材料的测试、表征方法和技巧ppt课件

合集下载

材料的测试、表征方法和技巧ppt课件

材料的测试、表征方法和技巧ppt课件
钼靶X射线管当管电压等于或 高于20KV时,则除连续X射线 谱外,位于一定波长处还叠 加有少数强谱线,它们即特 征X射线谱。
钼靶X射线管在35KV电压下的 谱线,其特征x射线分别位于 0.63Å和0.71Å处,后者的强 度约为前者强度的五倍。这 两条谱38 线称钼的K系
X射线荧光分析法
利用物质的特征荧光X射线进行成分分析的方法,称 为X射线荧光分析法。
横坐标:上方的横坐标是波长λ,单位μm 下方的横坐标是波数,单位是cm-1
波数即波长的 倒数,表示单 位(cm)长度光 中所含光波的 数目。
7
8
红外光谱的特点
1、 红外吸收只有振-转跃迁,能量低 2、 应用范围广:除单原子分子及单核分子 等对称分子外,几乎所有的有机物均有红外 吸收 3、 通过红外光谱的波数为止、波峰数目及 强度确定分子基团、分子结构 4、 还可以进行定量分析 5、 固液气态样品均可测试,而且用量少、 不破坏样品 6、 分析速度快、灵敏度高 7、9 与色谱等联用具有强大的定性功能
用) 共聚焦方式,适于表面或层面分析,高信噪比 能适合黑色和含水样品 高、低温及高压条件下测量 光谱成像快速、简便,分辨率高 仪器18稳固,体积适中,维护成本低,使用简单
红外光谱
光谱范围400-4000cm-1 分子振动谱 吸收,直接过程,发展较早
平衡位置附近偶极矩变化不为零 与拉曼光谱互补 实验仪器是以干涉仪为色散元件 测试在中远红外进行,不收荧光干扰20拉曼光谱的信息
拉曼频率的 确认
拉曼峰位的 变化
拉曼偏振
拉曼峰宽
拉曼峰强
21

物质的组 成 张力 / 应力
晶体对称性和 取向
如 MoS2, MoO3

纳米材料的测试与表征ppt课件

纳米材料的测试与表征ppt课件

AFM的像
三、纳米资料的构造分析
• 不仅纳米资料的成份和形貌对其性能有重 要影响,纳米资料的物相构造和晶体构造 对资料的性能也有着重要的作用。
• 目前,常用的物相分析方法有X射线衍射分 析、激光拉曼分析以及微区电子衍射分析。
X射线衍射构造分析
• XRD 物相分析是基于多晶样品对X射线的衍射效应,对样 品中各组分的存在形状进展分析。测定结晶情况,晶相, 晶体构造及成键形状等等。 可以确定各种晶态组分的构 造和含量
纳米资料成份分析种类
光谱分析 主要包括火焰和电热原子吸收光谱AAS, 电感耦合等离 子体原子发射光谱ICP-OES, X-射线荧光光谱XFS 和X射线衍射光谱分析法XRD;
质谱分析 主要包括电感耦合等离子体质谱ICP-MS 和飞行时间二次 离子质谱法TOF-SIMS
能谱分析 主要包括X 射线光电子能谱XPS 和俄歇电子能谱法AES
光散射法粒度分析
• 丈量范围广,如今最先进的激光光散射粒度 测试仪可以丈量1nm~3000μm,根本满足 了超细粉体技术的要求
• 测定速度快,自动化程度高,操作简单,普通 只需1~1.5min
• 丈量准确,重现性好 • 可以获得粒度分布
激光相关光谱粒度分析法
• 经过光子相关光谱〔PCS〕法,可以丈量粒子的 迁移速率。而液体中的纳米颗粒以布朗运动为主, 其运动速度取决于粒径,温度和粘度等要素。在 恒定的温度和粘度条件下,经过光子相关光谱 〔PCS〕法测定颗粒的迁移速率就可以获得相应 的颗粒粒度分布
• 几个纳米到几十微米的薄膜厚度测定
外表与微区成份分析
• X射线光电子能谱 • 俄歇电子能谱 • 二次离子质谱 • 电子探针分析方法 • 电镜的能谱分析 • 电镜的电子能量损失谱分析

纳米材料的测试与表征精品PPT课件

纳米材料的测试与表征精品PPT课件
• 因此确定纳米材料的元素组成测定纳米材料中杂质 的种类和浓度是纳米材料分析的重要内容之一。
Advaced Energy Material Lab
6
1核壳结构的CdTe-CdSe 量子点 2 核壳结构的CdSe-CdTe 量子点 3 均相结构的CdSe1-XTeX 量子点 4 梯度结构的CdSe1-XTeX 量子点 上述四种量子点的平均直径为5.9nm 组成为 CdSe0.6Te0.4
同位素分析;
Advaced Energy Material Lab
13
X-射线荧光光谱分析法
• 是一种非破坏性的分析方法,可对固体样品直接 测定。在纳米材料成分分析中具有较大的优点;
• X 射线荧光光谱仪有两种基本类型波长色散型和 能量色散型;
• 具有较好的定性分析能力,可以分析原子序数大 于3的所有元素。
Advaced Energy Material Lab
15
电子探针分析方法
Advaced Energy Material Lab
12
电感耦合等离子体质谱法
• ICP-MS 是利用电感耦合等离子体作为离子源的 一种元素质谱分析方法;该离子源产生的样品离 子经质谱的质量分析器和检测器后得到质谱;
• 检出限低(多数元素检出限为ppb-ppt级) • 线性范围宽(可达7个数量级) • 分析速度快(1分钟可获得70种元素的结果) • 谱图干扰少(原子量相差1可以分离),能进行
谱法TOF-SIMS
能谱分析 主要包括X 射线光电子能谱XPS 和俄歇电子能谱法AES
Advaced Energy Material Lab
9
体相成分分析方法
• 纳米材料的体相元素组成及其杂质成分的分析方 法包括原子吸收原子发射ICP, 质谱以及X 射线 荧光与衍射分析方法;

《材料测试方法》课件

《材料测试方法》课件
《材料测试方法》ppt课件
目 录
• 材料测试方法简介 • 材料力学性能测试 • 材料物理性能测试 • 材料化学性能测试 • 材料无损检测技术 • 材料现代测试技术
01
材的性能
通过测试,可以了解材料在 各种条件下的性能表现,如 力学性能、热性能、电性能 等。
质量控制
测试方法的分类
破坏性测试与非破坏性测试
根据是否对材料造成破坏,测试方法可分为破坏性测试和非破坏性测试。破坏性测试会改变材料的结构和性能,而非 破坏性测试不会对材料造成损伤。
宏观测试与微观测试
根据测试尺度,测试方法可分为宏观测试和微观测试。宏观测试主要关注材料的整体性能和行为,而微观测试则关注 材料的微观结构和性质。
红外线检测
总结词
利用红外线对材料进行辐射,通过测量材料对红外线的吸收和反射来分析材料的表面和内部结构。
详细描述
红外线检测利用不同物质对红外线的吸收和反射特性不同,通过测量材料对红外线的吸收和反射光谱 可以分析材料的表面和内部结构。该方法具有非接触、无损、快速等优点,适用于塑料、橡胶、涂料 等多种材料的检测。
测试是材料质量控制的重要 手段,通过测试可以判断材 料是否符合设计要求和使用 标准。
研发与改进
测试可以为新材料的研发提 供数据支持,帮助研发人员 了解材料的性能特点,优化 材料配方和工艺。
安全评估
对于涉及安全性的材料,如 建筑材料、医疗器械等,测 试是进行安全评估的必要步 骤。
测试的重要性
保障产品质量
化学稳定性测试
总结词
化学稳定性测试用于评估材料在化学介质中的稳定性 。
详细描述
通过在不同化学介质中检测材料性能的变化,评估材 料的化学稳定性,如耐酸碱度、耐溶剂性等。

材料表征技术PPT课件

材料表征技术PPT课件
第42页/共187页
第二章 X射线衍射方向
2.1 引言 晶体结构与XRD 2.2 晶体几何学基础
一 晶体结构
晶体:由组成它的原子有规律排列的固体。
1.空间点阵
F1-8空间点阵
第15页/共187页
1.2 X射线的本质
T1-1电磁波谱
第16页/共187页
电磁波:振动电磁场的传播,可用交变振动着的电场强度向 量和磁场强度向量来表征;它们以相同的位相在两个互相垂 直的平面上振动,而其传播方向与电场、磁场向量方向垂直, 并为右手螺旋法则所确定,真空中的传播速度为3x108m/s
for the research and development of advanced materials. It can be used for investigation of the following properties: • Identification of the phase(s) present: is it a pure phase or does the material contain impurities as a result of the production process? • Quantification of mixtures of phases • Degree of crystallinity of the phase(s) • Crystallographic structure of the material: space group determination and indexing, structure refinement and ultimately structure solving • Degree of orientation of the crystallites: texture analysis. • Deformation of the crystallites as a result of the production process: residual stress analysis • Influence of non-ambient conditions on these properties

纳米材料的测试与表征课件

纳米材料的测试与表征课件

2019/11/2
清华大学化学系材料与表面实验室
18
纳米粒子ICP-MS直接测定
2019/11/2
清华大学化学系材料与表面实验室
19
纳米材料的粒度分析
2019/11/2
清华大学化学系材料与表面实验室
20
粒度分析的概念
• 对于纳米材料,其颗粒大小和形状对材料的性能起着决 定性的作用。因此,对纳米材料的颗粒大小和形状的表 征和控制具有重要的意义。
• 测定速度快,自动化程度高,操作简单。一般只需1~ 1.5min;
• 测量准确,重现性好。
• 可以获得粒度分布;
2019/11/2
清华大学化学系材料与表面实验室
24
激光相干光谱粒度分析法
• 通过光子相关光谱(PCS)法,可以测量粒子的迁移速 率。而液体中的纳米颗粒以布朗运动为主,其运动速度 取决于粒径,温度和粘度等因素。在恒定的温度和粘度 条件下,通过光子相关光谱(PCS)法测定颗粒的迁移 速率就可以获得相应的颗粒粒度分布
2
纳米材料分析的特点
• 纳米材料具有许多优良的特性诸如高比表面、高 电导、高硬度、高磁化率等;
• 纳米科学和技术是在纳米尺度上(0.1nm~100nm 之间)研究物质(包括原子、分子)的特性和相互 作用,并且利用这些特性的多学科的高科技。
• 纳米科学大体包括纳米电子学、纳米机械学、纳 米材料学、纳米生物学、纳米光学、纳米化学等 领域。
2019/11/2
清华大学化学系材料与表面实验室
15
电子探针分析方法
• 电子束与物质的相互作用也可以产生特征的X-射线根 据X-射线的波长和强度进行分析的方法称为电子探针 分析法;
• 微区分析能力,1微米量级

《材料分析测试技术》课件

《材料分析测试技术》课件

在生物学领域,材料分析测试技术用于研 究生物大分子的结构和功能,以及生物材 料的性能和生物相容性。
医学领域
环境科学领域
在医学领域,材料分析测试技术用于药物 研发、医疗器械性能评价以及人体组织与 器官的生理和病理研究。
在环境科学领域,材料分析测试技术用于 环境污染物检测、生态系统中物质循环的 研究以及环保材料的性能评估。
反射光谱测试技术
通过测量材料对不同波长光的反射率,分 析材料的表面特性、光学常数和光学性能 。
发光光谱测试技术
研究材料在受到激发后发射出的光的性质 ,包括荧光、磷光和热辐射等,以了解材 料的发光性能和光谱特性。
透射光谱测试技术
通过测量材料对不同波长光的透射率,分 析材料的透光性能、光谱特性和光学常数 。
磁粉检测技术
总结词
通过磁粉与材料相互作用,检测其表面和近表面缺陷。
详细描述
磁粉检测技术利用磁粉与被检测材料的相互作用,通过观察磁粉的分布和排列,检测材 料表面和近表面的裂纹、折叠等缺陷。该技术广泛应用于钢铁、有色金属等材料的检测

涡流检测技术
总结词
通过电磁感应在材料中产生涡流,检测其表 面和近表面缺陷。
《材料分析测试技术》ppt课件
目录
• 材料分析测试技术概述 • 材料物理性能测试技术 • 材料化学性能测试技术 • 材料力学性能测试技术 • 材料无损检测技术 • 材料分析测试技术的应用与展望
01
材料分析测试技术概述
Chapter
定义与目的
定义
材料分析测试技术是指通过一系列实验手段对材料 进行物理、化学、机械等性能检测,以获取材料组 成、结构、性能等方面的信息。
电学性能测试技术
电容率测试技术

薄膜材料的表征与测量方法PPT(55张)

薄膜材料的表征与测量方法PPT(55张)

隧道效应电流是电子 波函数重叠的量度, 它与两金属电极之间 的距离以及衰减常数 有关。
38
隧道效应
由于电子具有波动性,在金
属中的电子并非仅存在于表
面边界以内,即电子刻度并
不是在表面边界上突然降低
为零,而是在表面边界以外
按指数规律衰减,衰减长度 约1nm。这样,如果两块金 属表面互相靠近到间隙小于 1nm时,它们的表面电子云 将发生重叠。如果将探针极
为简单起见,可先假设在第二个界面上,光全 部被反射回来并到达薄膜表面的C点,在该点 处,光束又会发生发射和折射。
要想在P点观察到光的干涉极大,其条件是直 接反射回来的光束与折射后又反射回来的光束 之间的光程差为波长的整数倍。
6
7
不透明薄膜厚度测量的等厚干涉 (FET)和等色干涉(FECO)法
40
优点
有原子量级的极高分辨率,能够分辨出单个原子。
直接观测到单原子层表面的局部结构,如表面缺 陷、表面重构、表面吸附体的形态和位置等。
能够实时地得到表面的三维图像,可测量具有周 期性和不具备周期性的表面结构。特别有利于对 表面摩擦磨损行为和性能变化等动态过程研究。
可以在不同环境条件下工作,包括真空、大气、 低温,甚至试样浸湿在水或电解液中。适用于研 究环境因素对试样表面的影响。
原理:基于石英晶体片的固有振动频率随其质 量的变化而变化的物理现象。
16
17
§6.2 薄膜结构的表征方法
薄膜结构的研究可以依所研究的 尺度范围划分为以下三个层次:
薄膜的宏观形貌,包括薄膜尺寸、形状、厚度、 均匀性等;
薄膜的微观形貌,如晶粒及物相的尺寸大小 和分布、孔洞和裂纹、界面扩散层及薄膜织 构等;

材料分析测试方法课件

材料分析测试方法课件
详细描述
紫外光谱法利用紫外线照射样品,测量样品对不同波长紫外光的吸收或反射,从而获得样品的紫外光谱。紫外光 谱图中,不同波长的峰代表着不同的化学键或官能团,通过比对标准谱图可以确定样品的化学组成和结构。此外 ,紫外光谱法还可以用于研究材料的电子云分布和能级结构。
核磁共振
总结词
核磁共振是一种常用的材料分析方法, 可以提供分子结构和化学键信息,以及 材料的磁学性质。
THANKS
03
布氏硬度
通过测量压痕直径来确定硬度 ,主要适用于硬质材料,如钢
和硬铝合金。
韧性测试
要点一
冲击测试
通过在材料上施加冲击力来测量其韧性,通常使用摆锤冲 击仪进行测试。
要点二
弯曲测试
通过在材料上施加弯曲力来测量其韧性,通常使用三点或 四点弯曲测试仪进行测试。
拉伸测试
弹性模量测试
通过测量材料在拉伸过程中的弹性变形来计算弹性模量 ,通常使用拉伸试验机进行测试。
应用
常用于材料科学、化学、生物学等领域 ,用于研究材料的晶体结构和化学键结 构等。
优点
可以快速、准确地测定晶体结构,且对 样品的损害较小。
缺点
对于非晶体或复杂的多晶材料,分析结 果可能存在误差。
中子衍射分析
原理
中子衍射分析是一种通过测量中子 在晶体中衍射角度的方法,推断晶
体结构的技术。
应用
常用于研究材料内部的结构和化学 键等信息,尤其适用于研究原子序
数较小的元素。
优点
对于某些元素,如氢、硼等,中子 衍射比X射线衍射更具优势。
缺点
需要使用中子源,实验成本较高, 且对样品的损害程度尚不明确。
红外光谱法
01
原理
红外光谱法是一种通过测量样 品对红外光的吸收光谱的方法 ,推断样品分子结构的的技术

材料力学性能检测方法PPT课件

材料力学性能检测方法PPT课件
形缺口试样。它们的冲击韧度值分别以a KU和a KV。
• 材料的a K值愈大,韧性就愈好;材料的a K值 愈小,材料的脆性愈大,但塑性好的材料a K 值不一定大。
• 通常把a K值小的材料称为脆性材料 • 研究表明,材料的a K值随试验温度的降低而
降低
• 加载速度越快,温度越低,表面及冶金质量越
差, a K在值越低。第36页/共40页
材料的性能 使用性能—材料在使用过程中所表现的性能 力学性能 物理性能 化学性能
工艺性能—在制造机械零件的过程中,材料适应各种冷、 热加工和热处理的性能。
铸造性能、锻造性能、焊接性能、冲压性能、 切削加工性能、热处理工艺性能 材料的力学性能
指材料在外力作用下表现出来的性能,主要有强 度、塑性、硬度、冲击韧度和疲劳强度等。
抗拉强度 — 是脆性材料选材的依据。 屈服强度与抗拉强度的比值σS / σb称为屈强比。 屈强比小,工程构件的可靠性高,说明即使外载荷或某些 意外因素使金属变形,也不至于立即断裂。但若屈强比过 小,则材料强度的有效利用率太低。
第25页/共40页
3.刚度
材料在外力作用下抵抗弹性变形的能力称为刚度。
在弹性阶段: F l E
所以: E
比例系数E 称为弹性模量,它反映材料对弹性变形
的抗力,代表材料的“刚度” 。
E — 材料抵抗弹性变形的能力越大。
弹性模量的大小主要取决于材料的本性,随温度升高而 逐渐降低。
第26页/共40页
2. 塑性
材料在外力作用下,产生永久变形而不引起破坏的能力。
常用 δ 和 ψ 作为衡量塑性的指标。
第9页/共40页
拉伸试验
d0
F
F
l0
L 拉伸前

纳米材料的测试与表征课件清华大学

纳米材料的测试与表征课件清华大学

图1 不同构造的CdSe1-XTeX 量 子点的构造和光谱性质示意图
1核壳构造的CdTe-CdSe 量子点 2 核壳构造的CdSe-CdTe 量子点 3 均相构造的CdSe1-XTeX 量子 点 4 梯度构造的CdSe1-XTeX 量子 点
上述四种量子点的平均直径为 5.9nm 组成为CdSe0.6Te0.4
• 光子相关光谱(PCS)技术能够测量粒度度为纳米量级的 悬浮物粒子,它在纳米材料,生物工程、药物学以及微生 物领域有广泛的应用前景。
电镜法粒度分析
• 优点是可以提供颗粒大小,分布以及形状的数据, 此外,一般测量颗粒的大小可以从1纳米到几个微米 数量级。
• 并且给的是颗粒图像的直观数据,容易理解。
多元素分析;
电感耦合等离子体发射光谱法ICP
• ICP是利用电感耦合等离子体作为激发源,根据处于激 发态的待测元素原子回到基态时发射的特征谱线对待测 元素进展分析的方法;
• 可进展多元素同时分析,适合近70 种元素的分析; • 很低的检测限,一般可到达10-1~10-5μg/cm-3 • 稳定性很好,精细度很高 ,相对偏差在1%以内 ,定量
纳米材料的成份分析
成分分析的重要性
• 纳米材料的光电声热磁等物理性能与组成纳米材料 的化学成分和构造具有密切关系;
• TiO2纳米光催化剂掺杂C,N例子说明
• 纳米发光材料中的杂质种类和浓度还可能对发光器 件的性能产生影响据报;如通过在ZnS 中掺杂不同 的离子可调节在可见区域的各种颜色
• 因此确定纳米材料的元素组成测定纳米材料中杂质 的种类和浓度是纳米材料分析的重要内容之一。
电镜-能谱分析方法
• 利用电镜的电子束与固体微区作用产生的 X射线进展能谱分析〔EDAX〕;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用) 共聚焦方式,适于表面或层面分析,高信噪比 能适合黑色和含水样品 高、低温及高压条件下测量 光谱成像快速、简便,分辨率高 仪器18稳固,体积适中,维护成本低,使用简单
红外光谱
光谱范围400-4000cm-1 分子振动谱 吸收,直接过程,发展较早
平衡位置附近偶极矩变化不为零 与拉曼光谱互补 实验仪器是以干涉仪为色散元件 测试在中远红外进行,不收荧光干扰
方法一:纵坐标为吸收强度,横坐标为波长λ(m) 和波数1/λ,单位:cm-1 。可以用峰数,峰位,峰
形,峰强来描述。 纵坐标是:吸光度A 应用:有机化合物
的结构解析 定性:基团的特征
吸收频率; 定量:特征峰的强

6
方法二:纵坐标是百分透过率T%。百分透过率的定义 是辅射光透过样品物质的百分率,即 T%= I/I0×100%, I是透过强度,Io为入射强度。
峰数 峰数与分子自由度有关。无瞬间偶基距变化 时,无红外吸收
峰强 瞬间偶极矩大,吸收峰强;键两端原子电负 性相差越大(极性越大),吸收峰越强
由基态跃迁到第一激发态,产生一个强的吸收峰, 基频峰
由基态直接跃迁到第二激发态,产生一个弱的吸收 峰,倍1频1 峰
有机化合物基团的特征吸收
化合物红外光谱是各种基团红外吸收的叠加
各种基团在红外光谱的特定区域会出现对应的吸收 带,其位置大致固定
受化学结构和外部条件的影响,吸收带会发生位移, 但综合吸收峰位置、谱带强度、谱带形状及相关峰 的存在,可以从谱带信息中反映出各种基团的存在 与否
12
常见基团的红外吸收带
=C-H C-H CC C=C
O-H O-H(氢键)
C=O C-C,C-N,C-O
S-H P-H N-O N-N C-F C-X
N-H
CN C=N
C-H,N-H,O-H
3500 3000 2500 2000 1500 1000 500
官13能团区(3700~1333cm-1)
指纹区(1333~650cm-1)
红外光谱图的影响因素
某一基团的特征吸收频率,同时还要受到分子结构 和外界条件的影响
材料的测试表征
表征技术 是指物质结构与性பைடு நூலகம்及其应用的有
关分析、测试方法,也包括测试、测量工具的 研究与制造。 表征的内容包括材料的组成、结构和性质
组成:构成材料的化学元素及其相关关系
结构:材料的几何学、相组成和相形态
性质:指材料的力学、热学、磁学、化学性质
1
.
表征手段
1.形貌 电子显微镜(TEM、SEM),普通的是电子枪发射光 电子,还有场发射的,分辨率和适应性更好;
3
.
概述
定义 红外光谱又称分子振动转动光谱,属分子
吸收光谱。样品受到频率连续变化的红外照射时, 分子吸收其中的一些频率的辐射,分子振动或转 动引起偶极矩的净变化,使振-转能级从基态跃 迁到激发态,相应于这些区域的透射光强减弱, 记录百分透过率T%对波数或波长的曲线,即为 红外光谱。
4
5
红外光谱图表示方法
横坐标:上方的横坐标是波长λ,单位μm 下方的横坐标是波数,单位是cm-1
波数即波长的 倒数,表示单 位(cm)长度光 中所含光波的 数目。
7
8
红外光谱的特点
1、 红外吸收只有振-转跃迁,能量低 2、 应用范围广:除单原子分子及单核分子 等对称分子外,几乎所有的有机物均有红外 吸收 3、 通过红外光谱的波数为止、波峰数目及 强度确定分子基团、分子结构 4、 还可以进行定量分析 5、 固液气态样品均可测试,而且用量少、 不破坏样品 6、 分析速度快、灵敏度高 7、9 与色谱等联用具有强大的定性功能
低波数(远红外)困难 微区测试较难,光斑尺寸约10微米, 空间分辨率差 红外探测器须噪声高,液氮冷却且灵 敏度较低 多数需制备样品 不能用玻璃仪器测定 水对红外光的19吸收,不可作为溶剂
拉曼光谱
光谱范围40-4000cm-1 分子振动谱 散射,间接过程,自激光后发展
平衡位置附近极化率变化不为零 与红外光谱互补 实验仪器以光栅为色散元件 测试在可见波段进行,有时受样品荧 光干扰,可采用近红外激发 低波数没有问题 共焦显微微趣测试,光斑尺寸可小到1 微米,空间分辨率好 CCD探测器噪声低,热电冷却,灵敏度 高 无需制备样品,且可远距离测试 样品可在玻璃仪器中直接测定 没有水对红外光的吸收,可作溶剂
20
拉曼光谱的信息
拉曼频率的 确认
拉曼峰位的 变化
拉曼偏振
拉曼峰宽
拉曼峰强
21

物质的组 成 张力 / 应力
晶体对称性和 取向
如 MoS2, MoO3
例如,硅每10 cm的位移的应 变率 例如,CVD金刚石 晶粒取向
晶体质量
例如,塑性变形量
物质总量
例如透明涂层的厚 度
Raman光谱的应用
不同的物质,其拉曼谱是不同的,就象人的指 纹一样,因此拉曼光谱可用于物相的分析与表 征,如非晶碳,微晶石墨,金刚石,单晶石墨 的拉曼谱不同
红外光谱产生的条件
(1)辐射应具有能满足物质产生振动跃迁所需的 能量
(2)辐射与物质间有相互偶合作用
对称分子:没有偶极矩,辐射不能引起共振,无红外活 性,如:N2、O2、Cl2 等。
非对称分子:有偶极矩,红外活性。
10
峰位、峰数与峰强
峰位 化学键的力常数K越大,原子折合质量越小, 键的振动频率越大,吸收峰将出现在高波数区(短 波长区);反之,出现在低波数区(高波长区)
2.结构 一般是需要光电电子显微镜,扫描电子显微镜不行 3.晶形 单晶衍射仪,XRD,判断纳米粒子的晶形及结晶度 4.组成 一般是红外,结合四大谱图,判断核壳组成 5.性能 光-紫外,荧光;电--原子力显微镜(AFM),拉
曼;磁--原子力显微镜或者专用的仪器
2
红外吸收光谱(Infrared Spectrometry)
同一种基团,由于其周围的化学环境不同,其特征 吸收频率会有所位移,不是在同一个位置出峰
基团的吸收不是固定在某一个频率上,而是在一个 范围内波动
14
拉曼(Raman)光谱
15
.
16
17
拉曼光谱的优点和特点
对样品无接触,无损伤 样品无需制备 快速分析,鉴别各种材料的特性与结构 拉曼所须样品量少,且适用样品微区(1微米以下光斑) 高空间分辨率(对包裹体,金刚石压砧中的样品等尤其有
相关文档
最新文档