一个大于1, 则函数f(x)有两个不同的零点,且一个小于1,一个大于1.显然k ≠0,且{k <0f(1)=−3k −4>0或{k >0f(1)=−3k −4<0, 解出k <−43或k >0.故答案为(−∞,−43)∪(0,+∞). 12.【答案】[13,1)【解析】【分析】本题主要考查了分段函数,函数的最值,以及对数函数的性质,属于中档题.直接求解即可.【解答】解:∵函数f(x)={x −2,x ⩽32+log a x,x >3的最大值为1, ∴函数f(x)存在最大值,则由对数函数的性质可知0< a <1,且, 即,即a ≥13, 所以13≤a <1,故答案为[13,1). 13.【答案】12【解析】由题意函数f(x)的图象过点(1,2),则其反函数的性质一定过点(2,1),又f −1(2x +1)=1,故2x +1=2,解得x =12. 14.【答案】[0,2]【解析】【分析】本题考查根据函数值域求参数范围,属于基础题.判断f(x)的奇偶性,再根据单调性求解即可.【解答】解:函数f(x)=2|x |+x 2是R 上的偶函数,当−2≤x ≤0时,函数递减,所以f(−2)=8,f(0)=1,所以可得0≤m ≤2.故答案为[0,2].15.【答案】(2,6]【解析】解:由题意,{x −2>05−x >0, 解得,2<x <5;ln(x −2)+ln(5−x)=ln(m −x)可化为(x −2)(5−x)=m −x ;故m =−x 2+8x −10=−(x −4)2+6;∵2<x <5,∴2<−(x −4)2+6≤6;故答案为:(2,6].由题意得{x −2>05−x >0,从而解得2<x <5;从而化ln(x −2)+ln(5−x)=ln(m −x)为(x −2)(5−x)=m −x ;从而求解.本题考查了方程的根与函数图象的关系应用,属于基础题.16.【答案】(−∞,√142]【解析】 【分析】本题考查不等式恒成立问题,利用导数求函数的定值 【解答】由对任意的x 1∈(0,2),x 2∈[1,2]不等式f(x 1)≥g(x 2)恒成立, 可得f min (x 1)⩾g max (x 2),又f(x)=lnx −14x +34x −1,易得f ′(x )=−(x−1)(x−3)4x 2,当0<x <1时,f ′(x )<0,故f (x )在(0,1)上递减, 当1<x <2时,f ′(x )>0,故f (x )在(1,2)上递增, 故f min (x )=f (1)=−12.g(x)=−x 2+2bx −4=−(x −b )2+b 2−4,当b ≤1时,g (x )在[1,2]上递减,故g max (x )=g (1)=2b −5≤−12,得b ≤94,又b ≤1,故b ≤1;当1<b <2时,g max (x )=g (b )=b 2−4≤−12,得−√142<b ≤√142,又1<b <2,故1<b ≤√142; 当b ≥2时,g (x )在[1,2]上递增,故g max (x )=g (2)=4b −8≤−12,得b ≤158,又b ≥2,故无解;综上所述,b 的取值范围是 (−∞,√142].17.【答案】(1)证明:设任意x 1<x 2,则f(x 1)−f(x 2)=4x 12+4x 1−4x 22+4x 2=2(4x 1−4x 2)(2+4x 1)(2+4x 2), ∵x 1<x 2,∴4x 1<4x 2,∴4x 1−4x 2<0,又2+4x 1>0,2+4x 2>0.∴f(x 1)−f(x 2)<0, ∴f(x 1)<f(x 2), ∴f(x)在R 上是增函数; (2)对任意t ,f(t)+f(1−t)=4t 2+4t +41−t 2+41−t =4t 2+4t +42⋅4t +4=2+4t 2+4t =1,∴对于任意t ,f(1)+f(1−t)=1,(110)+f(910)=1,f(210)+f(810)=1,∴f(110)+f(210)+f(310)+⋯+f(910)=4+f(510)=92,(3)根据题意可得4x 2+4x·k =2x ,∴k =2+4x 2x,令t =2x ∈(12,1],则k =t +2t ,且在(12,1]单调递减, ∴ k ∈[3,92).【解析】本题考查函数的奇偶性、单调性的综合应用、方程根的分布问题,考查转化思想、函数思想,考查学生解决问题的能力. (1)根据函数单调性定义进行证明;(2)根据指数幂的运算法则进行化简可得f(1)+f(1−t)=1,即可求出f(110)+f(210)+f(310)+⋯+f(910)的值, 方程k ⋅f(x)=2x 可化为:4x 2+4x ·k =2x ,令t =2x ∈(12,1],则可分离出参数k ,进而转化为函数的值域问题,借助“对勾”函数的单调性可求得函数值域.18.【答案】解:A ={x|log 12(x 2−5x +6)=−1}={x|x 2−5x +6=2}={1,4}, B ={x|a x−2<(1a )2x−7,a >1}={x|a x−2<a 7−2x }={x|x −2<7−2x}={x|x <3},∴A ∩B ={1}.【解析】解对数方程求得A ,解指数不等式求得B ,再根据两个集合的交集的定义求得A ∩B .本题主要考查对数方程、指数不等式的解法,两个集合的交集的定义,属于中档题.19.【答案】解:(1)由函数图象可知:当5⩽x ⩽8时,Q =−52x +25;当8<x ⩽12时,Q =−x +13;所以得到分段函数Q ={−52x +25,5⩽x ⩽8−x +13,8<x ⩽12; 设月利润与商品每吨定价x 的函数为f (x ),则根据题意得f (x )=Q (x −5)−10, 即f (x )={(−52x +25)(x −5)−10,5⩽x ⩽8−(x −9)2+6,8<x ⩽12={−52(x −152)2+458,5⩽x ⩽8−(x −9)2+6,8<x ⩽12,所以当5⩽x ⩽8时,在x =125,f (x )的取值最大,f (125)=458;当8<x ⩽12时,在x =9,f (x )取值最大,f (9)=6. 所以,当x =9时,f (x )取最大值为6.综上:每吨定价为9万元时,销售该商品的月利润最大,最大利润为6万元.【解析】本题考查了分段函数模型的应用,函数的最值,二次函数的性质,属于中档题. (1)看函数图象知,函数是分段函数,所以分别求两段区间的函数.(2)根据题意得到利润函数式为f (x )=Q (x −5)−10,然后把函数Q (x )展开就又得到利润的分段函数,再分别求两个区间的最大值,然后作比较就可以得到整个函数的最大值,即最大利润.20.【答案】(1)解:根据题意得,x −5>0,解得x >5,即定义域为{x|x >5}(2)解:根据题意可得,{x +2≥01−x ≠0,解得x ≥−2且x ≠1,即定义域为{x|x ≥−2且x ≠1}.故答案为{x|x ≥−2且x ≠1}.【解析】(1)本题主要考查了函数的定义域,属于基础题.(2)本题主要考查了函数的定义域,属于基础题.21.【答案】解:(1)由于二次函数g(x)=ax 2−2ax +1+b 的对称轴为x =1,由题意得:当a >0,{g(2)=1+b =1g(3)=3a +b +1=4,解得{a =1b =0(舍去)当a <0,{g(2)=1+b =4g(3)=3a +b +1=1,解得{a =−1b =3>1∴a =−1,b =3 故g(x)=−x 2+2x +4,f(x)=−x +4x +2 (2)法一:不等式f(2x )−2x −k ≥0,即−2x +42x +2−2x ≥k ,∴k ≤−2⋅2x +42x +2设g(x)=−2⋅2x+42x+2,在相同定义域内减函数加减函数为减函数所以g(x)在[−1,1]内是减,故g(x)min=g(1)=0.∴k≤0,即实数k的取值范围为(−∞,0].法二:不等式f(2x)−2x−k≥0,即−2x+42x+2−2x−k≥0,∴−2x⋅(2x)2+(2−k)⋅2x+4≥0,令t=2x∈[12,2],∴化为g(t)=−2⋅t2+(2−k)⋅t+4≥0恒成立,因为g(t)图像开口向下.故只需{g(12)≥0 g(2)≥0。
2019-2020学年上海交大附中高一上学期期末考数学试卷含详解
2019-2020学年上海交大附中高一(上)期末数学试卷一、填空题1.弧度数为2的角的终边落在第象限.2.若幂函数f(x)=xα图象过点,则f(3)=.3.已知=2,则tanα的值为.4.=.5.已知lg2=a,10b=3,则log125=.(用a、b表示)6.若tanα=;则cos(2α+)=.7.已知函数f(x)=的值域为R,则实数a的取值范围是.8.已知θ∈(0,),2sin2θ=1+cos2θ,则tanθ=.9.已知α∈(﹣,0),sin(π﹣2α)=﹣,则sinα﹣cosα=10.已知锐角α,β满足sin(2α+β)=3sinβ,则tan(α+β)cotα=.11.已知α,β∈(0,π),且tan(α﹣β)=,tanβ=﹣,2α﹣β的值为.12.已知f(x)是定义域为R的单调函数,且对任意实数x,都有f[f(x)+]=,则f(log2sin)=.二、选择题13.“sinα<0”是“α为第三、四象限角”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件14.A为三角形ABC的一个内角,若sin A+cos A=,则这个三角形的形状为()A.锐角三角形B.钝角三角形C.等腰直角三角形D.等腰三角形15.已知函数f(x)=log a(6﹣ax)在x∈[2,3)上为减函数,则a的取值范围是()A.(1,2)B.(1,2]C.(1,3)D.(1,3]16.设x1,x2分别是f(x)=x﹣a﹣x与g(x)=x log a x﹣1(a>1)的零点,则x1+9x2的取值范围是()A.[8,+∞)B.(10,+∞)C.[6,+∞)D.(8,+∞)三、解答题17.已知α∈(0,),β∈(0,),sinα=,cos(α+β)=﹣.(1)求tan2α的值;(2)求cosβ的值.18.已知函数f(x)=3x﹣a•3﹣x,其中a为实常数;(1)若f(0)=7,解关于x的方程f(x)=5;(2)判断函数f(x)的奇偶性,并说明理由.19.高境镇要修建一个扇形绿化区域,其周长为400m,所在圆的半径为r,扇形的圆心角的弧度数为θ,θ∈(0,2π).(1)求绿化区域面积S关于r的函数关系式,并指数r的取值范围:(2)所在圆的半径为r取何值时,才能使绿化区域的面积S最大,并求出此最大值.20.已知函数y=f(x)的定义域为(1,+∞),对于定义域内的任意实数x,有f(2x)=2f(x)成立,且x∈(1,2]时,f(x)=log2x.(1)当x∈(1,23]时,求函数y=f(x)的最大值;(2)当x∈(1,23.7]时,求函数y=f(x)的最大值;(3)已知f(1200)=f(b)(实数b>1),求实数b的最小值.21.已知函数f(x)=log a(x+).x∈(1,+∞),a>0且a≠1.(1)若a为整数,且f()=2,试确定一个满足条件的a的值;(2)设y=f(x)的反函数为y=f﹣1(x),若f﹣1(n)<(n∈N*),试确定a的取值范围;(3)若a=2,此时y=f(x)的反函数为y=f﹣1(x),令g(x)=,若对一切实数x1,x2,x3,不等式g(x1)+g(x2)>g(x3)恒成立,试确定实数k的取值范围.2019-2020学年上海交大附中高一(上)期末数学试卷参考答案与试卷解析一、填空题1.【解答】解:根据题意,<2<π,则弧度数为2的角的终边落在第二象限,故答案为:二2.【解答】解:幂函数f(x)=xα图象过点,则2α=,解得α=﹣1,∴f(x)=x﹣1;∴f(3)=3﹣1=.故答案为:.3.【解答】解:∵==2,∴tanα=5.故答案为:5.4.【解答】解:=cos=﹣cos=﹣,故答案为:.5.【解答】解:∵10b=3,∴lg3=b,又lg2=a,∴log125=.故答案为:.6.【解答】解:∵tanα=,∴cos(2α+)=﹣sin2α====﹣.故答案为:﹣.7.【解答】解:当x≥1时,f(x)=2x﹣1≥1,当x<1时,f(x)=(1﹣2a)x+3a,∵函数f(x)=的值域为R,∴(1﹣2a)x+3a必须取到﹣∞,即满足:,解得0≤a<,故答案为:[0,).8.【解答】解:∵θ∈(0,),∴cosθ>0,∵2sin2θ=1+cos2θ,∴4sinθcosθ=2cos2θ,可得tanθ=.故答案为:.9.【解答】解:∵α∈(﹣,0),sin(π﹣2α)=sin2α=﹣,∴sinα<0,cosα>0,∴sinα﹣cosα=﹣=﹣=﹣=﹣.故答案为:﹣.10.【解答】解:sin(2α+β)=3sinβ,sin(α+β)cosα+cos(α+β)sinα=3[sin(α+β)cosα﹣cos(α+β)sinα],2sin(α+β)cosα=4cos(α+β)sinα,又α、β为锐角,所以sinα≠0,cos(α+β)≠0,所以tan(α+β)cotα==2.故答案为:2.11.【解答】解:由tan(α﹣β)=,tanβ=﹣,∴tanα=tan[(α﹣β)+β]===,由此可得tan(2α﹣β)=tan[(α﹣β)+α]===.又α∈(0,π),且tanα=<1,∴0<α<,又β∈(0,π),tanβ=﹣<0,∴<β<π,因此2α﹣β∈(﹣π,0),可得﹣π<2α﹣β<0,所以2α﹣β=﹣.故答案为:﹣.12.【解答】解:根据题意,f(x)是定义域为R的单调函数,且对任意实数x都有f[f(x)+]=,则f(x)+为常数,设f(x)+=t,则f(x)=﹣+t,又由f[f(x)+]=,即f(t)=﹣+t=,解可得t=1,则f(x)=﹣+1,∵sin=,则f(log2)=f(﹣1)=﹣+1=﹣;故答案为:﹣.二、选择题13.【解答】解:由α为第三、四象限角,可得sinα<0.反之不成立,例如.故选:B.14.【解答】解:∵sin A+cos A=,∴两边平方得(sin A+cos A)2=,即sin2A+2sin A cos A+cos2A=,∵sin2A+cos2A=1,∴1+2sin A cos A=,解得sin A cos A=(﹣1)=﹣<0,∵A∈(0,π)且sin A cos A<0,∴A∈(,π),可得△ABC是钝角三角形故选:B.15.【解答】解:若函数f(x)=log a(6﹣ax)在x∈[2,3)上为减函数,则解得:a∈(1,2].故选:B.16.【解答】解:由设x1,x2分别是函数f(x)=x﹣a﹣x和g(x)=x log a x﹣1的零点(其中a>1),可知x1是方程a x=的解;x2是方程=log a x的解;则x1,x2分别为函数y=的图象与函数y=a x和函数y=log a x的图象交点的横坐标;设交点分别为A(x1,),B(x2,)由a>1,知0<x1<1;x2>1;又因为y=a x和y=log a x以及y=的图象均关于直线y=x对称,所以两交点一定关于y=x对称,由于点A(x1,),关于直线y=x的对称点坐标为(,x1),所以x1=,有x1x2=1,而x1≠x2则x1+9x2=x1+x2+8x2≥2+8x2>2+8=10,即x1+9x2∈(10,+∞)故选:B.三、解答题17.【解答】解:(1)∵α∈(0,),sinα=,∴cosα==,tanα==4,∴tan2α===﹣.(2)∵α∈(0,),β∈(0,),sinα=,cos(α+β)=﹣,∴α+β∈(0,π),sin(α+β)==,∴cosβ=cos[(α+β)﹣α]=cos(α+β)cosα+sin(α+β)sinα=(﹣)×+×=.18.【解答】解:(1)由f(0)=7,即1﹣a=7,可得a=﹣6,那么3x+6•3﹣x=5,∴(3x)2﹣5•3x+6=(3x﹣2)(3x﹣3)=0,解得x=1或x=log32.(2)由f(﹣x)=﹣a•3x+3﹣x,当a=﹣1时,可得f(﹣x)=f(x)此时f(x)是偶函数,当a=1时,f(﹣x)=﹣f(x)此时f(x)是奇函数,当a≠±1时,f(x)是非奇非偶函数.19.【解答】解:(1)由题意知,扇形的周长为2r+θr=400,所以θ=;又θ∈(0,2π),所以<r<200;所以扇形的面积为S=θr2=•=﹣r2+200r,其中r的取值范围是(,200);(2)S(r)=﹣r2+200r=﹣(r﹣100)2+10000,当r=100时,S(r)取得最大值为10000,即半径为r=100m时,绿化区域的面积S最大,最大值10000m2.20.【解答】解:(1)对任意的x∈(1,+∞),恒有f(2x)=2f(x)成立,所以f(x)=2f();且x∈(1,2]时,f(x)=log2x∈(0,1];所以当x∈(2,4]时,∈(1,2],f(x)=2f()=2log2∈(0,2];当x∈(4,8]时,∈(2,4],f(x)=2f()=4log2∈(0,4];当x∈(8,16]时,∈(4,8],f(x)=2f()=8log2∈(0,8];…;当x∈(2n﹣1,2n]时,∈(2n﹣2,2n﹣1],f(x)=2f()=2n﹣1log2∈(0,2n﹣1];所以x∈(2n﹣1,2n]时,f(x)的最大值是2n﹣1;所以x∈(1,23]时,f(x)=,的最大值为f(23)=4log2=4;(2)当x∈(1,23.7]时,23≤23.7≤24,所以f(x)的最大值为f(23.7)=23×log2=8×(3.7﹣3)=5.6;(3)由f(1200)=f(b)(实数b>1),且1200=210×,210<210×<211,所以f(1200)=210×log2=210×log2,f(b)=f(2×)=2f()=22f()=…=2n﹣1f();当∈(1,2]时,∴f(b)=2n﹣1log2;∵f(1200)=f(b),则210×log2=2n﹣1log2;b=2n﹣1•,1<n<11当n=10时,=()2∈(1,2];b=29×()2;当n=9时,=()4∈(1,2];b=28×()4;当n=8时,=()8∉(1,2];…29×()2>28×()4;∴实数b的最小值为28×()4=256×()4.21.【解答】解:(1)由f(x)=log a(x+),x>1,a>0且a≠1,可得f()=log a(+)=log a(+)=log a2a=2,即a2=2a,可得整数a=2或4;(2)由y=f(x)=log a(x+),x>1,可得a y=x+,即a y﹣x=,平方可得a2y﹣2xa y+1=0,即有x=,可得f﹣1(x)=(若a>1,x>0;若0<a<1,x<0),f﹣1(n)<(n∈N*),即为<,若0<a<1,则a n+a﹣n单调递减,可得<a<1;可得a的取值范围为(,1)∪(1,4);(3)若a=2,此时y=f(x)的反函数为y=f﹣1(x)=(x>0),g(x)===1+,当k=1时,g(x)=1,符合题意;当k>1时,g(x)在x>0递减,可得g(x)∈(1,1+),对一切实数x1,x2,x3,不等式g(x1)+g(x2)>g(x3)恒成立,可得1+1≥1+,解得1<k≤4;当k<1时,g(x)在x>0递增,可得g(x)∈(1+,1),对一切实数x1,x2,x3,不等式g(x1)+g(x2)>g(x3)恒成立,可得2(1+)≥1,解得﹣≤k<1.综上可得k的范围是[﹣,4].。