天然放射现象
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“鲁棉一号”就是山东省棉花研究所的科技人 员应用放射性同位素钴-60放出的伽玛射线处 理棉花杂交的后代育成的.
(2)作为示踪原子:用于工业、农业及生物
研究等.
棉花在结桃、开花的时候需要较多的磷肥, 把磷肥喷在棉花叶子上,磷肥也能被吸 收.但是,什么时候的吸收率最高、磷在作 物体内能存留多长时间、磷在作物体内的分 布情况等,用通常的方法很难研究.如果用 磷的放射性同位素制成肥料喷在棉花叶面上, 然后每隔一定时间用探测器测量棉株各部位 的放射性强度,上面的问题就很容易解决.
类第一次打开了原子核的大门。
为了认定新粒子,把新粒子引进电 场和磁场,测出了它的质量和电量, 确认与氢核相同:带有一个单位的 正电量,质量是电子质量的1800 多 倍。卢瑟福把它叫做质子.质子的 符号是 H 或 P
在云室里做卢瑟福实验,还可以根 据径迹了解整个人工转变的过 程.英国物理学家布拉凯特在所拍 摄的两万多张照片的40多万条α粒子 径迹中,发现了8条产生分叉的记 录.
放
射
性
射线应用
的
应
用
探伤仪 培育新种 保存食物
消除有害静电 消灭害虫 治疗恶性肿瘤
农作物检测
示踪原子
诊断器质性和功能性疾病
生物大分子结构及功能研究
放射性污染和防护
为了防止有害的放射线对人类和自然的破
坏,人们采取了有效的防范措施:
辐射源的存放
检测辐射装置
铀
全 身 污 பைடு நூலகம் 检 测 仪
辐射检测系统
同位素.
与天然的放射性物质相比,人造放射性同 位素:
1、放射强度容易控制 2、可以制成各种需要的形状 3、半衰期更短 4、放射性废料容易处理
放射性同位素的应用 (1)利用它的射线 A、由于γ射线贯穿本领强,可以用来γ射线检查金属内 部有没有砂眼或裂纹,所用的设备叫γ射线探伤仪.
B、利用射线的穿透本领与物质厚度密度的关系,来检 查各种产品的厚度和密封容器中液体的高度等,从而实 现自动控制
27 13
Al
4 2
He
30 15
P
1 0
n
反应生成物P是磷的一种同位素,也有放 射性,像天然放射性元素一样发生衰变, 衰变时放出正电子,核衰变方程如下:
30 15
P
30 14
Si
0 1
e
用人工方法得到放射性同位素,这是一个
很重要的发现.后来人们用质子、氘核、
中子和光子轰击原子核,也得到了放射性
人工放射性同位素
1934年,约里奥·居里和伊丽芙·居里在用粒子 轰击铝箔时,除探测到预料中的中子外,还 探测到了正电子,正电子的质量跟电子相同, 所带电荷与电子相反,为一个单位的正电荷, 更意外的是,拿走放射源后,铝箔虽不再发 射中子,但仍继续发射正电子,而且这种放 射性也有一定的半衰期.原来,铝核被粒子 击中后发生了下面的反应
盖革-弥勒计数器
德国物理学家盖革在1928年与弥勒合作研 制出的计数器用来检测放射性是非常方便的, 盖革管的结构如图所示:
窗口
阴极
阳极
粒子
接放 大器
四、放射性的应用与防护
核反应
卢瑟福在实验中发现,往容器C中通入氮气后,在荧 光屏S上出现了闪光,这表明,有一种新的能量比α粒 子大的粒子穿过铝箔,撞击在S屏上,这种粒子肯定 是在α粒子击中某个氮核而使该核发生变化时放出的。 这样,卢瑟福通过人工方法实现了原子核的转变,人
1931年,约里奥夫妇重复了玻特和贝克的实验,并用这种 未知射线去轰击石蜡。
结果竟从中打出能量约5.7 MeV的质子.这是异常惊人的新 发现,因为其行为完全不同于γ射线,γ射线只能打出电子 而打不出质子,γ光子的质量近乎0,电子也很轻,光子撞 击电子,使它动起来是合乎常理的,但质子质量是电子的 1800倍,一颗子弹怎么能撞动一辆汽车呢?如果认为轰击 石蜡的射线是γ射线,那么光子的能量应达55 MeV,这与 实际测得的射线能量10 MeV相去甚远.这射线在向约里奥 夫妇招手呼喊:我不是γ射线……!可惜的是,他们擦肩而 过,无缘相识。面对55MeV与10MeV的矛盾 ,他们还是十 分牵强地解释为其它的原因,并于1932年1月11日向巴黎 科学院提交了实验情况和对未知射线判定为γ射线的结论。
19.3《探测射线的方法》
天然放射现象
射线
射线
射线
成分
氦原子核 高速 电子流 高能量 电磁波
速度 贯穿能力 电离能力
1/10光 速
最强(撞 弱(纸) 击原子核)
接近光速 较强(几毫米) 较弱
光速 很强(几十毫米)
很弱
探测射线的方法
虽然放射线看不见,但是我们可以根据一些现象来
探知放射线的存在,这些现象主要是: 1、使气体电离
C、利用射线使空气电离而把空气变成导电气体,以消 除化纤、纺织品上的静电
D、利用射线照射植物,引起植物变异而培育良种, 也可以利用它杀菌、治病等
被不同剂量γ射线照射后的马铃薯8个月后的 情况,左上方的马铃薯没经过γ射线照射,右下 方的被γ射线照射的剂量最大,左下方保存最好的 马铃薯被γ射线照射的剂量适中。
(3)在生活中要有防范 意识,尽可能远离放射源
核反应堆外层的厚厚的水泥建筑
小结:
1、核反应基本上可分为两大类:
一是自然衰变(天然放射性衰变),
238 92
U
23940Th
4 2
H
e
二是人工衰变(人工转变)
14 7
N
4 2
He
178
O11
H
9 4
Be
4 2
He
162
C
1 0
n
(发现质子的核反应) (发现中子的核反应)
2、使照相底片感光
3、使荧光物质产生荧光
威耳孙云室
观察威耳孙云室的结构,研究射线在云室中的径迹:
射线径迹
射线径迹
径迹的长短和粗 细可以知道粒子的性 质;粒子轨迹的弯曲 方向可以知道粒子带 电的正负.
气泡室
气泡室里装的是液体,控制室内的温度和 压强,使室内的温度略低于液体的沸点,当气 泡室的压强突然降低时,液体的沸点降低因此 液体过热,在通过室内射线粒子周围就有气泡 形成.通过照片上记录的情况,可以分析粒子 的带电、动量、能量等情况.
注意:
1、放射性同位素与放放射性元素一样,都有一定的半衰期,衰变规律一样。
2、放射性同位素衰变可生成另一种新元素。 3、可以用人工的方法得到放射性同位素。
4、放射性同位素跟同种元素的非放射性同位素具有相同的化学性质。
(二)、放射性同位素的应用
放射性同位素在农业、医疗卫生、和科学研究等许 多方面得到了广泛的应用.其应用是沿着利用它的射线 和作为示踪原子两个方向展开的.
9 4
Be
4 2
He
162
C
1 0
n
“机遇只偏爱有准备的头脑”
中子的发现,有重大的意义,中子不带电,用它去轰 击原子核,不受库仑力的影响,是研究原子核的强有 力的“炮弹”。在此以前,可供研究用的“炮弹”只 有天然放射元素发出的α、β、γ三种射线,中子流则 是穿透本领更大,轰击原子核更有效的“炮弹”,人 们用它轰击各种原子核,获得许许多多人工放射性同 位素,用它轰开铀核,实现了原子能的利用。
分叉情况表明,α粒子击中氮核后, 生成一个新核,同时放出质子。新 核的电量较大速度较慢,径迹短而 粗;质子速度大,电量小,故径迹 细而长.根据核反应中质量数守恒 和电荷数守恒,可以写出这个发现 质子的核反应方程并得知氮核放出 质子后变成了氧核.
14 7
N
4 2
He
178
O
1 1
H
用α粒子、质子、中子等去轰击其它元素的原子
1932年1月底,查得威克得到这一论文, 约里奥夫妇的实验使他心跳,他认为约 里奥夫妇的结论肯定有误,违反能量守 恒啊!他敏感到这很可能是导师卢瑟福 预言、自己苦苦寻找了12年的中子。他 决定用云室的方法探测射线的速度和质 量。
他先测出射线的速度不到光速的十分之 一,排除了是γ射线的可能,又用弹性 碰撞动量守恒的方法测出不带电粒子的 质量与质子质量差不多。他还根据自旋 确定不带电的粒子不可能是由质子和电 子组合而成,只能是另一种新的独立粒 子,他称之为中子。就这样,仅用了十 天时间,成功地证实了这种中性射线就 是中子流。他当之无愧地成为“中子之 父”,并因此获1935年诺贝尔物理奖。
2、放射性同位素的应用
1932年,居里夫妇用α粒子轰击铍, 铝,硼等元素,发现了前所未有的穿透 性强的辐射,后来被确定为中子流。
1934年,查德威克在用α粒子轰击铍,铝,硼 等元素,除了测到中子流外,还探测到了正电子。
27 13
Al
24He
1350P
01n
30 15
P1340Si10e
有些同位素具有放射性,叫做放射性同位素
核,也都产生类似的转变,并产生质子,说明
质子是各种原子核里都有的成分,质子是人类
继电子、光子后发现的第三个基本粒子。
原子核在其他粒子的轰击下产生新原子核 的过程,------------核反应
在核反应中,质量数和电荷数都守恒
1930年,德国科学家玻特和贝克用α粒子 轰击轻元素铍核,发现并未发射出质子, 而放出了一种新的射线.这种射线几乎不 能使气体电离,在电场和磁场中也不发生 偏转,是不带电的,射线的贯穿能力强, 他们认为这是γ射线.经检测,射线的能 量在10MeV左右,远大于天然放射物质衰 变时发出的γ射线的能量.
人体甲状腺的工作需要碘.碘被吸收后会聚 集在甲状腺内.给人注射碘的放射性同位素 碘131,然后定时用探测器测量甲状腺及邻 近组织的放射强度,有助于诊断甲状腺的器 质性和功能性疾病.
放射性的防护
(1)在核电站的核反应 堆外层用厚厚的水泥来防 止放射线的外泄
(2)用过的核废料要放 在很厚很厚的重金属箱内, 并埋在深海里