四点共圆基本判断方法超全.pdf
证明四点共圆的基本方法
![证明四点共圆的基本方法](https://img.taocdn.com/s3/m/c2d2a98a5022aaea998f0fbd.png)
证明四点共圆的基本方法证明四点共圆有下述一些基本方法:方法1从被证共圆的四点中先选出三点作一圆,然后证另一点也在这个圆上,若能证明这一点,即可肯定这四点共圆.方法2把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等,从而即可肯定这四点共圆.(若能证明其两顶角为直角,即可肯定这四个点共圆,且斜边上两点连线为该圆直径。
)方法3把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆.方法4把被证共圆的四点两两连成相交的两条线段,若能证明它们各自被交点分成的两线段之积相等,即可肯定这四点共圆;或把被证共圆的四点两两连结并延长相交的两线段,若能证明自交点至一线段两个端点所成的两线段之积等于自交点至另一线段两端点所成的两线段之积,即可肯定这四点也共圆.(根据的逆定理)方法5证被证共圆的点到某一定点的距离都相等,从而确定它们共圆.上述五种基本方法中的每一种的根据,就是产生四点共圆的一种原因,因此当要求证四点共圆的问题时,首先就要根据命题的条件,并结合图形的特点,在这五种基本方法中选择一种证法,给予证明.判定与性质:圆内接四边形的对角和为π,并且任何一个外角都等于它的内对角。
如四边形ABCD内接于圆O,延长AB和DC交至E,过点E作圆O的切线EF,AC、BD交于P,则A+C=π,B+D=π,角DBC=角DAC(同弧所对的圆周角相等)。
角CBE=角ADE(外角等于内对角)△ABP∽△DCP(三个内角对应相等)AP*CP=BP*DP()四点共圆的图片EB*EA=EC*ED()EF*EF= EB*EA=EC*ED()(切割线定理,割线定理,相交弦定理统称)AB*CD+AD*CB=AC*BD(托勒密定理Ptolemy)证明四点共圆的原理四点共圆证明四点共圆基本方法:方法1把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等,从而即可肯定这四点共圆.方法2把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆.四点共圆的判定是以四点共圆的性质的基础上进行证明的。
专题3.8 四点共圆(隐圆压轴五)(解析版)
![专题3.8 四点共圆(隐圆压轴五)(解析版)](https://img.taocdn.com/s3/m/e3d2ee6291c69ec3d5bbfd0a79563c1ec5dad787.png)
∴DG=CG﹣CD= = ,
在 Rt△ADG 中,由勾股定理得
=
=
,
∴
=
=
.
故答案为:6,
.
【变式 1-5】如图,AB⊥BC,AB=5,点 E、F 分别是线段 AB、射线 BC 上的动 点,以 EF 为斜边向上作等腰 Rt△DEF,∠D=90°,连接 AD,则 AD 的最 小值为 .
【答案】 . 【解答】解:连接 BD 并延长,如图,
模型解读:
模型 1:对角互补型: 若∠A+∠C=180º或∠B+∠D=180º, 则 A、B、C、D 四点共圆 模型 2:同侧等角型 (1)若∠A=∠C, 则 A、B、C、D 四点共圆
(2)手拉手(双子型)中的四点共圆 条件:△OCD∽△OAB 结论:①△OAC∽△OBD ②AC 与 BD 交于点 E,必有∠AEB=∠AOB; ③点 E 在△OAB 的外接圆上,即 O、A、B、E 四点共圆.同理:ODCE 也四点共圆.
∴S△ABC=
=
=300 km2.
则当△ADC 的面积最大时,四边形 ABCD 的面积最大.
当 AD=CD 时,DF 最大,此时四边形 ABCD 的面积最大.
在 Rt△ACE 中,AC=
=10 km,AF= AC=5
km,
∵∠ADF=
=30°,
∴DF= AF=5 km,
∴S△ADC=
Hale Waihona Puke ==925 km2.
C.15
【答案】C
【解答】解:∵∠BAC=60°,∠BDC=120°,
∴A、E、D、F 四点共圆,
∵AD 平分∠BAC,
∴∠DAE=∠DAF,
∴DE=DF=6,
四点共圆的判定与性质
![四点共圆的判定与性质](https://img.taocdn.com/s3/m/24b7413e9ec3d5bbfc0a74ae.png)
四点共圆的判定与性质一、四点共圆的判定〔一〕判定方法1、假设四个点到一个定点的距离相等,那么这四个点共圆。
2、假设一个四边形的一组对角互补〔和为180°〕,那么这个四边形的四个点共圆。
3、假设一个四边形的外角等于它的内对角,那么这个四边形的四个点共圆。
4、假设两个点在一条线段的同旁,并且和这条线段的两端连线所夹的角相等,那么这两个点和这条线的两个端点共圆。
5、同斜边的直角三角形的顶点共圆。
6、假设AB、CD两线段相交于P点,且PA×PB=PC×PD,那么A、B、C、D四点共圆(相交弦定理的逆定理)。
7、假设AB、CD两线段延长后相交于P。
且PA×PB=PC×PD,那么A、B、C、D四点共圆(割线定理)。
8、假设四边形两组对边乘积的和等于对角线的乘积,那么四边形的四个顶点共圆(托勒密定理的逆定理。
〔二〕证明1、假设四个点到一个定点的距离相等,那么这四个点共圆。
假设可以判断出OA=OB=OC=OD,那么A、B、C、D四点在以O为圆心OA为半径的圆上。
2、假设一个四边形的一组对角互补〔和为180°〕,那么这个四边形的四个点共圆。
假设∠A+∠C=180°或∠B+∠D=180°,那么点A、B、C、D四点共圆。
3、假设一个四边形的外角等于它的内对角,那么这个四边形的四个点共圆。
假设∠B=∠CDE,那么A、B、C、D四点共圆证法同上。
4、假设两个点在一条线段的同旁,并且和这条线段的两端连线所夹的角相等,那么这两个点和这条线的两个端点共圆。
假设∠A=∠D或∠ABD=∠ACD,那么A、B、C、D四点共圆。
5、同斜边的直角三角形的顶点共圆。
如图2,假设∠A=∠C=90°,那么A 、B 、C 、D 四点共圆。
6、假设AB 、CD 两线段相交于P 点,且PA ×PB=PC ×PD ,那么A 、B 、C 、D 四点共圆(相交弦定理的逆定理)。
四点共圆的判定与性质
![四点共圆的判定与性质](https://img.taocdn.com/s3/m/450fbfe943323968001c92d4.png)
四点共圆的判定与性质一、四点共圆的判定(一)判定方法1、若四个点到一个定点的距离相等,则这四个点共圆。
2、若一个四边形的一组对角互补(和为180°),则这个四边形的四个点共圆。
3、若一个四边形的外角等于它的内对角,则这个四边形的四个点共圆。
4、若两个点在一条线段的同旁,并且和这条线段的两端连线所夹的角相等,那么这两个点和这条线的两个端点共圆。
5、同斜边的直角三角形的顶点共圆。
6、若AB、CD两线段相交于P点,且PA×PB=PC×PD,则A、B、C、D四点共圆(相交弦定理的逆定理)。
7、若AB、CD两线段延长后相交于P。
且PA×PB=PC×PD,则A、B、C、D四点共圆(割线定理)。
8、若四边形两组对边乘积的和等于对角线的乘积,则四边形的四个顶点共圆(托勒密定理的逆定理。
(二)证明1、若四个点到一个定点的距离相等,则这四个点共圆。
若可以判断出OA=OB=OC=OD,则A、B、C、D四点在以O为圆心OA为半径的圆上。
2、若一个四边形的一组对角互补(和为180°),则这个四边形的四个点共圆。
若∠A+∠C=180°或∠B+∠D=180°,则点A、B、C、D四点共圆。
3、若一个四边形的外角等于它的内对角,则这个四边形的四个点共圆。
若∠B=∠CDE,则A、B、C、D四点共圆证法同上。
4、若两个点在一条线段的同旁,并且和这条线段的两端连线所夹的角相等,那么这两个点和这条线的两个端点共圆。
若∠A=∠D或∠ABD=∠ACD,则A、B、C、D四点共圆。
5、同斜边的直角三角形的顶点共圆。
如图2,若∠A=∠C=90°,则A 、B 、C 、D 四点共圆。
6、若AB 、CD 两线段相交于P 点,且PA ×PB=PC ×PD ,则A 、B 、C 、D 四点共圆(相交弦定理的逆定理)。
7、若AB 、CD 两线段延长后相交于P 。
四点共圆的7种判定方法证明
![四点共圆的7种判定方法证明](https://img.taocdn.com/s3/m/fb98c763dc36a32d7375a417866fb84ae45cc338.png)
四点共圆的7种判定方法证明要证明四个点共圆,可以使用以下七种判定方法。
方法1:使用相交弧的性质假设四个点A、B、C、D共圆。
我们可以通过观察四个点连线所形成的相交弧的性质来进行判定。
即如果从A到B的弧和从C到D的弧的起点和终点重合,或者从B到C的弧和从D到A的弧的起点和终点重合,或者从C到D的弧和从A到B的弧的起点和终点重合,则可以证明四个点共圆。
方法2:使用余弦定理假设四个点A、B、C、D共圆,并且以A为圆心,AB为半径做圆,那么可以使用余弦定理证明。
首先,假设O为C到D的中点,我们可以根据余弦定理得出:AC² = AO² + OC² - 2 * AO * OC * cos∠AOC,同样地,我们可以得出:BD² = BO² + OD² - 2 * BO * OD * cos∠BOD。
由于共圆的性质,我们可以得到∠AOC = ∠BOD,因此AC² = BD²,从而可以证明四个点共圆。
方法3:使用向量运算假设四个点A、B、C、D共圆,我们可以使用向量运算进行证明。
首先,我们可以构建向量AB和向量AC,然后计算它们的叉乘,得到一个向量N。
同样地,我们可以构建向量AD和向量AC,并计算它们的叉乘,得到另一个向量M。
如果向量N和向量M垂直(即内积等于0),那么可以证明四个点共圆。
方法4:使用角平分线的性质假设四个点A、B、C、D共圆,并且AC和BD相交于点P。
那么根据角平分线的性质,我们可以得知∠APC=∠BPD。
同样地,由于共圆的性质,我们可以得到∠APC=∠BPC,因此∠BPD=∠BPC。
这意味着点P在角BPD的角平分线上,所以我们可以得出AD与BC也相交于点P,从而可以证明四个点共圆。
方法5:使用Miquel点的性质假设四个点A、B、C、D共圆,并且以AC为直径作圆,那么D一定在这个圆上。
同样地,以BD为直径作圆,C也一定在这个圆上。
四点共圆的判定方法
![四点共圆的判定方法](https://img.taocdn.com/s3/m/6f59de2d6ad97f192279168884868762caaebbd6.png)
四点共圆的判定方法四点共圆是指四个点在同一圆周上,这种情况在几何学中经常会遇到。
那么如何判断四个点是否共圆呢?本文将介绍四种方法,包括解析几何法、向量法、余弦定理法和三角形面积法。
以下是详细的方法:一、解析几何法1. 假设已知四个点的坐标分别为A(x1, y1)、B(x2, y2)、C(x3,y3)和D(x4, y4)。
2. 计算出AB、AC和AD三条线段的长度,分别记作a、b和c。
3. 根据勾股定理可以求出三角形ABC、ABD和ACD的面积S1、S2和S3。
4. 如果S1+S2+S3等于ABC三角形的面积,则说明四个点共圆。
二、向量法1. 假设已知四个点A、B、C和D。
2. 分别计算出向量AB、AC和AD的叉积,得到三个向量的模长,分别记作a、b和c。
3. 计算出向量AB与AC之间的夹角α,向量AB与AD之间的夹角β,以及向量AC与AD之间的夹角γ。
4. 如果α+β+γ等于180度,则说明四个点共圆。
三、余弦定理法1. 假设已知四个点A、B、C和D。
2. 计算出AB、AC、AD、BC、BD和CD三对线段之间的夹角,分别记作α、β和γ。
3. 根据余弦定理可以求出三个角的余弦值cosα、cosβ和cosγ。
4. 如果cosα+cosβ+cosγ等于0,则说明四个点共圆。
四、三角形面积法1. 假设已知四个点A、B、C和D。
2. 构造三角形ABC和ABD,分别计算出它们的面积S1和S2。
3. 构造三角形ACD和BCD,分别计算出它们的面积S3和S4。
4. 如果S1+S2等于S3+S4,则说明四个点共圆。
总结:以上就是判断四点共圆的四种方法,其中解析几何法比较简单易懂,适用于初学者;向量法需要一些向量知识,但计算较为简便;余弦定理法需要一些三角函数知识,但也比较容易掌握;三角形面积法则需要计算多个三角形的面积,稍微有些繁琐。
根据实际情况选择合适的方法进行判断即可。
第18讲四点共圆
![第18讲四点共圆](https://img.taocdn.com/s3/m/5aff5f64a98271fe900ef907.png)
C D F G O E
C D T F
B
.GF∥OA�证求�心外为 O�点中的 CB、DE 为别分 G、F �高为 EC、DB�中 CBA △在�图如�题赛竞学数中初滨尔哈年 0891� �5 例 .BKC∠�AMD∠∴�AKB∠�BMA∠证已但 B A · · .CKD∠�DMC∠是于�圆共点四 M�K�D�C 故 .°081�CDK∠+KMC∠∴ M K �°081�CDA∠+BAD∠故�CD∥BA∵ .KMC∠�BAD∠有�MK 接连 D C .圆共点四 K�M�B�A∴�KBC∠=MAD∠∵ 明证 .BKC∠�AMD∠�证求.KBC∠=MAD∠�上 CB�DA 在别分 M�K�DC�BA �CD∥BA�中 DCBA 形梯在�题试赛竞学数中初”杯之冲袓“届二第� �4 例 .圆共点四 3O�2O�1O�O 明证可也�补互角对用利 注评 .圆共 3O�2O�1O�O � 1O3OO∠=1O2OO∠由 2 .ACO∠=A3OO∠ =1O3OO∠得立�圆接外其及 ACO△察观 1 C B A 2 .BCO∠=B2OO∠ =1O2OO∠ 1 3O 2O 得立�圆接外其及 CBO△察观 � � .AO 分平直垂 3O1O�BO 分平直垂 2O1O 证易.3OB 1O �2OA 接连并�连相两两 3O�2O�1O�O 将 明证 O .圆共点四 3O�2O�1O�O�证求 .心外的 ACO△�CBO△�BAO△为别分 3O�2O�1O �外线直在点 O�线共点三 C、B、A)克匹林奥学数科斯莫届 72 第(�3 例 ,DF�′DF�CF∴ ,H′DF∠�HCF∠∴ ,′DF�DF ,H′DF∠�HDF∠∴�点称对的 FE 的线直于关 D 是′D∵ .CA�BA 故 ,
描扫法方识知
四点共圆的判定方法证明
![四点共圆的判定方法证明](https://img.taocdn.com/s3/m/a111e54c0166f5335a8102d276a20029bc64637d.png)
四点共圆的判定方法证明嘿,咱今儿个就来好好唠唠这四点共圆的判定方法证明!你说这四点共圆,就像是四个小伙伴,要想知道它们是不是真的能凑成一个圆,那可得有几招厉害的法子呢!先来说说这第一种判定方法。
如果四个点到一个定点的距离相等,那它们不就乖乖地在一个圆上啦!这就好比是一群孩子围着一个糖果罐子,离罐子距离一样的不就在一个圈里嘛!你想想是不是这个理儿?还有一种呢,就是如果一个四边形的一组对角互补,那这四个点也能共圆哟!这就好像是两个人,一个喜欢吃甜,一个喜欢吃辣,互补得很,那他们就能愉快地一起玩耍啦,这四个点也是一样的道理呀!要是这对角不互补,那它们可就凑不到一块儿去咯!再有呢,就是如果两个三角形有一条公共边,且在公共边同侧的两个顶点所对的边相等,那这四个点也能共圆。
这就跟玩拼图似的,这几块正好能拼成一个完整的图案,那它们就是一伙儿的呀!你可别小瞧了这些判定方法,它们就像是一把把钥匙,能帮我们打开四点共圆这个神秘大门呢!在解决很多几何问题的时候,那可真是大显身手呀!比如说,当我们遇到一些图形里有几个点,想要判断它们是不是能共圆,这时候这些方法不就派上用场啦?就好像有一次,我在做一道题的时候,怎么看那几个点都觉得它们应该在一个圆上,但是又不确定。
然后我就试着用这些判定方法一个一个去试,嘿,还真让我给试出来了!那种感觉,就像是找到了宝藏一样兴奋!而且啊,这些判定方法不仅仅是在数学里有用,在生活中有时候也能找到类似的道理呢!比如说,一群人要合作完成一件事情,那是不是也得有一些条件让他们能团结在一起呀?这和四点共圆不是有点像嘛!总之呢,这四点共圆的判定方法证明可真是有趣又实用!我们可得好好掌握它们,让它们为我们解决问题助一臂之力呀!这就是我对四点共圆判定方法证明的理解啦,你觉得怎么样呢?是不是也觉得很有意思呀?。
四点共圆判定定理
![四点共圆判定定理](https://img.taocdn.com/s3/m/ff10806065ce050877321345.png)
常见四点共圆的判定定理: 1. 若干个点与定点的距离相等,则这些点在同一圆周
上;
2. 点C、D在线段AB的异侧,且∠ACB+∠ADB=180° ,则A、B、C、D四点共圆;
3. 若点C、D在线段AB的同侧,且∠ACB=∠ADB,则A 、B、C、D四点共圆;
4. 若两线段AB、CD交于E,且AE·EB=CE·ED,则A、B 、C、D四点共圆;
姜立夫
第8页/共9页
感谢您的欣赏
第9页/共9页
第4页/共9页
挑战自己 练3. 如图,⊙O的弦AB和CD相交于K,过弦
AB,CD的两端的切线分别相交于P,Q.求
证:OK⊥PQ.
第5页/共9页
回味无穷
第6页/共9页
课后作业
自选四道与四点共圆判定定理有关的题 (最好选择与判定定理4~5有关的,可以选 择本课件上的题) 温馨提醒: 1. 有代表性、有挑战性、有意义性; 2. 有题目、有图、有过程.
5. 相交线段PA、PB上分别有异于P、A、B的点C、D, 且PA·PC=PB·PD,则A、B、C、D四点共圆.
第1页/共9页
Байду номын сангаас
经典例题 例.在△ABC中,AB= AC,D为BC中点,且 BE⊥AC于E,交AD于P,已知BP=3,PE=1, 求PA的值.
第2页/共9页
巩固练习 练1. 如图,⊙O的弦AB和CD相交于K,过弦
预习托勒密定理.
第7页/共9页
他是现代数学在中国最早而又最富成效的一位播种人,他1890年 生于浙江省平阳县(今苍南县)农村一个知识分子家庭.他6岁丧父,10 岁丧母,以后主要由哥嫂抚养成长。后来到美国后,他入加利福尼亚 州的加州大学(伯克利),专攻数学.1915年获学士学位.那时民国虽 已成立数年,中国的贫弱落后面貌依旧.他认为,中国要富强起来, 需要科学,数学是科学的基础,因而也需要数学.他还认为,他到美 国,用的是美国退回的庚子赔款,那是中国人民血汗换来的,用了人 民的钱,就应当为人民做点好事.他立志要把现代数学移植于中 国.那时候,在中国,现代数学还谈不上有什么基础,他充分意识到, 他面临艰巨的任务.但他不考虑成败得失,用他自己的话说,就是 “不管时机是否成熟”.为了进一步充实自己,以便实现上述抱负, 他努力转到哈佛大学作研究生.1918年,他在哈佛受聘为助教,作为 奥斯古德教授的助手.1919年5月,他完成博士论文《非欧几里得空 间直线球面变换法》.论文是在库利芝教授指导下完成的,内容是用 代数和微分几何方法来讨论射影空间的直线和非欧空间的球面之间的 对应关系,并获得了博士学位.学成之后回国,为中国数学事业贡献 了毕生精力.
四点共圆的性质与判定
![四点共圆的性质与判定](https://img.taocdn.com/s3/m/9cc356d3d4d8d15abf234e11.png)
四点共圆的性质、判定及应用(一)柳州市龙城中学 谭兵一、四点共圆的概念:二、四点共圆的性质: (1(2)圆内接四边形的对角互补; (3)圆内接四边形的一个外角等于它的内对角。
三、四点共圆的判定方法:判定方法1:四点到某一定点的距离都相等 四点共圆.判定方法2:从被证的四点中先选出三点作一圆,若另一点也在这个圆上 四点共圆. 判定方法3:若凸四边形的对角互补 四个顶点共圆判定方法4:若凸四边形的一个外角等于其邻补角的内对角 判定方法5:共斜边的两个直角三角形 四个顶点共圆,且斜边为直径判定方法6:共底边的两个三角形顶角相等,且在底边的同侧 四个顶点共圆. 判定方法7:(相交弦定理的逆定理)凸四边形ABCD 的对角线AC 、BD 交于P ,若PD⋅BP =PC ⋅AP 四个顶点共圆.判定方法8:(割线定理的逆定理)若凸四边形ABCD 其边的延长线AB 、CD 交于PD ⋅PC =PB ⋅PA 四个顶点共圆若四边形ABCD 内接于圆 BD ⋅AC = BC ⋅AD + CD ⋅AB .此四边形必内接于圆。
若BD ⋅AC = BC ⋅AD + CD ⋅AB 四边形ABCD 内接于圆.―――――――――――――――――――――――――――――――――――――――――― 3.已知:如图所示,四边形ABCD 内接于圆,CE ∥BD 交AB 的延长线于E .求证:AD · BE =BC · DC .D ED C A D CA6.如图,已知在△ABC中,AB=AC,BD平分∠B,△ABD的外接圆和BC交于E.求证:AD=EC.性质1.如图,在△ABC中,AD⊥BC,DE⊥AB,DF⊥AC.求证:B、E、F、C四点共圆.判定*5.正方形ABCD的中心为O,面积为1989 cm2.P为正方形内一点,且∠OPB=45°,PA∶PB=5∶14.求PB判定.A B7.已知:梯形ABCD中,AD=BC,AB∥CD.求证:BD2=BC2+AB ·CD.托勒密定理DC9.在△ABC 中,∠A 的内角平分线AD 交外接圆于D .连结BD,CD .求证:). 托勒密*8.如图,以Rt △ABC 的斜边BC 为一边在△ABC 的同侧作正方形BCEF ,设正方形的中心为O ,连结AO ,如果AB =4,AO =26,求AC 的长.**10.如图,AD 、BC 为过圆的直径AB 两端点的弦,且BD 与AC 相交于E 。
四点共圆的三种判定方法
![四点共圆的三种判定方法](https://img.taocdn.com/s3/m/a3ee609977232f60dccca155.png)
四点共圆的三种判定方法
四点共圆的判定方法为:从被证共圆的四点中先选出三点作一圆,然后证另一点也在这个圆周上,若能证明这一点,即可肯定这四点共圆;把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等(同弧所对的圆周角相等),从而即可肯定这四点共圆。
1.从被证共圆的四点中先选出三点作一圆,然后证另一点也在这个圆周上,若能证明这一点,即可肯定这四点共圆。
推论:证被证共圆的点到某一定点的距离都相等,从而确定它们共圆.即连成的四边形三边中垂线有交点,可肯定这四点共圆。
2.把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等(同弧所对的圆周角相等),从而即可肯定这四点共圆。
把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆。
3.把被证共圆的四点两两连成相交的两条线段,若能证明它们各自被交点分成的两线段之积相等,即可肯定这四点共圆;或把被证共圆的四点两两连结并延长相交的两线段,
若能证明自交点至一线段两个端点所成的两线段之积等于自交点至另一线段两端点所成的两线段之积,即可肯定这四点也共圆。
4点共圆的判定
![4点共圆的判定](https://img.taocdn.com/s3/m/ae269c5e26d3240c844769eae009581b6bd9bdde.png)
4点共圆的判定介绍在平面几何中,共圆是指多个点位于同一个圆上的情况。
当给定4个点时,我们需要判断它们是否共圆。
本文将介绍判定4点共圆的方法和原理,以及具体的计算步骤和示例。
1. 方法一:使用圆的方程1.1 圆的方程圆的方程可以表示为:(x−a)2+(y−b)2=r2其中,(a, b)是圆心的坐标,r是半径的长度。
1.2 判断四点共圆的步骤1.假设给定的四个点为A(x1, y1),B(x2, y2),C(x3, y3),D(x4, y4)。
2.分别计算AB、AC、AD的中垂线的方程,得到它们的斜率和截距。
3.确定中垂线的方程后,求解得到中垂线的交点,即为圆心的坐标。
4.计算四个点到圆心的距离,如果它们的距离都相等,即满足共圆的条件。
2. 方法二:使用向量叉乘2.1 向量叉乘的性质在二维空间中,向量的叉乘可以用来判断三个点是否共线。
如果三个点A(x1, y1),B(x2, y2),C(x3, y3)共线,那么向量AB和向量AC的叉乘为0。
2.2 判断四点共圆的步骤1.假设给定的四个点为A(x1, y1),B(x2, y2),C(x3, y3),D(x4, y4)。
2.分别计算向量AB和向量AC的叉乘,以及向量AB和向量AD的叉乘。
3.如果两个叉乘的结果都为0,则四个点共圆。
3. 示例假设有四个点A(0, 0),B(1, 0),C(0, 1),D(1, 1)。
我们将使用上述两种方法来判断它们是否共圆。
3.1 使用圆的方程1.计算AB的中垂线的方程为:y = -0.5x + 0.52.计算AC的中垂线的方程为:y = 0.5x + 0.53.解方程得到两个中垂线的交点为(0.5, 0.5),即圆心的坐标。
4.计算四个点到圆心的距离,可以得到:AB = AC = AD = BD = 0.5。
因此,四个点共圆。
3.2 使用向量叉乘1.计算向量AB和向量AC的叉乘:(1-0)(1-0) - (0-0)(0-1) = 12.计算向量AB和向量AD的叉乘:(1-0)(1-0) - (0-0)(1-1) = 13.由于两个叉乘的结果都为1,因此四个点共圆。
证明四点共圆的基本方法
![证明四点共圆的基本方法](https://img.taocdn.com/s3/m/4bbb7e48cd1755270722192e453610661ed95ac0.png)
证明四点共圆的基本方法
方法一:利用圆的定义
根据圆的定义,可以通过证明四点到圆心的距离相等来证明四点共圆。
设四点分别为A、B、C和D,圆心为O。
首先,可以计算出四点到圆心O
的距离AO、BO、CO和DO。
然后,证明AO=BO=CO=DO即可证明四点A、B、
C和D共圆。
方法二:利用相交弦的性质
如果四点共圆,则它们所在的圆上的任意两条弦应满足一定的性质。
可以通过证明四点所在的两条弦相交于同一点,或者四点所在的两条弦互
相垂直,来证明四点共圆。
方法三:利用圆心角的性质
若四点共圆,则它们所在的圆上的任意两条弦所对应的圆心角应满足
一定的关系。
可以通过计算四点所对应的圆心角,并证明这些圆心角相等,来证明四点共圆。
方法四:利用欧拉定理
欧拉定理指出,对于任意一个三角形,三个特殊点,外心、重心和垂心,以及三条特殊线,外心连线、重心连线和垂心连线,这些特殊点和特
殊线都共线。
可以利用欧拉定理来证明四点共圆。
方法五:利用共轴性
如果四点共圆,则可以找到与该圆相切的另外一条圆,并通过证明四
点共轴来证明它们共圆。
以上是常见的证明四点共圆的基本方法。
在实际证明中,可以根据具体问题选择合适的方法,并根据具体情况灵活应用。
证明四点共圆时,关键是通过计算和推理来得到所需的结论,一步步论证,使得结论得到充分的证明。
证明四点共圆的基本方法
![证明四点共圆的基本方法](https://img.taocdn.com/s3/m/bab53bcf6e1aff00bed5b9f3f90f76c661374cea.png)
证明四点共圆的基本方法--(二)证明四点共圆有下述一些基本方法:方法1从被证共圆的四点中先选出三点作一圆,然后证另一点也在这个圆上,若能证明这一点,即可肯定这四点共圆.方法2把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等,从而即可肯定这四点共圆.(若能证明其两顶角为直角,即可肯定这四个点共圆,且斜边上两点连线为该圆直径。
)方法3把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆.方法4把被证共圆的四点两两连成相交的两条线段,若能证明它们各自被交点分成的两线段之积相等,即可肯定这四点共圆;或把被证共圆的四点两两连结并延长相交的两线段,若能证明自交点至一线段两个端点所成的两线段之积等于自交点至另一线段两端点所成的两线段之积,即可肯定这四点也共圆.(根据托勒密定理的逆定理)方法5证被证共圆的点到某一定点的距离都相等,从而确定它们共圆.上述五种基本方法中的每一种的根据,就是产生四点共圆的一种原因,因此当要求证四点共圆的问题时,首先就要根据命题的条件,并结合图形的特点,在这五种基本方法中选择一种证法,给予证明.判定与性质:圆内接四边形的对角和为π,并且任何一个外角都等于它的内对角。
如四边形ABCD内接于圆O,延长AB和DC交至E,过点E作圆O的切线EF,AC、BD交于P,则A+C=π,B+D=π,角DBC=角DAC(同弧所对的圆周角相等)。
角CBE=角ADE(外角等于内对角)△ABP∽△DCP(三个内角对应相等)AP*CP=BP*DP(相交弦定理)四点共圆的图片EB*EA=EC*ED(割线定理)EF*EF= EB*EA=EC*ED(切割线定理)(切割线定理,割线定理,相交弦定理统称圆幂定理)AB*CD+AD*CB=AC*BD(托勒密定理Ptolemy)编辑本段证明四点共圆的原理四点共圆证明四点共圆基本方法:方法1把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等,从而即可肯定这四点共圆.方法2把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆.四点共圆的判定是以四点共圆的性质的基础上进行证明的。
四点共圆——精选推荐
![四点共圆——精选推荐](https://img.taocdn.com/s3/m/f1c0a86e178884868762caaedd3383c4bb4cb4a0.png)
四点共圆证明四点共圆有下述一些基本方法:方法 1 从被证共圆的四点中先选出三点作一圆,然后证另一点也在这个圆上,若能证明这一点,即可肯定这四点共圆.方法 2 把被证共圆的四点连成共底边的两个三角形,若能证明其两顶角为直角,从而即可肯定这四个点共圆.方法3 把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等,从而即可肯定这四点共圆.方法 4 把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆.方法 5 把被证共圆的四点两两连成相交的两条线段,若能证明它们各自被交点分成的两线段之积相等,即可肯定这四点共圆;或把被证共圆的四点两两连结并延长相交的两线段,若能证明自交点至一线段两个端点所成的两线段之积等于自交点至另一线段两端点所成的两线段之积,即可肯定这四点也共圆.方法6 证被证共圆的点到某一定点的距离都相等,从而确定它们共圆.上述六种基本方法中的每一种的根据,就是产生四点共圆的一种原因,因此当要求证四点共圆的问题时,首先就要根据命题的条件,并结合图形的特点,在这六种基本方法中选择一种证法,给予证明.(1)对角互补的四边形内接于一个圆。
(圆内接四边形对角互补定理的逆定理)(2)线段同侧二点到线段二个端点连线夹角相等则这二点与线段二端点这四点共圆。
特例:张角为直角(同弧所对的圆周角相等定理的逆定理)性质可与圆结合去考虑。
有一个著名定理:托勒密定理圆内接四边形对角线乘积等于二组对边乘积之和。
1.如果2个三角形同边,如果这条公共边所对的角是直角,那么公共边上2端点,和2个直角端点4点共圆2.如果2个三角形共边,如果这2个三角形在这边的同侧,且这2个角相等,那么公共边上的2个端点与这公共边所对的端点4点共圆3.如果一个四边形的对角相等,那么该四边形的4个顶点4点共圆4.如果一个四边形的一个外角等于这个外角的内角的对角,那么该四边形的4个端点4点共圆若四边形的一组对角互补,即对角和为180,则四点共圆。
四点共圆的判定与性质之欧阳学文创编
![四点共圆的判定与性质之欧阳学文创编](https://img.taocdn.com/s3/m/17f9d31158f5f61fb73666ec.png)
四点共圆的判定与性质欧阳歌谷(2021.02.01)一、四点共圆的判定(一)判定方法1、若四个点到一个定点的距离相等,则这四个点共圆。
2、若一个四边形的一组对角互补(和为180°),则这个四边形的四个点共圆。
3、若一个四边形的外角等于它的内对角,则这个四边形的四个点共圆。
4、若两个点在一条线段的同旁,并且和这条线段的两端连线所夹的角相等,那么这两个点和这条线的两个端点共圆。
5、同斜边的直角三角形的顶点共圆。
6、若AB、CD两线段相交于P点,且PA×PB=PC×PD,则A、B、C、D四点共圆(相交弦定理的逆定理)。
7、若AB、CD两线段延长后相交于P。
且PA×PB=PC×PD,则A、B、C、D四点共圆(割线定理)。
欧阳歌谷创编2021年2月8、若四边形两组对边乘积的和等于对角线的乘积,则四边形的四个顶点共圆(托勒密定理的逆定理。
(二)证明1、若四个点到一个定点的距离相等,则这四个点共圆。
若可以判断出OA=OB=OC=OD,则A、B、C、D四点在以O 为圆心OA为半径的圆上。
2、若一个四边形的一组对角互补(和为180°),则这个四边形的四个点共圆。
若∠A+∠C=180°或∠B+∠D=180°,则点A、B、C、D四点共圆。
3、若一个四边形的外角等于它的内对角,则这个四边形的四个点共圆。
若∠B=∠CDE,则A、B、C、D四点共圆证法同上。
4、若两个点在一条线段的同旁,并且和这条线段的两端连线所夹的角相等,那么这两个点和这条线的两个端点共圆。
若∠A=∠D或∠ABD=∠ACD,则A、B、C、D四点共圆。
5、同斜边的直角三角形的顶点共圆。
欧阳歌谷创编2021年2月如图2,若∠A=∠C=90°,则A、B、C、D四点共圆。
6、若AB、CD两线段相交于P点,且PA×PB=PC×PD,则A、B、C、D四点共圆(相交弦定理的逆定理)。