8.6空间向量及其应用36

合集下载

高中数学-空间向量及向量的应用

高中数学-空间向量及向量的应用

高中数学 - 空间向量及向量的应用空间直角坐标系的原则:规定:一切空间向量的起点都是坐标系原点,于是,空间任意一个向量与它的终点坐标一一对应一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。

设 , ,空间向量的直角坐标运算:空间两点间距离: ;1:利用空间向量证明空间位置关系(同平面向量)2:利用空间向量求线线角、线面角1 )异面直线所成角 设 分别为异面直线的方向向量,则则:空间线段的中点 M (x ,y ,z )的坐标:2 )线面角 设 是直线 l 的方向向量, n 是平面的法向量,则3 :利用空间向量求二面角其计算公式为:设 分别为平面 的法向量,则 与 互补或相等,操作方法:1.空间中各种角包括:异面直线所成的角、直线与平面所成的角以及二面角。

①棱上一点双垂线法:②面上一点三垂线法:③空间一点垂面法:斜面面积和射影面积的关系公式: S S cos ( S 为原斜面面积 , S 为射影面积,为斜面与射影所成二面角的平面角 )这个公式对于斜面为三角形, 任意多边形都成立 . 是求二面角的好方法 .当作二面角的平面角有困难时如果能找得斜面面积的射影面积 ,可直接应用公式 ,求出二面角的大小。

2.空间的距离点线距,点面距,线线距,线面距,面面距都是对应图形上两点间的最短距离 3.空间向量的应用 (1)用法向量求异面直线间的距离2)直线与平面所成的角的范围是[0, ] 。

射影转化法2方法 3)二面角的范围一般是指(0, ],解题时要注意图形的位置和题目的要求。

作二面角的平面角常有三种1)异面直线所成的角的范围是bF如右图所示,a、b 是两异面直线,n是a和b 的法向量,点 E ∈a,F∈ b ,则异面直线 a 与b 之间的距离EF n 是dn2)用法向量求点到平面的距离AB n 如右图所示,已知AB 是平面α的一条斜线,n 为平面α的法向量,则 A 到平面α的距离为d 如右图所示,已知AB 是平面α的一条斜线,n为平面α的法向量,则A到平面α的距离为d n(3)用法向量求直线到平面间的距离首先必须确定直线与平面平行,然后将直线到平面的距离问题转化成直线上一点到平面的距离问题。

高三数学一轮复习8.6空间向量及其应用精品课件人教版

高三数学一轮复习8.6空间向量及其应用精品课件人教版
8.6空间向量及其应用
中国人民大学附属中学
1.空间向量的概念 向量:在空间,我们把具有大小和方向的量 叫做向量。如位移、速度、力等; 相等向量:长度相等且方向相同的向量叫做 相等向量; 表示方法:用有向线段表示,并且同向且等 长的有向线段表示同一向量或相等的向量.
2.向量运算和运算率 OB OA AB a b BA OA OB a b
D1中,M为A1C1与B1D1的交点。若 AB a ,
,则下列向量中与 BM 相 AD b ,AA 1 c
等的向量是( A ) (A) (B) (C)
1 1 a b c 2 2 1 1 a b c 2 2 1 1 a b c 2 2 1 1 a bc 2 2
D1 A1 M B1 C1
D A B
C
(D)
例4.已知两个非零向量 a =(a1,a2,a3), b =(b1,b2,b3),它们平行的充要条件是 ( D ) A. a :| a | b :| b | B. a1· b1=a2· b2=a3· b3 C. a1b1+a2b2+a3b3=0 D. 存在非零实数k,使 a =k b
例7.已知空间三点A(-2,0,2),B(-1, 1, 2), C(-3,0,4)。设 (1)求 a 和 b =a , =b AB , AC
10 的夹角的余弦; 10
(2)若向量k a + b 与k或k 2 2
记作 a b
例1.有以下命题:①如果向量 a, b 与任何 向量不能构成空间向量的一组基底,那么 a, b 的关系是不共线;②O, A, B, C为空间 四点,且向量 OA, OB, OC 不构成空间的一 个基底,那么点O, A, B, C一定共面;③已 知向量 a, b, c 是空间的一个基底,则向 量 a b, a b, c ,也是空间的一个基底。其 中正确的命题是( C ) (A) ①② (B) ①③ (C) ②③ (D) ①②③

空间向量及向量的应用

空间向量及向量的应用

空间向量及向量的应用空间直角坐标系的原则:规定:一切空间向量的起点都是坐标系原点,于是,空间任意一个向量与它的终点坐标一一对应。

一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。

设,,则:空间向量的直角坐标运算:空间两点间距离:;空间线段的中点M(x,y,z)的坐标:;1:利用空间向量证明空间位置关系(同平面向量)2:利用空间向量求线线角、线面角(1)异面直线所成角设分别为异面直线的方向向量,则(2)线面角设是直线l 的方向向量,n 是平面的法向量,则3:利用空间向量求二面角其计算公式为:设分别为平面的法向量,则θ与互补或相等,操作方法:1.空间中各种角包括:异面直线所成的角、直线与平面所成的角以及二面角。

(1)异面直线所成的角的范围是]2,0(π。

转化为共面问题。

(2)直线与平面所成的角的范围是]2,0[π。

射影转化法。

(3)二面角的范围一般是指],0(π,解题时要注意图形的位置和题目的要求。

作二面角的平面角常有三种方法①棱上一点双垂线法:②面上一点三垂线法:③空间一点垂面法:斜面面积和射影面积的关系公式:θcos ⋅='S S (S 为原斜面面积,S '为射影面积,θ为斜面与射影所成二面角的平面角)这个公式对于斜面为三角形,任意多边形都成立.是求二面角的好方法.当作二面角的平面角有困难时,如果能找得斜面面积的射影面积,可直接应用公式,求出二面角的大小。

2.空间的距离点线距,点面距,线线距,线面距,面面距都是对应图形上两点间的最短距离。

3.空间向量的应用(1)用法向量求异面直线间的距离aE如右图所示,a 、b 是两异面直线,n 是a 和b 的法向量,点E ∈a ,F ∈b ,则异面直线 a 与b 之间的距离是nn EF d⋅=;(2)用法向量求点到平面的距离如右图所示,已知AB 是平面α的 一条斜线,n 为平面α的法向量,则 A 到平面α的距离为nn AB d ⋅=;(3)用法向量求直线到平面间的距离首先必须确定直线与平面平行,然后将直线到平面的距离问题转化成直线上一点到平面的距离问题。

空间向量的应用认识空间向量的应用和几何解题方法

空间向量的应用认识空间向量的应用和几何解题方法

空间向量的应用认识空间向量的应用和几何解题方法空间向量的应用及认识空间向量的应用在数学中,空间向量是指具有大小和方向的向量,也称为三维向量。

空间向量在几何学和物理学中有广泛的应用,它们可以用于解决各种几何问题和实际应用中的物理问题。

本文将介绍空间向量及其应用,并讨论几种常见的解题方法。

一、空间向量的定义与性质空间向量是指由三个有序实数组成的有向线段。

假设有两点A和B,空间向量AB可以表示为→AB,它的大小等于线段AB的长度,方向则与线段AB的方向一致。

空间向量具有以下性质:1. 加法性质:如果有两个空间向量→AB和→BC,它们的和为→AC,即→AC = →AB + →BC。

2. 数乘性质:对于任意实数k,空间向量→AB乘以k的结果为k→AB,即k→AB = →BA。

3. 数量积性质:空间向量→AB和→AC的数量积为它们的模的乘积与它们夹角的余弦的乘积,即→AB·→AC = |→AB| × |→AC| × cosθ。

二、空间向量的应用1. 几何问题中的位置关系:空间向量可以用于判断点的位置关系。

例如,已知三个点A、B和C,可以通过向量→AB和→AC的数量积来判断它们的位置关系。

若→AB·→AC = 0,则表示点C在向量→AB 的延长线上;若→AB·→AC > 0,则表示点C在向量→AB的同侧;若→AB·→AC < 0,则表示点C在向量→AB的异侧。

2. 几何问题中的求解:空间向量可用于求解几何问题,如线段的中点坐标、平行四边形的面积等。

通过定义空间向量→AB = (x2-x1, y2-y1, z2-z1),可以得到线段AB的中点坐标为[(x1+x2)/2, (y1+y2)/2,(z1+z2)/2];平行四边形的面积可以通过向量的叉积来计算,即以两个边向量的叉积的模作为平行四边形的面积。

3. 物理学中的应用:空间向量在物理学中也有广泛的应用。

人教a版高考数学(理)一轮课件:8.6空间向量及其运算

人教a版高考数学(理)一轮课件:8.6空间向量及其运算

(2) 共面向量定理 如果两个向量 a, b 不共线, 那么向量 p 与向量 a, b 共面的充要条件是存在 惟一的有序实数对( x, y), 使 p=xa+yb. 推论: 空间一点 P 位于平面 AB C 内的充要条件是存在有序实数对(x, y), 使������������=x������������+y������������; 或对空间任意一点 O , 有������������= ������������+x������������+y������������. (3) 空间向量基本定理 如果三个向量 a , b, c不共面, 那么对空间任一向量 p, 存在有序实数组 (x, y, z), 使得 p=xa+yb+zc, 我们把 { a, b, c} 叫做空间的一个基底 , a, b, c都叫做基向 量.
������ 1������1 + ������ 2������2 + ������ 3������3
2 2 ������ 2 1+������ 2+ ������ 3· 2 2 ������2 1 +������2 +������3
.
若 A(a1 , b1 , c1 ), B (a2 , b2 , c2 ), 则 d AB =| ������������| = (������ 2 -������1) 2 + ( ������2-������1) 2 + ( ������2 -������1 )2.
考纲解读
高考中以选择题、填空题为主 , 重在考查空间两点间距离公式的 应用, 向量的概念、数量积及其运 算性质 ,运用空间向量的线性运 算及数量积考查点共线、 点共面、 线共面问题.

高三理数一轮讲义:8.6-空间向量及空间位置关系

高三理数一轮讲义:8.6-空间向量及空间位置关系

第6节 空间向量及空间位置关系最新考纲 1.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示;2.掌握空间向量的线性运算及其坐标表示;3.掌握空间向量的数量积及其坐标表示,能用向量的数量积判断向量的共线和垂直;4.理解直线的方向向量及平面的法向量;5.能用向量语言表述线线、线面、面面的平行和垂直关系;6.能用向量方法证明立体几何中有关线面位置关系的一些简单定理.知 识 梳 理1.空间向量的有关概念2.(1)共线向量定理:对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ,使得a =λb .(2)共面向量定理:如果两个向量a ,b 不共线,那么向量p 与向量a ,b 共面的充要条件是存在唯一的有序实数对(x ,y ),使p =x a +y b .(3)空间向量基本定理:如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =x a +y b +z c ,其中,{a ,b ,c }叫做空间的一个基底.3.空间向量的数量积及运算律(1)数量积及相关概念①两向量的夹角:已知两个非零向量a ,b ,在空间任取一点O ,作OA→=a ,OB →=b ,则∠AOB 叫做向量a 与b 的夹角,记作〈a ,b 〉,其范围是[0,π],若〈a ,b 〉=π2,则称a 与b 互相垂直,记作a ⊥b .②非零向量a ,b 的数量积a·b =|a ||b |cos 〈a ,b 〉. (2)空间向量数量积的运算律: ①结合律:(λa )·b =λ(a·b ); ②交换律:a·b =b·a ; ③分配律:a·(b +c )=a·b +a·c . 4.空间向量的坐标表示及其应用 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3).(1)直线的方向向量:如果表示非零向量a 的有向线段所在直线与直线l 平行或重合,则称此向量a 为直线l 的方向向量.(2)平面的法向量:直线l ⊥α,取直线l 的方向向量a ,则向量a 叫做平面α的法向量.6.空间位置关系的向量表示1.在平面中A ,B ,C 三点共线的充要条件是:OA →=xOB →+yOC →(其中x +y =1),O 为平面内任意一点.2.在空间中P ,A ,B ,C 四点共面的充要条件是:OP →=xOA →+yOB →+zOC →(其中x+y +z =1),O 为空间任意一点.3.向量的数量积满足交换律、分配律,即a ·b =b ·a ,a ·(b +c )=a ·b +a ·c 成立,但不满足结合律,即(a ·b )·c =a ·(b ·c )不一定成立.4.用向量知识证明立体几何问题,仍离不开立体几何中的定理.若用直线的方向向量与平面的法向量垂直来证明线面平行,仍需强调直线在平面外.2.(选修2-1P104练习2改编)已知平面α,β的法向量分别为n 1=(2,3,5),n 2=(-3,1,-4),则( ) A.α∥βB.α⊥βC.α,β相交但不垂直D.以上均不对3.(选修2-1P118A6改编)已知a =(cos θ,1,sin θ),b =(sin θ,1,cos θ),则向量a +b 与a -b 的夹角是________.4.已知A (1,0,0),B (0,1,0),C (0,0,1),则下列向量是平面ABC 法向量的是( ) A.(-1,1,1)B.(1,-1,1)C.⎝ ⎛⎭⎪⎫-33,-33,-33D.⎝ ⎛⎭⎪⎫33,33,-335.(2018·合肥月考)如图所示,在正方体ABCD -A 1B 1C 1D 1中,O 是底面正方形ABCD 的中心,M 是D 1D 的中点,N 是A 1B 1的中点,则直线ON ,AM 的位置关系是________.6.如图所示,在四面体OABC 中,OA→=a ,OB →=b ,OC →=c ,D 为BC 的中点,E为AD 的中点,则OE→=________(用a ,b ,c 表示).考点一 空间向量的数量积及应用典例迁移【例1】 (经典母题)如图所示,已知空间四边形ABCD 的每条边和对角线长都等于1,点E ,F ,G 分别是AB ,AD ,CD 的中点,计算:(1)EF →·BA →;(2)EG →·BD→. 【迁移探究1】 本例的条件不变,求证:EG ⊥AB . 【迁移探究2】 本例的条件不变,求EG 的长.【迁移探究3】 本例的条件不变,求异面直线AG 和CE 所成角的余弦值. 规律方法 1.利用数量积解决问题的两条途径:一是根据数量积的定义,利用模与夹角直接计算;二是利用坐标运算.2.空间向量的数量积可解决有关垂直、夹角、长度问题. (1)a ≠0,b ≠0,a ⊥b ⇔a ·b =0; (2)|a |=a 2;(3)cos〈a,b〉=a·b |a||b|.【训练1】如图所示,四棱柱ABCD-A1B1C1D1中,底面为平行四边形,以顶点A为端点的三条棱长都为1,且两两夹角为60°.(1)求AC1的长;(2)求证:AC1⊥BD;(3)求BD1与AC夹角的余弦值.考点二用空间向量证明平行和垂直问题【例2】如图正方形ABCD的边长为22,四边形BDEF是平行四边形,BD与AC交于点G,O为GC的中点,FO=3,且FO⊥平面ABCD.(1)求证:AE∥平面BCF;(2)求证:CF⊥平面AEF.规律方法 1.证明直线与平面平行,只须证明直线的方向向量与平面的法向量的数量积为零,或证直线的方向向量与平面内的不共线的两个向量共面,或证直线的方向向量与平面内某直线的方向向量平行,然后说明直线在平面外即可.这样就把几何的证明问题转化为向量运算. 2.用向量证明垂直的方法(1)线线垂直:证明两直线所在的方向向量互相垂直,即证它们的数量积为零. (2)线面垂直:证明直线的方向向量与平面的法向量共线,或将线面垂直的判定定理用向量表示.(3)面面垂直:证明两个平面的法向量垂直,或将面面垂直的判定定理用向量表示. 【训练2】 如图,在多面体ABC -A 1B 1C 1中,四边形A 1ABB 1是正方形,AB =AC ,BC =2AB ,B 1C 1綉12BC ,二面角A 1-AB -C 是直二面角.求证:(1)A1B1⊥平面AA1C;(2)AB1∥平面A1C1C.证明考点三用空间向量解决有关位置关系的探索性问题多维探究角度1与平行有关的探索性问题【例3-1】(2018·西安八校联考)已知某几何体的直观图和三视图如图,其正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形.M为AB的中点,在线段CB上是否存在一点P,使得MP∥平面CNB1?若存在,求出BP的长;若不存在,请说明理由.角度2 与垂直有关的探索性问题【例3-2】 如图,正方形ADEF 所在平面和等腰梯形ABCD 所在的平面互相垂直,已知BC =4,AB =AD =2.(1)求证:AC ⊥BF ;(2)在线段BE 上是否存在一点P ,使得平面P AC ⊥平面BCEF ?若存在,求出|BP ||PE |的值;若不存在,请说明理由.规律方法解决立体几何中探索性问题的基本方法(1)通常假设题中的数学对象存在(或结论成立),然后在这个前提下进行逻辑推理.(2)探索性问题的关键是设点:①空间中的点可设为(x,y,z);②坐标平面内的点其中一个坐标为0,如xOy面上的点为(x,y,0);③坐标轴上的点两个坐标为0,如z轴上的点为(0,0,z);④直线(线段)AB上的点P,可设为AP→=λAB→,表示出点P的坐标,或直接利用向量运算.【训练3】(2019·桂林模拟)如图,棱柱ABCD-A1B1C1D1的所有棱长都等于2,∠ABC和∠A1AC均为60°,平面AA1C1C⊥平面ABCD.(1)求证:BD⊥AA1;(2)在直线CC1上是否存在点P,使BP∥平面DA1C1,若存在,求出点P的位置,若不存在,请说明理由.基础巩固题组 (建议用时:40分钟)一、选择题1.平面α的法向量为(1,2,-2),平面β的法向量为(-2,-4,k ),若α∥β,则k 等于( ) A.2B.-4C.4D.-22.在空间直角坐标系中,已知A (1,2,3),B (-2,-1,6),C (3,2,1),D (4,3,0),则直线AB 与CD 的位置关系是( ) A.垂直 B.平行C.异面D.相交但不垂直3.已知空间四边形ABCD 的每条边和对角线的长都等于a ,点E ,F 分别是BC ,AD 的中点,则AE →·AF →的值为( )A.a 2B.12a 2C.14a 2D.34a 24.如图,在空间四边形OABC 中,OA =8,AB =6,AC =4,BC =5,∠OAC =45°,∠OAB =60°,则OA 与BC 所成角的余弦值为( )A.3-225B.2-26C.12D.325.如图所示,在正方体ABCD -A 1B 1C 1D 1中,棱长为a ,M ,N 分别为A 1B 和AC 上的点,A 1M =AN =2a3,则MN 与平面BB 1C 1C 的位置关系是( )A.斜交B.平行C.垂直D.MN 在平面BB 1C 1C 内二、填空题6.(2019·西安调研)已知AB→=(1,5,-2),BC →=(3,1,z ),若AB →⊥BC →,BP →=(x -1,y ,-3),且BP ⊥平面ABC ,则实数x +y =________.7.正四面体ABCD 的棱长为2,E ,F 分别为BC ,AD 中点,则EF 的长为________.8.已知点P 是平行四边形ABCD 所在的平面外一点,如果AB→=(2,-1,-4),AD →=(4,2,0),AP→=(-1,2,-1).对于结论:①AP ⊥AB ;②AP ⊥AD ;③AP →是平面ABCD 的法向量;④AP→∥BD →.其中正确的序号是________.三、解答题9.(2018·青海质检)正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是C 1C ,B 1C 1的中点.求证:MN ∥平面A 1BD .10.如图所示,已知四棱锥P -ABCD 的底面是直角梯形,∠ABC =∠BCD =90°,AB =BC =PB =PC =2CD ,侧面PBC ⊥底面ABCD .证明:(1)P A ⊥BD ;(2)平面P AD ⊥平面P AB .能力提升题组(建议用时:20分钟)12.如图,正方形ABCD 与矩形ACEF 所在平面互相垂直,AB =2,AF =1,M 在EF 上,且AM ∥平面BDE .则M 点的坐标为( )A.(1,1,1)B.⎝ ⎛⎭⎪⎫23,23,1C.⎝ ⎛⎭⎪⎫22,22,1 D.⎝ ⎛⎭⎪⎫24,24,1。

《空间向量的应用》课件

《空间向量的应用》课件

向量的向量积运算性质
总结词:反交换律
详细描述:空间向量的向量积满足反交换律,即对于任意向量$mathbf{a}$和 $mathbf{b}$,有$mathbf{a} times mathbf{b} = -mathbf{b} times mathbf{a}$。
向量的向量积运算性质
总结词
与数量积的分配律不兼容
数乘的性质
结合律和分配律成立,即k(a+b)=(ka)+(kb)和(k+l)a=ka+la。
向量的模与向量的数量积
向量的模的性质
非负性、正定性、齐次性、三角不等式成立 。
向量的数量积
两个向量的数量积表示它们的夹角,记作 a·b,计算公式为$|a||b|cosθ$。
数量积的性质
交换律和分配律成立,即a·b=b·a和(k a)·b=k(a·b)。
04
空间向量的坐标表示
向量的坐标表示方法
固定原点
选择一个固定的点作为原点,并确定三个互相垂直的 坐标轴。
向量表示
将向量表示为坐标系中的有序实数组,例如向量A可 以表示为[a, b, c]。
长度和方向
向量的长度可以通过其坐标的模计算,方向可以通过 其分量表示。
向量在坐标系中的变换
平移变换
将向量在坐标系中沿某一轴平移一定 的距离,例如向量A平移d个单位后 变为[a+d, b, c]。
工程学的应用
总结词
在工程学中,空间向量被广泛应用于解决实际问题和设计复和土木工程等领域,空间向量被用于描述物体的位置、方向和运动状态,以及进行各 种物理量(如力、速度、加速度等)的分析和计算。此外,空间向量还被用于解决实际工程问题,如结构分析、 流体动力学和控制系统等。

第36讲 空间向量的应用(解析版)

第36讲 空间向量的应用(解析版)

第36讲 空间向量的应用一、 考情分析1.理解直线的方向向量及平面的法向量;2.能用向量语言表述线线、线面、面面的平行和垂直关系;3.能用向量方法证明立体几何中有关线面位置关系的一些简单定理;4.能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题;5.能用向量方法解决点到平面、相互平行的平面的距离问题;6.并能描述解决夹角和距离的程序,体会向量方法在研究几何问题中的作用.二、 知识梳理1.直线的方向向量和平面的法向量(1)直线的方向向量:给定一个定点A 和一个向量a ,再任给一个实数t ,以A 为起点作向量AP →=t a ,则此向量方程叫做直线l 的参数方程.向量a 称为该直线的方向向量.(2)平面的法向量:直线l ⊥α,取直线l 的方向向量a ,则向量a 叫做平面α的法向量. 2.空间位置关系的向量表示3.异面直线所成的角设a ,b 分别是两异面直线l 1,l 2的方向向量,则4.求直线与平面所成的角设直线l 的方向向量为a ,平面α的法向量为n ,直线l 与平面α所成的角为θ,则sin θ=|cos 〈a ,n 〉|=|a ·n ||a ||n |.5.求二面角的大小(1)如图①,AB ,CD 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=__〈AB →,CD→〉.(2)如图②③,n 1,n 2 分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=|cos 〈n 1,n 2〉|,二面角的平面角大小是向量n 1与n 2的夹角(或其补角). 6.点到平面的距离用向量方法求点B 到平面距离基本思路:确定平面法向量, 在平面内取一点A ,求向量AB →到法向量的投影向量,投影向量的长度即为所要求的距离.如图平面α的法向量为n ,点B 到平面α的距离d =|AB →·n ||n |. [微点提醒]1.平面的法向量是非零向量且不唯一.2.建立空间直角坐标系要建立右手直角坐标系.3.线面角θ的正弦值等于直线的方向向量a 与平面的法向量n 所成角的余弦值的绝对值,即sin θ=|cos 〈a ,n 〉|,不要误记为cos θ=|cos 〈a ,n 〉|.4.二面角与法向量的夹角:利用平面的法向量求二面角的大小时,当求出两半平面α,β的法向量n 1,n 2时,要根据向量坐标在图形中观察法向量的方向,来确定二面角与向量n 1,n 2的夹角是相等,还是互补.三、 经典例题考点一 利用空间向量证明平行问题【例1】 如图,在四面体ABCD 中,AD ⊥平面BCD ,BC ⊥CD ,AD =2,BD =22,M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且AQ =3QC .证明:PQ ∥平面BCD .【解析】证明 法一 如图,取BD 的中点O ,以O 为原点,OD ,OP 所在射线分别为y ,z 轴的正半轴,建立空间直角坐标系O -xyz .由题意知,A (0,2,2),B (0,-2,0),D (0,2,0). 设点C 的坐标为(x 0,y 0,0). 因为AQ→=3QC →, 所以Q ⎝ ⎛⎭⎪⎫34x 0,24+34y 0,12.因为M 为AD 的中点,故M (0,2,1). 又P 为BM 的中点,故P ⎝ ⎛⎭⎪⎫0,0,12, 所以PQ→=⎝ ⎛⎭⎪⎫34x 0,24+34y 0,0. 又平面BCD 的一个法向量为a =(0,0,1),故PQ →·a =0. 又PQ ⊄平面BCD , 所以PQ ∥平面BCD .法二 在线段CD 上取点F ,使得DF =3FC ,连接OF ,同法一建立空间直角坐标系,写出点A ,B ,C 的坐标,设点C 坐标为(x 0,y 0,0). ∵CF →=14CD →,设点F 坐标为(x ,y ,0),则(x -x 0,y -y 0,0)=14(-x 0,2-y 0,0), ∴⎩⎪⎨⎪⎧x =34x 0,y =24+34y 0,∴OF→=⎝ ⎛⎭⎪⎫34x 0,24+34y 0,0 又由法一知PQ→=⎝ ⎛⎭⎪⎫34x 0,24+34y 0,0, ∴OF→=PQ →,∴PQ ∥OF .又PQ ⊄平面BCD ,OF ⊂平面BCD , ∴PQ ∥平面BCD .规律方法 (1)恰当建立坐标系,准确表示各点与相关向量的坐标,是运用向量法证明平行和垂直的关键.(2)证明直线与平面平行,只须证明直线的方向向量与平面的法向量的数量积为零,或证直线的方向向量与平面内的不共线的两个向量共面,或证直线的方向向量与平面内某直线的方向向量平行,然后说明直线在平面外即可.这样就把几何的证明问题转化为向量运算. 考点二 利用空间向量证明垂直问题【例2】 如图所示,已知四棱锥P -ABCD 的底面是直角梯形,∠ABC =∠BCD =90°,AB =BC =PB =PC =2CD ,侧面PBC ⊥底面ABCD .证明:(1)P A ⊥BD ;(2)平面P AD ⊥平面P AB .【解析】证明 (1)取BC 的中点O ,连接PO , ∵平面PBC ⊥底面ABCD ,△PBC 为等边三角形, ∴PO ⊥底面ABCD .以BC 的中点O 为坐标原点,以BC 所在直线为x 轴,过点O 与AB 平行的直线为y 轴,OP 所在直线为z 轴,建立空间直角坐标系,如图所示.不妨设CD =1,则AB =BC =2,PO = 3.∴A (1,-2,0),B (1,0,0),D (-1,-1,0),P (0,0,3). ∴BD →=(-2,-1,0),P A →=(1,-2,-3). ∵BD →·P A →=(-2)×1+(-1)×(-2)+0×(-3)=0, ∴P A →⊥BD→,∴P A ⊥BD . (2)取P A 的中点M ,连接DM ,则M ⎝ ⎛⎭⎪⎫12,-1,32.∵DM →=⎝ ⎛⎭⎪⎫32,0,32,PB →=(1,0,-3),∴DM →·PB→=32×1+0×0+32×(-3)=0, ∴DM→⊥PB →,即DM ⊥PB .∵DM →·P A →=32×1+0×(-2)+32×(-3)=0, ∴DM →⊥P A →,即DM ⊥P A .又∵P A ∩PB =P ,∴DM ⊥平面P AB . ∵DM ⊂平面P AD ,∴平面P AD ⊥平面P AB .规律方法 (1)利用已知的线面垂直关系构建空间直角坐标系,准确写出相关点的坐标,从而将几何证明转化为向量运算.其中灵活建系是解题的关键. (2)用向量证明垂直的方法①线线垂直:证明两直线所在的方向向量互相垂直,即证它们的数量积为零.②线面垂直:证明直线的方向向量与平面的法向量共线,或将线面垂直的判定定理用向量表示. ③面面垂直:证明两个平面的法向量垂直,或将面面垂直的判定定理用向量表示. 考点三 用空间向量解决有关位置关系的探索性问题 角度1 与平行有关的探索性问题【例3-1】 如图,棱柱ABCD -A 1B 1C 1D 1的所有棱长都等于2,∠ABC 和∠A 1AC 均为60°,平面AA 1C 1C ⊥平面ABCD .(1)求证:BD ⊥AA 1;(2)在直线CC 1上是否存在点P ,使BP ∥平面DA 1C 1,若存在,求出点P 的位置,若不存在,请说明理由.【解析】(1)证明 设BD 与AC 交于点O ,则BD ⊥AC ,连接A 1O ,在△AA 1O 中,AA 1=2,AO =1,∠A 1AO =60°,∴A 1O 2=AA 21+AO 2-2AA 1·AO cos 60°=3, ∴AO 2+A 1O 2=AA 21, ∴A 1O ⊥AO .由于平面AA 1C 1C ⊥平面ABCD ,且平面AA 1C 1C ∩平面ABCD =AC ,A 1O ⊂平面AA 1C 1C ,∴A 1O ⊥平面ABCD .以OB ,OC ,OA 1所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,则A (0,-1,0),B (3,0,0),C (0,1,0),D (-3,0,0),A 1(0,0,3),C 1(0,2,3). 由于BD →=(-23,0,0),AA 1→=(0,1,3), AA 1→·BD →=0×(-23)+1×0+3×0=0, ∴BD →⊥AA 1→,即BD ⊥AA 1. (2)解 假设在直线CC 1上存在点P ,使BP ∥平面DA 1C 1, 设CP →=λCC 1→,P (x ,y ,z ),则(x ,y -1,z )=λ(0,1,3). 从而有P (0,1+λ,3λ),BP→=(-3,1+λ,3λ).设n 3⊥平面DA 1C 1,则⎩⎪⎨⎪⎧n 3⊥A 1C 1→,n 3⊥DA 1→,又A 1C 1→=(0,2,0),DA 1→=(3,0,3), 设n 3=(x 3,y 3,z 3),则⎩⎨⎧2y 3=0,3x 3+3z 3=0,取n 3=(1,0,-1),因为BP ∥平面DA 1C 1, 则n 3⊥BP →,即n 3·BP →=-3-3λ=0,得λ=-1, 即点P 在C 1C 的延长线上,且C 1C =CP . 角度2 与垂直有关的探索性问题【例3-2】 如图,正方形ADEF 所在平面和等腰梯形ABCD 所在的平面互相垂直,已知BC =4,AB =AD =2.(1)求证:AC ⊥BF ;(2)在线段BE 上是否存在一点P ,使得平面P AC ⊥平面BCEF ?若存在,求出BP PE 的值;若不存在,请说明理由.【解析】(1)证明 ∵平面ADEF ⊥平面ABCD ,平面ADEF ∩平面ABCD =AD ,AF ⊥AD ,AF ⊂平面ADEF , ∴AF ⊥平面ABCD .∵AC ⊂平面ABCD ,∴AF ⊥AC .过A 作AH ⊥BC 于H ,则BH =1,AH =3,CH =3, ∴AC =23,∴AB 2+AC 2=BC 2,∴AC ⊥AB , ∵AB ∩AF =A ,∴AC ⊥平面F AB , ∵BF ⊂平面F AB ,∴AC ⊥BF .(2)解 存在.由(1)知,AF ,AB ,AC 两两垂直.以A 为坐标原点,AB →,AC →,AF →的方向分别为x 轴,y 轴,z 轴正方向,建立如图所示的空间直角坐标系A -xyz ,则A (0,0,0),B (2,0,0),C (0,23,0),E (-1,3,2).假设在线段BE 上存在一点P 满足题意,则易知点P 不与点B ,E 重合,设BPPE =λ,则λ>0,P ⎝⎛⎭⎪⎫2-λ1+λ,3λ1+λ,2λ1+λ. 设平面P AC 的法向量为m =(x ,y ,z ).由AP→=⎝ ⎛⎭⎪⎫2-λ1+λ,3λ1+λ,2λ1+λ,AC →=(0,23,0), 得⎩⎨⎧m ·AP →=2-λ1+λx +3λ1+λy +2λ1+λz =0,m ·AC →=23y =0,即⎩⎪⎨⎪⎧y =0,z =λ-22λx ,令x =1,则z =λ-22λ, 所以m =⎝⎛⎭⎪⎫1,0,λ-22λ为平面P AC 的一个法向量. 同理,可求得n =⎝ ⎛⎭⎪⎫1,33,1为平面BCEF 的一个法向量.当m ·n =0,即λ=23时,平面P AC ⊥平面BCEF ,故存在满足题意的点P ,此时BP PE =23.规律方法 解决立体几何中探索性问题的基本方法(1)通常假设题中的数学对象存在(或结论成立),然后在这个前提下进行逻辑推理.(2)探索性问题的关键是设点:①空间中的点可设为(x ,y ,z );②坐标平面内的点其中一个坐标为0,如xOy 面上的点为(x ,y ,0);③坐标轴上的点两个坐标为0,如z 轴上的点为(0,0,z );④直线(线段)AB 上的点P ,可设为AP →=λAB →,表示出点P 的坐标,或直接利用向量运算.考点四 用空间向量求异面直线所成的角【例4】 (1)已知直三棱柱ABC -A 1B 1C 1中,∠ABC =120°,AB =2,BC =CC 1=1,则异面直线AB 1与BC 1所成角的余弦值为( ) A.32B.155C.105D.33(2)在三棱锥P -ABC 中,△ABC 和△PBC 均为等边三角形,且二面角P -BC -A 的大小为120°,则异面直线PB 和AC 所成角的余弦值为( ) A.58B.34C.78D.14【答案】 (1)C (2)A【解析】 (1)法一 以B 为原点,建立如图(1)所示的空间直角坐标系.图(1)则B (0,0,0),B 1(0,0,1),C 1(1,0,1).又在△ABC 中,∠ABC =120°,AB =2,则A (-1,3,0). 所以AB 1→=(1,-3,1),BC 1→=(1,0,1), 则cos 〈AB 1→,BC 1→〉=AB 1→·BC 1→|AB 1→|·|BC 1→|=(1,-3,1)·(1,0,1)5·2=25·2=105,因此,异面直线AB 1与BC 1所成角的余弦值为105.法二 将直三棱柱ABC -A 1B 1C 1补形成直四棱柱ABCD -A 1B 1C 1D 1(如图(2)),连接AD 1,B 1D 1,则AD 1∥BC 1.图(2)则∠B 1AD 1为异面直线AB 1与BC 1所成的角(或其补角),易求得AB 1=5,BC 1=AD 1=2,B 1D 1= 3.由余弦定理得cos ∠B 1AD 1=105.(2)法一 取BC 的中点O ,连接OP ,OA ,因为△ABC 和△PBC 均为等边三角形,所以AO ⊥BC ,PO ⊥BC ,所以∠POA 就是二面角P -BC -A 的平面角,即∠POA =120°,过点B 作AC 的平行线交AO 的延长线于点D ,连接PD ,则∠PBD 或其补角就是异面直线PB 和AC 所成的角.设AB =a ,则PB =BD =a ,PO =PD =32a ,所以cos ∠PBD =a 2+a 2-⎝ ⎛⎭⎪⎫32a 22×a ×a=58.法二 如图,取BC 的中点O ,连接OP ,OA ,因为△ABC 和△PBC 均为等边三角形,所以AO ⊥BC ,PO ⊥BC ,所以BC ⊥平面P AO ,即平面P AO ⊥平面ABC .且∠POA 就是其二面角P -BC -A 的平面角,即∠POA =120°,建立空间直角坐标系如图所示.设AB =2,则A (3,0,0),C (0,-1,0),B (0,1,0),P ⎝ ⎛⎭⎪⎫-32,0,32,所以AC→=(-3,-1,0),PB →=⎝ ⎛⎭⎪⎫32,1,-32, cos 〈AC→,PB →〉=-58,所以异面直线PB 与AC 所成角的余弦值为58.法三 如图所示,取BC 的中点O ,连接OP ,OA ,因为△ABC 和△PBC 是全等的等边三角形,所以AO ⊥BC ,PO ⊥BC ,所以∠POA 就是二面角的平面角,设AB =2,则AC→=OC →-OA →,PB →=OB →-OP →,故AC →·PB →=(OC →-OA →)·(OB→-OP →)=-52, 所以cos 〈AC →,PB →〉=AC →·PB →|AC →|·|PB →|=-58.即异面直线PB 与AC 所成角的余弦值为58.规律方法 1.利用向量法求异面直线所成角的一般步骤是:(1)选好基底或建立空间直角坐标系;(2)求出两直线的方向向量v 1,v 2;(3)代入公式|cos 〈v 1,v 2〉|=|v 1·v 2||v 1||v 2|求解.2.两异面直线所成角的范围是θ∈⎝ ⎛⎦⎥⎤0,π2,两向量的夹角α的范围是[0,π],当异面直线的方向向量的夹角为锐角或直角时,就是该异面直线的夹角;当异面直线的方向向量的夹角为钝角时,其补角才是异面直线的夹角. 考点五 用空间向量求线面角【例5】如图,在三棱锥P -ABC 中,AB =BC =22,P A =PB =PC =AC =4,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M -P A -C 为30°,求PC 与平面P AM 所成角的正弦值. 【解析】(1)证明 因为AP =CP =AC =4,O 为AC 的中点,所以OP ⊥AC ,且OP =2 3. 连接OB ,因为AB =BC =22AC , 所以AB 2+BC 2=AC 2,所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB =12AC =2. 由OP 2+OB 2=PB 2知PO ⊥OB .由OP ⊥OB ,OP ⊥AC 且OB ∩AC =O ,知PO ⊥平面ABC .(2)解 如图,以O 为坐标原点,OB→的方向为x 轴正方向,建立空间直角坐标系O -xyz .由已知得O (0,0,0),B (2,0,0),A (0,-2,0),C (0,2,0),P (0,0,23),AP →=(0,2,23).取平面P AC 的一个法向量OB→=(2,0,0).设M (a ,2-a ,0)(0<a ≤2),则AM →=(a ,4-a ,0).设平面P AM 的法向量为n =(x ,y ,z ). 由AP →·n =0,AM →·n =0得⎩⎨⎧2y +23z =0,ax +(4-a )y =0,可取n =(3(a -4),3a ,-a ), 所以cos 〈OB →,n 〉=23(a -4)23(a -4)2+3a 2+a 2.由已知可得|cos 〈OB→,n 〉|=32,所以23|a -4|23(a -4)2+3a 2+a 2=32,解得a =-4(舍去),a =43, 所以n =⎝⎛⎭⎪⎫-833,433,-43. 又PC →=(0,2,-23),所以cos 〈PC →,n 〉=34.所以PC 与平面P AM 所成角的正弦值为34. 规律方法 利用向量法求线面角的方法:(1)分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角或钝角的补角,取其余角就是斜线和平面所成的角.考点六用空间向量求二面角【例6】如图1,在高为6的等腰梯形ABCD中,AB∥CD,且CD=6,AB=12,将它沿对称轴OO1折起,使平面ADO1O⊥平面BCO1O,如图2,点P为BC的中点,点E在线段AB上(不同于A,B两点),连接OE并延长至点Q,使AQ∥OB.(1)(一题多解)证明:OD⊥平面P AQ;(2)若BE=2AE,求二面角C-BQ-A的余弦值.【解析】(1)证明法一取OO1的中点F,连接AF,PF,如图所示.∵P为BC的中点,∴PF∥OB,∵AQ∥OB,∴PF∥AQ,∴P,F,A,Q四点共面.由题图1可知OB⊥OO1,∵平面ADO1O⊥平面BCO1O,且平面ADO1O∩平面BCO1O=OO1,OB⊂平面BCO1O,∴OB⊥平面ADO1O,∴PF⊥平面ADO1O,又OD⊂平面ADO1O,∴PF⊥OD.由题意知,AO=OO1,OF=O1D,∠AOF=∠OO1D,∴△AOF ≌△OO 1D , ∴∠F AO =∠DOO 1,∴∠F AO +∠AOD =∠DOO 1+∠AOD =90°,∴AF ⊥OD . ∵AF ∩PF =F ,且AF ⊂平面P AQ ,PF ⊂平面P AQ , ∴OD ⊥平面P AQ .法二 由题设知OA ,OB ,OO 1两两垂直,∴以O 为坐标原点,OA ,OB ,OO 1所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系,设AQ 的长为m ,则O (0,0,0),A (6,0,0),B (0,6,0),C (0,3,6),D (3,0,6),Q (6,m ,0).∵点P 为BC 的中点,∴P ⎝ ⎛⎭⎪⎫0,92,3,∴OD →=(3,0,6),AQ →=(0,m ,0),PQ →=⎝ ⎛⎭⎪⎫6,m -92,-3. ∵OD →·AQ →=0,OD →·PQ→=0,∴OD→⊥AQ →,OD →⊥PQ →,又AQ →与PQ →不共线, ∴OD ⊥平面P AQ .(2)解 ∵BE =2AE ,AQ ∥OB ,∴AQ =12OB =3, 则Q (6,3,0),∴QB→=(-6,3,0),BC →=(0,-3,6).设平面CBQ 的法向量为n 1=(x ,y ,z ), 由⎩⎪⎨⎪⎧n 1·QB →=0,n 1·BC →=0,得⎩⎨⎧-6x +3y =0,-3y +6z =0,令z =1,则y =2,x =1,n 1=(1,2,1). 易得平面ABQ 的一个法向量为n 2=(0,0,1).设二面角C -BQ -A 的大小为θ,由图可知,θ为锐角,则cos θ=⎪⎪⎪⎪⎪⎪n 1·n 2|n 1|·|n 2|=66,即二面角C -BQ -A 的余弦值为66.规律方法 利用空间向量计算二面角大小的常用方法:(1)找法向量:分别求出二面角的两个半平面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角的大小.(2)找与棱垂直的方向向量:分别在二面角的两个半平面内找到与棱垂直且以垂足为起点的两个向量,则这两个向量的夹角的大小就是二面角的大小. [方法技巧]1.用向量法解决立体几何问题,是空间向量的一个具体应用,体现了向量的工具性,这种方法可把复杂的推理证明、辅助线的作法转化为空间向量的运算,降低了空间想象演绎推理的难度,体现了由“形”转“数”的转化思想.2.用向量知识证明立体几何问题有两种基本思路:一种是用向量表示几何量,利用向量的运算进行判断;另一种是用向量的坐标表示几何量,共分三步:(1)建立立体图形与空间向量的联系,用空间向量(或坐标)表示问题中所涉及的点、线、面,把立体几何问题转化为向量问题;(2)通过向量运算,研究点、线、面之间的位置关系;(3)根据运算结果的几何意义来解释相关问题.3.用向量的坐标法证明几何问题,建立空间直角坐标系是关键,以下三种情况都容易建系:(1)有三条两两垂直的直线;(2)有线面垂直;(3)有两面垂直.4.用向量知识证明立体几何问题,仍然离不开立体几何中的定理.如要证明线面平行,只需要证明平面外的一条直线和平面内的一条直线平行,即化归为证明线线平行,用向量方法证明直线a ∥b ,只需证明向量a =λb (λ∈R )即可.若用直线的方向向量与平面的法向量垂直来证明线面平行,仍需强调直线在平面外.5.用向量证明立体几何问题,写准点的坐标是关键,要充分利用中点、向量共线、向量相等来确定点的坐标.6.利用空间向量求空间角,避免了寻找平面角和垂线段等诸多麻烦,使空间点、线、面的位置关系的判定和计算程序化、简单化.主要是建系、设点、计算向量的坐标、利用数量积的夹角公式计算.7.利用法向量求距离问题的程序思想方法 第一步,确定法向量; 第二步,选择参考向量;第三步,确定参考向量到法向量的投影向量; 第四步,求投影向量的长度.8.异面直线所成的角与其方向向量的夹角:当异面直线的方向向量的夹角为锐角或直角时,就是该异面直线的夹角;否则向量夹角的补角是异面直线所成的角. 9.利用向量法求二面角大小的注意点(1)建立空间直角坐标系时,若垂直关系不明确,应先给出证明;(2)对于某些平面的法向量,要结合题目条件和图形多观察,判断该法向量是否已经隐含着,不用再求.(3)注意判断二面角的平面角是锐角还是钝角,可结合图形进行,以防结论失误.四、 课时作业1.在正方体1111ABCD A B C D -中,异面直线AC 与1B D 所成的角为( ) A .6π B .4π C .3π D .2π 【答案】D【解析】解:以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系, 设正方体ABCD ﹣A 1B 1C 1D 1中棱长为1,则A (1,0,0),C (0,1,0),D (0,0,0),B 1(1,1,1), AC =(﹣1,1,0),1B D =(﹣1,﹣1,﹣1), 设异面直线AC 与B 1D 所成的角为θ, 则cos θ=11||||||AC B D AC B D ⋅⋅=0,∴θ=2π. ∴异面直线AC 与B 1D 所成的角为2π. 故选:D .2.在长方体1111ABCD A B C D -中,E ,F ,G 分别为棱1AA ,11C D ,1DD 的中点,12AB AA AD ==,则异面直线EF 与BG 所成角的大小为( ) A .30 B .60︒C .90︒D .120︒【答案】C【解析】以D 为坐标原点,分别以DA ,DC ,1DD 的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系D xyz -,如图设1AD =,则()1,0,1E ,()0,1,2F ,()0,0,1G ,()1,2,0B , 所以()1,1,1EF =-,()1,2,1BG =--,0EF BG ⋅=,所以EF BG ⊥,所以异面直线EF 与BG 所成角的大小为90︒,故选:C.3.在长方体1111ABCD A B C D -中,2AB BC ==,11AA =,则直线1BC 与平面11BB DD 所成角的正弦值为( ) A .63B .102C .155D .105【答案】D【解析】解:以D 点为坐标原点,以1,,DA DC DD 所在的直线为x 轴、y 轴、z 轴,建立空间直角坐标系,则1(2,0,0),(2,2,0),(0,2,0),A B C C (0,2,1),1(2,0,1),(2,2,0),BC AC AC ∴=-=-为平面11BB D D 的一个法向量. 110cos ,558BC AC ∴<>==⋅. ∴直线1BC 与平面11BB DD 所成角的正弦值为10. 4.在正方体ABCD -A 1B 1C 1D 1中,点M 为棱C 1D 1的中点,则异面直线AM 与BD 所成角的余弦值为( ) A .2 B .3 C .2 D .3 【答案】C【解析】解:正方体ABCD -A 1B 1C 1D 1,M 为A 1B 1的中点,设正方体ABCD -A 1B 1C 1D 1棱长为1,以D 为原点建立如图所示的空间直角坐标系,A (1,0,0),M (0,12,1),B (1,1,0),D (0,0,0), AM =(-1,12,1),()110DB =,,, cos AM BD <,>=112362-+=-,所以异面直线AM 与BD所成角的余弦值为6, 5.平面α的法向量(2,2,2)u =-,平面β的法向量(1,2,1)v =,则下列命题正确的是( ) A .α、β平行 B .α、β垂直C .α、β重合D .α、β不垂直【答案】B【解析】解:平面α的法向量(2,2,2)u =-,平面β的法向量(1,2,1)v =, 因为2420u v =-+=, 所以两个平面垂直.6.若平面α的法向量为n ,直线l 的方向向量为a ,直线l 与平面α的夹角为θ,则下列关系式成立的是( ) A .cos n a n aθ⋅=⋅B .cos n a n aθ⋅=⋅C .sin n a n aθ⋅=⋅D .sin n a n aθ⋅=⋅【答案】D【解析】由于直线l 与平面α的夹角为θ, 其中0θπ≤<, 所以sin 0θ≥, 所以sin cos n a n a n aθ⋅=⋅=⋅.7.直三棱柱ABC —A′B′C′中,AC =BC =AA′,∠ACB =90°,E 为BB′的中点,异面直线CE 与C A '所成角的余弦值是( )A .5 B .5-C .-10 D .10 【答案】D【解析】直三棱柱ABC A B C -'''中,AC BC AA ==',90ACB ∠=︒,E 为BB '的中点. 以C 为原点,CA 为x 轴,CB 为y 轴,CC '为z 轴,建立空间直角坐标系,设2AC BC AA =='=,则(0C ,0,0),(0E ,2,1),(0C ',0,2),(2A ,0,0), (0CE =,2,1),(2C A '=,0,2)-,设异面直线CE 与C A '所成角为θ, 则||10cos ||||58CE C A CE C A θ'==='.∴异面直线CE 与C A '所成角的余弦值为1010.故选:D .8.如图,长方体1111ABCD A B C D -中,14AA AB ==,2AD =,E 、F 、G 分别是1DD 、AB 、1CC 的中点,则异面直线1A E 与GF 所成角的余弦值是( )A .0B .10C .22 D .15【答案】A【解析】如图()()()()12,0,40,0,2,2,2,0,0,4,2A E F G ,所以()()12,0,2,2,2,2A E GF =--=--所以异面直线1A E 与GF 所成角的余弦值110⋅=A EGFA E GF故选:A9.在正三棱柱111ABC A B C -中,若12AB BB ,则1AB 与1C B 所成角的大小为()A .60B .75C .105D .90【答案】D【解析】由题意可得60ABC ∠=,1BB ⊥平面ABC ;设11BB =,则2AB =,又11AB BB BA =-,11BC BC BB =+, 所以11112111()()AB BC BB BA BC BB BB BC BB BA BC BA BB ⋅=-⋅+=⋅+-⋅-⋅ 0122cos6000=+-⨯⨯-=.故11AB BC ⊥.即11AB BC ⊥,即1AB 与1C B 所成角的大小为90.故选D10.在四棱锥P ABCD -中,PA ⊥平面ABCD ,2PA =,24BC AB ==,且四边形ABCD 是矩形,E 是PD 的中点,则异面直线BE 与PC 所成角的余弦值是( )A .618-B .618C .26-D .26【答案】B【解析】根据题意建立如图空间直角坐标系所以()()()()0,0,2,2,0,0,2,4,0,0,2,1P B C E ,所以()()2,2,1,2,4,2=-=-BE PC则异面直线BE 与PC 所成角的余弦值为618⋅=BE PC BE PC 11.如图,四棱锥P ABCD -中,底面ABCD 是矩形,PA AB ⊥,PA AD ⊥,1AD =,2AB =,PAB△是等腰三角形,点E 是棱PB 的中点,则异面直线EC 与PD 所成角的余弦值是( )A 3B 6C 6D 2 【答案】B【解析】因为AB ,AD ,AP 两两垂直,以A 为原点,AB ,AD ,AP 分别为x ,y ,z 轴建立空间直角坐标系.又因为2PA AB ==,1AD =, 所以()0,0,0A ,()2,0,0B ,()2,1,0C ,()0,1,0D ,()0,0,2P因为E 是棱PB 的中点,所以22,0,22E ⎛⎫ ⎪ ⎪⎝⎭,所以22,1,22EC ⎛⎫=- ⎪ ⎪⎝⎭,()0,1,2PD =-, 所以6cos ,1111222EC PD 〈〉==++⨯+ 12.如图,直四棱柱1111ABCD A B C D -的底面是菱形,12AA AB ==,60BAD ∠=︒,M 是1BB 的中点,则异面直线1A M 与1B C 所成角的余弦值为( )A .10B .15- C .15 D 10 【答案】D【解析】由题意可得221111111111,5,2A M A B B M ABBB A M A B B M =+=-=+=221111,22B C BC BB B C BC BB =-=+=,()21111111111122cos ,210210AB BB BC BB AB BC BBA MBC A M B C A M B C ⎛⎫-⋅-⋅+ ⎪⋅⎝⎭〈〉===0122cos604102.210⨯⨯+⨯==13.若直线l 的方向向量为(1,2,3)a =-,平面α的法向量为(3,6,9)n =--,则( )A .l α⊂B .//l αC .l α⊥D .l 与α相交【答案】C【解析】解:∵直线l 的方向向量为()1,2,3a =-,平面α的法向量为()3,6,9n =--,∴13a n =-,∴a n ,∴l α⊥.14.若三棱锥P -ABC 的三条侧棱两两垂直,且满足PA =PB =PC =1,则点P 到平面ABC 的距离是( )A .66B .63 C .3D .33【答案】D【解析】解:分别以PA ,PB ,PC 所在的直线为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系.则A (1,0,0),B (0,1,0),C (0,0,1).()()1,1,0,1,0,1AB AC =-=-.设平面ABC 的一个法向量为(),,n x y z =,由00n AB n AC ⎧⋅=⎪⎨⋅=⎪⎩得:0x y x z -+=⎧⎨-+=⎩.令1x =,则1y z ==.则平面ABC 的一个法向量为()1,1,1n =.所以点P 到平面ABC 的距离||33||n PA d n =⋅=. 15.长方体1111ABCD A B C D -中12,1AB AA AD ===,E 为1CC 的中点,则异面直线1BC 与AE 所成角的余弦值为( )A .1010B .3010C .21510D .310 【答案】B【解析】建立坐标系如图所示.则A (1,0,0),E (0,2,1),B (1,2,0),C 1(0,2,2),1BC =(-1,0,2),AE =(-1,2,1).cos 〈1BC ,AE 〉==3010. 所以异面直线BC 1与AE 3016.直三棱柱111ABC A B C -中,120ABC ∠=︒,11AB BC CC ===,则异面直线1AB 与1BC 所成角的余弦值为( )A 3B .12C 3D .34【答案】D【解析】在直三棱柱111ABC A B C -中,120ABC ∠=︒,取AC 中点O ,11AB BC CC ===,则OB A C ⊥, 所以2sin 603AC BC =︒=,以AC 的中点O 坐标原点,OB 为x 轴,OC 为y 轴,以过点O 垂直平面ABC 的垂线为z 轴,建立空间直角坐标系,如图:则30,A ⎛⎫ ⎪ ⎪⎝⎭,11,0,12B ⎛⎫ ⎪⎝⎭,1,0,02B ⎛⎫ ⎪⎝⎭,13C ⎛⎫ ⎪ ⎪⎝⎭, 所以113,22AB ⎛⎫= ⎪ ⎪⎝⎭,113,22BC ⎛⎫=- ⎪ ⎪⎝⎭, 设异面直线1AB 与1BC 所成角为θ, 则1111131344cos 422AB BC AB BC θ-++⋅===⨯⋅. 17.在正方体1111ABCD A B C D -中,M N ,分别为AD ,11C D 的中点,O 为侧面11BCC B 的中心,则异面直线MN 与1OD 所成角的余弦值为( )A .16B .14C .16-D .14- 【答案】A【解析】如图,以D 为坐标原点,分别以1,,DA DC DD 所在直线为,,x y z 轴建立空间直角坐标系. 设正方体的棱长为2,则()()()()1100,012,121,002M N O D ,,,,,,,,, ∴()()11,1,2,1,2,1MN OD =-=--. 则11111cos,666MN ODMNODMN OD⋅===⋅.∴异面直线MN与1OD所成角的余弦值为16,故选A.18.在棱长为3的正方体1111ABCD A B C D-中,E为线段1AA中点,F为线段11C D上靠近1D的三等分点,则异面直线1A B与EF所成角的余弦值为( )A.114B.2C.3D.17【答案】B【解析】如图建立空间直角坐标系,则知1(3,0,0)A,(3,3,3)B,33,0,2E⎛⎫⎪⎝⎭,(0,1,0)F,所以1(0,3,3)A B=,33,1,2EF⎛⎫=--⎪⎝⎭,所以1119322|cos,|714||322A B EFA B EFA B EF-⋅〈〉===⋅⨯.故选:B.19.如图该几何体由半圆柱体与直三棱柱构成,半圆柱体底面直径BC=4,AB=AC,∠BAC=90°,D为半圆弧的中点,若异面直线BD 和AB 1所成角的余弦值为23,则该几何体的体积为( )A .16+8πB .32+16πC .32+8πD .16+16π【答案】A 【解析】设D 在底面半圆上的射影为1D ,连接1AD 交BC 于O ,设1111A D B C O ⋂=.依题意半圆柱体底面直径4,,90BC AB AC BAC ==∠=︒,D 为半圆弧的中点,所以1111,AD BC A D B C ⊥⊥且1,O O 分别是下底面、上底面半圆的圆心.连接1OO ,则1OO 与上下底面垂直,所以11,,OO OB OO OA OA OB ⊥⊥⊥,以1,,OB OA OO 为,,x y z 轴建立空间直角坐标系,设几何体的高为()0h h >,则()()()()12,0,0,0,2,,0,2,0,2,0,B D h A B h -,所以()()12,2,,2,2,BD h AB h =--=-,由于异面直线BD 和1AB 所成的角的余弦值为23, 所以212212388BD AB h BD AB h h ⋅==⋅+⋅+, 即2222,16,483h h h h ===+. 所以几何体的体积为2112442416822ππ⨯⨯⨯+⨯⨯⨯=+. 故选:A20.如图,三棱锥V ABC -的侧棱长都相等,底面ABC 与侧面VAC 都是以AC 为斜边的等腰直角三角形,E 为线段AC 的中点,F 为直线AB 上的动点,若平面VEF 与平面VBC 所成锐二面角的平面角为θ,则cos θ的最大值是( )A 3B .23C 5D 6 【答案】D【解析】底面ABC 与侧面VAC 都是以AC 为斜边的等腰直角三角形,则Rt ABC Rt VAC ≅ ,所以VA VC BA BC ===设2VA VC BA BC VB ===== ,由E 为线段AC 的中点, 则2VE BV ==由222VE BE VB += ,所以VE EB ⊥,以E 为原点,EB 为x 轴,E C 为y 轴,EV 为z 轴,建立空间直角坐标系,如图所示:则()2,0C ,2,0,0B ,(2V ,设,2,Fxx-,(0,2,2VC =- ,(2,0,2VB =- ,(2EV = ,(,2,2VF x x = ,设平面VBC 的一个法向量()111,,m x y z = ,则00m VC m VB ⎧⋅=⎨⋅=⎩ ,即1111220220z x ⎧=⎪⎨-=⎪⎩ , 令11x =,则11y = ,11z =, 所以()1,1,1m = .设平面VEF 的一个法向量()222,,n x y z = ,则00n EV n VF ⎧⋅=⎨⋅=⎩ ,即(222220220z x x x y z ⎧=⎪⋅+⋅+=⎪⎩, 解得20z =,令21y = ,则221x =-, 所以21,1,0n x ⎛⎫=- ⎪ ⎪⎝⎭,平面VEF 与平面VBC 所成锐二面角的平面角为θ,则22cos 22232m n x m n x xθ⋅==-+ ,将分子、分母同除以1x,可得 2222322226626x xx x =-+-+令()2226626632f x x x x ⎛⎫=-+=-+ ⎪ ⎪⎝⎭, 当22x =时,()min 3f x = , 则cos θ的最大值为:263= . 21.(多选题)如图,棱长为的正方体1111ABCD A B C D -中,P 为线段1A B 上的动点(不含端点),则下列结论正确的是( )A .直线1D P 与AC 所成的角可能是6πB .平面11D A P ⊥平面1A APC .三棱锥1D CDP -的体积为定值D .平面1APD 截正方体所得的截面可能是直角三角形 【答案】BC【解析】对于A ,以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,()()()10,0,1,1,0,0,0,1,0D A C ,设()()1,,01,01P a b a b <<<< ()()11,,1,1,1,0D P a b AC =-=- ()11221cos ,0112D P AC D P AC D P ACa b ⋅==<++-⨯1301,01,,24a b D P AC ππ<<<<∴<<∴直线D 1P 与AC 所成的角为,42ππ⎛⎫⎪⎝⎭,故A 错误;对于B ,正方体ABCD ﹣A 1B 1C 1D 1中,A 1D 1⊥AA 1,A 1D 1⊥AB , ∵AA 1AB =A ,∴A 1D 1⊥平面A 1AP ,∵A 1D 1⊥平面D 1A 1P ,∴平面D 1A 1P ⊥平面A 1AP ,故B 正确; 对于C ,1111122CDD S=⨯⨯=,P 到平面CDD 1的距离BC =1, ∴三棱锥D 1﹣CDP 的体积:111111326D CDP P CDD V V --==⨯⨯=为定值,故C 正确;对于D ,平面APD 1截正方体所得的截面不可能是直角三角形,故D 错误; 故选:BC .22.(多选题)正方体1111ABCD A B C D -的棱长为1,,,E F G 分别为11,,BC CC BB 的中点.则( )A .直线1D D 与直线AF 垂直B .直线1A G 与平面AEF 平行C.平面AEF 截正方体所得的截面面积为98D.点C和点G到平面AEF的距离相等【答案】BC【解析】对选项A:(方法一)以D点为坐标原点,DA、DC、1DD所在的直线分别为x、y、z轴,建立空间直角坐标系,则(0,0,0)D、(1,0,0)A、1(1,0,1)A、1,1,02E⎛⎫⎪⎝⎭、10,1,2F⎛⎫⎪⎝⎭、11,1,2G⎛⎫⎪⎝⎭.从而1(0,0,1)DD=,11,1,2AF⎛⎫=-⎪⎝⎭,从而112DD AF⋅=≠,所以1DD与直线AF不垂直,选项A错误;(方法二)取1DD的中点N,连接AN,则AN为直线AF在平面11ADD A内的射影,AN与1DD不垂直,从而AF与1DD也不垂直,选项A错误;取BC的中点为M,连接1A M、GM,则1A M AE∥,GM EF∥,易证1A MG AEF平面∥平面,从而1A G AEF∥平面,选项B正确;对于选项C,连接1AD,1D F,易知四边形1AEFD为平面AEF截正方体所得的截面四边形(如图所示),且15D H AH==12A D=1221232(5)222AD HS∆⎛⎫=-=⎪⎪⎝⎭,而113948AD HAEFDS S==四边形△,从而选项C正确;对于选项D :(方法一)由于111111112222224GEF EBG BEFG S S S ∆∆⎛⎫=-=+⨯-⨯⨯= ⎪⎝⎭梯形,而11112228ECF S ∆=⨯⨯=,而13A GEF EFG V S AB -∆=⋅,13A ECF ECF V S AB -∆=⋅,所以2A GEF A ECF V V --=,即2G AEF C AEF V V --=,点G 到平面AEF 的距离为点C 到平面AEF 的距离的二倍.从而D 错误.(方法二)假设点C 与点G 到平面AEF 的距离相等,即平面AEF 将CG 平分,则平面AEF 必过CG 的中点,连接CG 交EF 于点O ,易知O 不是CG 的中点,故假设不成立,从而选项D 错误.23.(多选题)若长方体1111ABCD A B C D -的底面是边长为2的正方形,高为4,E 是1DD 的中点,则( )A .11B E A B ⊥B .平面1//B CE 平面1A BDC .三棱锥11C B CE -的体积为83D .三棱锥111C B CD -的外接球的表面积为24π【答案】CD【解析】以1{,,}AB AD AA 为正交基底建立如图所示的空间直角坐标系,则 (0,0,0)A ,(2,0,0)B ,(2,2,0)C ,(0,2,0)D ,1(0,0,4)A ,1(2,0,4)B ,(0,2,2)E ,所以1(2,2,2)B E =--,1(2,0,4)A B =-, 因为1140840B E A B ⋅=-++=≠,所以1B E 与1A B 不垂直,故A 错误; 1(0,2,4)CB =-,(2,0,2)CE =-设平面1B CE 的一个法向量为111(,,)n x y z =,则 由100n CB n CE ⎧⋅=⎨⋅=⎩,得1111240220y z x z -+=⎧⎨-+=⎩,所以11112y z x z =⎧⎨=⎩,不妨取11z =,则11x =,12y = 所以(1,2,1)n =,同理可得设平面1A BD 的一个法向量为(2,2,1)m =,故不存在实数λ使得n λm =,故平面1B CE 与平面1A BD 不平行,故B 错误; 在长方体1111ABCD A B C D -中,11B C ⊥平面11CDD C ,故11B C 是三棱锥11B CEC -的高, 所以111111111184223323三棱锥三棱锥CEC C B CE CEC B V V S B C --==⋅=⨯⨯⨯⨯=△, 故C 正确;三棱锥111C B CD -的外接球即为长方体1111ABCD A B C D -的外接球,故外接球的半径22222462R ++==,所以三棱锥111C B CD -的外接球的表面积2424S R ππ==,故D 正确. 故选:CD.24.(多选题)如图,在菱形ABCD 中,2AB =,60BAD ∠=︒,将ABD △沿对角线BD 翻折到PBD △位置,连结PC ,则在翻折过程中,下列说法正确的是( )A .PC 与平面BCD 所成的最大角为45︒B .存在某个位置,使得PB CD ⊥C .当二面角P BD C --的大小为90︒时,6PC =D .存在某个位置,使得B 到平面PDC 的距离为3 【答案】BC【解析】如图所示:对A ,取BD 的中点O ,连结OP ,OC ,则当60POC ∠=时,PC 与平面BCD 所成的最大角为60︒,故A 错误;对B ,当PD PC =时,取CD 的中点N ,可得,,CD PN CD BN ⊥⊥所以CD ⊥平面PBN , 所以PB CD ⊥,故B 正确;对C ,当二面角P BD C --的大小为90时,所以90∠=POC ,所以3PO OC ==,所以6PC =,故C 正确; 对D ,因为3BN =,所以如果B 到平面PDC 的距离为3,则BN ⊥平面PCD ,则2,3,1,1PB BN PN DN ====,所以2PD =,显然不可能,故D 错误;故选:BC.25.(多选题)如图四棱锥P ABCD -,平面PAD ⊥平面ABCD ,侧面PAD 是边长为26的正三角形,底面ABCD 为矩形,23CD =,点Q 是PD 的中点,则下列结论正确的是( )A .CQ ⊥平面PADB .PC 与平面AQC 22C .三棱锥B ACQ -的体积为2D .四棱锥Q ABCD -外接球的内接正四面体的表面积为3【答案】BD【解析】解:取AD 的中点O ,BC 的中点E ,连接,OE OP , 因为三角形PAD 为等边三角形,所以OP AD ⊥,因为平面PAD ⊥平面ABCD ,所以OP ⊥平面 ABCD , 因为AD OE ⊥,所以,,OD OE OP 两两垂直,所以,如下图,以O 为坐标原点,分别以,,OD OE OP 所在的直线为x 轴,y 轴 ,z 轴,建立空间直角坐标系,则(0,0,0),(O D A,(P C B,因为点Q是PD的中点,所以Q,平面PAD的一个法向量为(0,1,0)m =,6(QC=,显然m与QC不共线,所以CQ与平面PAD不垂直,所以A不正确;3632(6,23,32),(,0,),(26,PC AQ AC=-==,设平面AQC 的法向量为(,,)n x y z=,则3622260n AQ x zn AC⎧⋅=+=⎪⎨⎪⋅=+=⎩,令=1x ,则y z==,所以(1,2,n=-,设PC与平面AQC所成角为θ,则21sin36n PCn PCθ⋅===,所以cos3θ=,所以B正确;三棱锥B ACQ-的体积为1132B ACQ Q ABC ABCV V S OP--==⋅1116322=⨯⨯⨯=,。

2023年新高考数学一轮复习8-6 空间向量及其运算和空间位置关系(知识点讲解)含详解

2023年新高考数学一轮复习8-6 空间向量及其运算和空间位置关系(知识点讲解)含详解

专题8.6 空间向量及其运算和空间位置关系(知识点讲解)【知识框架】【核心素养】1.考查空间向量的概念及运算,凸显数学抽象、逻辑推理、数学运算、直观想象的核心素养.2.考查空间向量的应用,凸显逻辑推理、数学运算、直观想象的核心素养.【知识点展示】1.平行(共线)向量与共面向量2①a∥b时,θ=__0或π__,θ=__0__时,a与b同向;θ=__π__时,a与b反向.②a ⊥b ⇔θ=__π2__⇔a ·b =0.③θ为锐角时,a ·b __>__0,但a ·b >0时,θ可能为__0__;θ为钝角时,a ·b __<__0,但a ·b <0时,θ可能为__π__.④|a ·b |≤|a |·|b |,特别地,当θ=__0__时,a ·b =|a |·|b |,当θ=__π__时,a ·b =-|a |·|b |.⑤对于实数a 、b 、c ,若ab =ac ,a ≠0,则b =c ;对于向量a 、b 、c ,若a ·b =a ·c ,a ≠0,却推不出b =c ,只能得出__a ⊥(b -c )__.⑥a ·b =0⇒/ a =0或b =0,a =0时,一定有a ·b =__0__.⑦不为零的三个实数a 、b 、c ,有(ab )c =a (bc )成立,但对于三个向量a 、b 、c ,(a ·b )c __≠__a (b ·c ),因为a ·b 是一个实数,(a ·b )c 是与c 共线的向量,而a (b ·c )是与a 共线的向量,a 与c 却不一定共线. 3.空间向量基本定理(1)如果三个向量a 、b 、c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =__x a +y b +z c __.(2)如果三个向量a 、b 、c 不共面,那么所有空间向量组成的集合就是{p|p =x a +y b +z c ,x ,y ,z ∈R },这个集合可看作是由向量a 、b 、c 生成的,我们把{__a ,b ,c __}叫做空间的一个基底,a 、b 、c 都叫做__基向量__,空间任何三个__不共面__的向量都可构成空间的一个基底,同一(相等)向量在不同基底下的坐标__不同__,在同一基底下的坐标__相同__. 4.空间向量的正交分解及其坐标表示设e 1、e 2、e 3为有公共起点O 的三个两两垂直的单位向量(我们称它们为单位正交基底).以e 1、e 2、e 3的公共起点O 为原点,分别以__e 1,e 2,e 3__的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系O -xyz .对于空间任意一个向量p 一定可以把它平移,使它的__起点__与原点O 重合,得到向量OP →=p ,由空间向量基本定理可知,存在有序实数组{x ,y ,z },使得p =x e 1+y e 2+z e 3.我们把x 、y 、z 称作向量p 在单位正交基底e 1、e 2、e 3下的坐标,记作p = (x ,y ,z ). 5.用向量描述空间平行关系设空间两条直线l 、m 的方向向量分别为a =(a 1,a 2,a 3)、b =(b 1,b 2,b 3),两个平面α,β的法向量分别为u =(u 1,u 2,u 3),v =(v 1,v 2,v 3),则有如下结论:6. 用向量证明空间中的垂直关系①设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2⇔v 1⊥v 2⇔v 1·v 2=0.②设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α⇔v∥u . ③设平面α和β的法向量分别为u 1和u 2,则α⊥β⇔u 1⊥u 2⇔u 1·u 2=0. 7.共线与垂直的坐标表示设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a ∥b ⇔a =λb ⇔a 1=λb 1,a 2=λb 2,a 3=λb 3(λ∈R),a ⊥b ⇔a·b =0⇔a 1b 1+a 2b 2+a 3b 3=0(a ,b 均为非零向量).【常考题型剖析】题型一:空间向量的运算例1.(2023·全国·高三专题练习)如图所示,在平行六面体1111ABCD A B C D -中,M 为11A C 与11B D 的交点,若AB a =,AD b =,1AA c =,则BM =( )A .1122a b c -+B .1122a b c ++C .1122a b c --+D .1122-++a b c例2. (2022·全国·高三专题练习)如图,OABC 是四面体,G 是ABC 的重心,1G 是OG 上一点,且14OG OG =,则( )A .1111666OG OA OB OC =++B .1OG =111121212OA OB OC ++ C .1OG =111181818OA OB OC ++ D .1OG =111888OA OB OC ++例3.(安徽·高考真题(理))在正四面体O -ABC 中,,,OA a OB b OC c ===,D 为BC 的中点,E 为AD 的中点,则OE =______________(用,,a b c 表示). 【方法技巧】用基向量表示指定向量的方法(1)结合已知向量和所求向量观察图形.(2)将已知向量和所求向量转化到三角形或平行四边形中.(3)利用三角形法则或平行四边形法则把所求向量用已知基向量表示出来. 题型二:共线(共面)向量定理的应用例4.(2023·全国·高三专题练习)以下四组向量在同一平面的是( ) A .()1,1,0、()0,1,1、()1,0,1 B .()3,0,0、()1,1,2、()2,2,4 C .()1,2,3、()1,3,2、()2,3,1D .()1,0,0、()0,0,2、()0,3,0例5.(2022·广西桂林·模拟预测(文))如图,已知正方体ABCD -A 1B 1C 1D 1的中心为O ,则下列结论中①OA +OD 与OA 1+OD 1是一对相反向量;②OB -OC 1与OC -OB 1是一对相反向量;③OA 1+OB 1+OC 1+OD 1与OD +OC +OB +OA 是一对相反向量; ④OC -OA 与OC 1-OA 1是一对相反向量. 正确结论的个数为( ) A .1B .2C .3D .4例6.(2020·全国·高三专题练习)已知O 、A 、B 、C 、D 、E 、F 、G 、H 为空间的9个点(如图所示),并且OE kOA =,OF kOB =,OH kOD =,AC AD mAB =+,EG EH mEF =+.求证:(1)A 、B 、C 、D 四点共面,E 、F 、G 、H 四点共面; (2)//AC EG . 【总结提升】证明三点共线和空间四点共面的方法比较题型三:空间向量数量积及其应用例7.(广东·高考真题(理))已知向量()1,0,1a =-,则下列向量中与a 成60的是( ) A .()1,1,0-B .()1,1,0-C .()0,1,1-D .()1,0,1-例8.(2022·全国·高三专题练习)如图,在四棱锥P ABCD -中,底面ABCD 是边长为1的正方形,侧棱P A 的长为2,且P A 与AB 、AD 的夹角都等于60°,M 是PC 的中点,设AB a =,AD b =,c AP =.(1)试用a ,b ,c 表示向量BM ;(2)求BM 的长.例9. (2020·全国·高三专题练习)已知向量(2,1,2)a =-,(1,0,1)c =-,若向量b 同时满足下列三个条件:①1a b ⋅=-;①3b =;①b 与c 垂直.(1)求2a c +的模; (2)求向量b 的坐标. 【总结提升】空间向量数量积的应用题型四:利用空间向量证明平行例10.(2021·全国·高三专题练习)如图,在四面体ABCD 中,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 的中点.(1)求证:E ,F ,G ,H 四点共面;(2)求证://BD 平面EFGH ;(3)设M 是EG 和FH 的交点,求证:对空间任意一点O ,有()14OM OA OB OC OD =+++. 例11.(2020·全国·高三专题练习(理))如图所示,平面P AD ①平面ABCD ,ABCD 为正方形,①P AD 是直角三角形,且P A =AD =2,E ,F ,G 分别是线段P A ,PD ,CD 的中点.求证:(1)PB //平面EFG ; (2)平面EFG //平面PBC . 【规律方法】利用空间向量证明平行的方法 1.线线平行:证明两直线的方向向量共线2.线面平行:①证明该直线的方向向量与平面的某一法向量垂直;②证明直线的方向向量与平面内某直线的方向向量平行3.面面平行:①证明两平面的法向量为共线向量;②转化为线面平行、线线平行问题 题型五:利用空间向量证明垂直例12.(2022·河南·宝丰县第一高级中学模拟预测(文))如图,O ,1O 是圆柱底面的圆心,1AA ,1BB ,1CC均为圆柱的母线,AB 是底面直径,E 为1AA 的中点.已知4AB =,BC =(1)证明:1AC BC ⊥;(2)若1AC BE ⊥,求该圆柱的体积.例13.(2022·全国·高三专题练习)已知正方体ABCD -A 1B 1C 1D 1中,E 为棱CC 1上的动点.(1)求证:A 1E ⊥BD ;(2)若平面A 1BD ⊥平面EBD ,试确定E 点的位置.例14.(2020·全国·高三专题练习)直四棱柱1111ABCD A B C D -中,2AB BC ==,90ABC ∠=︒,E 、F 分别为棱AB 、11B C 上的点,2AE EB =,112C F FB =.求证:(1)//EF 平面11AAC C ;(2)线段AC 上是否存在一点G ,使面EFG ⊥面11AAC C .若存在,求出AG 的长;若不存在,请说明理由. 【规律方法】利用空间向量证明垂直的方法1.线线垂直:证明两直线所在的方向向量互相垂直,即证它们的数量积为零2.线面垂直:证明直线的方向向量与平面的法向量共线,或将线面垂直的判定定理用向量表示3.面面垂直:证明两个平面的法向量垂直,或将面面垂直的判定定理用向量表示专题8.6 空间向量及其运算和空间位置关系(知识点讲解)【知识框架】【核心素养】1.考查空间向量的概念及运算,凸显数学抽象、逻辑推理、数学运算、直观想象的核心素养.2.考查空间向量的应用,凸显逻辑推理、数学运算、直观想象的核心素养.【知识点展示】1.平行(共线)向量与共面向量2①a∥b时,θ=__0或π__,θ=__0__时,a与b同向;θ=__π__时,a与b反向.②a ⊥b ⇔θ=__π2__⇔a ·b =0.③θ为锐角时,a ·b __>__0,但a ·b >0时,θ可能为__0__;θ为钝角时,a ·b __<__0,但a ·b <0时,θ可能为__π__.④|a ·b |≤|a |·|b |,特别地,当θ=__0__时,a ·b =|a |·|b |,当θ=__π__时,a ·b =-|a |·|b |.⑤对于实数a 、b 、c ,若ab =ac ,a ≠0,则b =c ;对于向量a 、b 、c ,若a ·b =a ·c ,a ≠0,却推不出b =c ,只能得出__a ⊥(b -c )__.⑥a ·b =0⇒/ a =0或b =0,a =0时,一定有a ·b =__0__.⑦不为零的三个实数a 、b 、c ,有(ab )c =a (bc )成立,但对于三个向量a 、b 、c ,(a ·b )c __≠__a (b ·c ),因为a ·b 是一个实数,(a ·b )c 是与c 共线的向量,而a (b ·c )是与a 共线的向量,a 与c 却不一定共线. 3.空间向量基本定理(1)如果三个向量a 、b 、c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =__x a +y b +z c __.(2)如果三个向量a 、b 、c 不共面,那么所有空间向量组成的集合就是{p|p =x a +y b +z c ,x ,y ,z ∈R },这个集合可看作是由向量a 、b 、c 生成的,我们把{__a ,b ,c __}叫做空间的一个基底,a 、b 、c 都叫做__基向量__,空间任何三个__不共面__的向量都可构成空间的一个基底,同一(相等)向量在不同基底下的坐标__不同__,在同一基底下的坐标__相同__. 4.空间向量的正交分解及其坐标表示设e 1、e 2、e 3为有公共起点O 的三个两两垂直的单位向量(我们称它们为单位正交基底).以e 1、e 2、e 3的公共起点O 为原点,分别以__e 1,e 2,e 3__的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系O -xyz .对于空间任意一个向量p 一定可以把它平移,使它的__起点__与原点O 重合,得到向量OP →=p ,由空间向量基本定理可知,存在有序实数组{x ,y ,z },使得p =x e 1+y e 2+z e 3.我们把x 、y 、z 称作向量p 在单位正交基底e 1、e 2、e 3下的坐标,记作p = (x ,y ,z ). 5.用向量描述空间平行关系设空间两条直线l 、m 的方向向量分别为a =(a 1,a 2,a 3)、b =(b 1,b 2,b 3),两个平面α,β的法向量分别为u =(u 1,u 2,u 3),v =(v 1,v 2,v 3),则有如下结论:6. 用向量证明空间中的垂直关系①设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2⇔v 1⊥v 2⇔v 1·v 2=0.②设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α⇔v∥u . ③设平面α和β的法向量分别为u 1和u 2,则α⊥β⇔u 1⊥u 2⇔u 1·u 2=0. 7.共线与垂直的坐标表示设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a ∥b ⇔a =λb ⇔a 1=λb 1,a 2=λb 2,a 3=λb 3(λ∈R),a ⊥b ⇔a·b =0⇔a 1b 1+a 2b 2+a 3b 3=0(a ,b 均为非零向量).【常考题型剖析】题型一:空间向量的运算例1.(2023·全国·高三专题练习)如图所示,在平行六面体1111ABCD A B C D -中,M 为11A C 与11B D 的交点,若AB a =,AD b =,1AA c =,则BM =( )A .1122a b c -+B .1122a b c ++C .1122a b c --+D .1122-++a b c【答案】D 【解析】 【分析】根据空间向量的运算法则和空间向量基本定理相关知识求解即可. 【详解】由题意得,()()1111111111121222112BM BB B D AA A D A B AA AD A b c B a =+=+--+=+-=+.故选:D例2. (2022·全国·高三专题练习)如图,OABC 是四面体,G 是ABC 的重心,1G 是OG 上一点,且14OG OG =,则( )A .1111666OG OA OB OC =++B .1OG =111121212OA OB OC ++ C .1OG =111181818OA OB OC ++ D .1OG =111888OA OB OC ++【答案】B 【解析】 【分析】利用向量加法减法的几何意义并依据空间向量基本定理去求向量1OG 【详解】连接AG 并延长交BC 于N ,连接ON ,由G 是ABC 的重心,可得23AG AN =,()12ON OB OC =+ 则()()2221112=3332333AG AN ON OA OB OC OA OB OC OA ⎡⎤=-=+-=+-⎢⎥⎣⎦ 则()1111112444333OG OG OA AG OA OB OC OA ⎛⎫==+=++- ⎪⎝⎭111121212OA OB OC =++故选:B例3.(安徽·高考真题(理))在正四面体O -ABC 中,,,OA a OB b OC c ===,D 为BC 的中点,E 为AD 的中点,则OE =______________(用,,a b c 表示).【答案】111244a b c ++【解析】 【详解】因为在四面体O ABC -中,,,,OA a OB b OC c D ===为BC 的中点,E 为AD 的中点,()1222OA OD O OE A OD ∴=+=+()111222a OB OC =+⨯+()1111124244a b c a b c =++=++ ,故答案为111244a b c ++. 【方法技巧】用基向量表示指定向量的方法(1)结合已知向量和所求向量观察图形.(2)将已知向量和所求向量转化到三角形或平行四边形中.(3)利用三角形法则或平行四边形法则把所求向量用已知基向量表示出来. 题型二:共线(共面)向量定理的应用例4.(2023·全国·高三专题练习)以下四组向量在同一平面的是( ) A .()1,1,0、()0,1,1、()1,0,1 B .()3,0,0、()1,1,2、()2,2,4 C .()1,2,3、()1,3,2、()2,3,1 D .()1,0,0、()0,0,2、()0,3,0【答案】B 【解析】 【分析】利用共面向量的基本定理逐项判断可得出合适的选项. 【详解】对于A 选项,设()()()1,1,00,1,11,0,1m n =+,所以,110n m m n =⎧⎪=⎨⎪+=⎩,无解;对于B 选项,因为()()()2,2,403,0,021,1,2=⋅+,故B 选项中的三个向量共面;对于C 选项,设()()()1,2,31,3,22,3,1x y =+,所以,2133223x y x y x y +=⎧⎪+=⎨⎪+=⎩,无解;对于D 选项,设()()()1,0,00,0,20,3,0a b =+,所以,013020b a =⎧⎪=⎨⎪=⎩,矛盾.故选:B.例5.(2022·广西桂林·模拟预测(文))如图,已知正方体ABCD -A 1B 1C 1D 1的中心为O ,则下列结论中①OA +OD 与OA 1+OD 1是一对相反向量;②OB -OC 1与OC -OB 1是一对相反向量;③OA 1+OB 1+OC 1+OD 1与OD +OC +OB +OA 是一对相反向量; ④OC -OA 与OC 1-OA 1是一对相反向量. 正确结论的个数为( ) A .1 B .2C .3D .4【答案】A 【解析】 【分析】由向量的加减运算对各个选项进行检验即可. 【详解】设E,F 分别为AD 和A 1D 1的中点,①OA +2OD OE =与1OA +12OD OF =不是一对相反向量,错误; ②OB -11OC C B =与OC -11OB B C =不是一对相反向量,错误;③OA 1+OB 1+OC 1+()1OD OC OD OA OB OC OD OA OB =----=-+++是一对相反向量,正确; ④OC -OA AC =与OC 1-111OA AC =不是一对相反向量,是相等向量,错误. 即正确结论的个数为1个故选:A例6.(2020·全国·高三专题练习)已知O 、A 、B 、C 、D 、E 、F 、G 、H 为空间的9个点(如图所示),并且OE kOA =,OF kOB =,OH kOD =,AC AD mAB =+,EG EH mEF =+.求证:(1)A、B、C、D四点共面,E、F、G、H四点共面;AC EG.(2)//【答案】(1)证明见解析;(2)证明见解析.【解析】【分析】(1)证明出AC、AB、AD为共面向量,结合AC、AB、AD有公共点可证得A、B、C、D四点共面,同理可证得E、F、G、H四点共面;AC EG.(2)证得EG k AC=,再由EG和AC无公共点可证得//【详解】(1)因为AC AD mAB=+,所以,AC、AB、AD为共面向量,因为AC、AB、AD有公共点A,故A、B、C、D四点共面,因为EG EH mEF=+,则EG、EH、EF为共面向量,因为EG、EH、EF有公共点E,故E、F、G、H四点共面;(2)OE kOA=,=,OF kOB=,OH kOD()EG EH mEF OH OE m OF OE=+=-+-()()()=-+-=+=+=,//k OD OA km OB OA k AD kmAB k AD mAB k AC∴,AC EGAC EG.因为AC、EG无公共点,故//【总结提升】证明三点共线和空间四点共面的方法比较题型三:空间向量数量积及其应用例7.(广东·高考真题(理))已知向量()1,0,1a =-,则下列向量中与a 成60的是( ) A .()1,1,0- B .()1,1,0- C .()0,1,1- D .()1,0,1-【答案】B 【解析】 【详解】试题分析:对于A 选项中的向量()11,0,1a =-,11111cos ,22a a a a a a ⋅-〈〉===-⋅⋅,则1,120a a 〈〉=;对于B 选项中的向量()21,1,0a =-,22211cos ,22a a a a a a ⋅〈〉===⋅,则2,60a a 〈〉=;对于C 选项中的向量()30,1,1a =-,2321cos ,22a a a a a a ⋅-〈〉===-⋅,则2,120a a 〈〉=;对于D 选项中的向量()41,0,1a =-,此时4a a =-,两向量的夹角为180.故选B.例8.(2022·全国·高三专题练习)如图,在四棱锥P ABCD -中,底面ABCD 是边长为1的正方形,侧棱P A 的长为2,且P A 与AB 、AD 的夹角都等于60°,M 是PC 的中点,设AB a =,AD b =,c AP=.(1)试用a ,b ,c 表示向量BM ; (2)求BM 的长.【答案】(1)111222a b c -++;(2)2【解析】 【分析】(1)将AD BC =,BP AP AB =-代入1()2BM BC BP =+中化简即可得到答案;(2)利用22||BM BM =,结合向量数量积运算律计算即可. 【详解】(1)M 是PC 的中点,1()2BM BC BP ∴=+.AD BC =,BP AP AB =-,1[()]2BM AD AP AB ∴=+-,结合AB a =,AD b =,c AP =,得1111[()]2222BM b c a a b c =+-=-++.(2)1AB AD ==,2PA =, ||||1a b ∴==,||2c =.AB AD ⊥,60PAB PAD ∠=∠=︒, 0a b ∴⋅=,21cos601a c b c ⋅=⋅=⨯⨯︒=.由(1)知111222BM a b c =-++,()2222211112222224BM a b c a b c a b a c b c ⎛⎫∴=-++=++-⋅-⋅+⋅⎪⎝⎭13(114022)42=⨯++--+=,6||2BM ∴=即BM 例9. (2020·全国·高三专题练习)已知向量(2,1,2)a =-,(1,0,1)c =-,若向量b 同时满足下列三个条件:①1a b ⋅=-;①3b =;①b 与c 垂直. (1)求2a c +的模;(2)求向量b 的坐标. 【答案】(1)1;(2)(2,1,2)b =-或(2,1,2)b =---. 【解析】 【分析】(1)求出2a c +的坐标,即可求出2a c +的模;(2)设(,,)b x y z =,则由题可知22222190x y z x y z x z +-=-⎧⎪++=⎨⎪-+=⎩,解出即可得出.【详解】解:(1)∵()2,1,2a =-,()1,0,1c =-, ∴()20,1,0a c +=, 所以21a c += ;(2)设(),,b x y z =,则由题可知222221,9,0,x y z x y z x z +-=-⎧⎪++=⎨⎪-+=⎩解得2,1,2,x y z =⎧⎪=-⎨⎪=⎩或2,1,2,x y z =-⎧⎪=-⎨⎪=-⎩ 所以()2,1,2b =-或()2,1,2b =---. 【总结提升】空间向量数量积的应用题型四:利用空间向量证明平行例10.(2021·全国·高三专题练习)如图,在四面体ABCD 中,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 的中点.(1)求证:E ,F ,G ,H 四点共面;(2)求证://BD 平面EFGH ;(3)设M 是EG 和FH 的交点,求证:对空间任意一点O ,有()14OM OA OB OC OD =+++. 【答案】(1)证明见解析;(2)证明见解析;(3)证明见解析 【解析】 【分析】(1)根据题意得出EF HG =可证;(2)通过证明//HE BD 可得;(3)可得四边形EFGH 为平行四边形,M 为EG 中点,即可证明. 【详解】(1)E ,F ,G ,H 分别是AB ,BC ,CD ,DA 的中点, 12EF AC ∴=,12HG AC =,EF HG ∴=,又E ,F ,G ,H 四点不共线,故E ,F ,G ,H 四点共面; (2)E ,H 分别是AB ,AD 的中点, 12HE DB ∴=,//HE DB ∴,//HE BD ∴, HE ⊂平面EFGH ,BD ⊄平面EFGH ,∴//BD 平面EFGH ;(3)由(1)知四边形EFGH 为平行四边形,M ∴为EG 中点, E ,G 分别是AB ,CD 的中点, 11111()()()()22224OM OE OG OA OB OC OD OA OB OC OD ⎡⎤∴=+=+++=+++⎢⎥⎣⎦. 例11.(2020·全国·高三专题练习(理))如图所示,平面P AD ①平面ABCD ,ABCD 为正方形,①P AD 是直角三角形,且P A =AD =2,E ,F ,G 分别是线段P A ,PD ,CD 的中点.求证:(1)PB //平面EFG ;(2)平面EFG //平面PBC .【答案】(1)证明见解析;(2)证明见解析. 【解析】(1)平面P AD ⊥平面ABCD ,且ABCD 为正方形,构建空间直角坐标系A -xyz ,并确定A ,B ,C ,D ,P ,E ,F ,G 的坐标,法一:求得(0,1,0),(1,2,1)EF EG ==-,即可确定平面EFG 的一个法向量n ,又0PB n ⋅=有n PB ⊥,则 PB //平面EFG 得证; 法二:由(2,0,2)PB =-,(0,1,0)FE =-,(1,1,1)FG =-,可知22PB FE FG =+,根据向量共面定理即有PB ,FE 与FG 共面,进而可证PB //平面EFG ;(2)由(1)有(0,1,0),(0,2,0)EF BC ==即2BC EF =,可得BC //EF ,根据线面平行的判定有EF //平面PBC ,GF //平面PBC ,结合面面平行的判定即可证平面EFG //平面PBC .【详解】(1)因为平面P AD ⊥平面ABCD ,且ABCD 为正方形,所以AB ,AP ,AD 两两垂直.以A 为坐标原点,建立如图所示的空间直角坐标系A -xyz ,则A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),P (0,0,2),E (0,0,1),F (0,1,1),G (1,2,0). 法一:(0,1,0),(1,2,1)EF EG ==- 设平面EFG 的法向量为(,,)n x y z =,则00n EF n EG ⎧⋅=⎨⋅=⎩,即020y x y z =⎧⎨+-=⎩,令z =1,则(1,0,1)n =为平面EFG 的一个法向量, ∵(2,0,2)PB =-,∴0PB n ⋅=,所以n PB ⊥, ∵PB ⊄平面EFG , ∴PB //平面EFG .法二:(2,0,2)PB =-,(0,1,0)FE =-,(1,1,1)FG =-. 设PB sFE tFG =+,即(2,0,-2)=s (0,-1,0)+t (1,1,-1),所以202t t s t =⎧⎪-=⎨⎪-=-⎩解得s =t =2.∴22PB FE FG =+,又FE 与FG 不共线,所以PB ,FE 与FG 共面.∵PB ⊄平面EFG ,∴PB ∥平面EFG .(2)由(1)知:(0,1,0),(0,2,0)EF BC ==,∴2BC EF =,所以BC //EF .又EF ⊄平面PBC ,BC ⊂平面PBC ,所以EF //平面PBC ,同理可证GF //PC ,从而得出GF //平面PBC .又EF ∩GF =F ,EF ⊂平面EFG ,GF ⊂平面EFG ,∴平面EFG //平面PBC .【规律方法】利用空间向量证明平行的方法1.线线平行:证明两直线的方向向量共线2.线面平行:①证明该直线的方向向量与平面的某一法向量垂直;②证明直线的方向向量与平面内某直线的方向向量平行3.面面平行:①证明两平面的法向量为共线向量;②转化为线面平行、线线平行问题题型五:利用空间向量证明垂直例12.(2022·河南·宝丰县第一高级中学模拟预测(文))如图,O ,1O 是圆柱底面的圆心,1AA ,1BB ,1CC均为圆柱的母线,AB 是底面直径,E 为1AA 的中点.已知4AB =,BC =(1)证明:1AC BC ⊥;(2)若1AC BE ⊥,求该圆柱的体积.【答案】(1)见解析(2)【解析】【分析】(1)通过线面垂直证明线线垂直(2)建立空间直角坐标系,根据垂直条件解出圆柱的高(1)连结AC ,可知AC BC ⊥1CC ⊥平面ABC 1CC BC ∴⊥1CC AC C =BC ∴⊥平面1ACC1BC AC ∴⊥(2)如图,以C 为原点,1,,CA CB CC 所在直线分别为,,x y z 轴建立空间直角坐标系设圆柱的高为h可得1(2,0,0),(0,0,),(2,0,)2h A B C h E1(2,0,),(2,)2h AC h BE =-=-由题意得21402h AC BE ⋅=-+=,解得h =故圆柱的体积2V πr h ==例13.(2022·全国·高三专题练习)已知正方体ABCD -A 1B 1C 1D 1中,E 为棱CC 1上的动点.(1)求证:A 1E ⊥BD ;(2)若平面A 1BD ⊥平面EBD ,试确定E 点的位置.【答案】(1)证明见解析;(2)E 为CC 1的中点.【解析】【分析】以D 为原点,DA 、DC 、DD 1为x ,y ,z 轴,建立空间直角坐标系.(1)计算10A E BD →→⋅=即可证明;(2)求出面A 1BD 与面EBD 的法向量,根据法向量垂直计算即可.【详解】以D 为坐标原点,以DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,如图,设正方体的棱长为a ,则A (a ,0,0),B (a ,a ,0),C (0,a ,0),A 1(a ,0,a ),C 1(0,a ,a ).设E (0,a ,e )(0≤e ≤a ).(1)1A E →=(-a ,a ,e -a ),BD →=(-a ,-a ,0),1A E BD →→⋅=a 2-a 2+(e -a )·0=0, ∴1A E BD →→⊥,即A 1E ⊥BD ;(2)设平面A 1BD ,平面EBD 的法向量分别为1n →=(x 1,y 1,z 1),2n →=(x 2,y 2,z 2).∵DB →=(a ,a ,0),1DA →=(a ,0,a ),DE →=(0,a ,e )∴10n DB →→⋅=, 110n DA →→⋅=, 20n DB →→⋅=,10n DE →→⋅=. ∴11110,0,ax ay ax az +=⎧⎨+=⎩, 22220,0.ax ay ay ez +=⎧⎨+=⎩ 取x 1=x 2=1,得1n →=(1,-1,-1),2n →=(1,-1,a e).由平面A 1BD ⊥平面EBD 得1n →⊥2n →. ∴2-a e=0,即e =2a . ∴当E 为CC 1的中点时,平面A 1BD ⊥平面EBD .例14.(2020·全国·高三专题练习)直四棱柱1111ABCD A B C D -中,2AB BC ==,90ABC ∠=︒,E 、F 分别为棱AB 、11B C 上的点,2AE EB =,112C F FB =.求证:(1)//EF 平面11AAC C ;(2)线段AC 上是否存在一点G ,使面EFG ⊥面11AAC C .若存在,求出AG 的长;若不存在,请说明理由.【答案】(1)证明见解析(2)存在,AG =【解析】【分析】(1)以1A 为原点,11A D ,11A B ,1A A 分别为,,x y z 轴建立空间直角坐标系:根据向量的坐标可得11113EF A A AC =-+,由此可证//EF 平面11AAC C ; (2)将问题转化为线段AC 上是否存在一点G ,使EG AC ⊥,则问题不难求解.【详解】(1)如图所示:以1A 为原点,11A D ,11A B ,1A A 分别为,,x y z 轴建立空间直角坐标系:则1(0,0,0)A ,1(0,2,0)B ,1(2,2,0)C ,设(0,0,)A a ,则4(0,,)3E a ,2(,2,0)3F , 所以22(,,)33EF a =-,1(0,0,)A A a =,11(2,2,0)AC =, 因为11113EF A A AC =-+,所以EF ,1A A ,11AC 共面,又EF 不在平面11AAC C 内, 所以//EF 平面11AAC C(2)线段AC 上存在一点G ,使面EFG ⊥面11AAC C ,且3AG =,证明如下:在三角形AGE 中,由余弦定理得EG ===, 所以222AG EG AE +=,即EG AG ⊥,又1A A ⊥平面ABCD ,EG ⊂平面ABCD ,、所以1A A EG ⊥,而1AG A A A ⋂=,所以EG ⊥平面11AAC C ,因为EG ⊂平面EFG ,所以EFG ⊥面11AAC C ,【规律方法】利用空间向量证明垂直的方法1.线线垂直:证明两直线所在的方向向量互相垂直,即证它们的数量积为零2.线面垂直:证明直线的方向向量与平面的法向量共线,或将线面垂直的判定定理用向量表示3.面面垂直:证明两个平面的法向量垂直,或将面面垂直的判定定理用向量表示。

〖2021年整理〗《空间向量在立体几何中的应用》完整版教学课件PPT0

〖2021年整理〗《空间向量在立体几何中的应用》完整版教学课件PPT0
§8.6 空间向量在立体几何中的应用
a·b=a1b1a2b2a3b3;
co=②
a1b1 a2b2 a3b3
2已知A1,1,1,B2,2,a212,则a|22 a|=32 ③b12 b22 b3,2 或者dAB=| |其中dAB表示A与B两点间的距离,这就是空间两点的距离公

BA
(x1 x2 )2 ( y1 y2 )2 (z1 z2 )2
(1)证明: DE=(0,2,0), D=B(2,0,-2).设n=(x,y,z)为平面BDE的法向量,则
n n
D即E
DB
00,,不妨22设xy z2=0z,1,可0.得n=(1,0,1).又
=(1,2,-1),可得MN
MN·n=0.
因为MN⊄平面BDE,所以MN∥平面BDE.
(2)易知n1=(1,0,0)为平面CEM的一个法向量.设n2=(x,y,z)为平面EMN的
方法 2 利用空间向量解决垂直问题的方法
设不同直线,m的方向向量分别为a,b,不同平面α,β的法向量分别为u,v, 则⊥m⇔a⊥b⇔a·b=0; ⊥α⇔a∥u⇔a=u,∈R且≠0; α⊥β⇔u⊥v⇔u·v=0 例2 2016河南洛阳二模,19如图,正方形ADEF所在平面和等腰梯形 ABCD所在的平面互相垂直,已知BC=4,AB=AD=2 1求证:AC⊥BF; 2在线段BE上是否存在一点, 使得平面AC⊥平面BCEF若存在,求 出 | B的P |值;若不存在,请说明理由
பைடு நூலகம்
10.5
21
所以,二面角C-EM-N的正弦值为 10.5
21
(3)依题意,设AH=h(0≤h≤4),则H(0,0,h),进而可得
NH=(-1,-2,h),

教学设计5:8.6 空间向量及其运算

教学设计5:8.6 空间向量及其运算

8.6 空间向量及其运算[知识回顾]一、空间向量及其有关概念语言描述共线向量(平行向量)表示空间向量的有向线段所在的直线平行或重合.共面向量平行于同一平面的向量.共线向量定理对空间任意两个向量a,b(b≠0),a∥b⇔存在λ∈R,使a=λb.共面向量定理若两个向量a,b不共线,则向量p与向量a,b共面⇔存在唯一的有序实数对(x,y),使p=x a+y b.空间向量基本定理(1)定理:如果三个向量a、b、c不共面,那么对空间任一向量p,存在有序实数组{x,y,z}使得p=x a+y b+z c.(2)推论:设O、A、B、C是不共面的四点,则对空间一点P都存在唯一的三个有序实数x、y、z使OP=x OA+y OB+z OC且x+y+z=1.二、数量积及坐标运算1.两个向量的数量积(1)a·b=|a||b|cos〈a,b〉;(2)a⊥b⇔a·b=0(a,b为非零向量);(3)|a|2=a2,|a|=x2+y2+z2.2.向量的坐标运算a=(a1,a2,a3),b=(b1,b2,b3)向量和a+b=(a1+b1,a2+b2,a3+b3)向量差a-b=(a1-b1,a2-b2,a3-b3)数量积a·b=a1b1+a2b2+a3b3共线a∥b⇒a1=λb1,a2=λb2,a3=λb3(λ∈R)垂直a⊥b⇔a1b1+a2b2+a3b3=0公式cos〈a,b〉=a1b1+a2b2+a3b3a21+a22+a23b21+b22+b23三、平面的法向量(1)所谓平面的法向量,就是指所在的直线与平面垂直的向量,显然一个平面的法向量有无数多个,它们是共线向量.(2)在空间中,给定一个点A 和一个向量a ,那么以向量a 为法向量且经过点A 的平面是唯一的.[高频考点]考点一空间向量的线性运算典题导入[例1] 如图,在平行六面体ABCD -A 1B 1C 1D 1中G 为△A 1BD 的重心,设AB =a , AD =b ,1AA =c ,试用a ,b ,c 表示1AC ,AG .本例条件不变,设A 1C 1与B 1D 1交点为M ,试用a ,b ,c 表示MG .由题悟法用已知向量表示未知向量,一定要结合图形,以图形为指导是解题的关键,要正确理解向量加法、减法与数乘运算的几何意义,灵活运用三角形法则及四边形法则.以题试法1.如图所示,已知空间四边形OABC ,其对角线为OB 、AC ,M 、N 分别为OA 、BC 的中点,点G 在线段MN 上,且MG =2GN ,若OG =x OA +y OB +z OC ,则x ,y ,z 的值分别为________.考点二共线、共面向量定理的应用典题导入[例2]如图,已知平行六面体ABCD-A′B′C′D′,E、F、G、H分别是棱A′D′、D′C′、C′C和AB的中点,求证E、F、G、H四点共面.由题悟法应用共线向量定理、共面向量定理证明点共线、点共面的方法比较:三点(P,A,B)共线空间四点(M,P,A,B)共面PA=λPB且同过点P MP=x MA+y MB对空间任一点O,OP=OA→+t AB 对空间任一点O,OP=OM+x MA+y MB对空间任一点O,OP=x OA+(1-x) OB对空间任一点O,OP=x OM+y OA+(1-x-y) OB以题试法2.已知E、F、G、H分别是空间四边形ABCD的边AB、BC、CD、DA的中点,用向量方法,求证:(1)E、F、G、H四点共面;(2)BD∥平面EFGH.考点三利用空间向量证明平行或垂直典题导入[例3]已知AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,边长为2a,AD =DE=2AB,F为CD的中点.(1)求证:AF∥平面BCE;(2)求证:平面BCE⊥平面CDE.由题悟法利用直线的方向向量与平面的法向量,可以判定直线与直线、直线与平面、平面与平面的平行和垂直.(1)设直线l1的方向向量v1=(a1,b1,c1),l2的方向向量v2=(a2,b2,c2).则l1∥l2⇔v1∥v2⇔(a1,b1,c1)=k(a2,b2,c2)(k∈R).l1⊥l2⇔v1⊥v2⇔a1a2+b1b2+c1c2=0.(2)设直线l的方向向量为v=(a1,b1,c1),平面α的法向量为n=(a2,b2,c2),则l∥α⇔v ⊥n⇔a1a2+b1b2+c1c2=0.l⊥α⇔v∥n⇔(a1,b1,c1)=k(a2,b2,c2).(3)设平面α的法向量n1=(a1,b1,c1),β的法向量为n2=(a2,b2,c2),则α∥β⇔n1∥n2,α⊥β⇔n1⊥n2.以题试法3.如图所示的长方体ABCD-A1B1C1D1中,底面ABCD是边长为2的正方形,O为AC 与BD的交点,BB1=2,M是线段B1D1的中点.(1)求证:BM∥平面D1AC;(2)求证:D1O⊥平面AB1C.[方法总结]1.用空间向量解决立体几何中的平行或共线问题一般用向量共线定理;求两点间距离或某一线段的长度,一般用向量的模来解决;解决垂直问题一般可转化为向量的数量积为零;求异面直线所成的角,一般可以转化为两向量的夹角,但要注意两种角的范围不同,最后应进行转化.2.直线的方向向量与平面的法向量的确定:(1)直线的方向向量:l 是空间一直线,A ,B 是直线l 上任意两点,则称AB 为直线l 的方向向量,与AB 平行的任意非零向量也是直线l 的方向向量.(2)平面的法向量可利用方程组求出:设a ,b 是平面α内两不共线向量,n 为平面α的法向量,则求法向量的方程组为⎩⎪⎨⎪⎧n ·a =0,n ·b =0.答案[例1]【答案】 1AC =AB +BC +1CC =AB +AD +1AA =a +b +c .AG =1AA +1A G=1AA +13(1A D +1A B )=1AA +13(AD -1AA )+13(AB -1AA )=131AA +13AD +13AB =13a +13b +13c .解:如图,MG =1MA +1A G=-12(11A B +11A D )+13(1A D +1A B )=-12a -12b +13(AD -1AA )+13(AB -1AA )=-12a -12b +13b -13c +13a -13c=-16a -16b -23c1.【解析】∵OG =OM +MG =12OA +23MN=12OA +23(ON -OM ) =12OA +23ON -23OM =12OA +23×12(OB +OC )-23×12OA =16OA +13OB +13OC ∴x ,y ,z 的值分别为16,13,13.【答案】16,13,13[例2]【答案】 取ED '=a ,EF =b ,EH =c , 则HG =HB +BC +CG =D F '+2ED '+12AA '=b -a +2a +12(AH +HE +EA ')=b +a +12(b -a -c -a )=32b -12c ,∴HG 与b 、c 共面.即E 、F 、G 、H 四点共面. 2.证明:(1)连接BG ,则EG =EB +BG =EB +12(BC +BD )=EB +BF +EH =EF +EH , 由共面向量定理知: E 、F 、G 、H 四点共面. (2)因为EH =AH -AE=12AD -12AB =12(AD -AB )=12BD , 又因为E 、H 、B 、D 四点不共线,所以EH ∥BD . 又EH ⊂平面EFGH ,BD ⊄平面EFGH , 所以BD ∥平面EFGH . [例3]【答案】 依题意,以AC 所在的直线为x 轴,AB 所在的直线为z 轴,过点A 且垂直于AC 的直线为y 轴,建立如图所示的空间直角坐标系A -xyz ,则A (0,0,0),C (2a,0,0),B (0,0,a ),D (a ,3a,0),E (a ,3a,2a ).∵F 为CD 的中点,∴F ⎝⎛⎭⎫32a ,32a ,0.(1)易知,AF =⎝⎛⎭⎫32a ,32a ,0,BE =(a ,3a ,a ),BC =(2a,0,-a ),∵AF =12(BE +BC ),AF ⊄平面BCE ,∴AF ∥平面BCE .(2)∵AF =⎝⎛⎭⎫32a ,32a ,0,CD =(-a ,3a,0),ED =(0,0,-2a ),∴AF ·CD =0,AF ·ED =0,∴AF ⊥CD ,AF ⊥ED ,即AF ⊥CD ,AF ⊥ED . 又CD ∩ED =D ,∴AF ⊥平面CDE .又AF ∥平面BCE ,∴平面BCE ⊥平面CDE . 3.证明:(1)建立如图所示的空间直角坐标系,则点O (1,1,0)、D 1(0,0,2), ∴1OD =(-1,-1,2), 又点B (2,2,0),M (1,1,2), ∴BM =(-1,-1,2), ∴1OD =BM , 又∵OD 1与BM 不共线, ∴OD 1∥BM .又OD 1⊂平面D 1AC ,BM ⊄平面D 1AC , ∴BM ∥平面D 1AC .(2)连接OB 1.∵1OD ·1OB =(-1,-1,2)·(1,1,2)=0,1OD ·AC =(-1,-1,2)·(-2,2,0)=0,∴1OD ⊥1OB ,1OD ⊥AC , 即OD 1⊥OB 1,OD 1⊥AC ,又OB 1∩AC =O ,∴D 1O ⊥平面AB 1C .。

2021版新高考数学一轮复习第八章8.6利用空间向量证明空间中的位置关系课件新人教B版

2021版新高考数学一轮复习第八章8.6利用空间向量证明空间中的位置关系课件新人教B版

22
4.因为α∥β,所以v∥u,所以
x 1
1 y
2, 1
x 4,
所以
y
1, 4
所以x+y= 15.
4
2
答案: 15
4
【规律方法】 1.证明线面平行的常用方法:(1)证明直线的方向向量与平面内的两个不共线的 向量共面.(2)证明直线的方向向量与平面内的一个向量平行.(3)证明直线的方 向向量与平面的法向量垂直. 2.证明面面平行常用的方法:(1)利用上述方法证明平面内的两个不共线向量都 平行于另一个平面.(2)证明两个平面的法向量平行.(3)证明一个平面的法向量 也是另一个平面的法向量.
【解析】(1)如图所示,以O为坐标原点,以射线OP为z轴的正半轴建立空间直角 坐标系.则O(0,0,0),A(0,-3,0),B(4,2,0), C(-4,2,0),P(0,0,4).于是 AP =(0,3,4), BC =(-8,0,0),所以 AP ·BC =(0,3,4)· (-8,0,0)=0, 所以 AP ⊥ BC ,即AP⊥BC.
A1M=AN= 2a,则MN与平面BB1C1C的位置关系是 ( )
3
A.相交
B.平行
C.垂直
D.不能确定
3.如图,正方形ABCD与矩形ACEF所在平面互相垂直,AB= 2 ,AF=1,M在EF上,且 AM∥平面BDE,则M点的坐标为 ( )
A.(1,1,1)
B.( 2 , 2 ,1) 33
C.( 2 , 2 ,1)? 22
3.选C.建系如图,则A( 2 , 2 ,0),B(0, 2 ,0),D( 2 ,0,0),
E(0,0,1),设M(a,a,1),则 AM =(a- 2 ,a- 2 ,1),可求出平面BDE的一个法向

【2019版课标版】高考数学文科精品课件§8.6 空间向量在立体几何中的应用

【2019版课标版】高考数学文科精品课件§8.6 空间向量在立体几何中的应用

§8.6空间向量在立体几何中的应用考纲解读分析解读 1.能运用共线向量、共面向量、空间向量基本定理及有关结论证明点共线、点共面、线共面及线线、线面的平行与垂直问题;会求线线角、线面角;会求点点距、点面距等距离问题,从而培养用向量法思考问题和解决问题的能力.2.会利用空间向量的坐标运算、两点间距离公式、夹角公式以及相关结论解决有关平行、垂直、长度、角、距离等问题,从而培养准确无误的运算能力.3.本节内容在高考中延续解答题的形式,以多面体为载体,求空间角的命题趋势较强,分值约为12分,属中档题.五年高考考点空间向量及其应用1.(2017江苏,22,10分)如图,在平行六面体ABCD-A1B1C1D1中,AA1⊥平面ABCD,且AB=AD=2,AA1=∠BAD=120°.(1)求异面直线A1B与AC1所成角的余弦值;(2)求二面角B-A1D-A的正弦值.解析在平面ABCD内,过点A作AE⊥AD,交BC于点E.因为AA⊥平面ABCD,1所以AA⊥AE,AA1⊥AD.1如图,以{,,}为正交基底建立空间直角坐标系A-xyz.=,∠BAD=120°,1则A(0,0,0),B(,-1,0),D(0,2,0),E(,0,0),A(0,0,),C1(,1,).1(1)=(),=(),则cos<,>==--=-,因此异面直线AB与AC1所成角的余弦值为.1(2)平面A1DA的一个法向量为=(,0,0).设m=(x,y,z)为平面BAD的法向量,1又=(,-1,-),=(-则即---不妨取x=3,则y=,z=2,所以m=(3,,2)为平面BAD的一个法向量,1从而cos<,m>===.设二面角B-AD-A的大小为θ,则|cosθ|=.1因为θ∈[0,π],所以sinθ=-=.因此二面角B-AD-A的正弦值为.12.(2017北京,16,14分)如图,在四棱锥P-ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD∥平面MAC,PA=PD=(1)求证:M为PB的中点;(2)求二面角B-PD-A的大小;(3)求直线MC与平面BDP所成角的正弦值.解析(1)设AC,BD交点为E,连接ME.因为PD∥平面MAC,平面MAC∩平面PDB=ME,所以PD∥ME.因为ABCD是正方形,所以E为BD的中点.所以M为PB的中点.(2)取AD的中点O,连接OP,OE.因为PA=PD,所以OP⊥AD.又因为平面PAD⊥平面ABCD,且OP⊂平面PAD,所以OP⊥平面ABCD.因为OE⊂平面ABCD,所以OP⊥OE.因为ABCD是正方形,所以OE⊥AD.如图建立空间直角坐标系O-xyz,则P(0,0,),D(2,0,0),B(-2,4,0),=(4,-4,0),=(2,0,-).设平面BDP的法向量为n=(x,y,z),则即--令x=1,则y=1,z=.于是n=(1,1, ).平面PAD 的一个法向量为p=(0,1,0). 所以cos<n,p>==. 由题意知二面角B-PD-A 为锐角,所以它的大小为 . (3)由题意知M -,C(2,4,0),= -.设直线MC 与平面BDP 所成角为α,则sin α=|cos<n, >|==.所以直线MC 与平面BDP 所成角的正弦值为. 3.(2017课标全国Ⅱ,19,12分)如图,四棱锥P-ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°,E 是PD 的中点. (1)证明:直线CE ∥平面PAB;(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成角为45°,求二面角M-AB-D 的余弦值.解析 (1)取PA 的中点F,连接EF,BF.因为E 是PD 的中点,所以EF ∥AD,EF=AD.由∠BAD=∠ABC=90°得BC ∥AD,又BC=AD,所以EF BC,四边形BCEF 是平行四边形,CE ∥BF,又BF ⊂平面PAB,CE ⊄平面PAB,故CE ∥平面PAB. (2)由已知得BA ⊥AD,以A 为坐标原点, 的方向为x 轴正方向,| |为单位长,建立如图所示的空间直角坐标系A-xyz,则A(0,0,0),B(1,0,0),C(1,1,0),P(0,1, ), =(1,0,- ), =(1,0,0).设M(x,y,z)(0<x<1),则=(x-1,y,z), =(x,y-1,z- ). 因为BM 与底面ABCD 所成的角为45°, 而n=(0,0,1)是底面ABCD 的法向量, 所以|cos< ,n>|=sin 45°,- =,即(x-1)2+y 2-z 2=0.①又M 在棱PC 上,设 =λ ,则 x=λ,y=1,z= - λ.②由①,②解得 - (舍去),或-所以M -,从而= -.设m=(x,y0,z0)是平面ABM的法向量,则即-所以可取m=(0,-,2).于是cos<m,n>==.易知所求二面角为锐角.因此二面角M-AB-D的余弦值为.4.(2016课标全国Ⅲ,19,12分)如图,四棱锥P-ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明MN∥平面PAB;(2)求直线AN与平面PMN所成角的正弦值.解析(1)由已知得AM=AD=2.取BP的中点T,连接AT,TN,由N为PC中点知TN∥BC,TN=BC=2.(3分)又AD∥BC,故TN AM,故四边形AMNT为平行四边形,于是MN∥AT.因为AT⊂平面PAB,MN⊄平面PAB,所以MN∥平面PAB.(6分)(2)取BC的中点E,连接AE.由AB=AC得AE⊥BC,从而AE⊥AD,且AE=-=-=.以A为坐标原点,的方向为x轴正方向,建立如图所示的空间直角坐标系A-xyz.由题意知,P(0,0,4),M(0,2,0),C(,2,0),N,=(0,2,-4),=-,=.设n=(x,y,z)为平面PMN的法向量,则即--(10分)可取n=(0,2,1).于是|cos<n,>|==.即直线AN与平面PMN所成角的正弦值为.(12分)教师用书专用(5—25)5.(2017浙江,9,5分)如图,已知正四面体D-ABC(所有棱长均相等的三棱锥),P,Q,R分别为AB,BC,CA上的点,AP=PB,==2.分别记二面角D-PR-Q,D-PQ-R,D-QR-P的平面角为α,β,γ,则()A.γ<α<βB.α<γ<βC.α<β<γD.β<γ<α答案B6.(2014广东,5,5分)已知向量a=(1,0,-1),则下列向量中与a成60°夹角的是()A.(-1,1,0)B.(1,-1,0)C.(0,-1,1)D.(-1,0,1)答案B7.(2015浙江,15,6分)已知e1,e2是空间单位向量,e1e2=.若空间向量b满足b e1=2,b e2=,且对于任意x,y∈R,|b-(xe1+ye2)|≥|b-(x0e1+y0e2)|=1(x0,y0∈R),则x=,y0=,|b|=.答案1;2;28.(2017山东,17,12分)如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB边所在直线为旋转轴旋转120°得到的,G是的中点.(1)设P是上的一点,且AP⊥BE,求∠CBP的大小;(2)当AB=3,AD=2时,求二面角E-AG-C的大小.解析(1)因为AP⊥BE,AB⊥BE,AB,AP⊂平面ABP,AB∩AP=A,所以BE⊥平面ABP,又BP⊂平面ABP,所以BE⊥BP,又∠EBC=120°,因此∠CBP=30°.(2)解法一:取的中点H,连接EH,GH,CH.因为∠EBC=120°,所以四边形BEHC为菱形,所以AE=GE=AC=GC==取AG中点M,连接EM,CM,EC,则EM⊥AG,CM⊥AG,所以∠EMC为所求二面角的平面角.又AM=1,所以EM=CM=-=2.在△BEC中,由于∠EBC=120°,由余弦定理得EC2=22+22-2×2×2×cos120°=12,所以EC=2,因此△EMC为等边三角形,故所求的角为60°.解法二:以B为坐标原点,分别以BE,BP,BA所在的直线为x,y,z轴,建立如图所示的空间直角坐标系.由题意得A(0,0,3),E(2,0,0),G(1,,3),C(-1,,0),故=(2,0,-3),=(1,,0),=(2,0,3),设m=(x,y1,z1)是平面AEG的法向量.1由可得-取z=2,可得平面AEG的一个法向量m=(3,-,2).1设n=(x,y2,z2)是平面ACG的法向量.2由可得取z=-2,可得平面ACG的一个法向量n=(3,-,-2).2所以cos<m,n>==.易知所求角为锐二面角,因此所求的角为60°.9.(2015课标Ⅱ,19,12分)如图,长方体ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4.过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求直线AF与平面α所成角的正弦值.解析(1)交线围成的正方形EHGF如图:(2)作EM⊥AB,垂足为M,则AM=A1E=4,EM=AA1=8.因为EHGF为正方形,所以EH=EF=BC=10.于是MH=-=6,所以AH=10.以D为坐标原点,的方向为x轴正方向,建立如图所示的空间直角坐标系D-xyz,则A(10,0,0),H(10,10,0),E(10,4,8),F(0,4,8),=(10,0,0),=(0,-6,8).设n=(x,y,z)是平面EHGF的法向量,则即-所以可取n=(0,4,3).又=(-10,4,8),故|cos<n,>|==.所以AF与平面EHGF所成角的正弦值为.10.(2016山东,17,12分)在如图所示的圆台中,AC是下底面圆O的直径,EF是上底面圆O'的直径,FB是圆台的一条母线.(1)已知G,H分别为EC,FB的中点.求证:GH∥平面ABC;(2)已知EF=FB=AC=2,AB=BC.求二面角F-BC-A的余弦值.解析(1)证明:设FC中点为I,连接GI,HI.在△CEF中,因为点G是CE的中点,所以GI∥EF.又EF∥OB,所以GI∥OB.在△CFB中,因为H是FB的中点,所以HI∥BC.又HI∩GI=I,所以平面GHI∥平面ABC.因为GH⊂平面GHI,所以GH∥平面ABC.(2)解法一:连接OO',则OO'⊥平面ABC.又AB=BC,且AC是圆O的直径,所以BO⊥AC.以O为坐标原点,建立如图所示的空间直角坐标系O-xyz.由题意得B(0,2,0),C(-2所以=(-2,-2,0),过点F作FM垂直OB于点M.所以FM=-=3,可得F(0,,3).故=(0,-,3).设m=(x,y,z)是平面BCF的法向量.由可得---可得平面BCF的一个法向量m=-.因为平面ABC的一个法向量n=(0,0,1),所以cos<m,n>==.所以二面角F-BC-A的余弦值为.解法二:连接OO'.过点F作FM垂直OB于点M.则有FM∥OO'.又OO'⊥平面ABC,所以FM⊥平面ABC.可得FM=-=3.过点M作MN垂直BC于点N,连接FN.可得FN⊥BC,从而∠FNM为二面角F-BC-A的平面角.又AB=BC,AC是圆O的直径,所以MN=BMsin45°=.从而FN=,可得cos∠FNM=.所以二面角F-BC-A的余弦值为.11.(2016浙江,17,15分)如图,在三棱台ABC-DEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.(1)求证:BF⊥平面ACFD;(2)求二面角B-AD-F的平面角的余弦值.解析(1)延长AD,BE,CF相交于一点K,如图所示.因为平面BCFE⊥平面ABC,且AC⊥BC,所以,AC⊥平面BCK,因此,BF⊥AC.又因为EF∥BC,BE=EF=FC=1,BC=2,所以△BCK为等边三角形,且F为CK的中点,则BF⊥CK.所以BF⊥平面ACFD.(2)解法一:过点F作FQ⊥AK于Q,连接BQ.因为BF⊥平面ACK,所以BF⊥AK,则AK⊥平面BQF,所以BQ⊥AK.所以,∠BQF是二面角B-AD-F的平面角.在Rt△ACK中,AC=3,CK=2,得FQ=.在Rt△BQF中,FQ=,BF=,得cos∠BQF=.所以,二面角B-AD-F的平面角的余弦值为.解法二:如图,延长AD,BE,CF相交于一点K,则△BCK为等边三角形.取BC的中点O,则KO⊥BC,又平面BCFE⊥平面ABC,所以,KO⊥平面ABC.以点O为原点,分别以射线OB,OK的方向为x,z的正方向,建立空间直角坐标系O-xyz.由题意得B(1,0,0),C(-1,0,0),K(0,0,),A(-1,-3,0),E,F-.因此,=(0,3,0),=(1,3,),=(2,3,0).设平面ACK的法向量为m=(x1,y1,z1),平面ABK的法向量为n=(x2,y2,z2).由得取m=(,0,-1);由得取n=(3,-2,).于是,cos<m,n>==.所以,二面角B-AD-F的平面角的余弦值为.12.(2015陕西,18,12分)如图1,在直角梯形ABCD中,AD∥BC,∠BAD=,AB=BC=1,AD=2,E是AD的中点,O是AC与BE的交点.将△ABE沿BE折起到△A1BE的位置,如图2.(1)证明:CD⊥平面A1OC;(2)若平面A1BE⊥平面BCDE,求平面A1BC与平面A1CD夹角的余弦值.解析(1)证明:在题图1中,因为AB=BC=1,AD=2,E是AD的中点,∠BAD=,所以BE⊥AC.即在题图2中,BE⊥OA1,BE⊥OC,从而BE⊥平面A1OC,又CD∥BE,所以CD⊥平面A1OC.(2)因为平面A1BE⊥平面BCDE,又由(1)知,BE⊥OA1,BE⊥OC,所以∠A1OC为二面角A1-BE-C的平面角,所以∠A1OC=.如图,以O为原点,建立空间直角坐标系,因为A1B=A1E=BC=ED=1,BC∥ED,所以B,E-,A1,C,得=-,=-,==(-,0,0).设平面A1BC的法向量n1=(x1,y1,z1),平面A1CD的法向量n2=(x2,y2,z2),平面A1BC与平面A1CD夹角为θ,则得--取n1=(1,1,1);得-取n2=(0,1,1),从而cosθ=|cos<n1,n2>|==,即平面ABC与平面A1CD夹角的余弦值为.113.(2015四川,18,12分)一个正方体的平面展开图及该正方体的直观图的示意图如图所示.在正方体中,设BC的中点为M,GH的中点为N.(1)请将字母F,G,H标记在正方体相应的顶点处(不需说明理由);(2)证明:直线MN∥平面BDH;(3)求二面角A-EG-M的余弦值.解析(1)点F,G,H的位置如图所示.(2)证明:连接BD,设O为BD的中点.因为M,N分别是BC,GH的中点,所以OM∥CD,且OM=CD,HN∥CD,且HN=CD.所以OM∥HN,OM=HN.所以MNHO是平行四边形,从而MN∥OH.又MN⊄平面BDH,OH⊂平面BDH,所以MN∥平面BDH.(3)解法一:连接AC,过M作MP⊥AC于P.在正方体ABCD-EFGH中,AC∥EG,所以MP⊥EG.过P作PK⊥EG于K,连接KM,所以EG⊥平面PKM,从而KM⊥EG.所以∠PKM是二面角A-EG-M的平面角.设AD=2,则CM=1,PK=2.在Rt△CMP中,PM=CMsin45°=.在Rt△PKM中,KM==.所以cos∠PKM==.即二面角A-EG-M的余弦值为.解法二:如图,以D为坐标原点,分别以,,方向为x,y,z轴的正方向,建立空间直角坐标系D-xyz.设AD=2,则M(1,2,0),G(0,2,2),E(2,0,2),O(1,1,0),所以,=(2,-2,0),=(-1,0,2).设平面EGM的法向量为n=(x,y,z),1由得--取x=2,得n1=(2,2,1).在正方体ABCD-EFGH中,DO⊥平面AEGC,则可取平面AEG的一个法向量为n2==(1,1,0),所以cos<n1,n2>===,故二面角A-EG-M的余弦值为.14.(2015江苏,22,10分)如图,在四棱锥P-ABCD中,已知PA⊥平面ABCD,且四边形ABCD为直角梯形,∠ABC=∠BAD=,PA=AD=2,AB=BC=1.(1)求平面PAB与平面PCD所成二面角的余弦值;(2)点Q是线段BP上的动点,当直线CQ与DP所成的角最小时,求线段BQ的长.解析以{,,}为正交基底建立如图所示的空间直角坐标系A-xyz,则各点的坐标为B(1,0,0),C(1,1,0),D(0,2,0),P(0,0,2).(1)易知AD⊥平面PAB,所以是平面PAB的一个法向量,=(0,2,0).因为=(1,1,-2),=(0,2,-2),设平面PCD的法向量为m=(x,y,z),则m=0,m=0,即--令y=1,解得z=1,x=1.所以m=(1,1,1)是平面PCD的一个法向量.从而cos<,m>==,所以平面PAB与平面PCD所成二面角的余弦值为.(2)因为=(-1,0,2),设=λ=(-λ,0,2λ)(0≤λ≤1),又=(0,-1,0),则=+=(-λ,-1,2λ),又=(0,-2,2),从而cos<,>==.设1+2λ=t,t∈[1,3],则cos2<,>=-=-≤.当且仅当t=,即λ=时,|cos<,>|的最大值为.因为y=cos x在上是减函数,所以此时直线CQ与DP所成的角取得最小值.又因为BP==所以BQ=BP=.15.(2015福建,17,13分)如图,在几何体ABCDE中,四边形ABCD是矩形,AB⊥平面BEC,BE⊥EC,AB=BE=EC=2,G,F分别是线段BE,DC的中点.(1)求证:GF∥平面ADE;(2)求平面AEF与平面BEC所成锐二面角的余弦值.解析解法一:(1)证明:如图,取AE的中点H,连接HG,HD,又G是BE的中点,所以GH∥AB,且GH=AB.又F是CD的中点,所以DF=CD.由四边形ABCD是矩形得,AB∥CD,AB=CD,所以GH∥DF,且GH=DF,从而四边形HGFD是平行四边形,所以GF∥DH.又DH⊂平面ADE,GF⊄平面ADE,所以GF∥平面ADE.(2)如图,在平面BEC内,过B点作BQ∥EC.因为BE⊥CE,所以BQ⊥BE.又因为AB⊥平面BEC,所以AB⊥BE,AB⊥BQ.以B为原点,分别以,,的方向为x轴,y轴,z轴的正方向建立空间直角坐标系,则A(0,0,2),B(0,0,0),E(2,0,0),F(2,2,1).因为AB⊥平面BEC,所以=(0,0,2)为平面BEC的法向量.设n=(x,y,z)为平面AEF的法向量.又=(2,0,-2),=(2,2,-1),由得--取z=2,得n=(2,-1,2).从而cos<n,>===,所以平面AEF与平面BEC所成锐二面角的余弦值为.解法二:(1)证明:如图,取AB中点M,连接MG,MF.又G是BE的中点,可知GM∥AE.又AE⊂平面ADE,GM⊄平面ADE,所以GM∥平面ADE.在矩形ABCD中,由M,F分别是AB,CD的中点得MF∥AD.又AD⊂平面ADE,MF⊄平面ADE,所以MF∥平面ADE.又因为GM∩MF=M,GM⊂平面GMF,MF⊂平面GMF,所以平面GMF∥平面ADE.因为GF⊂平面GMF,所以GF∥平面ADE.(2)同解法一.16.(2014陕西,17,12分)四面体ABCD及其三视图如图所示,过棱AB的中点E作平行于AD,BC的平面分别交四面体的棱BD,DC,CA于点F,G,H.(1)证明:四边形EFGH是矩形;(2)求直线AB与平面EFGH夹角θ的正弦值.解析(1)证明:由该四面体的三视图可知,BD⊥DC,BD⊥AD,AD⊥DC,BD=DC=2,AD=1.由题设,知BC∥平面EFGH,平面EFGH∩平面BDC=FG,平面EFGH∩平面ABC=EH,∴BC∥FG,BC∥EH,∴FG∥EH.同理EF∥AD,HG∥AD,∴EF∥HG,∴四边形EFGH是平行四边形.又∵AD⊥DC,AD⊥BD,BD∩DC=D,∴AD⊥平面BDC,∴AD⊥BC,∴EF⊥FG,∴四边形EFGH是矩形.(2)解法一:如图,以D为坐标原点建立空间直角坐标系,则D(0,0,0),A(0,0,1),B(2,0,0),C(0,2,0),=(0,0,1),=(-2,2,0),=(-2,0,1).设平面EFGH的法向量n=(x,y,z),∵EF∥AD,FG∥BC,∴n=0,n=0,得取n=(1,1,0),-∴sinθ=|cos<,n>|===.解法二:以D为坐标原点建立空间直角坐标系,则D(0,0,0),A(0,0,1),B(2,0,0),C(0,2,0),∵E是AB的中点,∴F,G分别为BD,DC的中点,得E,F(1,0,0),G(0,1,0).∴=,=(-1,1,0),=(-2,0,1).设平面EFGH的法向量n=(x,y,z),则n=0,n=0,取n=(1,1,0),得-∴sinθ=|cos<,n>|===.17.(2014安徽,20,13分)如图,四棱柱ABCD-A1B1C1D1中,A1A⊥底面ABCD.四边形ABCD为梯形,AD∥BC,且AD=2BC.过A1,C,D三点的平面记为α,BB1与α的交点为Q.(1)证明:Q为BB1的中点;(2)求此四棱柱被平面α所分成上下两部分的体积之比;(3)若AA1=4,CD=2,梯形ABCD的面积为6,求平面α与底面ABCD所成二面角的大小.解析(1)证明:因为BQ∥AA,BC∥AD,BC∩BQ=B,AD∩AA1=A,1所以平面QBC∥平面AAD.1从而平面ACD与这两个平面的交线相互平行,即QC∥A1D.1故△QBC与△AAD的对应边相互平行,于是△QBC∽△A1AD.1的中点.所以===,即Q为BB1(2)如图1,连接QA,QD.设AA1=h,梯形ABCD的高为d,四棱柱被平面α所分成上下两部分的体积分别为V上和V下,设BC=a,则AD=2a.图1=×2a h d=ahd,-V Q-ABCD=d h=ahd,所以V下=+V Q-ABCD=ahd,-又=ahd,-所以V上=-V下=ahd-ahd=ahd,-故上=.下(3)解法一:如图1,连接AC,在△ADC中,作AE⊥DC,垂足为E,连接A1E.因为DE⊥AA,且AA1∩AE=A,1所以DE⊥平面AEA,于是DE⊥A1E.1所以∠AEA为平面α与底面ABCD所成二面角的平面角.1因为BC∥AD,AD=2BC,所以S△=2S△BCA.ADC又因为梯形ABCD的面积为6,DC=2,所以S△=4,AE=4.ADC于是tan∠AEA==1,∠AEA1=.1故平面α与底面ABCD所成二面角的大小为.解法二:如图2,以D为原点,,的方向分别为x轴和z轴正方向建立空间直角坐标系.图2设∠CDA=θ.由(2)知||=a.因为S四边形ABCD=2sinθ=6,所以a=.从而C(2cosθ,2sinθ,0),A,1所以=(2cosθ,2sinθ,0),=.设平面ADC的法向量为n=(x,y,1),1由得x=-sinθ,y=cosθ,所以n=(-sinθ,cosθ,1).又因为平面ABCD的一个法向量为m=(0,0,1),所以cos<n,m>==,易知平面α与底面ABCD所成二面角的平面角为锐角,故平面α与底面ABCD所成二面角的大小为.18.(2014天津,17,13分)如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,点E为棱PC的中点.(1)证明BE⊥DC;(2)求直线BE与平面PBD所成角的正弦值;(3)若F为棱PC上一点,满足BF⊥AC,求二面角F-AB-P的余弦值.解析解法一:依题意,以点A为原点建立空间直角坐标系(如图),可得B(1,0,0),C(2,2,0),D(0,2,0),P(0,0,2).由E为棱PC的中点,得E(1,1,1).(1)证明:向量=(0,1,1),=(2,0,0),故=0.所以BE⊥DC.(2)向量=(-1,2,0),=(1,0,-2).设n=(x,y,z)为平面PBD的法向量,不妨令y=1,可得n=(2,1,1)为平面PBD的一个法向量.于是有则即--cos<n,>===.所以直线BE与平面PBD所成角的正弦值为.(3)向量=(1,2,0),=(-2,-2,2),=(2,2,0),=(1,0,0).由点F在棱PC上,设=λ,0≤λ≤1.故=+=+λ=(1-2λ,2-2λ,2λ).由BF⊥AC,得=0,因此,2(1-2λ)+2(2-2λ)=0,解得λ=.即=-.设n=(x,y,z)为平面FAB的法向量,则1即-不妨令z=1,可得n=(0,-3,1)为平面FAB的一个法向量.取平面ABP的法向量n2=(0,1,0),则1cos<n1,n2>===-.易知,二面角F-AB-P是锐角,所以其余弦值为.解法二:(1)证明:如图,取PD的中点M,连接EM,AM.由于E,M分别为PC,PD的中点,故EM∥DC,且EM=DC,又由已知,可得EM∥AB且EM=AB,故四边形ABEM为平行四边形,所以BE∥AM.因为PA⊥底面ABCD,故PA⊥CD,而CD⊥DA,从而CD⊥平面PAD,因为AM⊂平面PAD,于是CD⊥AM,又BE∥AM,所以BE⊥CD.(2)连接BM,由(1)有CD⊥平面PAD,得CD⊥PD,而EM∥CD,故PD⊥EM.又因为AD=AP,M为PD的中点,故PD⊥AM,可得PD⊥BE,所以PD⊥平面BEM,故平面BEM⊥平面PBD.所以直线BE在平面PBD内的射影为直线BM,而BE⊥EM,可得∠EBM为锐角,故∠EBM为直线BE与平面PBD所成的角.依题意,有PD=2,而M为PD的中点,可得AM=,进而BE=.故在直角三角形BEM中,tan∠EBM===,因此sin∠EBM=.所以直线BE与平面PBD所成角的正弦值为.(3)如图,在△PAC中,过点F作FH∥PA交AC于点H.因为PA⊥底面ABCD,故FH⊥底面ABCD,从而FH⊥AC.又BF⊥AC,得AC⊥平面FHB,因此AC⊥BH.在底面ABCD内,可得CH=3HA,从而CF=3FP.在平面PDC内,作FG∥DC交PD于点G,于是DG=3GP.由于DC∥AB,故GF∥AB,所以A,B,F,G四点共面.由AB⊥PA,AB⊥AD,得AB⊥平面PAD,故AB⊥AG.所以∠PAG为二面角F-AB-P的平面角.在△PAG中,PA=2,PG=PD=,∠APG=45°,由余弦定理可得AG=,cos∠PAG=.所以二面角F-AB-P的余弦值为.19.(2014四川,18,12分)三棱锥A-BCD及其侧视图、俯视图如图所示.设M,N分别为线段AD,AB的中点,P为线段BC上的点,且MN⊥NP.(1)证明:P是线段BC的中点;(2)求二面角A-NP-M的余弦值.解析(1)证明:如图,取BD中点O,连接AO,CO.由侧视图及俯视图知,△ABD,△BCD为正三角形,因此AO⊥BD,OC⊥BD.因为AO,OC⊂平面AOC,且AO∩OC=O,所以BD⊥平面AOC.又因为AC⊂平面AOC,所以BD⊥AC.取BO的中点H,连接NH,PH.又M,N分别为线段AD,AB的中点,所以NH∥AO,MN∥BD.因为AO⊥BD,所以NH⊥BD.因为MN⊥NP,所以NP⊥BD.因为NH,NP⊂平面NHP,且NH∩NP=N,所以BD⊥平面NHP.又因为HP⊂平面NHP,所以BD⊥HP.又OC⊥BD,HP⊂平面BCD,OC⊂平面BCD,所以HP∥OC.因为H为BO中点,故P为BC中点.(2)解法一:如图,作NQ⊥AC于Q,连接MQ.由(1)知,NP∥AC,所以NQ⊥NP.因为MN⊥NP,所以∠MNQ为二面角A-NP-M的一个平面角.由(1)知,△ABD,△BCD是边长为2的正三角形,所以AO=OC=.由俯视图可知,AO⊥平面BCD.因为OC⊂平面BCD,所以AO⊥OC.因此在等腰Rt△AOC中,AC=.作BR⊥AC于R.在△ABC中,AB=BC,所以BR=-=.因为在平面ABC内,NQ⊥AC,BR⊥AC,所以NQ∥BR.又因为N为AB的中点,所以Q为AR的中点,因此NQ==.同理,可得MQ=,所以在等腰△MNQ中,cos∠MNQ===.故二面角A-NP-M的余弦值是.解法二:由俯视图及(1)可知,AO⊥平面BCD.因为OC,OB⊂平面BCD,所以AO⊥OC,AO⊥OB.又OC⊥OB,所以直线OA,OB,OC两两垂直.如图,以O为坐标原点,以,,的方向为x轴,y轴,z轴的正方向,建立空间直角坐标系Oxyz.则A(0,0,),B(1,0,0),C(0,,0),D(-1,0,0).因为M,N分别为线段AD,AB的中点,又由(1)知,P为线段BC的中点,所以M-,N,P.于是=(1,0,-),=(-1,,0),=(1,0,0),=-.设平面ABC的法向量n1=(x1,y1,z1),则即有--从而--取z1=1,则x1=,y1=1,所以n1=(,1,1).设平面MNP的法向量n2=(x2,y2,z2),则即有-从而-取z2=1,所以n2=(0,1,1).设二面角A-NP-M的大小为θ,则cosθ===.故二面角A-NP-M的余弦值是.20.(2013课标全国Ⅱ,18,12分)如图,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点,AA1=AC=CB=AB.(1)证明:BC1∥平面A1CD;(2)求二面角D-A1C-E的正弦值.解析(1)证法一:连接AC1交A1C于点F,则F为AC1的中点.又D是AB的中点,连接DF,则BC1∥DF.因为DF⊂平面A1CD,BC1⊄平面A1CD,所以BC1∥平面A1CD.证法二:由AC=CB=AB得,AC⊥BC.以C为坐标原点,的方向为x轴正方向,建立如图所示的空间直角坐标系C-xyz.设CA=2,则D(1,1,0),E(0,2,1),A1(2,0,2),=(1,1,0),=(0,2,1),=(2,0,2).设n=(x1,y1,z1)是平面A1CD的法向量,则即可取n=(1,-1,-1).∵=(0,0,2)-(0,2,0)=(0,-2,2).从而n=(1,-1,-1)(0,-2,2)=0.∴BC1∥平面A1CD.(2)设m=(a,b,c)是平面A1CE的法向量,则即可取m=(2,1,-2).从而cos<n,m>==,故sin<n,m>=.即二面角D-A1C-E的正弦值为.21.(2013湖南,19,12分)如图,在直棱柱ABCD-A1B1C1D1中,AD∥BC,∠BAD=90°,AC⊥BD,BC=1,AD=AA1=3.(1)证明:AC⊥B1D;(2)求直线B1C1与平面ACD1所成角的正弦值.解析解法一:(1)如图1,因为BB1⊥平面ABCD,AC⊂平面ABCD,所以AC⊥BB1.图1又AC⊥BD,所以AC⊥平面BB1D,而B1D⊂平面BB1D,所以AC⊥B1D.(2)因为B1C1∥AD,所以直线B1C1与平面ACD1所成的角等于直线AD与平面ACD1所成的角(记为θ).如图1,连接A1D.因为棱柱ABCD-A1B1C1D1是直棱柱,且∠B1A1D1=∠BAD=90°,所以A1B1⊥平面ADD1A1,从而A1B1⊥AD1.又AD=AA1=3,所以四边形ADD1A1是正方形,于是A1D⊥AD1.故AD1⊥平面A1B1D,于是AD1⊥B1D.由(1)知,AC⊥B1D,所以B1D⊥平面ACD1,故∠ADB1=90°-θ.在直角梯形ABCD中,因为AC⊥BD,所以∠BAC=∠ADB.从而Rt△ABC∽Rt△DAB,故=,即AB==.连接AB1.易知△AB1D是直角三角形,且B1D2=B+BD2=B+AB2+AD2=21,即B1D=.在Rt△AB1D中,cos∠ADB1===,即cos(90°-θ)=.从而sinθ=.即直线B1C1与平面ACD1所成角的正弦值为.解法二:(1)易知,AB,AD,AA1两两垂直.如图2,以A为坐标原点,AB,AD,AA1所在直线分别为x轴,y轴,z轴建立空间直角坐标系.设AB=t,则相关各点的坐标为A(0,0,0),B(t,0,0),B1(t,0,3),C(t,1,0),C1(t,1,3),D(0,3,0),D1(0,3,3).图2从而=(-t,3,-3),=(t,1,0),=(-t,3,0).因为AC⊥BD,所以=-t2+3+0=0,解得t=或t=-(舍去).于是=(-,3,-3),=(,1,0).因为=-3+3+0=0,所以⊥,即AC⊥B1D.(2)由(1)知,=(0,3,3),=(,1,0),=(0,1,0).设n=(x,y,z)是平面ACD1的一个法向量,则即令x=1,则n=(1,-,).设直线B1C1与平面ACD1所成角为θ,则sinθ=|cos<n,>|===.即直线B1C1与平面ACD1所成角的正弦值为.22.(2013重庆,19,13分)如图,四棱锥P-ABCD中,PA⊥底面ABCD,BC=CD=2,AC=4,∠ACB=∠ACD=,F为PC的中点,AF⊥PB.(1)求PA的长;(2)求二面角B-AF-D的正弦值.解析(1)如图,连接BD交AC于O,因为BC=CD,即△BCD为等腰三角形,又AC平分∠BCD,故AC⊥BD.以O为坐标原点,,,的方向分别为x 轴,y轴,z轴的正方向,建立空间直角坐标系O-xyz,则OC=CDcos=1,而AC=4,得AO=AC-OC=3,又OD=CDsin=,故A(0,-3,0),B(,0,0),C(0,1,0),D(-,0,0).因PA⊥底面ABCD,可设P(0,-3,z),由F为PC边中点,得F-.又=,=(,3,-z),因AF⊥PB,故=0,即6-=0,z=2(舍去-2),所以||=2.(2)由(1)知=(-,3,0),=(=(0,2,).设平面FAD的法向量为n1=(x1,y1,z1),平面FAB的法向量为n2=(x2,y2,z2),由n1=0,n1=0,得-因此可取n1=(3,,-2).由n2=0,n2=0,得故可取n2=(3,-,2).从而法向量n1,n2的夹角的余弦值为cos<n1,n2>==.故二面角B-AF-D的正弦值为.23.(2013天津,17,13分)如图,四棱柱ABCD-A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点.(1)证明B1C1⊥CE;(2)求二面角B1-CE-C1的正弦值;(3)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为,求线段AM的长.解析解法一:如图,以点A为原点建立空间直角坐标系,依题意得A(0,0,0),B(0,0,2),C(1,0,1),B(0,2,2),C1(1,2,1),E(0,1,0).1(1)证明:易得=(1,0,-1),=(-1,1,-1),于是=0,所以BC1⊥CE.1(2)=(1,-2,-1).设平面BCE的法向量m=(x,y,z),1消去x,得y+2z=0,则即----不妨令z=1,可得一个法向量为m=(-3,-2,1).由(1)知BC1⊥CE,又CC1⊥B1C1,可得B1C1⊥平面CEC1,1的一个法向量.故=(1,0,-1)为平面CEC1于是cos<m,>===-,从而sin<m,>=.所以二面角B-CE-C1的正弦值为.1(3)=(0,1,0),=(1,1,1).设=λ=(λ,λ,λ),0≤λ≤1,有=+=(λ,λ+1,λ).可取=(0,0,2)为平面ADD1A1的一个法向量.设θ为直线AM与平面ADDA1所成的角,1则sinθ=|cos<,>|===.于是=,解得λ=,所以AM=.解法二:(1)证明:因为侧棱CC⊥底面A1B1C1D1,B1C1⊂平面A1B1C1D1,所以CC1⊥B1C1.经计算可得B1E=,B1C1=1=从而B1E2=B1+E,所1以在△BEC1中,B1C1⊥C1E,又CC1,C1E⊂平面CC1E,CC1∩C1E=C1,所以B1C1⊥平面CC1E,又CE⊂平面CC1E,故B1C1⊥CE.1(2)过B1作B1G⊥CE于点G,连接C1G.由(1)知BC1⊥CE,故CE⊥平面B1C1G,1得CE⊥C1G,所以∠B1GC1为二面角B1-CE-C1的平面角.在△CC1E中,由CE=C1E=,CC1=2,可得C1G=.在Rt△B1C1G中,B1G=,所以sin∠B1GC1=,即二面角B1-CE-C1的正弦值为.(3)连接D1E,过点M作MH⊥ED1于点H,可得MH⊥平面ADD1A1,连接AH,AM,则∠MAH为直线AM与平面ADD1A1所成的角.设AM=x,从而在Rt△AHM中,有MH=x,AH=x.在Rt△C1D1E中,C1D1=1,ED1=,得EH=MH=x.在△AEH中,∠AEH=135°,AE=1,由AH2=AE2+EH2-2AE EHcos135°,得x2=1+x2+x,整理得5x2-2x-6=0,解得x=.所以线段AM的长为.24.(2013江西,19,12分)如图,四棱锥P-ABCD中,PA⊥平面ABCD,E为BD的中点,G为PD的中点,△DAB≌△DCB,EA=EB=AB=1,PA=,连接CE并延长交AD于F.(1)求证:AD⊥平面CFG;(2)求平面BCP与平面DCP的夹角的余弦值.解析(1)在△ABD中,因为E是BD中点,所以EA=EB=ED=AB=1,故∠BAD=,∠ABE=∠AEB=,因为△DAB≌△DCB,所以△EAB≌△ECB,从而有∠FED=∠BEC=∠AEB=,所以∠FED=∠FEA,故EF⊥AD,AF=FD,又因为PG=GD,所以FG∥PA.又PA⊥平面ABCD,所以GF⊥AD,故AD⊥平面CFG.(2)以点A为坐标原点建立如图所示的坐标系,则A(0,0,0),B(1,0,0),C,D(0,,0),P,故=,=--,=-.设平面BCP的法向量n1=(1,y1,z1),则--解得-即n1=-.设平面DCP的法向量n2=(1,y2,z2),则---解得即n2=(1,,2).从而平面BCP与平面DCP的夹角的余弦值为cosθ===.25.(2013浙江,20,15分)如图,在四面体A-BCD中,AD⊥平面BCD,BC⊥CD,AD=2,BD=2.M是AD的中点,P是BM的中点,点Q在线段AC上,且AQ=3QC.(1)证明:PQ∥平面BCD;(2)若二面角C-BM-D的大小为60°,求∠BDC的大小.解析解法一:(1)取BD的中点O,在线段CD上取点F,使得DF=3FC,连接OP,OF,FQ.因为AQ=3QC,所以QF∥AD,且QF=AD.因为O,P分别为BD,BM的中点,所以OP是△BDM的中位线,所以OP∥DM,且OP=DM.又点M为AD的中点,所以OP∥AD,且OP=AD.从而OP∥FQ,且OP=FQ,所以四边形OPQF为平行四边形,故PQ∥OF.又PQ⊄平面BCD,OF⊂平面BCD,所以PQ∥平面BCD.(2)作CG⊥BD于点G,作GH⊥BM于点H,连接CH.因为AD⊥平面BCD,CG⊂平面BCD,所以AD⊥CG,又CG⊥BD,AD∩BD=D,故CG⊥平面ABD,又BM⊂平面ABD,所以CG⊥BM.又GH⊥BM,CG∩GH=G,故BM⊥平面CGH,所以GH⊥BM,CH⊥BM.所以∠CHG为二面角C-BM-D的平面角,即∠CHG=60°.设∠BDC=θ.在Rt△BCD中,CD=BDcosθ=2cosθ,CG=CDsinθ=2cosθsinθ,BG=BCsinθ=2sin2θ.在Rt△BDM中,HG==.在Rt△CHG中,tan∠CHG===.所以tanθ=.从而θ=60°.即∠BDC=60°.解法二:(1)如图,取BD的中点O,以O为原点,OD,OP所在射线为y,z轴的正半轴,建立空间直角坐标系O-xyz.由题意知A(0,,2),B(0,-,0),D(0,,0).设点C的坐标为(x,y0,0),因为=3,所以Q.因为M为AD的中点,故M(0,,1).又P为BM的中点,故P,所以=.又平面BCD的一个法向量为u=(0,0,1),故u=0.又PQ⊄平面BCD,所以PQ∥平面BCD.(2)设m=(x,y,z)为平面BMC的一个法向量.由=(-x,0,1),=(0,2,1),知--取y=-1,得m=-.又平面BDM的一个法向量为n=(1,0,0),于是|cos<m,n>|===,即=3.①又BC⊥CD,所以=0,故(-x,--y0,0)(-x0,-y0,0)=0,即+=2.②联立①,②,解得(舍去)或-所以tan∠BDC==.-又∠BDC是锐角,所以∠BDC=60°.三年模拟A组2016—2018年模拟基础题组考点空间向量及其应用1.(2017湖南五市十校3月联考,15)有公共边的等边三角形ABC和BCD所在平面互相垂直,则异面直线AB和CD所成角的余弦值为. 答案2.(2018广东茂名模拟,18)如图,在矩形ABCD中,CD=2,BC=1,E,F是平面ABCD同一侧的两点,EA∥FC,AE⊥AB,EA=2,DE=,FC=1.(1)证明:平面CDF⊥平面ADE;(2)求二面角E-BD-F的正弦值.解析(1)证明:∵四边形ABCD是矩形,∴CD⊥AD.∵AE⊥AB,CD∥AB,∴CD⊥AE.又AD∩AE=A,∴CD⊥平面ADE.∵CD⊂平面CDF,∴平面CDF⊥平面ADE.(2)∵AD=BC=1,EA=2,DE=∴DE2=AD2+AE2,∴AE⊥AD.又AE⊥AB,AB∩AD=A,∴AE⊥平面ABCD.以D为坐标原点,建立如图所示的空间直角坐标系D-xyz,则D(0,0,0),B(1,2,0),F(0,2,1),E(1,0,2).∴=(1,2,0),=(0,2,1),设平面BDF的法向量为m=(x,y,z),∴令x=2,得m=(2,-1,2).同理可求得平面BDE的一个法向量为n=(2,-1,-1),∴cos<m,n>===,∴sin<m,n>=.故二面角E-BD-F的正弦值为.3.(2017河南洛阳二模,19)已知三棱锥A-BCD,AD⊥平面BCD,BD⊥CD,AD=BD=2,CD=2,E,F分别是AC,BC的中点,P为线段BC上一点,且CP=2PB.(1)求证:AP⊥DE;(2)求直线AC与平面DEF所成角的正弦值.解析(1)证明:作PG∥BD交CD于G.连接AG.∴==2,∴GD=CD=.∵AD⊥平面BCD,∴AD⊥DC,∵在△ADG中,tan∠GAD=,∴∠DAG=30°,在Rt△ADC中,AC2=AD2+CD2=4+12=16,∴AC=4,又E为AC的中点,∴DE=AE=2,又AD=2,∴∠ADE=60°,∴AG⊥DE.∵AD⊥面BCD,∴AD⊥BD,又∵BD⊥CD,AD∩CD=D,∴BD⊥面ADC,∴PG⊥面ADC,∴PG⊥DE.又∵AG∩PG=G,∴DE⊥面AGP,又AP⊂面AGP,∴AP⊥DE.(2)以D为坐标原点,直线DB、DC、DA所在直线分别为x轴、y轴、z轴建立空间直角坐标系D-xyz,则D(0,0,0),A(0,0,2),B(2,0,0),C(0,2,0),E(0,,1),F(1,,0),∴=(1,,0),=(0,=(0,2设平面DEF的法向量为n=(x,y,z),则即令x=3,则n=(3,-,3).设直线AC与平面DEF所成角为θ,则sinθ=|cos<,n>|===,所以AC与平面DEF所成角的正弦值为.B组2016—2018年模拟提升题组(满分:30分时间:30分钟)一、填空题(共5分)1.(人教A选2—1,三,3-2A,4,变式)已知在正方体ABCD-A1B1C1D1中,点E是棱A1B1的中点,则直线AE与平面BDD1B1所成角的正弦值为. 答案二、解答题(共25分)2.(2018云南玉溪模拟,19)如图,四棱锥P-ABCD中,PB⊥底面ABCD,底面ABCD为直角梯形,∠ABC=90°,AD∥BC,AB=AD=PB,BC=2AD.点E在棱PA 上,且PE=2EA.(1)求证:CD⊥平面PBD;(2)求二面角A-BE-D的余弦值.解析(1)证明:因为底面ABCD为直角梯形,∠ABC=90°,所以AB⊥BC,因为PB⊥底面ABCD,CD⊂底面ABCD,所以PB⊥CD.在梯形ABCD中,因为∠ABC=∠BAD=90°,AB=AD=BC,所以BD=CD=BC,所以BD⊥CD.又因为PB∩BD=B,所以CD⊥平面PBD.(2)建立如图所示的空间直角坐标系,不妨设AB=1.设平面EBD的法向量为n=(x,y,z),易知B(0,0,0),E,D(1,1,0),=,=(1,1,0).则即令y=-1,得n=(1,-1,2).又因为平面ABE的一个法向量为m=(1,0,0),所以cos<n,m>==.由图可知二面角A-BE-D的平面角为锐角,所以二面角A-BE-D的余弦值为.3.(2017河南4月质检,19)如图,四棱锥P-ABCD,PA⊥底面ABCD,底面ABCD是直角梯形,∠ADC=90°,AD∥BC,AB⊥AC,AB=AC=,点E在AD上,且AE=2ED.(1)已知点F在BC上,且CF=2FB,求证:平面PEF⊥平面PAC;(2)当二面角A-PB-E的余弦值为多少时,直线PC与平面PAB所成的角为45°?解析(1)证明:∵AB⊥AC,AB=AC,∴∠ACB=45°,∵底面ABCD是直角梯形,∠ADC=90°,AD∥BC,∴∠ACD=45°,即AD=CD,(1分)又AB⊥AC,∴BC=AC=2AD,(2分)∵AE=2ED,CF=2FB,∴AE=BF=AD,∴四边形ABFE是平行四边形,∴AB∥EF,(3分)∴AC⊥EF,∵PA⊥底面ABCD,∴PA⊥EF,(4分)∵PA∩AC=A,∴EF⊥平面PAC,∵EF⊂平面PEF,∴平面PEF⊥平面PAC.(5分)(2)∵PA⊥AC,AC⊥AB,PA∩AB=A,∴AC⊥平面PAB,则∠APC为PC与平面PAB所成的角,若PC与平面PAB所成的角为45°,则tan∠APC==1,即PA=AC=,(6分)取BC的中点为G,连接AG,则AG⊥BC,以A为坐标原点,建立如图所示的空间直角坐标系A-xyz,则A(0,0,0),B(1,-1,0),C(1,1,0),E,P(0,0,),∴=-,=-,(7分)设平面PBE的法向量为n=(x,y,z),则即--令y=3,则x=5,z=,∴n=(5,3,),(9分)∵=(1,1,0)是平面PAB的一个法向量,(10分)∴cos<n,>==,。

2019届数学(理)大复习讲义第八章立体几何与空间向量 8.6 含答案

2019届数学(理)大复习讲义第八章立体几何与空间向量 8.6 含答案

§8.6空间向量及其运算最新考纲考情考向分析1。

了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.2.掌握空间向量的线性运算及其坐标表示.3.掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线和垂直.本节是空间向量的基础内容,涉及空间直角坐标系、空间向量的有关概念、定理、公式及四种运算等内容.一般不单独命题,常以简单几何体为载体;以解答题的形式出现,考查平行、垂直关系的判断和证明及空间角的计算,解题要求有较强的运算能力.1.空间向量的有关概念名称概念表示零向量模为0的向量0单位长度(模)为1的向量2.空间向量中的有关定理(1)共线向量定理空间两个向量a与b(b≠0)共线的充要条件是存在实数λ,使得a=λb。

(2)共面向量定理共面向量定理的向量表达式:p=x a+y b,其中x,y∈R,a,b为不共线向量.(3)空间向量基本定理如果三个向量a,b,c不共面,那么对空间任一向量p,存在有序实数组{x,y,z},使得p=x a+y b+z c,{a,b,c}叫作空间的一个基底.3.空间向量的数量积及运算律(1)数量积及相关概念①两向量的夹角已知两个非零向量a,b,在空间任取一点O,作错误!=a,错误!=b,则∠AOB叫作向量a,b的夹角,记作〈a,b>,其范围是0≤〈a,b>≤π,若〈a,b〉=错误!,则称a与b互相垂直,记作a⊥b。

②两向量的数量积已知空间两个非零向量a,b,则|a||b|cos<a,b〉叫作向量a,b 的数量积,记作a·b,即a·b=|a||b|cos〈a,b〉.(2)空间向量数量积的运算律①(λa)·b=λ(a·b);②交换律:a·b=b·a;③分配律:a·(b+c)=a·b+a·c。

4.空间向量的坐标表示及其应用设a=(a1,a2,a3),b=(b1,b2,b3)。

高考复习(数理)重点突破课件:8.6空间向量的应用

高考复习(数理)重点突破课件:8.6空间向量的应用

【例1】 (2014·北京海淀模拟)如图,在空间 四边形OABC中,OA=8,AB=6,AC=4, BC=5,∠OAC=45°,∠OAB=60°, 则OA与BC所成角的余弦值为________. [解题指导](1)已知:空间四边形OABC,OA=8,AB=6,AC =4,BC=5,∠OAC=45°,∠OAB=60°. (2)分析:本题主要考查利用向量法求两条异面直线所成的角, 解题的关键是选取合适的基底,并把相关的向量用基底表示 出来.
考纲考向分析 核心要点突破
[解题指导]对于(1)只要证明向量E→G可由向量E→F和E→H表示即可,对 于(2)只要证明 BD 平行于平面 EFGH 内的一条直线即可,对于(3) 由于四边形 EFGH 为平行四边形,所以 M 为 EG 与 FH 的中点.于 是向量O→M可由向量O→G和O→E表示,再将O→G与O→E用O→C,O→D和O→A, O→B表示. 证明 (1)连接 BG,则E→G=E→B+E→G=E→B+12(B→C+B→D) =E→B+B→F+E→H=B→F+E→H, 由共面向量定理的推论知:E、F、G、H 四点共面.
考纲考向分析 核心要点突破
方法2 利用空间向量定理证明平行或垂直问题 (1)用向量证平行的方法 ①线线平行:证明两直线的方向向量共线. ②线面平行:a.证明该直线的方向向量与平面的某一法向量垂直; b.证明直线的方向向量与平面内某直线的方向向量平行. ③面面平行:a.证明两平面的法向量为共线向量;b.转化为线面 平行、线线平行问题.
量的坐标运算,
2. 证 明 平 行(2)掌握空间向量的线性运算及其
段长度,点到
利用空间向量
与垂直. 坐标表示.
面的距离及求
求空间距离,
(3)掌握空间向量的数量积及其坐

第36讲_空间向量及其应用

第36讲_空间向量及其应用
|
|,当 >0时与 同向,当 <0时与 反向的所有向量。 ⑶若直线l∥ , ,P为l上任一点,O为空间任一点,下面根据上述定理来推导 的表达式。 推论:如果 l为经过已知点A且平行于已知非零向量 的直线,那么对任一点O,点P在直线l上的充要条件是存在实数t, 满足等式
)=9· · -4 · =9| |2-4| |2成立.故④真. 点评:本题考查平面向量的数量积及运算律。 例8.(1)(2002上海文,理2)已知向量 和 的夹角为120°,且| |=2,| |=5,则(2 - )· =_____. (2)设空间两个不同的单位向量 =(x1,y1,0), =(x2,y2,0)与向量
解析:显然
; 答案为A。 点评:类比平面向量表达平面位置关系过程,掌握好空间向量的用 途。用向量的方法处理立体几何问题,使复杂的线面空间关系代数 化,本题考查的是基本的向量相等,与向量的加法.考查学生的空 间想象能力。 例4.已知: 且 不共面.若 ∥ ,求 的值. 解:
∥ ,,且 即 又 不共面, 点评:空间向量在运算时,注意到如何实施空间向量共线定理。 题型3:空间向量的坐标 例5.(1)已知两个非零向量
、 、 不共面,那么对空间任一向量,存在一个唯一的有序实数组x, 使 说明:⑴由上述定理知,如果三个向量 、 、 不共面,那么所有空间向量所组成的集合就是 ,这个集合可看作由向量 、 、 生成的,所以我们把{ , , }叫做空间的一个基底, , , 都叫做基向量;⑵空间任意三个不共面向量都可以作为空间向量的 一个基底;⑶一个基底是指一个向量组,一个基向量是指基底中的某一 个向量,二者是相关联的不同的概念;⑷由于 y, z,
, ∴ =(1,1,0), =(-1,0,2). (1)cos = = - , ∴ 和 的夹角为- 。 (2)∵k + =k(1,1,0)+(-1,0,2)=(k-1,k,2), k -2 =(k+2,k,-4),且(k
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六节 空间向量及其应用考纲解读1.空间向量及其运算.(1)了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示;(2)掌握空间向量的线性运算及其坐标表示;(3)掌握空间向量的数量积及其表示,能用向量的数量积判断向量的共线与垂直. 2.空间向量的应用.(1)理解直线的方向向量与平面的法向量;(2)能用向量语言表述直线与直线、直线与平面、平面与平面的垂直、平行关系; (3)能用向量方法证明有关直线和平面位置关系的一些定理;(4)能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题,了解向量方法在研究几何问题中的应用. 命题趋势探究立体几何试题中,证明线面、面面的位置关系一般利用传统方法(非向量法)证明,对于空间角和距离的计算,既可用传统方法解答,也可以用向量法解答,而且多数情况下向量法会更容易一些. 知识点精讲一、空间向量及其加减运算1.空间向量在空间,我们把具有大小和方向的量叫做空间向量,向量的大小叫做向量的长度或模.空间向量也可用有向线段表示,有向线段的长度表示向量的模,若向量a 的起点是A ,终点是B ,则向量a 也可以记作AB ,其模记为a 或AB .2.零向量与单位向量规定长度为0的向量叫做零向量,记作0.当有向线段的起点A 与终点B 重合时,0AB =.模为1的向量称为单位向量. 3.相等向量与相反向量方向相同且模相等的向量称为相等向量.在空间,同向且等长的有向线段表示同一向量或相等向量.空间任意两个向量都可以平移到同一个平面,成为同一平面内的两个向量.与向量a 长度相等而方向相反的向量,称为a 的相反向量,记为a -. 4.空间向量的加法和减法运算(1)OC OA OB a b =+=+,BA OA OB a b =-=-.如图8-152所示.(2)空间向量的加法运算满足交换律及结合律 a b b a +=+,()()a b c a b c ++=++ 二、空间向量的数乘运算1.数乘运算实数λ与空间向量a 的乘积a λ称为向量的数乘运算.当0λ>时,a λ与向量a 方向相同;当0λ<时,向量a λ与向量a 方向相反. a λ的长度是a 的长度的λ倍.2.空间向量的数乘运算满足分配律及结合律()a b a b λλλ+=+,()()a a λμλμ=.3.共线向量与平行向量如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量,a 平行于b ,记作//a b .4.共线向量定理对空间中任意两个向量a ,b ()0b ≠,//a b 的充要条件是存在实数λ,使a b λ=. 5.直线的方向向量如图8-153所示,l 为经过已知点A 且平行于已知非零向量a 的直线.对空间任意一点O ,点P 在直线l 上的充要条件是存在实数t ,使OP OA ta =+①,其中向量a 叫做直线l的方向向量,在l 上取AB a =,则式①可化为()()1OP OA t AB OA t OB OA t OA tOB =+=+-=-+②①和②都称为空间直线的向量表达式,当12t =,即点P 是线段AB 的中点时,()12OP OA OB =+,此式叫做线段AB 的中点公式. 6.共面向量如图8-154所示,已知平面α与向量a ,作OA a =,如果直线OA 平行于平面α或在平面α内,则说明向量a 平行于平面α.平行于同一平面的向量,叫做共面向量.Aaaα图 8-154O7.共面向量定理如果两个向量a ,b 不共线,那么向量p 与向量a ,b 共面的充要条件是存在唯一的有序实数对(),x y ,使p xa yb =+.推论:(1)空间一点P 位于平面ABC 内的充要条件是存在有序实数对(),x y ,使AP xAB y AC =+;或对空间任意一点O ,有OP OA x AB y AC -=+,该式称为空间平面ABC 的向量表达式.(2)已知空间任意一点O 和不共线的三点A ,B ,C ,满足向量关系式OP xOA yOB zOC =++(其中1x y z ++=)的点P 与点A ,B ,C 共面;反之也成立.三、空间向量的数量积运算1.两向量夹角已知两个非零向量a ,b ,在空间任取一点O ,作OA a =,OB b =,则AOB ∠叫做向量a ,b 的夹角,记作,a b ,通常规定0,a b π≤≤,如果,2a b π=,那么向量a ,b 互相垂直,记作a b ⊥.2.数量积定义已知两个非零向量a ,b ,则cos ,a b a b 叫做a ,b 的数量积,记作a b ⋅,即cos ,a b a b a b ⋅=.零向量与任何向量的数量积为0,特别地,2a a a ⋅=.3.空间向量的数量积满足的运算律: ()()a b a b λλ⋅=⋅,a b b a ⋅=⋅(交换律); ()a b c a b a c ⋅+=⋅+⋅(分配律). 四、空间向量的坐标运算及应用(1)设()123,,a a a a =,()123,,b b b b =,则()112233,,a b a b a b a b +=+++;()112233,,a b a b a b a b -=---;()123,,a a a a λλλλ=; 112233a b a b a b a b ⋅=++;()112233//0,,a b b a b a b a b λλλ≠⇒===; 1122330a b a b a b a b ⊥⇒++=.(2)设()111,,A x y z ,()222,,B x y z ,则()212121,,AB OB OA x x y y z z =-=---. 这就是说,一个向量在直角坐标系中的坐标等于表示该向量的有向线段的终点的坐标减起点的坐标.(3)两个向量的夹角及两点间的距离公式.①已知()123,,a a a a =,()123,,b b b b =,则221a a a ==+221b b b ==+;112233a b a b a b a b ⋅=++; cos ,a b =;②已知()111,,A x y z ,()222,,B x y z ,则(AB x =或者(),d A B AB =.其中(),d A B 表示A 与B 两点间的距离,这就是空间两点的距离公式.(4)向量a 在向量b 上的射影为cos ,a b a a b b⋅=.(5)设()0n n ≠是平面M 的一个法向量,AB ,CD 是M 内的两条相交直线,则0n AB ⋅=,由此可求出一个法向量n (向量AB 及CD 已知).(6)利用空间向量证明线面平行:设n 是平面的一个法向量,l 为直线l 的方向向量,证明0l n ⋅=,(如图8-155所示).已知直线l (l α⊄),平面α的法向量n ,若0l n ⋅=,则//l α.(7)利用空间向量证明两条异面直线垂直:在两条异面直线中各取一个方向向量a ,b ,只要证明a b⊥,即0a b ⋅=.(8)利用空间向量证明线面垂直:即证平面的一个法向量与直线的方向向量共线.(9)证明面面平行、面面垂直,最终都要转化为证明法向量互相平行、法向量互相垂直.(10)空间角公式.①异面直线所成角公式:设a ,b 分别为异面直线1l ,2l 上的方向向量,θ为异面直线所成角的大小,则cos cos ,a b a b a bθ⋅==.②线面角公式:设l 为平面α的斜线,a 为l 的方向向量,n 为平面α的法向量,θ为l 与α所成角的大小,则sin cos ,a n a n a nθ⋅==.③二面角公式:设1n ,2n 分别为平面α,β的法向量,二面角的大小为θ,则12,n n θ=或12,n n π-(需要根据具体情况判断相等或互补),其中1212cos n n n n θ⋅=.(11)点A 到平面α的距离为d ,B α∈,n 为平面α的法向量,则AB n d n⋅=.题型归纳及思路提示题型116 空间向量及其运算思路提示空间向量的运算包括空间向量的加法、减法、数乘、数量积的几何意义及坐标运算,可以类比平面向量的运算法则.一、空间向量的加法、减法、数乘运算例8.41 如图8-156所示,已知空间四边形OABC ,点,M N 分别为OA ,BC 的中点,且OA a =,OB b =,OC c =,用a ,b ,c 表示MN ,则MN = .变式1 如图8-157所示,已知空间四边形OABC ,其对角线为OB ,AC ,M 和N 分别是对边OA 和BC 的中点,点G 在线段MN 上,且2MG GN =,现用基向量OA ,OB ,OC 表示向量OG ,设OG xOA yOB zOC =++,则,,x y z 的值分别是( ).A 111,,333x y z ===.B 111,,336x y z ===.C 111,,363x y z ===.D 111,,633x y z ===变式2 如图8-158所示,在四面体O ABC -中,OA a =,OB b =,OC c =,D 为BC 的中点,E 为AD 的中点,则OE = (用a ,b ,c 表示).变式3 在空间四边形ABCD 中,连接对角线,AC BD ,若BCD ∆是正三角形,且E 为其重心,则1322AB BC DE AD +--的化简结果为 .变式4 如图8-159所示,在平行六面体1111ABCD A B C D -中,M 为11A C 与11B D 的交点,若AB a =,AD b =,1AA c =,则下列向量中与BM 相等的向量是( ).A 1122a b c -++ .B 1122a b c ++.C 1122a b c --+ .D 1122a b c -+二、空间共线向量定理的应用空间共线向量定理:()//0a b b a b λ≠⇔=. 利用此定理可解决立体几何中的平行问题.例8.42 已知3240m a b c =--≠,()182n x a b yc =+++,且,,a b c 不共面,若//m n ,求,x y 的值.二、空间向量的数量积运算121212cos ,a b a b a b x x y y z z ⋅==++;求模长时,可根据221a a x ==+求空间向量夹角时,可先求其余弦值cos ,a b a b a b⋅=.要判断空间两向量垂直时,可以求两向量的数量积是否为0,即0a b a b ⋅=⇔⊥.,a b 为锐角0a b ⇒⋅>;,a b 为钝角0a b ⇒⋅<.由此,通常通过计算a b ⋅的值来判断两向量夹角是锐角还是钝角.例8.43 已知空间四边形ABCD 的每条边和对角线的长都等于a ,点,E F 分别是,BC AD 的中点,AE ⋅AF 的值为( )..A2a .B 21.2B a 21.4C a 2D变式1 如图8-161所示,已知平行六面体1111ABCD A B C D -中,1160A AD A AB DAB ∠=∠=∠=︒,且11A A AB AD ===,则1AC = .变式2 如图8-162所示,设,,,A B C D 是空间不共面的4个点,且满足0AB AC ⋅=,0AD AC ⋅=,0AD AB ⋅=,则BCD ∆的形状是( )..A 钝角三角形 .B 直角三角形 .C 锐角三角形 .D 无法确定例8.44 如图8-163所示,在45︒的二面角l αβ--的棱上有两点,A B ,点,C D 分别在,αβ内,且AC AB ⊥,45ABD ∠=︒,1AC BD AB ===,则CD 的长度为 .变式1 已知二面角l αβ--为60︒,动点,P Q 分别在面,αβ内,P 到βQ 到α的距离为,P Q 两点之间距离的最小值为( )..2BC .4D变式2 在直角坐标系中,设()3,2A ,()2,3B --,沿y 轴把坐标平面折成120︒的二面角后,AB 的长为( ).ABCD例8.45 如图8-164所示,设动点P 在棱长为1的正方体1111ABCD A B C D -的对角线1BD 上,记11D PD Bλ=.当APC ∠为钝角时,求λ的取值范围.变式1 已知正方体1111ABCD A B C D -的棱长为1,点P 在线段1BD 上,当APC ∠最大时,三棱锥P ABC -的体积为( ). 1.24A 1.18B 1.9C 1.12D例8.46 如图8-166所示,在四棱锥P ABCD -中,侧面PAD 为正三角形,底面ABCD 为正方形,侧面PAD ⊥底面ABCD ,M 为底面ABCD 内的一个动点,且满足MP MC =,则点M 在正方形ABCD 内的轨迹为( ).变式1 到两互相垂直的异面直线距离相等的点,在过其中一条直线且平行于另一条直线的平面内的轨迹是( )..A 直线 .B 椭圆 .C 抛物线 .D 双曲线变式2 空间点到平面的距离定义如下:过空间一点作平面的垂线,这个点和垂足之间的距离叫做这个点到这个平面的距离,已知平面α,β,γ两两互相垂直,点A α∈,点A 到β,γ的距离都是3,点P 是α上的动点,满足P 到β的距离是点P 到点A 距离的2倍,则点P 的轨迹上的点到γ的距离的最小值是( )..3A -.3B -.6C D题型117 空间向量在立体几何中的应用思路提示用向量法可以证点共线、线共点、线(或点)共面、两直线(或线与面、面与面)垂直的问题,也可以求空间角和距离.因此,凡涉及上述类型的问题,都可以考虑利用向量法求解,且其解法一般都比较简单.用向量法解题的途径有两种:一种是坐标法,即通过建立空间直角坐标系,确定出一些点的坐标,进而求出向量的坐标,再进行坐标运算;另一种是基底法,即先选择基向量(除要求不共面外,还要能够便于表示所求的目标向量,并优先选择相互夹角已知的向量作为基底,如常选择几何体上共点而不共面的三条棱所在的向量为基底),然后将有关向量用基底向量表示,并进行向量运算.一、证明三点共线(如A ,B ,C 三点共线)的方法先构造共起点的向量AB ,AC ,然后证明存在非零实数λ,使得AB AC λ=. 例8.47 如图8-168所示,已知在长方体1111ABCD A B C D -中,点M 为1DD 的中点,点N 在AC 上,且:2:1AN NC =,点E 为BM 的中点.求证:1A ,E ,N 三点共线.变式1 在正方体1111ABCD A B C D -中,E ,F 分别为棱1AA 和1CC 的中点,则在空间中与三条直线11A D ,EF ,CD 都相交的直线( )..A 不存在 .B 有且只有两条 .C 有且只有三条 .D 有无数条变式2 如图8-170所示,在空间四边形ABCD 中,M ,N 分别是AB 和CD 的中点,P 为线段MN 的中点,Q 为BCD ∆的重心.求证:,,A P Q 三点共线.二、证明多点共面的方法要证明多点(如A ,B ,C ,D )共面,可使用以下方法解题.先作出从同一点出发的三个向量(如AB ,AC ,AD ),然后证明存在两个实数,x y ,使得AD x AB y AC =+.例8.48 如图8-171所示,平面ABEF ⊥平面ABCD ,四边形ABEF 与ABCD 都是直角梯形,90BAD FAB ∠=∠=︒,1//2BC AD ,1//2BE AF .求证:,,,C D E F 四边共面.变式 1 如图8-173所示,已知平行六面体1111ABCD A B C D -,,,,E F G H 分别是棱11111,,,A D D C C C AB 的中点.求证:,,,E F G H 四点共面.三、证明直线和直线平行的方法将证线线平行转化为证两向量共线.设,a b 是两条不重合的直线,它们的方向向量分别为,a b ,则()//,0a b a b R λλλ⇔=∈≠.例8.49 如图8-174所示,在正方体1111ABCD A B C D -中,MN 是异面直线1A D 与AC 的公垂线段.求证:1//MN BD .四、证明直线和平面平行的方法(1)利用共面向量定理.设,a b 为平面α内不共线的两个向量,证明存在两个实数,x y ,使得l xa yb =+,则//l α.(2)转化为证明直线和平面内的某一直线平行.(3)转化为证明直线的方向向量与平面的法向量垂直(此方法最常用).例8.50 如图8-176所示,在直四棱柱1111ABCD A B C D -中,已知122DC DD AD AB ===,AD DC ⊥,//AB DC ,E 是DC 的中点.求证:1//D E 平面1A BD .变式1 如图8-177所示,已知P 是正方形ABCD 所在平面外一点,M 、N 分别是PA 、 BD 上的点,且::5:8PM MA BN ND ==.求证:直线//MN 平面PBC .五、证明平面与平面平行的方法(1)证明两平面内有两条相交直线分别平行.(2)转化为证两平面的法向量平行(常用此方法).例8.51 如图8-178所示,在正方体1111ABCD A B C D -中,,,M N P 分别是11111,,C C B C C D 的中点.求证:平面//MNP 平面1A BD .变式1 如图8-180所示,在平行六面体1111ABCD A B C D -中,,,E F G 分别是11111,,A D D D D C 的中点.求证:平面//EFG 平面1AB C .六、证明直线与直线垂直的方法设直线12,l l 的方向向量为,a b ,则a b ⊥0a b ⇔⋅=.这里要特别指出的是,用向量法证明两直线尤其是两异面直线垂直是非常有效的方法.例8.52 如图8-181所示,四棱锥A BCDE -中,底面BCDE 为矩形,侧面ABC ⊥底面BCDE ,2BC =,2CD =,AB AC =.求证:AD CE ⊥.变式1 如图8-183所示,已知空间四边形ABCD 的每条边和对角线长都等于a .点M ,N 分别为边AB ,CD 的中点.求证:MN 为AB 和CD 的公垂线.七.证明直线与平面垂直的方法(1)证明直线和平面内的两天相交直线垂直.(2)证明直线和平面内的任一直线垂直.(3)转化为证明直线与平面的法向量共线.例8.53 如图8-184所示,在直四棱柱ABCD-1111A B C D 中,已知AB ∥CD,AB=AD=1,1DD =CD =2.A B ⊥AD.求证:BC ⊥平面1D DB .变式1 正三棱锥O-ABC 的三条侧棱OA ,OB ,OC 两两垂直,且长度均为2,E ,F 分别是AB ,AC 的中点,H 是EF 的中点,过EF 的一个平面与侧棱OA ,OB ,OC 或其延长线分别交于111,A B C ,,132OA =。

相关文档
最新文档