空间向量的应用题
空间向量的应用与新定义(五种题型)(试题版)
空间向量的应用与新定义题型一:空间向量的位置关系的证明1如图,在正四棱柱ABCD-A1B1C1D1中,O是底面ABCD的中心,E,F分别是BB1,DD1的中点,则下列结论正确的是()A.A1O⎳EFB.A1O⊥EFC.A1O⎳平面EFB1D.A1O⊥平面EFB12在正方体ABCD-A1B1C1D1中,E,F分别为AB,BC的中点,则()A.平面B1EF⊥平面BDD1B.平面B1EF⊥平面A1BDC.平面B1EF⎳平面A1ACD.平面B1EF⎳平面A1C1D3如图,在棱长为1的正方体ABCD-A1B1C1D1中,P为棱BB1的中点,Q为正方形BB1C1C内一动点(含边界),则下列说法中不正确的是()A.若D1Q⎳平面A1PD,则动点Q的轨迹是一条线段B.存在Q点,使得D1Q⊥平面A1PDC.当且仅当Q点落在棱CC1上某点处时,三棱锥Q-A1PD的体积最大D.若D1Q=62,那么Q点的轨迹长度为24π4(多选)如图,已知正方体ABCD-A1B1C1D1的棱长为2,E、F、G分别为AD,AB,B1C1的中点,以下说法正确的是()博观而约取 厚积而薄发A.三棱锥A -EFG 的体积为13B.A 1C ⊥平面EFGC.过点E 、F 、G 作正方体的截面,所得截面的面积是33D.异面直线EG 与AC 1所成的角的余弦值为335(多选)在正方体ABCD -A 1B 1C 1D 1中,AB =1,点P 满足CP =λCD +μCC1,其中λ∈0,1 ,μ∈0,1 ,则下列结论正确的是()A.当B 1P ⎳平面A 1BD 时,B 1P 可能垂直CD 1B.若B 1P 与平面CC 1D 1D 所成角为π4,则点P 的轨迹长度为π2C.当λ=μ时,DP + A 1P 的最小值为2+52D.当λ=1时,正方体经过点A 1、P 、C 的截面面积的取值范围为62,26(多选)如图,多面体ABCDEF 中,面ABCD 为正方形,DE ⊥平面ABCD ,CF ∥DE ,且AB =DE =2,CF =1,G 为棱BC 的中点,H 为棱DE 上的动点,有下列结论:①当H 为DE 的中点时,GH ∥平面ABE ;②存在点H ,使得GH ⊥AE ;③三棱锥B -GHF 的体积为定值;④三棱锥E -BCF 的外接球的表面积为14π.其中正确的结论序号为.(填写所有正确结论的序号)7(多选)如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是棱A 1B 1,A 1D 1的中点,点P 在线段CM 上运动,给出下列四个结论:①平面CMN截正方体ABCD-A1B1C1D1所得的截面图形是五边形;②直线B1D1到平面CMN的距离是2 2;③存在点P,使得∠B1PD1=90°;④△PDD1面积的最小值是55 6.其中所有正确结论的序号是.8在棱长为a的正方体ABCD-A1B1C1D1中,M,N分别为BD1,B1C1的中点,点P在正方体表面上运动,且满足MP⊥CN,点P轨迹的长度是.9如图,四棱锥P-ABCD的底面是矩形,PD⊥底面ABCD,PD=DC=1,BC=2,M为BC的中点.(1)求证:PB⊥AM;(2)求平面PAM与平面PDC所成的角的余弦值.博观而约取 厚积而薄发10如图,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AB⊥AC,AB=AC=AA1=1,M为线段A1C1上一点.(1)求证:BM⊥AB1;(2)若直线AB1与平面BCM所成角为π4,求点A1到平面BCM的距离.11如图,在棱长为2的正方体ABCD-A1B1C1D1中,E为棱BC的中点,F为棱CD的中点.(1)求证:D1F⎳平面A1EC1;(2)求直线AC1与平面A1EC1所成角的正弦值.(3)求二面角A-A1C1-E的正弦值.12直三棱柱ABC-A1B1C1中,AA1=AB=AC=2,AA1⊥AB,AC⊥AB,D为A1B1的中点,E为AA1的中点,F为CD的中点.(1)求证:EF⎳平面ABC;(2)求直线BE与平面CC1D所成角的正弦值;(3)求平面A1CD与平面CC1D所成二面角的余弦值.13如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧面PAD⊥底面ABCD,E,F分别为PA,BD中点,PA=PD=AD=2.(1)求证:EF //平面PBC ;(2)求二面角E -DF -A 的余弦值;(3)在棱PC 上是否存在一点G ,使GF ⊥平面EDF ?若存在,指出点G 的位置;若不存在,说明理由.题型二:空间角的向量求法1(多选)已知正四棱柱ABCD -A 1B 1C 1D 1中,CC 1=2AB =2,E 为CC 1的中点,P 为棱AA 1上的动点,平面α过B ,E ,P 三点,则()A.平面α⊥平面A 1B 1EB.平面α与正四棱柱表面的交线围成的图形一定是四边形C.当P 与A 重合时,α截此四棱柱的外接球所得的截面面积为118πD.存在点P ,使得AD 与平面α所成角的大小为π32(多选)已知梯形ABCD ,AB =AD =12BC =1,AD ⎳BC ,AD ⊥AB ,P 是线段BC 上的动点;将△ABD 沿着BD 所在的直线翻折成四面体A BCD ,翻折的过程中下列选项中正确的是()A.不论何时,BD 与A C 都不可能垂直B.存在某个位置,使得A D ⊥平面A BCC.直线A P 与平面BCD 所成角存在最大值D.四面体A BCD 的外接球的表面积的最小值为4π方法归纳【点睛】解决与球相关的切、接问题,其通法是作出截面,将空间几何问题转化为平面几何问题求解,其解题思维流程如下:(1)定球心:如果是内切球,球心到切点的距离相等且为球的半径;如果是外接球,球心到接点的距离相等且为半径;(2)作截面:选准最佳角度做出截面(要使这个截面尽可能多的包含球、几何体的各种元素以及体现这些元素的关系),达到空间问题平面化的目的;(3)求半径下结论:根据作出截面中的几何元素,建立关于球的半径的方程,并求解.3如图,PO 是三棱锥P -ABC 的高,PA =PB ,AB ⊥AC ,E 是PB 的中点.博观而约取 厚积而薄发(1)证明:OE⎳平面PAC;(2)若∠ABO=∠CBO=30°,PO=3,PA=5,求二面角C-AE-B的正弦值.4在四棱锥P-ABCD中,PD⊥底面ABCD,CD∥AB,AD=DC=CB=1,AB=2,DP=3.(1)证明:BD⊥PA;(2)求PD与平面PAB所成的角的正弦值.5如图,四棱锥P-ABCD的底面是矩形,PD⊥底面ABCD,PD=DC=1,M为BC的中点,且PB ⊥AM.(1)求BC;(2)求二面角A-PM-B的正弦值.【整体点评】(1)方法一利用空坐标系和空间向量的坐标运算求解;方法二利用线面垂直的判定定理,结合三角形相似进行计算求解,运算简洁,为最优解;方法三主要是在几何证明的基础上,利用三角形等面积方法求得.(2)方法一,利用空间坐标系和空间向量方法计算求解二面角问题是常用的方法,思路清晰,运算简洁,为最优解;方法二采用构造长方体方法+等体积转化法,技巧性较强,需注意进行严格的论证.6在四棱锥Q-ABCD中,底面ABCD是正方形,若AD=2,QD=QA=5,QC=3.(1)证明:平面QAD⊥平面ABCD;(2)求二面角B-QD-A的平面角的余弦值.7如图,D为圆锥的顶点,O是圆锥底面的圆心,AE为底面直径,AE=AD.△ABC是底面的内接正三角形,P为DO上一点,PO=66DO.(1)证明:PA⊥平面PBC;(2)求二面角B-PC-E的余弦值.8如图,在三棱柱ABC-A1B1C1中,侧面BCC1B1为正方形,平面BCC1B1⊥平面ABB1A1,AB=BC =2,M,N分别为A1B1,AC的中点.(1)求证:MN∥平面BCC1B1;(2)再从条件①、条件②这两个条件中选择一个作为已知,求直线AB与平面BMN所成角的正弦值.博观而约取 厚积而薄发条件①:AB⊥MN;条件②:BM=MN.注:如果选择条件①和条件②分别解答,按第一个解答计分.9如图,ABCD为圆柱OO 的轴截面,EF是圆柱上异于AD,BC的母线.(1)证明:BE⊥平面DEF;(2)若AB=BC=2,当三棱锥B-DEF的体积最大时,求二面角B-DF-E的余弦值.10如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,其中AD∥BC,AD=3,AB=BC=2,PA ⊥平面ABCD,且PA=3,点M在棱PD上,点N为BC中点.(1)证明:若DM=2MP,直线MN⎳平面PAB;(2)求二面角C-PD-N的正弦值;(3)是否存在点M,使NM与平面PCD所成角的正弦值为26若存在求出PMPD值;若不存在,说明理由.11如图,四棱锥P-ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=12AD,∠BAD=∠ABC=90°,E是PD的中点.(1)证明:直线CE ∥平面PAB ;(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成角为45°,求二面角M -AB -D 的余弦值.12如图,在四棱锥S -ABCD 中,四边形ABCD 是矩形,△SAD 是正三角形,且平面SAD ⊥平面ABCD ,AB =1,P 为棱AD 的中点,四棱锥S -ABCD 的体积为233.(1)若E 为棱SB 的中点,求证:PE ⎳平面SCD ;(2)在棱SA 上是否存在点M ,使得平面PMB 与平面SAD 所成锐二面角的余弦值为235若存在,指出点M 的位置并给以证明;若不存在,请说明理由.13如图,在四棱台ABCD -A 1B 1C 1D 1中,底面ABCD 是菱形,∠ABC =π3,∠B 1BD =π6,∠B 1BA =∠B 1BC ,AB =2A 1B 1=2,B 1B =3(1)求证:直线AC ⊥平面BDB 1;(2)求直线A 1B 1与平面ACC 1所成角的正弦值.题型三:空间向量的距离求法1已知直线l 过定点A 2,3,1 ,且方向向量为s=0,1,1 ,则点P 4,3,2 到l 的距离为()A.322B.22C.102D.22在棱长为3的正方体ABCD -A 1B 1C 1D 1中,O 为棱DC 的中点,E 为线段AO 上的点,且AE =2EO ,若点F ,P 分别是线段DC 1,BC 1上的动点,则△PEF 周长的最小值为()博观而约取 厚积而薄发A.32B.922C.41D.423(多选)如图,四棱锥中,底面ABCD是正方形,SA⊥平面ABCD,SA=AB,O,P分别是AC,SC的中点,M是棱SD上的动点,则下列选项正确的是()A.OM⊥PAB.存在点M,使OM⎳平面SBCC.存在点M,使直线OM与AB所成的角为30°D.点M到平面ABCD与平面SAB的距离和为定值4(多选)已知正四棱台ABCD-A1B1C1D1的上下底面边长分别为4,6,高为2,E是A1B1的中点,则()A.正四棱台ABCD-A1B1C1D1的体积为5223B.正四棱台ABCD-A1B1C1D1的外接球的表面积为104πC.AE∥平面BC1DD.A1到平面BC1D的距离为41055(多选)如图,若正方体的棱长为1,点M是正方体ABCD-A1B1C1D1的侧面ADD1A1上的一个动点(含边界),P是棱CC1的中点,则下列结论正确的是()A.沿正方体的表面从点A到点P的最短路程为132B.若保持PM=2,则点M在侧面内运动路径的长度为π3C.三棱锥B-C1MD的体积最大值为16D.若M在平面ADD1A1内运动,且∠MD1B=∠B1D1B,点M的轨迹为线段6(多选)如图,在棱长为1的正方体ABCD-A1B1C1D1中,P为棱BB1的中点,Q为正方形BB1C1C内一动点(含边界),则下列说法中正确的是()A.若D1Q∥平面A1PD,则动点Q的轨迹是一条线段B.存在Q点,使得D1Q⊥平面A1PDC.当且仅当Q点落在棱CC1上某点处时,三棱锥Q-A1PD的体积最大D.若D1Q=62,那么Q点的轨迹长度为24π7如图,正四棱锥P-ABCD的棱长均为2,点E为侧棱PD的中点.若点M,N分别为直线AB,CE 上的动点,则MN的最小值为.8如图,某正方体的顶点A在平面α内,三条棱AB,AC,AD都在平面α的同侧.若顶点B,C,D到平面α的距离分别为2,3,2,则该正方体外接球的表面积为.博观而约取 厚积而薄发9如图,在四棱锥P-ABCD中,AD∥BC,∠ADC=∠PAB=90°,BC=CD=12AD=1.E为棱AD的中点,异面直线PA与CD所成的角为90° .(1)在平面PAB内是否存在一点M,使得直线CM∥平面PBE,如果存在,请确定点M的位置,如果不存在,请说明理由;(2)若二面角P-CD-A的大小为45°,求P到直线CE的距离.10如图多面体ABCDEF中,四边形ABCD是菱形,∠ABC=60°,EA⊥平面ABCD,EA⎳BF,AB =AE=2BF=2(1)证明:平面EAC⊥平面EFC;(2)在棱EC上有一点M,使得平面MBD与平面ABCD的夹角为45°,求点M到平面BCF的距离.11如图,在四棱锥S-ABCD中,四边形ABCD是菱形,AB=1,SC=233,三棱锥S-BCD是正三棱锥,E,F分别为SA,SC的中点.(1)求证:直线BD ⊥平面SAC ;(2)求二面角E -BF -D 的余弦值;(3)判断直线SA 与平面BDF 的位置关系.如果平行,求出直线SA 与平面BDF 的距离;如果不平行,说明理由.题型四:空间线段点的存在性问题1(多选)如图,在直三棱柱ABC -A 1B 1C 1中,∠ACB =90°,AC =BC =CC 1=2,E 为B 1C 1的中点,过AE 的截面与棱BB 1、A 1C 1分别交于点F 、G ,则下列说法中正确的是()A.存在点F ,使得A 1F ⊥AEB.线段C 1G 长度的取值范围是0,1C.当点F 与点B 重合时,四棱锥C -AFEG 的体积为2D.设截面△FEG 、△AEG 、△AEF 的面积分别为S 1、S 2、S 3,则S 21S 2S 3的最小值为23方法归纳【点睛】求空间几何体体积的方法如下:(1)求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解.2(多选)如图,已知正方体ABCD -A 1B 1C 1D 1的棱长为2,点M 为CC 1的中点,点P 为正方形A 1B 1C 1D 1上的动点,则()博观而约取 厚积而薄发A.满足MP⎳平面BDA1的点P的轨迹长度为2B.满足MP⊥AM的点P的轨迹长度为223C.存在点P,使得平面AMP经过点BD.存在点P满足PA+PM=53(多选)如图,直三棱柱ABC-A1B1C1中,AA1=AB=1,AC=2,BC=5.点P在线段B1C上(不含端点),则()A.存在点P,使得AB1⊥BPB.PA+PB的最小值为有5C.△ABP面积的最小值为55D.三棱锥B1-PAB与三棱锥C1-PAC的体积之和为定值4如图所示,在直三棱柱ABC-A1B1C1中,侧面AA1C1C为长方形,AA1=1,AB=BC=2,∠ABC= 120°,AM=CM.(1)求证:平面AA1C1C⊥平面C1MB;(2)求直线A1B和平面C1MB所成角的正弦值;(3)在线段A1B上是否存在一点T,使得点T到直线MC1的距离是133,若存在求A1T的长,不存在说明理由.5如图,在四棱锥P -ABCD 中,PA ⊥AD ,AD =12BC =3,PC =5,AD ⎳BC ,AB =AC ,∠BAD =150°,∠PDA =30°.(1)证明:平面PAB ⊥平面ABCD ;(2)在线段PD 上是否存在一点F ,使直线CF 与平面PBC 所成角的正弦值等于146已知矩形ABCD 中,AB =4,BC =2,E 是CD 的中点,如图所示,沿BE 将△BCE 翻折至△BFE ,使得平面BFE ⊥平面ABCD .(1)证明:BF ⊥AE ;(2)若DP =λDB(0<λ<1)是否存在λ,使得PF 与平面DEF 所成的角的正弦值是63若存在,求出λ的值;若不存在,请说明理由.7如图所示,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,AB ⊥AD ,AB ⎳CD ,AB =AD =PA =2CD =4,G 为PD 的中点.(1)求证AG ⊥平面PCD ;(2)若点F 为PB 的中点,线段PC 上是否存在一点H ,使得平面GHF ⊥平面PCD ?若存在,请确定H 的位置;若不存在,请说明理由.8如图,在直三棱柱ABC -A 1B 1C 1中,M 为棱AC 的中点,AB =BC ,AC =2,AA 1=2.博观而约取 厚积而薄发(1)求证:B 1C ⎳平面A 1BM ;(2)求证:AC 1⊥平面A 1BM ;(3)在棱BB 1上是否存在点N ,使得平面AC 1N ⊥平面AA 1C 1C ?如果存在,求此时BNBB 1的值;如果不存在,请说明理由.题型五:立体几何的新定义1(多选)如图,在直三棱柱ABC -A 1B 1C 1中,∠ACB =90°,AC =BC =CC 1=2,E 为B 1C 1的中点,过AE 的截面与棱BB 1、A 1C 1分别交于点F 、G ,则下列说法中正确的是()A.存在点F ,使得A 1F ⊥AEB.线段C 1G 长度的取值范围是0,1C.当点F 与点B 重合时,四棱锥C -AFEG 的体积为2D.设截面△FEG 、△AEG 、△AEF 的面积分别为S 1、S 2、S 3,则S 21S 2S 3的最小值为232(多选)如图,已知正方体ABCD -A 1B 1C 1D 1的棱长为2,点M 为CC 1的中点,点P 为正方形A 1B 1C 1D 1上的动点,则()A.满足MP ⎳平面BDA 1的点P 的轨迹长度为2B.满足MP⊥AM的点P的轨迹长度为223C.存在点P,使得平面AMP经过点BD.存在点P满足PA+PM=53(多选)如图,直三棱柱ABC-A1B1C1中,AA1=AB=1,AC=2,BC=5.点P在线段B1C上(不含端点),则()A.存在点P,使得AB1⊥BPB.PA+PB的最小值为有5C.△ABP面积的最小值为55D.三棱锥B1-PAB与三棱锥C1-PAC的体积之和为定值4如图所示,在直三棱柱ABC-A1B1C1中,侧面AA1C1C为长方形,AA1=1,AB=BC=2,∠ABC= 120°,AM=CM.(1)求证:平面AA1C1C⊥平面C1MB;(2)求直线A1B和平面C1MB所成角的正弦值;(3)在线段A1B上是否存在一点T,使得点T到直线MC1的距离是133,若存在求A1T的长,不存在说明理由.5如图,在四棱锥P-ABCD中,PA⊥AD,AD=12BC=3,PC=5,AD⎳BC,AB=AC,∠BAD=150°,∠PDA=30°.(1)证明:平面PAB⊥平面ABCD;博观而约取 厚积而薄发(2)在线段PD 上是否存在一点F ,使直线CF 与平面PBC 所成角的正弦值等于146已知矩形ABCD 中,AB =4,BC =2,E 是CD 的中点,如图所示,沿BE 将△BCE 翻折至△BFE ,使得平面BFE ⊥平面ABCD .(1)证明:BF ⊥AE ;(2)若DP =λDB(0<λ<1)是否存在λ,使得PF 与平面DEF 所成的角的正弦值是63若存在,求出λ的值;若不存在,请说明理由.7如图所示,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,AB ⊥AD ,AB ⎳CD ,AB =AD =PA =2CD =4,G 为PD 的中点.(1)求证AG ⊥平面PCD ;(2)若点F 为PB 的中点,线段PC 上是否存在一点H ,使得平面GHF ⊥平面PCD ?若存在,请确定H 的位置;若不存在,请说明理由.8如图,在直三棱柱ABC -A 1B 1C 1中,M 为棱AC 的中点,AB =BC ,AC =2,AA 1=2.(1)求证:B 1C ⎳平面A 1BM ;(2)求证:AC 1⊥平面A 1BM ;(3)在棱BB 1上是否存在点N ,使得平面AC 1N ⊥平面AA 1C 1C ?如果存在,求此时BNBB 1的值;如果不存在,请说明理由.。
空间向量在立体几何中的应用和习题(含答案)[1]
空间向量在立体几何中的应用:(1)直线的方向向量与平面的法向量: ①如图,l 为经过已知点A 且平行于已知非零向量a 的直线,对空间任意一点O ,点P 在直线l 上的充要条件是存在实数t ,使得a t OA OP +=,其中向量a 叫做直线的方向向量.由此可知,空间任意直线由空间一点及直线的方向向量惟一确定.②如果直线l ⊥平面α ,取直线l 的方向向量a ,则向量a 叫做平面α 的法向量.由此可知,给定一点A 及一个向量a ,那么经过点A 以向量a 为法向量的平面惟一确定. (2)用空间向量刻画空间中平行与垂直的位置关系:设直线l ,m 的方向向量分别是a ,b ,平面α ,β 的法向量分别是u ,v ,则 ①l ∥m ⇔a ∥b ⇔a =k b ,k ∈R ; ②l ⊥m ⇔a ⊥b ⇔a ·b =0; ③l ∥α ⇔a ⊥u ⇔a ·u =0; ④l ⊥α ⇔a ∥u ⇔a =k u ,k ∈R ; ⑤α ∥⇔u ∥v ⇔u =k v ,k ∈R ; ⑥α ⊥β ⇔u ⊥v ⇔u ·v =0.(3)用空间向量解决线线、线面、面面的夹角问题: ①异面直线所成的角:设a ,b 是两条异面直线,过空间任意一点O 作直线a ′∥a ,b ′∥b ,则a ′与b ′所夹的锐角或直角叫做异面直线a 与b 所成的角.设异面直线a 与b 的方向向量分别是v 1,v 2,a 与b 的夹角为θ ,显然],2π,0(∈θ则⋅=><⋅|||||||,cos |212121v v v v v v②直线和平面所成的角:直线和平面所成的角是指直线与它在这个平面内的射影所成的角.设直线a 的方向向量是u ,平面α 的法向量是v ,直线a 与平面α 的夹角为θ ,显然]2π,0[∈θ,则⋅=><⋅|||||||,cos |v u v u v u③二面角及其度量:从一条直线出发的两个半平面所组成的图形叫做二面角.记作α -l -β 在二面角的棱上任取一点O ,在两个半平面内分别作射线OA ⊥l ,OB ⊥l ,则∠AOB 叫做二面角α -l -β 的平面角.利用向量求二面角的平面角有两种方法: 方法一:如图,若AB ,CD 分别是二面角α -l -β 的两个面内与棱l 垂直的异面直线,则二面角α -l -β的大小就是向量CD AB 与的夹角的大小.方法二:如图,m 1,m 2分别是二面角的两个半平面α ,β 的法向量,则<m 1,m 2>与该二面角的大小相等或互补.(4)根据题目特点,同学们可以灵活选择运用向量方法与综合方法,从不同角度解决立体几何问题. 【例题分析】例1 如图,在长方体OAEB -O 1A 1E 1B 1中,OA =3,OB =4,OO 1=2,点P 在棱AA 1上,且AP =2P A 1,点S 在棱BB 1上,且B 1S =2SB ,点Q ,R 分别是O 1B 1,AE 的中点,求证:PQ ∥RS .【分析】建立空间直角坐标系,设法证明存在实数k ,使得.RS k PQ =解:如图建立空间直角坐标系,则O (0,0,0),A (3,0,0),B (0,4,0),O 1(0,0,2),A 1(3,0,2),B 1(0,4,2),E (3,4,0).∵AP =2P A 1, ∴),34,0,0()2,0,0(32321===AA AP ∴⋅)34,0,3(P同理可得:Q (0,2,2),R (3,2,0),⋅)32,4,0(S,)32,2,3(RS PQ =-=∴RS PQ //,又R ∉PQ ,∴PQ ∥RS .【评述】1、证明线线平行的步骤:(1)证明两向量共线;(2)证明其中一个向量所在直线上一点不在另一个向量所在的直线上即可.2、本体还可采用综合法证明,连接PR ,QS ,证明PQRS 是平行四边形即可,请完成这个证明. 例2 已知正方体ABCD -A 1B 1C 1D 1中,M ,N ,E ,F 分别是棱A 1D 1,A 1B 1,D 1C 1,B 1C 1的中点,求证:平面AMN ∥平面EFBD .【分析】要证明面面平行,可以通过线线平行来证明,也可以证明这两个平面的法向量平行. 解法一:设正方体的棱长为4,如图建立空间直角坐标系,则D (0,0,0),A (4,0,0),M (2,0,4),N (4,2,4),B (4,4,0),E (0,2,4),F (2,4,4).取MN 的中点K ,EF 的中点G ,BD 的中点O ,则O (2,2,0),K (3,1,4),G (1,3,4).MN =(2,2,0),EF =(2,2,0),AK =(-1,1,4),OG =(-1,1,4), ∴MN ∥EF ,OG AK =,∴MN//EF ,AK//OG ,∴MN ∥平面EFBD ,AK ∥平面EFBD , ∴平面AMN ∥平面EFBD .解法二:设平面AMN 的法向量是a =(a 1,a 2,a 3),平面EFBD 的法向量是 b =(b 1,b 2,b 3). 由,0,0==⋅⋅AN AM a a 得⎩⎨⎧=+=+-,042,0423231a a a a 取a 3=1,得a =(2,-2,1).由,0,0==⋅⋅BF DE b b得⎩⎨⎧=+-=+,042,0423132b b b b 取b 3=1,得b =(2,-2,1).∵a ∥b ,∴平面AMN ∥平面EFBD .注:本题还可以不建立空间直角坐标系,通过综合法加以证明,请试一试.例3 在正方体ABCD -A 1B 1C 1D 1中,M ,N 是棱A 1B 1,B 1B 的中点,求异面直线AM 和CN 所成角的余弦值.解法一:设正方体的棱长为2,如图建立空间直角坐标系,则D (0,0,0),A (2,0,0),M (2,1,2),C (0,2,0),N (2,2,1).∴),1,0,2(),2,1,0(==CN AM设AM 和CN 所成的角为θ ,则,52||||cos ==⋅CN AM CN AM θ ∴异面直线AM 和CN 所成角的余弦值是⋅52解法二:取AB 的中点P ,CC 1的中点Q ,连接B 1P ,B 1Q ,PQ ,PC . 易证明:B 1P ∥MA ,B 1Q ∥NC ,∴∠PB 1Q 是异面直线AM 和CN 所成的角. 设正方体的棱长为2,易知,6,52211=+===QC PC PQ Q B P B∴,522cos 11221211=-+=⋅Q B P B PQ Q B P B Q PB∴异面直线AM 和CN 所成角的余弦值是⋅52【评述】空间两条直线所成的角是不超过90°的角,因此按向量的夹角公式计算时,分子的数量积如果是负数,则应取其绝对值,使之成为正数,这样才能得到异面直线所成的角(锐角).例4 如图,正三棱柱ABC -A 1B 1C 1的底面边长为a ,侧棱长为a 2,求直线AC 1与平面ABB 1A 1所成角的大小.【分析】利用正三棱柱的性质,适当建立空间直角坐标系,写出有关点的坐标.求角时有两种思路:一是由定义找出线面角,再用向量方法计算;二是利用平面ABB 1A 1的法向量求解.解法一:如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),),2,0,0(1a A⋅-)2,2,23(1a aa C 取A 1B 1的中点D ,则)2,2,0(a a D ,连接AD ,C 1D .则),2,0,0(),0,,0(),0,0,23(1a AA a AB aDC ==-= ,0,0111==⋅⋅AA DC AB DC∴DC 1⊥平面ABB 1A 1,∴∠C 1AD 是直线AC 1与平面ABB 1A 1所或的角.),2,2,0(),2,2,23(1a aAD a a a AC =-= 23||||cos 111==∴AD AC AD C , ∴直线AC 1与平面ABB 1A 1所成角的大小是30°.解法二:如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),A 1(0,0,a 2),)2,2,23(1a aa C -,从而⋅-===)2,2,23(),2,0,0(),0,,0(11a aa AC a AA a AB 设平面ABB 1A 1的法向量是a =(p ,q ,r ), 由,0,01==⋅⋅AA AB a a得⎩⎨⎧==,02,0ar aq 取p =1,得a =(1,0,0). 设直线AC 1与平面ABB 1A 1所成的角为],2π,0[,∈θθ.30,21|||||||,cos |sin 111 ===〉〈=⋅θθa a a AC AC AC 【评述】充分利用几何体的特征建立适当的坐标系,再利用向量的知识求解线面角;解法二给出了一般的方法,即先求平面的法向量与斜线的夹角,再利用两角互余转换.例5 如图,三棱锥P -ABC 中,P A ⊥底面ABC ,AC ⊥BC ,P A =AC =1,2=BC ,求二面角A-PB -C 的平面角的余弦值.解法二图解法一:取PB 的中点D ,连接CD ,作AE ⊥PB 于E . ∵P A =AC =1,P A ⊥AC , ∴PC =BC =2,∴CD ⊥PB . ∵EA ⊥PB ,∴向量EA 和DC 夹角的大小就是二面角A -PB -C 的大小.如图建立空间直角坐标系,则C (0,0,0),A (1,0,0),B (0,2,0),P (1,0,1),由D 是PB 的中点,得D ⋅)21,22,21( 由,3122==AB AP EB PE 得E 是PD 的中点,从而⋅)43,42,43(E∴)21,22,21(),43,42,41(---=--=DC EA ∴⋅=>=<33||||,cos DC EA DC EA DC EA 即二面角A -PB -C 的平面角的余弦值是⋅33 解法二:如图建立空间直角坐标系,则A (0,0,0),)0,1,2(B ,C (0,1,0),P (0,0,1),).1,1,0(),0,0,2(),0,1,2(),1,0,0(-====CP CB AB AP设平面P AB 的法向量是a =(a 1,a 2,a 3),平面PBC 的法向量是b =(b 1,b 2,b 3). 由,0,0==⋅⋅AB AP a a得⎪⎩⎪⎨⎧=+=,02,0213a a a 取a 1=1,得).0,2,1(-=a 由0,0==⋅⋅CP CB b b 得⎪⎩⎪⎨⎧=+-=,0,02321b b b 取b 3=1,得b =(0,1,1).∴⋅-=>=<⋅33||||,cos b a b a b a∵二面角A -PB -C 为锐二面角, ∴二面角A -PB -C 的平面角的余弦值是⋅=-33|33| 【评述】1、求二面角的大小,可以在两个半平面内作出垂直于棱的两个向量,转化为这两个向量的夹角;应注意两个向量的始点应在二面角的棱上.2、当用法向量的方法求二面角时,有时不易判断两个平面法向量的夹角是二面角的平面角还是其补角,但我们可以借助观察图形而得到结论,这是因为二面角是锐二面角还是钝二面角一般是明显的.练习一、选择题: 1.在正方体ABCD -A 1B 1C 1D 1中,E 是BB 1的中点,则二面角E -A 1D 1-D 的平面角的正切值是( ) (A)2(B )2(C)5(D)222.正方体ABCD -A 1B 1C 1D 1中,直线AD 1与平面A 1ACC 1所成角的大小是( ) (A)30° (B)45° (C)60° (D)90°3.已知三棱柱ABC -A 1B 1C 1的侧棱与底面边长都相等,A 1在底面ABC 内的射影为△ABC 的中心,则AB 1与底面ABC 所成角的正弦值等于( ) (A)31 (B )32 (C)33 (D )32 4.如图,α ⊥β ,α ∩β =l ,A ∈α ,B ∈β ,A ,B 到l 的距离分别是a 和b ,AB 与α ,β 所成的角分别是θ 和ϕ,AB 在α ,β 内的射影分别是m 和n ,若a >b ,则下列结论正确的是( )(A)θ >ϕ,m >n (B )θ >ϕ,m <n (C)θ <ϕ,m <n(D )θ <ϕ,m >n二、填空题:5.在正方体ABCD -A 1B 1C 1D 1中,E ,F ,G ,H 分别为AA 1,AB ,BB 1,B 1C 1的中点,则异面直线EF 与GH 所成角的大小是______. 6.已知正四棱柱的对角线的长为6,且对角线与底面所成角的余弦值为33,则该正四棱柱的体积等于______.7.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则异面直线A 1B 与AD 1所成角的余弦值为______.4题图 7题图 9题图 8.四棱锥P -ABCD 的底面是直角梯形,∠BAD =90°,AD ∥BC ,==BC AB AD 21,P A ⊥底面ABCD ,PD 与底面ABCD 所成的角是30°.设AE 与CD 所成的角为θ ,则cos θ =______. 三、解答题:9.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB =4,点E 在CC 1上,且C 1E =3EC .(Ⅰ)证明:A 1C ⊥平面BED ;(Ⅱ)求二面角A 1-DE -B 平面角的余弦值. 10.如图,在四棱锥O -ABCD 中,底面ABCD 是边长为1的菱形,4π=∠ABC ,OA ⊥底面ABCD ,OA =2,M 为OA 的中点,N 为BC 的中点.(Ⅰ)证明:直线MN ∥平面OCD ;(Ⅱ)求异面直线AB 与MD 所成角的大小.11.如图,已知直二面角α -PQ -β ,A ∈PQ ,B ∈α ,C ∈β ,CA =CB ,∠BAP =45°,直线CA 和平面α 所成的角为30°.(Ⅰ)证明:BC ⊥PQ ;(Ⅱ)求二面角B -AC -P 平面角的余弦值.练习答案一、选择题:1.B 2.A 3.B 4.D 二、填空题:5.60° 6.2 7.548.42三、解答题:9题图 10题图 11题图 9.以D 为坐标原点,射线DA 为x 轴的正半轴,建立如图所示直角坐标系D -xyz .依题设,B (2,2,0),C (0,2,0),E (0,2,1),A 1(2,0,4).),0,2,2(),1,2,0(==DB DE ).4,0,2(),4,2,2(11=--=DA C A(Ⅰ)∵,0,011==⋅⋅DE C A DB C A ∴A 1C ⊥BD ,A 1C ⊥DE . 又DB ∩DE =D ,∴A 1C ⊥平面DBE .(Ⅱ)设向量n =(x ,y ,z )是平面DA 1E 的法向量,则.,1DA DE ⊥⊥n n ∴⎩⎨⎧=+=+.042,02z x z y 令y =1,得n =(4,1,-2).⋅==4214||||),cos(111C A C A C A n n ∴二面角A 1-DE -B 平面角的余弦值为⋅4214 10.作AP ⊥CD 于点P .如图,分别以AB ,AP ,AO 所在直线为x ,y ,z 轴建立坐标系.则A (0,0,0),B (1,0,0),)0,22,22(),0,22,0(-D P ,O (0,0,2),M (0,0,1),⋅-)0,42,421(N (Ⅰ)⋅--=-=--=)2,22,22(),2,22,0(),1,42,421(OD OP MN 设平面OCD 的法向量为n =(x ,y ,z ),则,0,0==⋅⋅OD OP n n即⎪⎪⎩⎪⎪⎨⎧=-+-=-.022222,0222z y x z y 取,2=z ,得).2,4,0(=n ∵,0=⋅n MN ∴MN ∥平面OCD . (Ⅱ)设AB 与MD 所成的角为θ ,,3π,21||||cos ),1,22,22(),0,0,1(=∴==∴--==⋅θθMD AB MD AB MD AB 即直线AB 与MD 所成角的大小为⋅3π11.(Ⅰ)证明:在平面β 内过点C 作CO ⊥PQ 于点O ,连结OB .∵α ⊥β ,α ∩β =PQ ,∴CO ⊥α . 又∵CA =CB ,∴OA =OB .∵∠BAO =45°,∴∠ABO =45°,∠AOB =90°,∴BO ⊥PQ ,又CO ⊥PQ , ∴PQ ⊥平面OBC ,∴PQ ⊥BC .(Ⅱ)由(Ⅰ)知,OC ⊥OA ,OC ⊥OB ,OA ⊥OB ,故以O 为原点,分别以直线OB ,OA ,OC 为x 轴,y 轴,z 轴建立空间直角坐标系(如图).∵CO ⊥α ,∴∠CAO 是CA 和平面α 所成的角,则∠CAO =30°.不妨设AC =2,则3=AO ,CO =1.在Rt △OAB 中,∠ABO =∠BAO =45°,∴.3==AO BO∴).1,0,0(),0,3,0(),0,0,3(),0,0,0(C A B O).1,3,0(),0,3,3(-=-=AC AB设n 1=(x ,y ,z )是平面ABC 的一个法向量,由⎪⎩⎪⎨⎧==⋅⋅,0,0AC AB n n 得⎪⎩⎪⎨⎧=+-=-,03,033z y y x 取x =1,得)3,1,1(1=n . 易知n 2=(1,0,0)是平面β 的一个法向量. 设二面角B -AC -P 的平面角为θ ,∴,55||||cos 2121==⋅⋅n n n n θ即二面角B -AC -P 平面角的余弦值是⋅55。
空间向量的应用 高中数学例题课后习题详解
第一章空间向量与立体几何1.4空间向量的应用1.4.1用空间向量研究直线、平面的位置关系例1如图1.4-7在长方体1111ABCD A B C D -中,4AB =,3BC =,12CC =,M 是AB的中点.以D 为原点,DA ,DC ,1DD 所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系.图1.4-7(1)求平面11BCC B 当的法向量;(2)求平面1MCA 的法向量.分析:(1)平面11BCC B 与y 轴垂直,其法向量可以直接写出;(2)平面1MCA 可以看成由MC ,1MA,1CA 中的两个向量所确定,运用法向量与它们的垂直关系,可转化为数量积运算求得法向量.解:(1)因为y 轴垂直于平面11BCC B ,所以1(0,1,0)n=是平面11BCC B 的一个法向量.(2)因为4AB =,3BC =,12CC =,M 是AB 的中点,所以M ,C ,1A 的坐标分别为(3,2,0),(0,4,0),(3,0,2).因此(3,2,0)MC =-,1(0,2,2)MA =- .设2(,,)n x y z =是平面1MCA 的法向量,则2n MC ⊥ ,21n MA ⊥ .所以221320,220.n MC x y n MA y z ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩所以2,3.x z y z ⎧=⎪⎨⎪=⎩取3z =,则2x =,3y =.于是2(2,3,3)n =是平面1MCA 的一个法向量.练习1.空间中点、直线和平面的向量表示1.判断下列命题是否正确,正确的在括号内打“√”,错误的打“×”(1)零向量不能作为直线的方向向量和平面的法向量;()(2)若v 是直线l 的方向向量,则()v λλ∈R 也是直线l 的方向向量;()(3)在空间直角坐标系中,()0,0,1j =是坐标平面Oxy 的一个法向量.()【答案】①.√②.×③.√【解析】【分析】根据零向量的方向不确定可判断(1),由0λ=可判断(2),由j ⊥ 平面Oxy 可判断(3).【详解】(1)零向量的方向不确定,所以不能作为直线的方向向量和平面的法向量,正确;(2)当0λ=时,0v λ=,所以()v λλ∈R 不一定是直线l 的方向向量,不正确;(3)在空间直角坐标系中,()0,0,1j = ,j ⊥平面Oxy ,所以()0,0,1j = 是坐标平面Oxy 的一个法向量,正确.2.在平行六面体1111ABCD A B C D -中,AB a = ,AD b = ,1AA c =,O 是1BD 与1B D的交点.以{},,a b c为空间的一个基底,求直线OA 的一个方向向量.【答案】111222a b c---【解析】【分析】依题意就是用{},,a b c表示OA ,根据空间向量的线性运算法则计算可得;【详解】解:因为AB a = ,AD b = ,1AA c =,如图112OA OB BA D B BA=+=+()11112D A A A AB BA =+++因为11D A AD b =-=- ,11A A AA c =-=- ,所以()11112222OA b c a a a b c=--+-=--- 所以直线OA 的一个方向向量为111222a b c---3.在长方体1111ABCD A B C D -中,4AB =,3BC =,12CC =.以D 为原点,以1111,,342DA DC DD ⎧⎫⎨⎬⎩⎭为空间的一个单位正交基底,建立空间直角坐标系Oxyz ,求平面1ACD 的一个法向量.【答案】()4,3,6(答案不唯一)【解析】【分析】求得1,AC AD 坐标,设出法向量,根据100m AC m AD ⎧⋅=⎪⎨⋅=⎪⎩ 即可求解.【详解】由题可得()()()10,4,0,3,0,0,0,0,2C A D ,则()()13,4,0,3,0,2AC AD =-=-,设平面1ACD 的一个法向量为(,,)m x y z = ,则1340320m AC x y m AD x z ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩,令4x =,得3,6y z ==,则平面1ACD 的一个法向量为()4,3,6.2.空间中直线、平面的平行例2证明“平面与平面平行的判定定理”:同一个平面内有两条相交直线与另一个平面平行,则这两个平面平行.已知:如图1.4-11,a β⊂,b β⊂,a b P = ,//a α,//b α.求证://αβ.分析:设平面α的法向量为n,直线a ,b 的方向向量分别为u r,v,则由已知条件可得0n u n v ⋅=⋅=,由此可以证明n 与平面β内的任意一个向量垂直,即n 也是β的法向量.证明:如图1.4-11,取平面α的法向量n ,直线a ,b 的方向向量u r ,v.因为//a α,//b α,所以0n u ⋅= ,0n v ⋅=.因为a β⊂,b β⊂,a b P = ,所以对任意点Q β∈,存在x ,y R ∈,使得PQ xu yv =+.从而()0n PQ n xu yv xn u yn v ⋅=⋅+=⋅+⋅=.所以,向量n也是平面β的法向量.故//αβ.倒3如图1.4-12,在长方体1111ABCD A B C D -中,4AB =,3BC =,12CC =.线段1B C上是否存在点P ,使得1//A P 平面1ACD ?图1.4-12分析:根据条件建立适当的空间直角坐标系,那么问题中涉及的点、向量1B C ,1A P,以及平面1 ACD 的法向量n等都可以用坐标表示,如果点P 存在,那么就有10n A P ⋅=,由此通过向量的坐标运算可得结果.解:以D 为原点,DA ,DC ,1DD 所在直线分别为x 轴、y 轴、z 轴,建立如图1.4-12所示的空间直角坐标系.因为A ,C ,1D 的坐标分别为(3,0,0),(0,4,0),(0,0,2),所以(3,4,0)AC =-,1(3,0,2)AD =- .设(,,)n x y z = 是平面1ACD 的法向量,则0n AC ⋅=uuu rr ,10n AD ⋅= ,即340,320.x y x z -+=⎧⎨-+=⎩所以2,31.2x z y z ⎧=⎪⎪⎨⎪=⎪⎩取6z =,则4x =,3y =.所以,(4,3,6)n =是平面1ACD 的一个法向量.由1A ,C ,1B 的坐标分别为(3,0,2),(0,4,0),(3,4,2),得11(0,4,0)A B =,1(3,0,2)B C =-- .设点P 满足11(01)B P B C λλ= ,则1(3,0,2)B P λλ=--,所以1111(3,4,2)A P A B B P λλ=+=--.令10n A P ⋅=,得1212120λλ-+-=,解得12λ=,这样的点P 存在.所以,当1112B P BC =,即P 为1B C 的中点时,1//A P 平面1ACD .练习4.用向量方法证明“直线与平面平行的判定定理”:若平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.【答案】证明见解析【解析】【分析】先写出已知求证,再利用向量的数量积运算以及线面平行的定义即可证出.【详解】已知:直线,a b ,平面α,,a b αα⊄⊂,//a b .求证://a α.证明:设直线,a b 的方向向量分别为,u v ,平面α的一个法向量为n,因为//a b ,所以u v λ= ,由于n v ⊥ ,所以0n v ⋅= ,即有0n u n v λ⋅=⋅= ,亦即n u ⊥.因为a α⊄,所以//a α.5.如图,在四面体ABCD 中,E 是BC 的中点.直线AD 上是否存在点F ,使得//AE CF?【答案】不存在,证明见解析.【解析】【分析】把向量A E和CF 都用同一组基底来表示,然后根据向量平行的条件来证明不存在.【详解】假设直线AD 上存在点F 使//AE CF ,设()01AF AD λλ=≤≤,,,AB a AC b AD c ===,因为E 是BC 的中点,所以11112222AE AB AC a b =+=+ ,CF AF AC AD AC c b λλ=-=-=- ,若//AE CF ,则AE mCF = ,即()1122a b m c b λ+=- ,所以1122a b m c mb λ+=- ,即11022a m b m c λ⎛⎫++-= ⎪⎝⎭,所以1021020m m λ⎧=⎪⎪⎪+=⎨⎪=⎪⎪⎩,此时显然不成立,所以不存在点F ,使得//AE CF .6.如图,在正方体1111ABCD A B C D -中,E ,F 分别是面1AB ,面11A C 的中心.求证://EF 平面1ACD.【答案】证明见解析【解析】【分析】以D 为原点建立空间直角坐标系,求出平面1ACD 的一个法向量,利用向量关系即可证明.【详解】如图,以D 为原点建立空间直角坐标系,设正方体棱长为2,则()()()()()12,0,0,0,2,0,0,0,2,2,1,1,1,1,2A C D E F ,则()()()12,2,0,2,0,2,1,0,1AC AD EF =-=-=-,设平面1ACD 的一个法向量为(),,n x y z =,则100n AC n AD ⎧⋅=⎪⎨⋅=⎪⎩ ,即220220x y x z -+=⎧⎨-+=⎩,令1x =,则可得()1,1,1n = ,0EF n ⋅= ,EF n ∴⊥,EF ⊄平面1ACD ,∴//EF 平面1ACD .3.空间中直线、平面的垂直例4如图1.4-14,在平行六面体1111ABCD A B C D -中,11AB AD AA ===,11A AB A AD BAD ∠=∠=∠60=︒,求证:直线1A C ⊥平面11BDD B .图1.4-14分析:根据条件,可以{AB ,AD ,1AA}为基底,并用基向量表示1AC 和平面11BDD B ,再通过向量运算证明1AC是平面11BDD B 的法向量即可.证明:设AB a = ,AD b = ,1AA c = ,则{a ,b ,c}为空间的一个基底,且1A C a b c =+- ,BD b a =- ,1BB c =.因为11AB AD AA ===,1160A AB A AD BAD ∠=∠=∠=︒,所以2221a b c === ,12a b b c c a ⋅=⋅=⋅=r r r r r r .在平面11BDD B 上,取BD ,1BB为基向量,则对于平面11BDD B 上任意一点P ,存在唯一的有序实数对(,)λμ,使得1BP BD BB λμ=+ .所以,1111A C BP A C BD A C BB λμ⋅=⋅+⋅ ()()()0a b c b a a b c c λμ=+-⋅-++-⋅=.所以1AC是平面11BDD B 的法向量.所以1A C ⊥平面11BDD B .例5证明“平面与平面垂直的判定定理”:若一个平面过另一个平面的垂线,则这两个平面垂直.图1.4-15已知:如图1.4-15,l α⊥,l β⊂,求证:αβ⊥.证明:取直线l 的方向向量u r,平面β的法向量n.因为l α⊥,所以u r是平面α的法向量.因为l β⊂,而n 是平面β的法向量,所以u n ⊥.所以αβ⊥.练习7.已知(3,,)(,)u a b a b a b =+-∈R 是直线l 的方向向量,()1,2,3n =是平面α的法向量.(1)若//l α,求a ,b 的关系式;(2)若l α⊥,求a ,b 的值.【答案】(1)530a b -+=;(2)153,.22a b ==-【解析】【分析】(1)由//l α得u n ⊥ ,所以0u n ⋅=,进而可得结果;(2)由l α⊥得//u n,所以3123a b a b+-==,进而解得,a b .【详解】(1)由//l α得u n ⊥,所以0u n ⋅=,即31()2()30a b a b ⨯++⨯+-⨯=,整理得530a b -+=;(2)由l α⊥得//u n,所以3123a b a b +-==,解得152a =,32b =-.8.已知正方体1111ABCD A B C D -的棱长为1,以D 为原点,{}1,,DA DC DD为单位正交基底建立空间直角坐标系.求证:11A C BC ⊥.【答案】证明见解析【解析】【分析】用基底表示出向量11,AC BC ,证明110AC BC ⋅=.【详解】由题意,111AC DC DA DC DA DD =-=--,111BC DC DB DD DA =-=-,所以221111110A C BC DC DD DD DA DD DA DC DA DA DD ⋅=⋅-⋅--⋅++⋅= 所以11A C BC ⊥.9.如图,在长方体1111ABCD A B C D -中,2AB =,11BC CC ==,E 是CD 的中点,F 是BC 的中点.求证:平面1EAD ⊥平面1EFD .【答案】证明见解析【解析】【分析】建立空间直角坐标系,求出点的坐标与平面的法向量,利用空间向量法证明即可;【详解】解:如图建立空间直角坐标系,则()0,1,0E ,()1,0,0A ,()10,0,1D ,1,2,02F ⎛⎫ ⎪⎝⎭,()1,1,0AE =- ,()10,1,1ED =- ,1,1,02EF ⎛⎫= ⎪⎝⎭ ,设面1EAD 的法向量为(),,n x y z = ,则1·0·0n AE n ED ⎧=⎪⎨=⎪⎩ ,即00x y y z -+=⎧⎨-+=⎩,令1x =,则1y z ==,所以()1,1,1n = ;设面1EFD 的法向量为(),,m x y z = ,则1·0·0m EF m ED ⎧=⎪⎨=⎪⎩ ,即1020x y y z ⎧+=⎪⎨⎪-+=⎩,令2x =,则1y z ==-,所以()2,1,1m =--;因为()()2111110n m =⨯+⨯-+⨯-= ,所以n m ⊥ 所以平面1EAD ⊥平面1EFD.1.4.2用空间向量研究距离、夹角问题例6如图1.4-18在棱长为1的正方体1111ABCD A B C D -中,E 为线段11A B 的中点,F 为线段AB 的中点.图1.4-18(1)求点B 到直线1AC 的距离;(2)求直线FC 到平面1AEC 的距离.分析:根据条件建立空间直角坐标系,用坐标表示相关的点、直线的方向向量和平面的法向量,再利用有关公式,通过坐标运算得出相应的距离.解:以1D 为原点,11D A ,11D C ,1D D 所在直线分别为x 轴、y 轴、z 轴,建立如图1.4-18所示的空间直角坐标系,则(1,0,1)A ,(1,1,1)B ,(0,1,1)C ,1(0,1,0)C ,11,,02E ⎛⎫ ⎪⎝⎭,11,,12F ⎛⎫⎪⎝⎭,所以(0,1,0)AB = ,1(1,1,1)AC =-- ,10,,12AE ⎛⎫=- ⎪⎝⎭,111,,02EC ⎛⎫=- ⎪⎝⎭ ,11,,02FC ⎛⎫=- ⎪⎝⎭ ,10,,02AF ⎛⎫= ⎪⎝⎭.(1)(0,1,0)a AB == ,113(1,1,1)3AC u AC ==-- ,则21a = ,33a u ⋅= .所以,点B 到直线1AC 的距离为2216()133a a u -⋅=-= .(2)因为111,,02FC EC ⎛⎫==-⎪⎝⎭ ,所以1//FC EC ,所以//FC 平面1AEC .所以点F 到平面1AEC 的距离即为直线FC 到平面1AEC 的距离.设平面1AEC 的法向量为(,,)n x y z =,则10,0.n AE n EC ⎧⋅=⎨⋅=⎩所以10,210.2y z x y ⎧-=⎪⎪⎨⎪-+=⎪⎩所以,2.x z y z =⎧⎨=⎩取1z =,则1x =,2y =,所以,(1,2,1)n =是平面1AEC 的一个法向量.又因为10,,02AF ⎛⎫= ⎪⎝⎭ ,所以点F 到平面1AEC的距离为||66||AF n n ⋅== .即直线FC 到平面1AEC 的距离为66.练习10.在棱长为1的正方体1111ABCD A B C D -中,点A 到平面1B C 的距离等于__________;直线DC 到平面1AB 的距离等于_________;平面1DA 到平面1CB 的距离等于__________.【答案】①.1②.1③.1【解析】【分析】根据点面距、线面距、面面距的定义及正方体的性质计算可得;【详解】解:在棱长为1的正方体1111ABCD A B C D -中,AB ⊥面1B C ,所以AB 即为点A 到平面1B C 的距离,故点A 到平面1B C 的距离为1,因为//DC AB ,AB Ì面1B A ,DC ⊄面1B A ,所以//DC 面1B A ,所以AD 即为直线DC 到平面1AB 的距离,故直线DC 到平面1AB 的距离为1,又平面1//DA 平面1CB ,所以平面1DA 到平面1CB 的距离为1故答案为:1,1,111.如图,在棱长为1的正方体1111ABCD A B C D -中,E 为线段1DD 的中点,F 为线段1BB 的中点.(1)求点1A 到直线1B E 的距离;(2)求直线1FC 到直线AE 的距离;(3)求点1A 到平面1AB E 的距离;(4)求直线1FC 到平面1AB E 的距离.【答案】(1)53;(2)305;(3)23;(4)13.【解析】【分析】(1)建立坐标系,求出向量11A B 在单位向量11||B Eu B E =上的投影,结合勾股定理可得点1A 到直线1B E 的距离;(2)先证明1//,AE FC 再转化为点F 到直线AE 的距离求解;(3)求解平面的法向量,利用点到平面的距离公式进行求解;(4)把直线1FC 到平面1AB E 的距离转化为1C 到平面1AB E 的距离,利用法向量进行求解.【详解】建立如图所示的空间直角坐标系,则11111(1,0,1),(1,1,1),(0,0,(1,1,(0,1,1),(1,0,0).22A B E F C A (1)因为111111221(1,1,),(,,),(0,1,0)2333||B E B E u A B B E =---==---=,所以1123A B u ⋅=- .所以点1A 到直线1B E3==.(2)因为111(1,0,),(1,0,),22AE FC =-=- 所以1//AE FC ,即1//,AE FC 所以点F 到直线AE 的距离即为直线1FC 到直线AE 的距离.1(,0,(0,1,).552||AE u AF AE ==-=255,,410AF AF u =⋅= 所以直线1FC 到直线AE305=(3)设平面1AB E 的一个法向量为(),,n x y z =,11(0,1,1),(1,0,),2AB AE ==- 1(001)AA =,,.由10,10,2n AB y z n AE x z ⎧⋅=+=⎪⎨⋅=-+=⎪⎩令2z =,则2,1y x =-=,即(1,2,2)n =-.设点1A 到平面1AB E 的距离为d ,则123AA n d n ⋅== ,即点1A 到平面1AB E 的距离为23.(4)因为1//,AE FC 所以1//FC 平面1AB E ,所以直线1FC 到平面1AB E 的距离等于1C 到平面1AB E 的距离.()111,0,0C B = ,由(3)得平面1AB E 的一个法向量为(1,2,2)n =-,所以1C 到平面1AB E 的距离为1113C B n n ⋅= ,所以直线1FC 到平面1AB E 的距离为13.12.如图,在棱长为1的正方体1111ABCD A B C D -中,求平面1A DB 与平面11D CB 的距离.【答案】33【解析】【分析】建立空间直角坐标系,计算平面1A DB 的法向量为(1,1,1)n =--,再由DC n d n⋅= 可得解.【详解】如图所示建立空间直角坐标系,1(1,0,1),(1,1,0),(0,0,0),(0,1,0)A B D C ,1(1,0,1),(1,1,0),(0,1,0)DA DB DC ===设平面1A DB 的法向量为(,,)n x y z =,则100n DA x z n DB x y ⎧⋅=+=⎨⋅=+=⎩,不妨令1x =,则1,1y z =-=-,所以(1,1,1)n =--,所以平面1A DB 与平面11D CB间的距离33DC n d n ⋅=== 例7如图1.4-19,在校长为1的正四面体(四个面都是正三角形)ABCD 中,M ,N 分别为BC ,AD 的中点,求直线AM 和CN夹角的余弦值.图1.4-19分析:求直线AM 和CN 夹角的余弦值,可以转化同量MA 与CN的余弦值.为此需要把向量MA ,CN 用适当的基底表示出来,进而求得向量MA ,CN夹角的余弦值.解:化为向量问题如图1.4-19,以{CA ,CB ,CD}作为基底.则12MA CA CM CA CB =-=- ,1()2CN CA CD =+.设向量CN 与MA的夹角为θ,则直线AM 和CN 夹角的余弦值等于|cos |θ.进行向量运算11()22CN MA CA CD CA CB ⎛⎫⋅=+⋅- ⎪⎝⎭ 211112424CA CA CB CD CA CD CB =-⋅+⋅-⋅1111128482=-+-=.又ABC 和ACD △均为等边三角形,所以3||||2MA CN ==.122cos 3||||3322CN MACN MA θ⋅==⋅ .回到圆形问题所以直线AM 和CN 夹角的余弦值为23.例8图1.4-22,在直三棱柱111ABC A B C -中,2AC CB ==,13AA =,90ACB ∠=︒,P 为BC 的中点,点Q ,R 分别在棱1AA ,1BB 上,12A Q AQ =,12BR RB =.求平面PQR 与平面111A B C夹角的余弦值.图1.4-22分析:因为平面PQR 与平面111A B C 的夹角可以转化为平面PQR 与平面111A B C 的法向量的夹角,所以只需要求出这两个平面的法向量的夹角即可.解:化为向量问题以1C 为原点,11C A ,11C B ,1C C 所在直线为x 轴、y 轴、z 轴,建立如图1.4-22所示的空间直角坐标系.设平面111A B C 的法向量为1n u r ,平面PQR 的法向量为2n u u r,则平面PQR 与平面111A B C 的夹角就是1n u r 与2n u u r的夹角或其补角.进行向量运算因为1C C ⊥平面111A B C ,所以平面111A B C 的一个法向量为1(0,0,1)n =.根据所建立的空间直角坐标系,可知(0,1,3)P ,(2,0,2)Q ,(0,2,1)R .所以(2,1,1)PQ =--,(0,1,2)PR =-.设2(,,)n x y z = ,则220,0,n PQ n PR ⎧⋅=⎪⎨⋅=⎪⎩ 20,20,x y z y z --=⎧⎨-=⎩所以3,22.x z y z ⎧=⎪⎨⎪=⎩取2(3,4,2)n =,则121212229cos ,29n n n n n n ⋅==⋅.回到图形问题设平面PQR 与平面111A B C 的夹角为θ,则12229cos cos ,29n n θ==.即平面PQR 与平面111A B C的夹角的余弦值为29.练习13.在直三棱柱A 1B 1C 1-ABC 中,∠BCA =90°,D 1,F 1分别是A 1B 1,A 1C 1的中点,BC =CA =CC 1,则BD 1与AF 1所成角的余弦值是()A.10B.12C.15D.10【答案】A 【解析】【分析】建立空间直角坐标系,利用空间向量法求出异面直线所成角的余弦值.【详解】如图建立空间直角坐标系,设BC =CA =CC 1=1,则A (1,0,1),B (0,1,1),D 111022⎛⎫ ⎪⎝⎭,,,F 11002⎛⎫⎪⎝⎭,,,∴1BD =11,,122⎛⎫--⎪⎝⎭,1AF =1,0,12⎛⎫⎪⎝-⎭-,∴|cos<11BD AF ,>|=1111||||||BD AF BD AF ⋅34=3010.故选:A.14.PA ,PB ,PC 是从点P 出发的三条射线,每两条射线的夹角均为60︒,那么直线PC 与平面PAB 所成角的余弦值是().A.12B.22 C.33D.63【答案】C【解析】【分析】过PC 上一点D 作DO ⊥平面APB ,则∠DPO 就是直线PC 与平面PAB 所成的角.能证明点O 在∠APB 的平分线上,通过解直角三角形PED 、DOP ,求出直线PC 与平面PAB 所成角的余弦值.【详解】解:在PC 上任取一点D 并作DO ⊥平面APB ,则∠DPO 就是直线PC 与平面PAB 所成的角.过点O 作OE ⊥PA ,OF ⊥PB ,因为DO ⊥平面APB ,则DE ⊥PA ,DF ⊥PB .△DEP ≌△DFP ,∴EP =FP ,∴△OEP ≌△OFP ,因为∠APC =∠BPC =60°,所以点O 在∠APB 的平分线上,即∠OPE =30°.设PE =1,∵∠OPE =30°∴OP 123303cos ==︒在直角△PED 中,∠DPE =60°,PE =1,则PD =2.在直角△DOP 中,OP 3=,PD =2.则cos ∠DPO 3OP PD ==.即直线PC 与平面PAB 所成角的余弦值是33.故选:C15.如图,正三棱柱111ABC A B C -的所有棱长都为2,求平面1AA B 与平面11A BC 夹角的余弦值.【答案】77【解析】【分析】建立空间直角坐标系,求解平面1AA B 与平面11A BC 的法向量,利用法向量求解夹角的余弦值.【详解】因为正三棱柱111ABC A B C -的所有棱长均为2,取BC 的中点O ,则AO BC ⊥所以AO ⊥平面11BB C C .取11B C 的中点H ,所以AO ,BO ,OH 两两垂直,以O 为原点,建立如图所示的空间直角坐标系.则113),(1,0,0),3),(1,2,0)A B A C -,所以1(1,0,3),(0,2,0)AB AA =-= ,11(2,2,0),(3)BC BA =-=- .设平面1AA B 的一个法向量为1111(,,)n x y z =u r ,则1111130,20,n AB x n AA y ⎧⋅=-=⎪⎨⋅==⎪⎩ 令11z =得1(3,0,1)n = .同理可得平面11A BC 的一个法向量为2(3,3,1)n =- .12212127cos ,7||||27n n n n n n ⋅〈〉===⨯ 设平面1AA B 与平面11A BC 夹角为θ,易知θ为锐角,则127cos |cos ,|7n n θ=〈〉= ,即平面1AA B 与平面11A BC 夹角的余弦值为77.16.如图,ABC 和DBC △所在平面垂直,且AB BC BD ==,120CBA DBC =∠=∠︒.求:(1)直线AD 与直线BC 所成角的大小;(2)直线AD 与平面BCD 所成角的大小;(3)平面ABD 和平面BDC 的夹角的余弦值.【答案】(1)90°(2)45︒(3)55【解析】【分析】(1)作AO ⊥BC 于点O ,连DO ,以点O 为原点,OD ,OC ,OA 的方向分别为x 轴、y 轴、z 轴方向,建立坐标系,利用空间向量法求出异面直线所成的角;(2)显然平面BCD 的一个法向量为()10,0,1n = ,利用空间向量法求出线面角;(3)求出平面CBD 的一个法向量为1n u r 以及平面ABD 的一个法向量为2n u u r ,求出两法向量的余弦值的绝对值即为平面ABD 和平面BDC 的夹角的余弦值.【详解】解:设1AB =,作AO ⊥BC 于点O ,连DO ,以点O 为原点,OD ,OC ,OA 的方向分别为x 轴、y 轴、z 轴方向,建立坐标系,得下列坐标:()0,0,0O ,3,0,02D ⎛⎫ ⎪ ⎪⎝⎭,10,,02B ⎛⎫ ⎪⎝⎭,30,,02C ⎛⎫ ⎪⎝⎭,30,0,2A ⎛⎫⎪ ⎪⎝⎭(1),0,22AD ⎛⎫=- ⎪ ⎪⎝⎭,()0,1,0BC =(),0,0,1,0022AD BC ⎛⎫-== ⎪ ⎪⎝⎭,所以AD 与BC 所成角等于90°.(2)33,0,22AD ⎛⎫=- ⎪ ⎪⎝⎭,显然()10,0,1n = 为平面BCD的一个法向量12cos ,2AD n <>= ∴,直线AD 与平面BCD 所成角的大小45︒(3)设平面ABD 的法向量为()2,,n x y z =则1022AB ⎛⎫=- ⎪ ⎪⎝⎭,所以22·0·0n AB n AD ⎧=⎪⎨=⎪⎩ ,即1302233022y z x z ⎧-=⎪⎪-=⎩,令1z =,则1x =,y =则()2n = 设平面ABD 和平面BDC 的夹角为θ,则1212||5cos 5||n n n n θ⋅===⨯ 因此平面ABD 和平面BDC例9图1.4-23为某种礼物降落伞的示意图,其中有8根绳子和伞面连接,每根绳子和水平面的法向量的夹角均为30°.已知礼物的质量为1kg ,每根绳子的拉力大小相同.求降落伞在匀速下落的过程中每根绳子拉力的大小(重力加速度g 取29.8m/s ,精确到0.01N ).图1.4-23分析:因为降落伞匀速下落,所以降落伞8根绳子拉力的合力的大小等于礼物重力的大小.8根绳子的拉力在水平面的法向量方向上的投影向量的和向量与礼物的重力是一对相反向量.解:如图1.4-24,设水平面的单位法向量为n ,其中每一根绳子的拉力均为F .因为,30n F 〈〉=︒ ,所以F 在n 32F n .所以8根绳子拉力的合力 383|2F n F n == 合.又因为降落伞匀速下落,所以||||19.89.8F G ==⨯=合礼物(N ).所以||||9.8F n =所以|| 1.41F =≈(N ).图1.4-24例10如图1.4-25,在四棱锥P ABCD -中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD DC =,E 是PC 的中点,作EF PB ⊥交PB 于点F .图1.4-25(1)求证://PA 面EDB ;(2)求证:PB ⊥平面EFD ;(3)求平面CPB 与平面PBD 的夹角的大小.分析:本题涉及的问题包括:直线与平面平行和垂直的判定,计算两个平面的夹角.这些问题都可以利用向量方法解决.由于四棱锥的底面是正方形,而且一条侧棱垂直于底面,可以利用这些条件建立适当的空间直角坐标系,用向量及坐标表示问题中的几何元素,进而解决问题.解:以D 为原点,DA ,DC ,DP 所在直线分别为x 轴、y 轴、z 轴,建立如图1.4-26所示的空间直角坐标系,设1DC =.图1.4-26(1)证明:连接AC ,交BD 于点G ,连接EG .依题意得(1,0,0)A ,(0,0,1)P ,110,,22E ⎛⎫ ⎪⎝⎭.因为底面ABCD 是正方形,所以点G 是它的中心,故点G 的坐标为11,,022⎛⎫ ⎪⎝⎭,且(1,0,1)PA =-uu r ,11,0,22EG ⎛⎫=- ⎪⎝⎭ ,所以2PA EG =,//PA EG .而EG ⊂平面EDB ,且PA ⊄平面EDB ,因此//PA 平面EDB .(2)证明:依题意得(1,1,0)B ,(1,1,1)PB =- .又110,,22DE ⎛⎫= ⎪⎝⎭,故110022PB DE ⋅=+-= .所以PB DE ⊥.由已知EF PB ⊥,且EF DE E ⋂=.所以PB ⊥平面EFD .(3)解:已知PB EF ⊥,由(2)可知PB DF ⊥,故EFD ∠是平面CPB 与平面PBD 的夹角.设点F 的坐标为(,,)x y z ,则(,,1)PF x y z =- 因为PF k PB =,所以(,,1)(1,1,1)(,,)x y z k k k k -=-=-,即x k =,y k =,1z k =-.设0PB DF ⋅= ,则(1,1,1)(,,1)1310k k k k k k k -⋅-=+-+=-=.所以13k =,点F 的坐标为112,,333⎛⎫ ⎪⎝⎭,又点E 的坐标为110,,22⎛⎫ ⎪⎝⎭,所以111,,366E ⎛⎫=-- ⎪⎝⎭.所以111112,,,,1366333cos 2||||6663FE FD EFD FE FD ⎛⎫⎛⎫--⋅--- ⎪ ⎪⋅∠==⋅ 所以60EFD ∠=︒,即平面CPB 与平面PBD 的夹角大小为60°.练习17.如图,二面角l αβ--的棱上有两个点A ,B ,线段BD 与AC 分别在这个二面角的两个面内,并且都垂直于棱l .若4AB =,6AC =,8BD =,CD =,求平面α与平面β的夹角.【答案】3π【解析】【分析】利用向量求解,CD CA AB BD =++ ,两边平方可求平面α与平面β的夹角.【详解】设平面α与平面β的夹角为θ,由CD CA AB BD =++ 可得()22222222CD CA AB BD CA AB BD CA AB AB BD CA BD=++=+++⋅+⋅+⋅ 3616642cos ,CA BD CA BD=+++ 11696cos θ=-所以1cos 2θ=,即平面α与平面β的夹角为3π.18.如图,在三棱锥A BCD -中,3AB AC BD CD ====,2AD BC ==,M ,N 分别是AD ,BC 的中点.求异面直线AN ,CM 所成角的余弦值.【答案】78【解析】【分析】连结ND ,取ND 的中点E ,连结ME ,推导出异面直线AN ,CM 所成角就是EMC ∠,利用余弦定理解三角形,能求出结果.【详解】连结ND ,取ND 的中点E ,连结ME ,则//ME AN ,EMC ∴∠是异面直线AN ,CM 所成的角,AN = ,ME EN ∴==,MC =又EN NC ⊥ ,EC ∴=2227cos28EM MC EC EMC EM MC +-∴∠===⨯,∴异面直线AN ,CM 所成的角的余弦值为78.19.如图,在三棱锥O ABC -中,OA ,OB ,OC 两两垂直,3OA OC ==,2OB =.求直线OB 与平面ABC 所成角的正弦值.【答案】31717【解析】【分析】构建以O 为原点,,,OB OC OA 为x 、y 、z 轴的正方向的空间直角坐标系,写出AB 、AC 、OB 的坐标,进而求面ABC 的法向量m ,根据直线方向向量与平面法向量夹角与线面角的关系,结合空间向量夹角的坐标表示即可求直线OB 与平面ABC 所成角的正弦值.【详解】构建以O 为原点,,,OB OC OA 为x 、y 、z 轴的正方向的空间直角坐标系,如下图示,∴(0,0,3)A ,(2,0,0)B ,(0,3,0)C ,则(2,0,3)AB =- ,(0,3,3)AC =- ,(2,0,0)OB = ,若(,,)m x y z = 是平面ABC 的一个法向量,则230330AB m x z AC m y z ⎧⋅=-=⎪⎨⋅=-=⎪⎩ ,令1y =,则3(,1,1)2m = ,∴317|cos ,|||17||||172OB m OB m OB m ⋅<>== ,故直线OB 与平面ABC 所成角的正弦值为31717.习题1.4复习巩固20.如图,在三棱锥A BCD -中,E 是CD 的中点,点F 在AE 上,且2EF FA =.设BC a = ,BD b = ,BA c = ,求直线AE ,BF的方向向量.【答案】直线AE 的方向向量22a b c AE +-= ,直线BF 的方向向量46a b c BF ++= .【解析】【分析】由已知线段所表示的空间向量,应用向量加减运算的几何意义求得AD 、AC ,即可求AE ,再由2EF FA =知3AE AF = ,即可求BF .【详解】在△BAD 中,BD b = ,BA c = ,则AD BD BA b c =-=- ,在△BAC 中,BC a = ,BA c = ,则AC BC BA a c =-=- ,∵在△DAC 中,E 是CD 的中点,∴222AD AC a b c AE ++-== ,而2EF FA =,即236AE a b c AF +-== ,∴在△BAF 中,2466a b c a b c BF BA AF c +-++=+=+= .∴直线AE ,BF 的方向向量分别为22a b c AE +-= 、46a b c BF ++= .21.如图,在直三棱柱111ABC A B C -中,AB AC ⊥,1AB AC ==,12AA =.以A为原点,建立如图所示空间直角坐标系.(1)求平面11BCC B 的一个法向量;(2)求平面1A BC 的一个法向量.【答案】(1)()1,1,0n = ;(2)()2,2,1m = .【解析】【分析】(1)求出平面内的两个向量()1,1,0BC =-uu u r ,()10,0,2BB =uuu r ,然后利用法向量与这两个向量的数量积都为0来求法向量;(2)求出平面内的两个向量()1,1,0BC =-uu u r ,()11,0,2BA =- ,然后利用法向量与这两个向量的数量积都为0来求法向量.【详解】易知()1,0,0B ,()0,1,0C ,()11,0,2B ,()10,0,2A .(1)()1,1,0BC =-uu u r ,()10,0,2BB =uuu r ,设面11BCC B 的法向量为()111,,n x y z = ,则100n BC n BB ⎧⋅=⎪⎨⋅=⎪⎩,即111020x y z -+=⎧⎨=⎩,取1111,0x y z ===,则()1,1,0n = ,所以平面11BCC B 的一个法向量为()1,1,0n = ;(2)()1,1,0BC =-uu u r ,()11,0,2BA =- ,设面1A BC 的法向量为()222,,m x y z = ,则100m BC m BA ⎧⋅=⎪⎨⋅=⎪⎩,即2222020x y x z -+=⎧⎨-+=⎩,取2222,1x y z ===,则()2,2,1m = ,所以平面1A BC 的一个法向量为()2,2,1m = 22.如图,在平行六面体1111ABCD A B C D -中,E 是AB 的中点,F 是11C D 的中点.求证:1//A E CF.【答案】见解析【解析】【分析】取11A B 的中点为G ,根据几何体的特征分别得到//BG CF ,1//A E BG ,从而得证.【详解】取11A B 的中点为G ,则根据平行六面体的特征可得11//B G C F ,11B G C F =,所以四边形11B GFC 为平行四边形,则11//B C GF ,11B C GF =,又因为11//B C BC ,11B C BC =,所以//GF BC ,GF BC =,所以四边形GFCB 为平行四边形,所以//BG CF ,又因为11//,A G EB A G EB =,所以四边形1A EBG 为平行四边形.所以1//A E BG ,进而1//A E CF .23.如图,在四面体ABCD 中,AD ⊥平面BCD ,M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且3AQ QC =.求证://PQ 平面BCD .【答案】证明见解析【解析】【分析】要证线面平行,需找线线平行,取BD 中点O ,且P 是BM 中点,取CD 的四等分点H ,使DH =3CH ,且AQ =3QC ,通过四边形OPQH 为平行四边形及线面平行的判定定理即得结论.【详解】证明:如图所示,取BD 中点O ,且P 是BM 中点,∴PO //MD 且PO 12=MD ,取CD 的四等分点H ,使DH =3CH ,且AQ =3QC ,∴PO //QH 且PO =QH ,∴四边形OPQH 为平行四边形,∴PQ //OH ,PQ 在平面BCD 外,且OH ⊂平面BCD ,∴PQ //平面BCD .24.如图,在正方体1111ABCD A B C D -中,点E 在BD 上,且13BE BD =;点F 在1CB 上,且113CF CB =.求证:(1)EF BD ⊥;(2)1EF CB ⊥.【答案】(1)证明见解析;(2)证明见解析【解析】【分析】建立空间直角坐标系,令正方体的棱长为3,表示出点的坐标,利用空间向量法证明线线垂直;【详解】解:(1)如图建立空间直角坐标系,令正方体的棱长为3,则()0,0,0D ,()3,3,0B ,()0,3,0C ()13,3,3B ,因为13BE BD =,113CF CB =,所以()2,2,0E ,()1,3,1F ,所以()1,1,1EF =- ,()3,3,0DB = ,所以1313100DB EF =-⨯+⨯+⨯= ,所以EF BD⊥(2)由(1)可知()13,0,3CB = ,所以11313100CB EF =-⨯+⨯+⨯= ,所以1EF CB ⊥25.如图,在棱长为1的正方体1111ABCD A B C D -中,O 为平面11A ABB 的中心,E 为BC 的中点,求点O 到直线1A E 的距离.【答案】26【解析】【分析】建立空间坐标系,求解直线1A E 的单位方向向量,结合勾股定理进行求解.【详解】建立如图所示的空间直角坐标系,则1111(1,0,1),(,1,0),(1,,)222A E O ,因为1111122(,1,1),(,,)2333||A E A E u A E =--==-- ,111(0,,)22OA =- 所以123OA u ⋅=- .所以点O 到直线1A E的距离为6==.26.如图,四面体OABC 的所有棱长都是1,D ,E 分别是边OA ,BC 的中点,连接DE.(1)计算DE 的长;(2)求点O 到平面ABC 的距离.【答案】(1)22;(2)63.【解析】【分析】(1)利用基底,,OA OB OC 表示出向量DE ,再根据向量数量积求长度的方法即可求出;(2)由该几何体特征可知,点O 在平面ABC 的射影为ABC 的中心,即可求出.【详解】(1)因为四面体OABC 的所有棱长都是1,所以该四面体为正四面体,()1111122222DE DA AB BE OA OB OA OC OB OA OB OC =++=+-+-=-++ ,而且12OA OB OB OC OA OC ⋅=⋅=⋅= ,所以()()2211131442DE OA OB OC =--=-= ,即22DE = ,所以DE 的长为22.(2)因为四面体OABC 为正四面体,所以点O 在平面ABC 的射影O '为ABC 的中心,ABC的外接圆半径为11sin 6023⨯= ,所以点O 到平面ABC的距离为63OA OO d OO '⋅=='.27.如图,四面体ABCD 的每条棱长都等于a ,M ,N 分别是AB ,CD 的中点.求证:MN AB ⊥,MN CD ⊥.【答案】证明见解析【解析】【分析】根据题意证明()11022MN AB AC AD AB AB ⎡⎤⋅=+-⋅=⎢⎥⎣⎦ 即可.【详解】由题意可知,,,AB AC AD 三个向量两两间的夹角为60 ,因为M ,N 分别是AB ,CD 的中点,所以()1122MN AN AM AC AD AB =-=+- ,则()()2111222MN AB AC AD AB AB AC AB AD AB AB ⎡⎤⋅=+-⋅=⋅+⋅-⎢⎥⎣⎦()2221cos 60cos 6002a a a =+-= ,所以MN AB ⊥,同理可证MN CD ⊥.28.如图,M ,N 分别是正方体ABCD A B C D ''''-的棱BB '和B C ''的中点,求:(1)MN 和CD '所成角的大小;(2)MN 和AD 所成角的大小.【答案】(1)3π;(2)4π.【解析】【分析】构建以D 为原点,,,DA DC DD ' 为x 、y 、z 轴正方向的空间直角坐标系,若正方体的棱长为2,写出A 、C 、D ¢、M 、N 的坐标,进而可得MN 、CD ' 、DA ,利用空间向量夹角的坐标表示求其夹角的余弦值,即可求MN 和CD '、MN 和AD 所成角.【详解】构建以D 为原点,,,DA DC DD ' 为x 、y 、z 轴正方向的空间直角坐标系,若正方体的棱长为2,则(2,0,0)A ,(0,2,0)C ,(0,0,2)D ',(2,2,1)M ,(1,2,2)N ,(1)(1,0,1)MN =- ,(0,2,2)CD '=- ,又MN 和CD '所成角范围为[0,]2π,∴1|cos ,|||2||||MN CD MN CD MN CD '⋅'<>==' ,故MN 和CD '所成角为3π.(1)(2,0,0)DA = ,又MN 和AD 所成角范围为[0,]2π,∴2|cos ,|||2||||MN DA MN DA MN DA ⋅<>== ,故MN 和AD 所成角为4π.29.如图,在正方体1111ABCD A B C D -中,E ,F ,G ,H ,K ,L 分别是AB ,1BB ,11B C ,11C D ,1D D ,DA各棱的中点.(1)求证:1A C ⊥平面EFGHKL ;(2)求1DB 与平面EFGHKL 所成角的余弦值.【答案】(1)见解析;(2)223【解析】【分析】(1)建立空间直角坐标系,可由1100A C LK A C KH ⎧⋅=⎪⎨⋅=⎪⎩ 证得;(2)利用空间向量计算直线和法向量的夹角,进而得解.【详解】如图所示建立空间直角坐标系,(1)1111(1,0,1),(0,1,0),(0,0,),(0,,1),(,0,0)222A C K H L ,()11111,0,,0,,,1,1,12222LK KH A C ⎛⎫⎛⎫=-==-- ⎪ ⎪⎝⎭⎝⎭则1100A C LK A C KH ⎧⋅=⎪⎨⋅=⎪⎩ ,所以11,A C LK A C KH ⊥⊥,LK KH 为平面EFGHKL 的两条相交直线,所以1A C ⊥平面EFGHKL ;(2)由(1)知平面EFGHKL 的法向量为1(1,1,1)AC =--11(1,1,1),(1(0,0,0),,1,1)D D B B =,因为1111111cos ,3||||AC DB AC DB AC DB ⋅<>===-⋅,求1DB 与平面EFGHKL3=.综合运用30.如图,在长方体1111ABCD A B C D -中,2AB =,11BC CC ==,E 是CD 的中点.求证:1B E ⊥平面1AED .【答案】证明见解析【解析】【分析】建立空间直角坐标系,利用空间向量法证明11EB ED ⊥ ,1EB EA ⊥,即可得证;【详解】解:如图建立空间直角坐标系,则()1,0,0A ,()0,1,0E ,()10,0,1D ,()11,2,1B 所以()11,1,1EB = ,()10,1,1ED =- ,()1,1,0EA =-所以()111011110EB ED =⨯+⨯-+⨯= ,()11111100EB EA =⨯+⨯-+⨯=,所以11EB ED ⊥ ,1EB EA ⊥ ,因为1ED EA E = ,1,ED EA ⊂平面1AED .所以1B E ⊥平面1AED .31.如图,在长方体1111ABCD A B C D -中,点E ,F ,G 分别在棱1A A ,11A B ,11A D 上,1111A E A F A G ===;点P ,Q ,R 分别在棱1CC ,CD ,CB 上,1CP CQ CR ===.求证:平面//EFG 平面PQR .【答案】证明见解析【解析】【分析】构建以D 为原点,1,,DA DC DD为x 、y 、z 轴正方向的空间直角坐标系,令1,,AB a BC b BB c ===写出EF 、EG uuur 、PQ 、PR ,进而求面EFG 、面PQR 的法向量m 、n,根据所得法向量的关系即可证结论.【详解】构建以D 为原点,1,,DA DC DD为x 、y 、z 轴正方向的空间直角坐标系,如下图示,设1,,AB a BC b BB c ===(,,1)a b c >,又1111A E A F A G ===,1CP CQ CR ===,∴(,0,1)E b c -,(,1,)F b c ,(1,0,)G b c -,(0,,1)P a ,(0,1,0)Q a -,(1,,0)R a ,∴(0,1,1)EF = ,(1,0,1)EG =- ,(0,1,1)PQ =-- ,(1,0,1)PR =-,设(,,)m x y z = 是面EFG 的一个法向量,则00EF m y z EG m z x ⎧⋅=+=⎪⎨⋅=-=⎪⎩ ,令1x =,(1,1,1)m =- ,设(,,)n i j k = 是面PQR 的一个法向量,则00PQ n j k PR n i k ⎧⋅=--=⎪⎨⋅=-=⎪⎩ ,令1i =,(1,1,1)n =- ,∴面EFG 、面PQR 的法向量共线,故平面//EFG 平面PQR ,得证.32.如图,已知正方体1111ABCD A B C D -的棱长为1,E 为CD 的中点,求点1D 到平面1AEC的距离.【答案】3【解析】【分析】建立空间坐标系,求解平面1AEC 的法向量,结合点到平面的距离公式求解.【详解】建立如图所示的空间直角坐标系,则111(1,0,0),(0,1,1),(0,,0),(0,0,1)2A C E D .设平面1AEC 的一个法向量为(),,n x y z =,11(1,1,1),(1,,0),2AC AE =-=- 1(1,0,1)AD =- .由10,10,2n AC x y z n AE x y ⎧⋅=-++=⎪⎨⋅=-+=⎪⎩令2y =,则1,1x z ==-,即(1,2,1)n =-.设点1D 到平面1AEC 的距离为d ,则13AD n d n ⋅=== ,即点1D 到平面1AEC的距离为3.33.如图,已知正方体1111ABCD A B C D -的棱长为1,Q 为11B C 的中点,点P 在棱1AA 上,1:1:3AP AA =.求平面ABCD 与平面BQP的夹角.【答案】346arccos 46【解析】【分析】建立空间直角坐标系,分别求解两个面的法向量,利用法向量的夹角求解即可.【详解】如图建立空间直角坐标系,11(1,1,0),(1,0,),(,1,1)32B P Q ,112(0,1,(,1,323BP PQ =-=- ,设平面BPQ 的法向量为(,,)n x y z =,则10312023n BP y z n PQ x y z ⎧⋅=-+=⎪⎪⎨⎪⋅=-++=⎪⎩ ,不妨令1y =,则3,6z x ==,所以(6,1,3)n =平面ABCD 的法向量为(0,0,1)m =,所以346cos ,||||46n mn m n m ⋅<>==⋅.所以面ABCD 与平面BQP 的夹角为346arccos4634.如图,正方体1111ABCD A B C D -的棱长为1,M 是棱1AA 的中点,O 是1BD 的中点.求证:OM 分别与异面直线1AA ,1BD 垂直,并求OM 的长.【答案】见解析.【解析】【分析】建立空间直角坐标系,利用空间向量数量积为0可证得垂直,利用模长公式可求线段长.【详解】如图建立空间直角坐标系,则111111(,,(1,0,),(1,0,0),(1,0,1),(1,1,0),(0,0,1)2222O M A A B D ,所以1111(,,0),(0,0,1),(1,1,1)22OM AA BD =-==--,因为110,0OM AA OM BD ⋅=⋅=,所以11,OM AA OM BD ⊥⊥22112||()()222OM =+-=.拓广探索35.如图,在直三棱柱111ABC A B C -中, 90BAC =︒∠,2AB AC ==,13AA =,M 是AB 的中点,N 是11B C 的中点,P 是1BC 与1B C 的交点.在线段1A N 上是否存在点Q ,使得//PQ 平面1A CM。
含有向量的综合应用题
含有向量的综合应用题在数学和物理学中,向量是一种常见且重要的概念。
它不仅仅是一种数值,更是一个有方向和大小的量。
向量的应用广泛,可以用于解决各种实际问题。
本文将通过几个综合应用题,来探讨向量在实际问题中的运用。
问题一:风的影响某船沿着河流平行岸边行驶,船速为v米/秒。
当船行驶到一特定地点时,风使船受到了风压的侧向作用,导致船的速度相对于水流有一个斜角α。
已知风的速度为u米/秒,水流速度为w米/秒,请问船的速度v是多少?解析:为了解决这个问题,我们可以利用向量的方法。
以正北方向为y轴正方向,正东方向为x轴正方向,建立一个坐标系。
设船的速度v的向量表示为V,风速向量u表示为U,水流速度向量w表示为W。
由题目可知,船的速度相对于水流速度的角度为α,即向量V和向量W 之间的夹角为α。
由于船的速度受到了风的影响,船的速度与风速的向量和向量的和为零。
根据向量的性质,可以得到以下方程组:Vx + Ux = 0Vy + Wy = 0其中Vx,Vy分别表示向量V在x轴和y轴上的分量,Ux,Wy分别表示向量U和向量W在x轴和y轴上的分量。
又根据勾股定理可得:|V|^2 = Vx^2 + Vy^2|U|^2 = Ux^2 + Uy^2|W|^2 = Wx^2 + Wy^2利用向量的内积和模的定义,可以得到:Vx = -UxVy = -WyVx^2 + Vy^2 = (Ux + Wx)^2 + (Uy + Wy)^2将上述方程带入,再利用三角函数的关系,即可求得v的数值。
问题二:力的合成一个力的向量可以表示为F1 = 3i + 4j,另一个力的向量表示为F2 = 2i - 6j,若力F1和力F2的夹角为θ,求力的合成F。
解析:要求两个力的合成,可以使用向量的加法。
力F1和力F2的合成向量F可以表示为F = F1 + F2。
根据向量的加法运算,可以得到:F = (3i + 4j) + (2i - 6j)化简得:F = 5i - 2j力的合成F是一个向量,其中i和j分别表示x轴和y轴方向上的分量。
空间向量在立体几何中的应用-立体几何
点,A是α内任一点,则点P到α的距离d= | PA·m | .
|m|
考点一 用向量证明平行、垂直问题
如图,在四棱锥P—ABCD 中,PA⊥平面ABCD,底面 ABCD为矩形,且PA=AD, E,F分别为线段AB,PD的中 点.求证:
(1) AF∥平面PEC;
相等或互补 .
5.空间的距离
(1)一个点到它在一个平面内 正射影 的距离,叫做 点到这个平面的距离.
(2)已知直线l平行平面α,则l上任一点到α的距离 都 相等 ,且叫做l到α的距离.
返回目录
(3)和两个平行平面同时 垂直 的直线,叫做两 个平面的公垂线.公垂线夹在平行平面间的部分,叫做两 个平面的 公垂线段 .两平行平面的任两条公垂线段的长 都相等,公垂线段的 长度 叫做两平行平面的距离, 也是一个平面内任一点到另一个平面的距离.
EC=(
a
22 ,1,0),∴AF=
1
2 EP+
1 EC,
2
2
2
又AF⊂ 平面PEC,∴AF∥平面PEC.
(2)PD=(0,1,-1),CD=(-a,0,0), 11
∴AF·PD=(0, 2, 2)·(0,1,-1)=0, AF·CD=(0, 1 , 1 )·(-a,0,0)=0,
22 ∴AF⊥PD,AF⊥CD,又PD∩CD=D,
∴m⊥n.
∴平面ADE⊥平面A1D1F.
返回目录
考点二 用向量求线线角与线面角 如图所示,已知点P在正方体ABCDA′B′C′D′的对角线BD′上,∠PDA=60°. (1)求DP与CC′所成角的大小; (2)求DP与平面AA ′ D′D所成角的大小
【分析】建立空间直角坐标系,利用空间向量方法求解. 返回目录
1.4空间向量的应用-1.4.2用空间向量研究距离、夹角问题
用空间向量研究距离、夹角问题
第1课时
距离问题
核心素养
能用向量方法解决点到
直线、点到平面、互相
平行的直线、互相平行
的平面的距离问题.(直
观想象、数学运算)
思维脉络
激趣诱思
知识点拨
某人在一片丘陵上开垦了一块田地,在丘陵的上方架有一条直的水
渠,此人想从水渠上选择一个点,通过一条管道把水引到田地中的
·1 = 0,
取 z=1,则 x=y=2,所以 n=(2,2,1).
|·1 1 |
所以点 B1 到平面 AD1C 的距离 d=
||
8
= 3.
探究一
探究二
素养形成
当堂检测
利用空间向量求点线距
例1已知直三棱柱ABC-A1B1C1中,AA1=1,AB=4,BC=3,∠ABC=90°,求
点B到直线A1C1的距离.
)
3
A.
2
2
B.
2
C. 3
D.3 2
答案:B
解析:∵两平行平面 α,β 分别经过坐标原点 O 和点 A(2,1,1),
=(2,1,1),且两平面的一个法向量 n=(-1,0,1),
|· |
∴两平面间的距离 d=
||
=
|-2+0+1|
2
=
2
2
.故选 B.
探究一
探究二
素养形成
当堂检测
2.若三棱锥P-ABC的三条侧棱两两垂直,且满足PA=PB=PC=1,则点
所以点 B 到直线 A1C1 的距离
1 1
2
d= |1 | - 1 ·|
= 8-
-1+3+0
空间向量的应用专题训练卷(含解析)
空间向量的应用专题训练卷一、单选题1.(2020·江苏如东�高一期末)在长方体1111ABCD A B C D -中,2AB BC ==,11AA =,则直线1BC 与平面11BB DD 所成角的正弦值为( )A .63B .102C .155D .1052.(2020·河北新华�石家庄二中高一期末)在正方体1111ABCD A B C D -中,M N ,分别为AD ,11C D 的中点,O 为侧面11BCC B 的中心,则异面直线MN 与1OD 所成角的余弦值为( ) A .16B .14C .16-D .14-3.(2020·辽宁高三其他(文))如图,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AA 1=1,则BC 1与平面BB 1D 1D 所成角的正弦值为( )A 6B 26C 15D 10 4.(2020·黑龙江道里�哈尔滨三中高三二模(理))已知四面体ABCD 中,AB ,BC ,BD 两两垂直,2BC BD ==AB 与平面ACD 所成角的正切值为12,则点B 到平面ACD 的距离为( ) A 3B 23C 5D 255.(2020·山东省济南市莱芜第一中学高二月考)在棱长为1的正方体1111ABCD A B C D -中,点M 为棱1CC 的中点,则直线1B M 与平面11A D M 所成角的正弦值是( )A .215B .25C .35D .456.(2018·浙江高三其他)如图,在长方体11112222A B C D A B C D -中,12111122A A A B B C ==,A ,B ,C 分别是12A A ,12B B ,12C C 的中点,记直线2D C 与1AD 所成的角为α,平面22A BCD 与平面11ABC D 所成二面角为β,则( )A .cos cos αβ=B .sin sin αβ=C .cos cos t αβ>D .sin sin αβ<7.(2020·浙江镇海中学高三三模)在三棱柱111ABC A B C -中,D 是棱BC 上的点(不包括端点),记直线1B D 与直线AC 所成的角为1θ,直线1B D 与平面111A B C 所成的角为2θ,二面角111C A B D --的平面角为3θ,则( ) A .123θθθ<<B .213θθθ<<C .321θθθ<<D .231θθθ<<8.(2020·浙江衢州�高二期末)在底面为锐角三角形的直三棱柱111ABC A B C -中,D 是棱BC 的中点,记直线1B D与直线AC 所成角为1θ,直线1B D 与平面111A B C 所成角为2θ,二面角111C A B D --的平面角为3θ,则( )A .2123,θθθθ<<B .2123,θθθθ><C .2123,θθθθ<>D .2123,θθθθ>>9.(2020·浙江省杭州第二中学高三其他)空间线段AC AB ⊥,BD AB ⊥,且::1:3:1AC AB BD =,设CD 与AB 所成的角为α,CD 与面ABC 所成的角为β,二面角C AB D --的平面角为γ,则( ) A .2γβα≤≤B .2γβα≤≤ C .2γαβ≤≤D .2γαβ≤≤10.(2020·四川高三三模(理))如图该几何体由半圆柱体与直三棱柱构成,半圆柱体底面直径BC =4,AB =AC ,∠BAC =90°,D 为半圆弧的中点,若异面直线BD 和AB 1所成角的余弦值为23,则该几何体的体积为( )A .16+8πB .32+16πC .32+8πD .16+16π二、多选题11.(2019·江苏徐州�高二期末)下列命题中正确的是( )A .,,,AB M N 是空间中的四点,若,,BA BM BN 不能构成空间基底,则,,,A B M N 共面 B .已知{},,a b c 为空间的一个基底,若m a c =+,则{},,a b m 也是空间的基底 C .若直线l 的方向向量为(1,0,3)e =,平面α的法向量为2(2,0,)3n =-,则直线//l αD .若直线l 的方向向量为(1,0,3)e =,平面α的法向量为(2,0,2)n =-,则直线l 与平面α所成角的正弦512.(2020·山东平邑�高二期末)如图,一个结晶体的形状为平行六面体1111ABCD A B C D -,其中,以顶点A 为端点的三条棱长都相等,且它们彼此的夹角都是60°,下列说法中正确的是( )A .()()2212AA AB ADAC ++=B .()10AC AB AD ⋅-= C .向量1B C 与1AA 的夹角是60°D .1BD 与AC 所成角的余弦值为6313.(2020·福建厦门�高二期末)正方体1111ABCD A B C D -中,E 、F 、G 、H 分别为1CC 、BC 、CD 、BB 、1BB 的中点,则下列结论正确的是( )A .1B G BC ⊥ B .平面AEF 平面111AAD D AD =C .1//A H 面AEFD .二面角E AF C --的大小为4π14.正三棱柱111ABC A B C -中,13AA =,则( ) A .1AC 与底面ABC 的成角的正弦值为12 B .1AC 与底面ABC 的成角的正弦值为32 C .1AC 与侧面11AA B B 3D .1AC 与侧面11AA B B 的成角的正弦值为134三、单空题15.(2020·四川省南充市白塔中学高二月考(理))已知平面α的一个法向量10,,22n ⎛⎫=-- ⎪⎝⎭,A α∈,P α∉,且31,,222PA ⎛⎫=-⎪ ⎪⎝⎭,则直线PA 与平面α所成的角为______. 16.(2019·河南高二竞赛)等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角C AB D --的余弦值为33,M N ,分别是AC BC ,的中点,则EM AN ,所成角的余弦值等于 . 17.(2019·安徽埇桥�北大附宿州实验学校高二期末(理))若平面α,β的法向量分别为(4,0,3)u =,(1,1,0)v =-,则这两个平面所成的锐角的二面角的余弦值为________.四、双空题18.(2020·浙江宁波�高二期末)在正四面体ABCD 中,M ,N 分别为棱BC 、AB 的中点,设AB a =,AC b =,AD c =,用a ,b ,c 表示向量DM =______,异面直线DM 与CN 所成角的余弦值为______.19.(2018·北京海淀�高二期末(理))已知棱长为1的正四面体ABCD ,O 为A 在底面BCD 上的正射影,如图建立空间直角坐标系,M 为线段AB 的中点,则M 点坐标是__________,直线DM 与平面BCD 所成角的正弦值是__________.20.(2020·山东德州�高二期末)如图,在直三棱柱111ABC A B C -中,90ACB ∠=︒,11AA AC BC ===,则异面直线1BC 与11A B 所成角为______;二面角1A BC C --的余弦值是______.21. 如图,在三棱锥S ABC -中,SA SB SC ==,且2ASB BSC CSA π∠=∠=∠=,M 、N 分别是AB 和SC 的中点,则异面直线SM 与BN 所成的角的余弦值为________,二面角A SC M --大小为________.五、解答题22.(2020·上海高三专题练习)如图,在棱长为1的立方体1111ABCD A B C D -中,E 是棱11A D 的中点,H 为平面11AA D D 内的点.(1)若1C H ⊥平面BDE ,确定点H 的位置; (2)求点1C 到平面BDE 的距离.23.(2020·全国高二课时练习)在直三棱柱中,13AA AB BC ===,2AC =,D 是AC 的中点.(1)求证:1//B C 平面1A BD ; (2)求直线1B C 到平面1A BD 的距离.24.(2019·天津南开�崇化中学高二期中)如图,四棱锥P ABCD -的底面是边长为2的正方形,侧面PCD ⊥底面ABCD ,且2PC PD ==,M ,N 分别为棱PC ,AD 的中点.(1)求证:BC PD ⊥;(2)求异面直线BM 与PN 所成角的余弦值; (3)求点N 到平面MBD 的距离.25.(2020·河南高三其他(理))《九章算术》是我国古代数学名著,它在几何学中的研究比西方早1000多年,在《九章算术》中,将底面为直角三角形,且侧棱垂直于底面的三棱柱称为堑堵(qian du );阳马指底面为矩形,一侧棱垂直于底面的四棱锥,鳖膈(bie nao )指四个面均为直角三角形的四面体.如图在堑堵111ABC A B C -中,AB AC ⊥.(1)求证:四棱锥11B A ACC -为阳马;(2)若12C C BC ==,当鳖膈1C ABC -体积最大时,求锐二面角11C A B C --的余弦值.26.(2019·浙江衢州�高二期中)四棱锥P ABCD -中,AP AC =,底面ABCD 为等腰梯形,//CD AB ,222AB CD BC ===,E 为线段PC 的中点,PC CB ⊥.(1)证明:AE ⊥平面PCB ;(2)若2PB =,求直线DP 与平面APC 所成角正弦值.27. (2020·武威第六中学高三其他(理))如图,四棱锥P ABCD -的底面为直角梯形,//BC AD ,90BAD ∠=︒,222AD PD AB BC ====,M 为PA 的中点.(Ⅰ)求证://BM 平面PCD(Ⅱ)若平面ABCD ⊥平面PAD ,异面直线BC 与PD 所成角为60°,且PAD △是钝角三角形,求二面角B PC D --的正弦值1.(2020·江苏如东 高一期末)在长方体1111ABCD A B C D -中,2AB BC ==,11AA =,则直线1BC 与平面11BB DD 所成角的正弦值为( )A .63B .102C .155D .105【答案】D 【解析】以D 点为坐标原点,以1,,DA DC DD 所在的直线为x 轴、y 轴、z 轴,建立空间直角坐标系,则1(2,0,0),(2,2,0),(0,2,0),A B C C (0,2,1),1(2,0,1),(2,2,0),BC AC AC ∴=-=-为平面11BB D D 的一个法向量. 110cos ,58BC AC ∴<>==⋅. ∴直线1BC 与平面11BB DD 所成角的正弦值为105. 故选:D .2.(2020·河北新华 石家庄二中高一期末)在正方体1111ABCD A B C D -中,M N ,分别为AD ,11C D 的中点,O 为侧面11BCC B 的中心,则异面直线MN 与1OD 所成角的余弦值为( ) A .16B .14C .16-D .14-【答案】A如图,以D 为坐标原点,分别以1,,DA DC DD 所在直线为,,x y z 轴建立空间直角坐标系. 设正方体的棱长为2,则()()()()1100,012,121,002M N O D ,,,,,,,,, ∴()()11,1,2,1,2,1MN OD =-=--. 则11111cos ,666MN OD MN OD MN OD ⋅===⋅. ∴异面直线MN 与1OD 所成角的余弦值为16,故选A .3.(2020·辽宁高三其他(文))如图,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AA 1=1,则BC 1与平面BB 1D 1D 所成角的正弦值为( )A .63B .65C .155D .105【答案】D 【解析】以D 点为坐标原点,以DA 、DC 、1DD 所在的直线为x 轴、y 轴、z 轴,建立空间直角坐标系则A (2,0,0),B (2,2,0),C (0,2,0),1C (0,2,1)∴1BC =(-2,0,1),AC =(-2,2,0),AC 且为平面BB 1D 1D 的一个法向量.∴1410cos ,558BC AC 〈〉==⋅.∴BC 1与平面BB 1D 1D 所成角的正弦值为105 4.(2020·黑龙江道里 哈尔滨三中高三二模(理))已知四面体ABCD 中,AB ,BC ,BD 两两垂直,2BC BD ==,AB 与平面ACD 所成角的正切值为12,则点B 到平面ACD 的距离为( ) A .32B .233C .55D .255【答案】D 【解析】以B 为原点,BC ,BD ,BA 分别为x ,y ,z 轴建立空间直角坐标系,如图所示:设BAt ,0t >,()0,0,0B ,)2,0,0C ,()2,0D ,0,0,A t .0,0,AB t ,2,0,CAt ,2,2,0CD.设平面ACD 的法向量(),,n x y z =,则20220n CA x tz n CD x y ⎧⋅=-+=⎪⎨⋅=-=⎪⎩,令1x =,得1y =,2z t =,故21,1,n t ⎛= ⎝⎭.因为直线AB 与平面ACD 所成角的正切值为12, 所以直线AB 与平面ACD 5. 即2255211AB nAB nt t ⋅==⋅⋅++,解得2t =.所以平面ACD 的法向量21,1,2n ⎛⎫= ⎪ ⎪⎝⎭, 故B 到平面ACD的距离为22551112AB n d n⋅===++.故选:D5.(2020·山东省济南市莱芜第一中学高二月考)在棱长为1的正方体1111ABCD A B C D -中,点M 为棱1CC 的中点,则直线1B M 与平面11A D M 所成角的正弦值是( )A .215B .25C .35D .45【答案】B 【解析】建立如图所示的空间直角坐标系, 则1111(1,0,1),(0,0,1),(0,1,),(1,1,1)2A D M B11(1,0,0)=-A D ,11(0,1,)2=-D M ,11(1,0,)2=MB设平面11A D M 的法向量为(,,)m x y z =则1110=01002x A D m y z D M m -=⎧⎧⋅⎪⎪⇒⎨⎨-=⋅=⎪⎩⎪⎩令1y =可得2z =,所以(0,1,2)=m 设直线1B M 与平面11A D M 所成角为θ,1112sin 5552θ⋅===⋅⨯m MB m MB故选:B6.(2018·浙江高三其他)如图,在长方体11112222A B C D A B C D -中,12111122A A A B B C ==,A ,B ,C 分别是12A A ,12B B ,12C C 的中点,记直线2D C 与1AD 所成的角为α,平面22A BCD 与平面11ABC D 所成二面角为β,则( )A .cos cos αβ=B .sin sin αβ=C .cos cos t αβ>D .sin sin αβ<【答案】B 【解析】连接111,AB B D ,如图,在长方体内知12//AB D C ,所以11B AD ∠为异面直线2D C 与1AD 所成的角为α, 易知11AB D 为等边三角形, 所以60α︒=,因为22A D ⊥平面22ABB A ,2AB ⊂平面22ABB A , 所以22A D ⊥2AB 又22AB A B ⊥,2222A D A B A =所以2AB ⊥平面22A BCD , 同理可得1B C ⊥平面11ABC D ,则2AB →,1B C →可分别视为平面22A BCD ,平面11ABC D 的一个法向量,又因为在长方体内易知21//AD B C ,而2260D AB ∠=︒ 故2AB →与1B C →的夹角为60︒, 所以60β︒=或120β︒=,即sin sin αβ=, 故选:B7.(2020·浙江镇海中学高三三模)在三棱柱111ABC A B C -中,D 是棱BC 上的点(不包括端点),记直线1B D 与直线AC 所成的角为1θ,直线1B D 与平面111A B C 所成的角为2θ,二面角111C A B D --的平面角为3θ,则( )A .123θθθ<<B .213θθθ<<C .321θθθ<<D .231θθθ<<【答案】D 【解析】设三棱柱111ABC A B C -是棱长为2的正三棱柱,D 是棱BC 的中点, 以A 为原点,在平面ABC 中,过A 作AC 的垂线为x 轴,AC 为y 轴,1AA 为z 轴,建立空间直角坐标系,则()10,0,2A ,()13,1,2B ,()0,2,0C ,33,022D ⎛⎫⎪ ⎪⎝⎭,()0,0,0A ,()0,2,0AC =,131,22B D ⎛⎫=- ⎪ ⎪⎝⎭,()113,1,0=A B ,直线1B D 与直线AC 所成的角为1θ,1111cos 25B D AC BD ACθ⋅∴==⋅直线1B D 与平面111A B C 所成的角为2θ, 平面111A B C 的法向量()0,0,1n =,1212sin 5BD n BD nθ⋅∴==⋅2cos θ∴== 设平面11A B D 的法向量(),,m a b c =,则11130312022m AB a b m B D a b c ⎧⋅=+=⎪⎨⋅=-+-=⎪⎩,取a =33,3,2m ⎛⎫=-- ⎪⎭,二面角111C A B D --的平面角为3θ,332cos 57m n m nθ⋅∴===⋅231cos cos cos θθθ>>, ∴231θθθ<<故选:D8.(2020·浙江衢州 高二期末)在底面为锐角三角形的直三棱柱111ABC A B C -中,D 是棱BC 的中点,记直线1B D 与直线AC 所成角为1θ,直线1B D 与平面111A B C 所成角为2θ,二面角111C A B D --的平面角为3θ,则( )A .2123,θθθθ<<B .2123,θθθθ><C .2123,θθθθ<>D .2123,θθθθ>>【答案】A 【解析】由题可知,直三棱柱111ABC A B C -的底面为锐角三角形,D 是棱BC 的中点, 设三棱柱111ABC A B C -是棱长为2的正三棱柱,以A 为原点,在平面ABC 中,过A 作AC 的垂线为x 轴,AC 为y 轴,1AA 为z 轴,建立空间直角坐标系,则()10,0,2A ,()13,1,2B ,()0,2,0C ,33,02D ⎫⎪⎪⎝⎭,()0,0,0A ,()0,2,0AC →=,131,222B D →⎛⎫=-- ⎪ ⎪⎝⎭,)113,1,0A B →=,直线1B D 与直线AC 所成的角为1θ,10,2πθ⎛⎤∈ ⎥⎝⎦,111cos 25B D ACB D ACθ→→→→⋅∴==⋅直线1B D 与平面111A B C 所成的角为2θ,20,2πθ⎡⎤∈⎢⎥⎣⎦, 平面111A B C 的法向量()0,0,1n →=,121sin 5B D nB D nθ→→→→⋅∴==⋅, 222cos 155θ⎛⎫∴=-= ⎪⎝⎭设平面11A B D 的法向量(),,m a b c →=,则11130312022m A B ab m B D a bc ⎧⋅=+=⎪⎨⋅=-+-=⎪⎩, 取a =33,2m →⎫=--⎪⎭, 二面角111C A B D --的平面角为3θ, 由图可知,3θ为锐角,即30,2πθ⎛⎫∈ ⎪⎝⎭, 33cos m nm nθ→→→→⋅∴===⋅ 231cos cos cos θθθ>>,由于cos y θ=在区间()0,π上单调递减,∴231θθθ<<,则2123,θθθθ<<.故选:A.9.(2020·浙江省杭州第二中学高三其他)空间线段AC AB ⊥,BD AB ⊥,且::1:3:1AC AB BD =,设CD 与AB 所成的角为α,CD 与面ABC 所成的角为β,二面角C AB D --的平面角为γ,则( ) A .2γβα≤≤B .2γβα≤≤ C .2γαβ≤≤D .2γαβ≤≤【答案】A 【解析】因为空间线段AC AB ⊥,BD AB ⊥, 所以可将其放在矩形中进行研究,如图,绘出一个矩形,并以A 点为原点构建空间直角坐标系:因为::1:3:1AC AB BD =,所以可设AC x =,3AB x =,BD x =,则()0,0,0A ,0,3,0B x ,0,0,C x ,,3,0D x x ,,3,CD x x x ,0,3,0AB x ,0,3,CB x x ,故CD 与AB 所成的角α的余弦值229311cos α11113CD AB x CD ABx x, 因为根据矩形的性质易知平面ABD ⊥平面ABC ,BD ⊥平面ABC , 所以二面角C AB D --的平面角为γ90,γ452,γ2cos22, 所以BCD ∠即CD 与面ABC 所成的角β, 故110cos β11CD CB CD CB , 1103112112, 所以2γβα≤≤,故选:A.10.(2020·四川高三三模(理))如图该几何体由半圆柱体与直三棱柱构成,半圆柱体底面直径BC =4,AB =AC ,∠BAC =90°,D 为半圆弧的中点,若异面直线BD 和AB 1所成角的余弦值为23,则该几何体的体积为( )A .16+8πB .32+16πC .32+8πD .16+16π【答案】A 【解析】设D 在底面半圆上的射影为1D ,连接1AD 交BC 于O ,设1111A D B C O ⋂=. 依题意半圆柱体底面直径4,,90BC AB AC BAC ==∠=︒,D 为半圆弧的中点, 所以1111,AD BC A D B C ⊥⊥且1,O O 分别是下底面、上底面半圆的圆心.连接1OO , 则1OO 与上下底面垂直,所以11,,OO OB OO OA OA OB ⊥⊥⊥,以1,,OB OA OO 为,,x y z 轴建立空间直角坐标系,设几何体的高为()0h h >,则()()()()12,0,0,0,2,,0,2,0,2,0,B D h A B h -,所以()()12,2,,2,2,BD h AB h =--=-, 由于异面直线BD 和1AB 所成的角的余弦值为23, 所以212212388BD AB h BD AB h h ⋅==⋅+⋅+, 即2222,16,483h h h h ===+. 所以几何体的体积为2112442416822ππ⨯⨯⨯+⨯⨯⨯=+. 故选:A二、多选题11.(2019·江苏徐州 高二期末)下列命题中正确的是( )A .,,,AB M N 是空间中的四点,若,,BA BM BN 不能构成空间基底,则,,,A B M N 共面 B .已知{},,a b c 为空间的一个基底,若m a c =+,则{},,a b m 也是空间的基底 C .若直线l 的方向向量为(1,0,3)e =,平面α的法向量为2(2,0,)3n =-,则直线//l αD .若直线l 的方向向量为(1,0,3)e =,平面α的法向量为(2,0,2)n =-,则直线l 与平面α所成角的正弦5【答案】ABD 【解析】对于A ,,,,A B M N 是空间中的四点,若,,BA BM BN 不能构成空间基底,则,,BA BM BN 共面,则,,,A B M N 共面,故A 对;对于B ,已知{},,a b c 为空间的一个基底,则,,a b c 不共面,若m a c =+,则,,a b m 也不共面,则{},,a b m 也是空间的基底,故B 对;对于C ,因为21(2)+00+3=03e n ⋅=⨯-⨯⨯,则e n ⊥,若l α⊄,则//l α,但选项中没有条件l α⊄,有可能会出现l α⊂,故C 错; 对于D ,∵cos ,e n e n e n =51022==⨯l 与平面α5,故D 对; 故选:ABD .12.(2020·山东平邑 高二期末)如图,一个结晶体的形状为平行六面体1111ABCD A B C D -,其中,以顶点A 为端点的三条棱长都相等,且它们彼此的夹角都是60°,下列说法中正确的是( )A .()()2212AA AB ADAC ++=B .()10AC AB AD ⋅-= C .向量1B C 与1AA 的夹角是60° D .1BD 与AC 6【答案】AB 【解析】以顶点A 为端点的三条棱长都相等, 它们彼此的夹角都是60°, 可设棱长为1,则11111cos602AA AB AA AD AD AB ⋅=⋅=⋅=⨯⨯︒=()22221111=+2+2+2AA AB AD AA AB AD AA AB AB AD AA AD ++++⋅⋅⋅11113262=+++⨯⨯=而()()()22222222ACAB AD AB AD AB AD =+=++⋅121122362⎛⎫=++⨯=⨯= ⎪⎝⎭, 所以A 正确.()()()11AC AB AD AA AB AD AB AD ⋅-⋅=++-2211AA AB AA AD AB AB AD AD AB AD =⋅-⋅+-⋅+⋅- =0,所以B 正确.向量11B C A D=, 显然1AA D △ 为等边三角形,则160AA D ∠=︒.所以向量1A D 与1AA 的夹角是120︒ ,向量1B C 与1AA 的夹角是120︒,则C 不正确 又11=AD AA BD AB +-,AC AB AD =+ 则()211||=2AD AA A B B D =+-,()2||=3AC AB AD =+()()111AD AA AB BD AC AB AD ⋅=+-=+⋅所以11116cos ===6||||23BD AC BD AC BD AC ⋅⋅⨯,,所以D 不正确.故选:AB13.(2020·福建厦门 高二期末)正方体1111ABCD A B C D -中,E 、F 、G 、H 分别为1CC 、BC 、CD 、BB 、1BB 的中点,则下列结论正确的是( )A .1B G BC ⊥ B .平面AEF 平面111AAD D AD =C .1//A H 面AEFD .二面角E AF C --的大小为4π【答案】BC 【解析】由题可知,1B G 在底面上的射影为BG ,而BC 不垂直BG , 则1B G 不垂直于BC ,则选项A 不正确;连接1AD 和1BC ,E 、F 、G 、H 分别为1CC 、BC 、CD 、BB 、1BB 的中点, 可知11////EF BC AD ,所以AEF ∆⊂平面1AD EF , 则平面AEF平面111AA D D AD =,所以选项B 正确;由题知,可设正方体的棱长为2,以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴, 则各点坐标如下:()()()()()()12,0,0,0,2,0,0,2,1,2,0,2,2,2,1,1,2,0A C E A H F ()()()()110,2,1,1,2,0,1,0,1,0,0,2A H AF EF AA =-=-=-=,设平面AEF 的法向量为(),,n x y z =,则00n AF n EF ⎧⋅=⎨⋅=⎩,即20x y x z -+=⎧⎨-=⎩,令1y =,得2,2x z ==,得平面AEF 的法向量为()2,1,2n =,所以10A H n ⋅=,所以1//A H 平面AEF ,则C 选项正确; 由图可知,1AA ⊥平面AFC ,所以1AA 是平面AFC 的法向量, 则1112cos ,3AA n AA n AA n⋅<>===⋅. 得知二面角E AF C --的大小不是4π,所以D 不正确. 故选:BC.14.正三棱柱111ABC A B C -中,13AA =,则( ) A .1AC 与底面ABC 的成角的正弦值为12 B .1AC 与底面ABC 的成角的正弦值为32 C .1AC 与侧面11AA B B 3D .1AC 与侧面11AA B B 的成角的正弦值为134【答案】BC 【解析】如图,取11A C 中点E ,AC 中点F ,并连接EF , 则1EB ,1EC ,EF 三条直线两两垂直,则分别以这三条直线为x 轴,y 轴,z 轴建立如图所示空间直角坐标系; 设2AB =; 则123AA =; 1(0A ∴,1-,0),1(0C ,1,0),(0A ,1-,23),(0C ,1,23);1(3B ,0,0), ∴()10,2,23AC =-.底面ABC 的其中一个法向量为:()0,0,23m =,1AC ∴与底面ABC 的成角的正弦值为111123cos ,2423m AC m AC m AC -<>===⨯⨯,; A ∴错B 对.11A B 的中点K 的坐标为3(2,12-,0);∴侧面11AA B B 的其中一个法向量为:133,,022KC ⎛⎫=- ⎪ ⎪⎝⎭;1AC ∴与侧面11AA B B 的成角的正弦值为:11111133cos 4,43AC KC AC KC AC KC <>===⨯⨯,; 故C 对D 错; 故选:BC .三、单空题15.(2020·四川省南充市白塔中学高二月考(理))已知平面α的一个法向量10,,22n ⎛⎫=-- ⎪⎝⎭,A α∈,P α∉,且31,,222PA ⎛⎫=- ⎪ ⎪⎝⎭,则直线PA 与平面α所成的角为______.【答案】π3【解析】设直线PA 与平面α所成的角为θ,则s 102342131022444in cos n PA n PAθθ===--⋅=⋅++++, ∴直线PA 与平面α所成的角为π3. 故答案为:π3. 16.(2019·河南高二竞赛)等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角C AB D --的余弦值为33,M N ,分别是AC BC ,的中点,则EM AN ,所成角的余弦值等于 . 【答案】16【解析】设AB =2,作CO ⊥面ABDEOH ⊥AB ,则CH ⊥AB ,∠CHO 为二面角C −AB −D 的平面角,CH =OH =CH cos ∠CHO =1,结合等边三角形ABC 与正方形ABDE 可知此四棱锥为正四棱锥,3,11(),2212AN EM CH AN AC AB EM AC AE AN EM====+=-∴⋅=故EM ,AN 116=。
空间向量的应用(一)(精练) 讲义 (解析版)
1.4.1 空间向量应用(一)【题组一 平面法向量的求解】1.已知A(1,0,0),B(0,1,0),C(0,0,1),则下列向量是平面ABC 法向量的是( )A .(-1,1,1)B .(1,-1,1)C.⎝ ⎛⎭⎪⎫-33,-33,-33 D .⎝ ⎛⎭⎪⎫33,33,-33 【答案】C【解析】设n =(x ,y ,z)为平面ABC 的法向量,AB →=(-1,1,0),AC →=(-1,0,1),则⎩⎪⎨⎪⎧ n·AB →=0,n·AC →=0,化简得⎩⎨⎧-x +y =0,-x +z =0,∴x =y =z.故选 C. 2.(2018·浙江高三其他)平面α的法向量(2,2,2)u =-,平面β的法向量(1,2,1)v =,则下列命题正确的是( )A .α、β平行B .α、β垂直C .α、β重合D .α、β不垂直【答案】B【解析】平面α的法向量(2,2,2)u =-,平面β的法向量(1,2,1)v =,因为2420u v =-+=,所以两个平面垂直.故选:B .3.(2019·山东历下.济南一中高二期中)在平面ABCD 中,(0,1,1)A ,(1,2,1)B ,(1,0,1)C --,若(1,,)a y z =-,且a 为平面ABCD 的法向量,则2y 等于( )A .2B .0C .1D .无意义 【答案】C 【解析】由题得,(1,1,0)AB =,(1,1,2)AC =--,又a 为平面ABCD 的法向量,则有00a AB a AC ⎧⋅=⎨⋅=⎩,即10120y y z -+=⎧⎨-+=⎩,则1y =,那么21y =.故选:C【题组二 空间向量证平行】1.(2019·安徽埇桥,北大附宿州实验学校高二期末(理))已知平面α的法向量是()2,31-,,平面β的法向量是()4,2λ-,,若α//β ,则λ的值是( ) A .310-B .-6C .6D .103 【答案】C【解析】因为α//β,故可得法向量()2,31-,与向量()4,2λ-,共线, 故可得23142λ==--,解得6λ=.故选:C. 2(2019·乐清市知临中学高二期末)已知平面α的一个法向量是(2,1,1)-,//αβ,则下列向量可作为平面β的一个法向量的是( )A .()4,22-,B .()2,0,4C .()215--,,D .()42,2-,【答案】D【解析】平面α的一个法向量是(2,1,1)-,//αβ,设平面β的法向量为(),,x y z ,则()(2,1,1),,,0x y z λλ=≠-,对比四个选项可知,只有D 符合要求,故选:D.3.(2020.广东.华侨中学)如图,正方形ABCD 与矩形ACEF 所在平面互相垂直,AB =2,AF =1,M 在EF 上,且AM ∥平面BDE ,则M 点的坐标为( )A .(1,1,1) B.⎝ ⎛⎭⎪⎫23,23,1 C.⎝ ⎛⎭⎪⎫22,22,1 D.⎝ ⎛⎭⎪⎫24,24,1 【答案】 C【解析】设AC 与BD 相交于O 点,连接OE ,∵AM ∥平面BDE ,且AM⊂平面ACEF ,平面ACEF∩平面BDE =OE ,∴AM ∥EO ,又O 是正方形ABCD 对角线的交点,∴M 为线段EF 的中点.在空间直角坐标系中,E(0,0,1),F(2,2,1).由中点坐标公式,知点M 的坐标为⎝ ⎛⎭⎪⎫22,22,1.4.如图所示,在正方体ABCD -A1B1C1D1中,棱长为a ,M ,N 分别为A1B 和AC 上的点,A1M =AN =2a3,则MN 与平面BB1C1C 的位置关系是( )A .相交B .平行C .垂直D .MN 在平面BB1C1C 内【答案】 B【解析】以点C1为坐标原点,分别以C1B1,C1D1,C1C 所在直线为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,由于A1M =AN =2a 3,则M ⎝⎛⎭⎫a ,2a 3,a 3,N ⎝⎛⎭⎫2a 3,2a 3,a ,MN →=⎝⎛⎭⎫-a 3,0,2a 3. 又C1D1⊥平面BB1C1C ,所以C1D1→=(0,a ,0)为平面BB1C1C 的一个法向量.因为MN →·C1D1→=0,所以MN →⊥C1D1→,又MN⊂平面BB1C1C ,所以MN ∥平面BB1C1C.【题组三 空间向量证明垂直】1.(2019·湖北孝感.高二期中(理))已知向量(2,4,)AB x =,平面α的一个法向量(1,,3)n y =,若AB α⊥,则( )A .6x =,2y =B .2x =,6y =C .3420x y ++=D .4320x y ++=【答案】A 【解析】因为AB α⊥,所以AB n ∥,由2413x y ==,得6x =,2y =.故选A2.(2020·宜昌市人文艺术高中(宜昌市第二中学)高二月考)已知直线l 的一个方向向量()2,3,5d =,平面α的一个法向量()4,,u m n =-,若l α⊥,则m n +=______.【答案】16- 【解析】l α⊥,//d u ∴,且()2,3,5d =,()4,,u m n =-,4235m n -∴==,解得6m =-,10n =-.因此,16m n +=-.故答案为:16-.3.(2020·陕西富平.期末(理))若直线l 的方向向量为(1,0,2)a =-,平面α的法向量为(2,0,4)n =-,则直线l 与平面α的位置关系是( )A .l αB .l α⊥C .l α≠⊄D .l 与α斜交【答案】B【解析】由题得,2n a =,则//n a ,又n 是平面α的法向量,a 是直线l 的方向向量,可得l α⊥. 故选:B4. 如图,已知AB ⊥平面ACD ,DE ⊥平面ACD ,⊂ACD 为等边三角形,AD =DE =2AB.求证:平面BCE ⊥平面CDE.【答案】【解析】设AD =DE =2AB =2a ,以A 为原点,分别以AC ,AB 所在直线为x 轴,z 轴,以过点A 垂直于AC 的直线为y 轴,建立如图所示的空间直角坐标系Axyz ,则A(0,0,0),C(2a ,0,0),B(0,0,a),D(a ,3a ,0), E(a ,3a ,2a).所以BE →=(a ,3a ,a),BC →=(2a ,0,-a),CD →=(-a ,3a ,0),ED →=(0,0,-2a).设平面BCE 的法向量为n1=(x1,y1,z1),由n1·BE →=0,n1·BC →=0可得⎩⎨⎧ ax1+3ay1+az1=0,2ax1-az1=0,即⎩⎨⎧x1+3y1+z1=0,2x1-z1=0.令z1=2,可得n1=(1,-3,2). 设平面CDE 的法向量为n2=(x2,y2,z2),由n2·CD →=0,n2·ED →=0可得 ⎩⎨⎧ -ax2+3ay2=0,-2az2=0,即⎩⎨⎧-x2+3y2=0,z2=0.令y2=1,可得n2=(3,1,0).因为n1·n2=1×3+1×(-3)+2×0=0.所以n1⊥n2,所以平面BCE ⊥平面CDE.5.如图所示,已知四棱锥P—ABCD 的底面是直角梯形,∠ABC =∠BCD =90°,AB =BC =PB =PC =2CD ,侧面PBC ⊥底面ABCD.证明:(1)PA ⊥BD ;(2)平面PAD ⊥平面PAB.【答案】见解析【解析】 (1)取BC 的中点O ,连接PO ,∵平面PBC ⊥底面ABCD ,⊂PBC 为等边三角形,平面PBC∩底面ABCD =BC ,PO⊂平面PBC , ∴PO ⊥底面ABCD.以BC 的中点O 为坐标原点,以BC 所在直线为x 轴,过点O 与AB 平行的直线为y 轴,OP 所在直线为z 轴,建立空间直角坐标系,如图所示.不妨设CD =1,则AB =BC =2,PO =3,∴A(1,-2,0),B(1,0,0),D(-1,-1,0),P(0,0,3),∴BD →=(-2,-1,0),PA →=(1,-2,-3).∵BD →·PA →=(-2)×1+(-1)×(-2)+0×(-3)=0,∴PA →⊥BD →,∴PA ⊥BD.(2)取PA 的中点M ,连接DM ,则M ⎝ ⎛⎭⎪⎫12,-1,32. ∵DM →=⎝ ⎛⎭⎪⎫32,0,32,PB →=(1,0,-3), ∴DM →·PB →=32×1+0×0+32×(-3)=0,∴DM →⊥PB →,即DM ⊥PB.∵DM →·PA →=32×1+0×(-2)+32×(-3)=0, ∴DM →⊥PA →,即DM ⊥PA. 又∵PA∩PB =P ,PA ,PB⊂平面PAB ,∴DM ⊥平面PAB.∵DM⊂平面PAD ,∴平面PAD ⊥平面PAB.6.(2019·林州模拟)如图,在四棱锥P—ABCD 中,PD ⊥底面ABCD ,底面ABCD 为正方形,PD =DC ,E ,F 分别是AB ,PB 的中点.(1)求证:EF ⊥CD ;(2)在平面PAD 内求一点G ,使GF ⊥平面PCB ,并证明你的结论.【答案】见解析【解析】(1)证明 如图,以D 为原点,分别以DA ,DC ,DP 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,设AD =a ,则D(0,0,0),A(a ,0,0),B(a ,a ,0),C(0,a ,0),E ⎝⎛⎭⎫a ,a 2,0,P(0,0,a),F ⎝⎛⎭⎫a 2,a 2,a 2. EF →=⎝⎛⎭⎫-a 2,0,a 2,DC →=(0,a ,0). ∵EF →·DC →=0,∴EF →⊥DC →,即EF ⊥CD.(2)解 设G(x ,0,z),则FG →=⎝⎛⎭⎫x -a 2,-a 2,z -a 2, 若使GF ⊥平面PCB ,则需FG →·CB →=0,且FG →·CP →=0,由FG →·CB →=⎝⎛⎭⎫x -a 2,-a 2,z -a 2·(a,0,0) =a ⎝⎛⎭⎫x -a 2=0,得x =a 2; 由FG →·CP →=⎝⎛⎭⎫x -a 2,-a 2,z -a 2·(0,-a ,a) =a22+a ⎝⎛⎭⎫z -a 2=0,得z =0. ∴G 点坐标为⎝⎛⎭⎫a 2,0,0,即G 为AD 的中点.。
第10讲空间向量的应用与新定义(五种题型)-高考数学热点、重难点题型(新高考专用)(解析版)
第10讲空间向量的应用与新定义(五种题型)【热点、重难点题型】题型一:空间向量的位置关系的证明一、单选题1.(2023·全国·高三专题练习)如图,在正四棱柱1111ABCD A B C D -中,O 是底面ABCD 的中心,,E F 分别是11,BB DD 的中点,则下列结论正确的是()A .1AO //EFB .1AO EF ⊥C .1AO //平面1EFB D .1A O ⊥平面1EFB 【答案】B【分析】建立空间直角坐标系,利用空间位置关系的向量证明,逐项分析、判断作答.【详解】在正四棱柱1111ABCD A B C D -中,以点D 为原点建立如图所示的空间直角坐标系,令12,2(0,0)AB a DD b a b ==>>,O 是底面ABCD 的中心,,E F 分别是11,BB DD 的中点,则11(,,0),(2,0,2),(2,2,),(2,2,2),(0,0,)O a a A a b E a a b B a a b F b ,1(,,2)OA a a b =- ,1(2,2,0),(0,0,)FE a a EB b == ,对于A ,显然1OA 与FE 不共线,即1AO 与EF 不平行,A 不正确;对于B ,因12()2020OA FE a a a a b ⋅=⋅+-⋅+⋅= ,则1OA FE ⊥ ,即1AO EF ⊥,B 正确;对于C ,设平面1EFB 的法向量为(,,)n x y z = ,则12200n EF ax ay n EB bz ⎧⋅=+=⎪⎨⋅==⎪⎩,令1x =,得(1,1,0)n =- ,120OA n a ⋅=> ,因此1OA 与n 不垂直,即1AO 不平行于平面1EFB ,C 不正确;对于D ,由选项C 知,1OA 与n 不共线,即1AO 不垂直于平面1EFB ,D 不正确.故选:B2.(2023春·河南洛阳·高三洛阳市第八中学校考开学考试)在正方体1111ABCD A B C D -中,E ,F 分别为,AB BC 的中点,则()A .平面1B EF ⊥平面1BDD B .平面1B EF ⊥平面1A BDC .平面1//B EF 平面1A ACD .平面1//B EF 平面11AC D 【答案】A【分析】证明EF ⊥平面1BDD ,即可判断A ;如图,以点D 为原点,建立空间直角坐标系,设2AB =,分别求出平面1B EF ,1A BD ,11AC D 的法向量,根据法向量的位置关系,即可判断BCD .【详解】解:在正方体1111ABCD A B C D -中,AC BD ⊥且1DD ⊥平面ABCD ,又EF ⊂平面ABCD ,所以1EF DD ⊥,因为,E F 分别为,AB BC 的中点,所以EF AC ∥,所以EF BD ⊥,又1BD DD D = ,所以EF ⊥平面1BDD ,又EF ⊂平面1B EF ,所以平面1B EF ⊥平面1BDD ,故A 正确;选项BCD 解法一:如图,以点D 为原点,建立空间直角坐标系,设2AB =,则()()()()()()()112,2,2,2,1,0,1,2,0,2,2,0,2,0,2,2,0,0,0,2,0B E F B A A C ,()10,2,2C ,则()()11,1,0,0,1,2EF EB =-= ,()()12,2,0,2,0,2DB DA == ,()()()1110,0,2,2,2,0,2,2,0,AA AC A C ==-=- 设平面1B EF 的法向量为()111,,m x y z = ,则有11111020m EF x y m EB y z ⎧⋅=-+=⎪⎨⋅=+=⎪⎩,可取()2,2,1m =- ,同理可得平面1A BD 的法向量为()11,1,1n =-- ,平面1A AC 的法向量为()21,1,0n = ,平面11AC D 的法向量为()31,1,1n =-,则122110m n ⋅=-+=≠ ,所以平面1B EF 与平面1A BD 不垂直,故B 错误;因为m 与2n u u r 不平行,所以平面1B EF 与平面1A AC 不平行,故C 错误;因为m 与3n 不平行,所以平面1B EF 与平面11AC D 不平行,故D 错误,故选:A.选项BCD 解法二:解:对于选项B ,如图所示,设11A B B E M = ,EF BD N = ,则MN 为平面1B EF 与平面1A BD 的交线,在BMN 内,作BP MN ⊥于点P ,在EMN 内,作GP MN ⊥,交EN 于点G ,连结BG ,则BPG ∠或其补角为平面1B EF 与平面1A BD 所成二面角的平面角,由勾股定理可知:222PB PN BN +=,222PG PN GN +=,底面正方形ABCD 中,,E F 为中点,则EF BD ⊥,由勾股定理可得222NB NG BG +=,从而有:()()2222222NB NG PB PN PG PN BG +=+++=,据此可得222PB PG BG +≠,即90BPG ∠≠ ,据此可得平面1B EF ⊥平面1A BD 不成立,选项B 错误;对于选项C ,取11A B 的中点H ,则1AH B E ,由于AH 与平面1A AC 相交,故平面1∥B EF 平面1A AC 不成立,选项C 错误;对于选项D ,取AD 的中点M ,很明显四边形11A B FM 为平行四边形,则11A M B F ,由于1A M 与平面11AC D 相交,故平面1∥B EF 平面11AC D 不成立,选项D 错误;故选:A.3.(2023春·云南昆明·高三校考阶段练习)如图,在棱长为1的正方体1111ABCD A B C D -中,P 为棱1BB 的中点,Q 为正方形11BB C C 内一动点(含边界),则下列说法中不正确...的是()A .若1//D Q 平面1A PD ,则动点Q 的轨迹是一条线段B .存在Q 点,使得1D Q ⊥平面1A PDC .当且仅当Q 点落在棱1CC 上某点处时,三棱锥1Q A PD -的体积最大D.若1=2D Q ,那么Q 点的轨迹长度为4选项C ,1A PD △面积为定值,当且仅当点Q 到平面1(1,1,)AQ x z =- ,Q 到平面1A PD 的距离为12332A Q m d x z m⋅==+- 302x z ≤+≤时,23[()]32d x z =-+,当0x z +=时,322x z ≤+≤时,23[()]32d x z =+-,2x z +=时,综上,0x z +=时,d 取得最大值1,故Q 与1C 重合时,确;选项D ,11D C ⊥平面11BB C C ,CQ ⊂平面11BB C C 所以22111122C QD Q D C =-=,所以Q 点轨迹是以为1222424ππ⨯⨯=,D 正确.故选:B .【点睛】关键点点睛:本题考查空间点的轨迹问题,解题关键是勾画出过1D EF ,由体积公式,在正方形11BB C C 内的点Q 二、多选题4.(2022·湖南长沙·统考模拟预测)如图,已知正方体1111ABCD A B C D -的棱长为2,E F G 、、分别为11,,AD AB B C 的中点,以下说法正确的是()A .三棱锥A EFG -的体积为13B .1AC ⊥平面EFG C .过点E F G 、、作正方体的截面,所得截面的面积是D .异面直线EG 与1AC 所成的角的余弦值为3对于A ,1111123323A EFG EAF V S CC -=⋅⋅=⨯⨯=△,故A 正确;对于B ,以DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,5.(2022·广东·统考三模)在正方体1111ABCD A B C D -中,1AB =,点P 满足1CP CD CC λμ=+,其中[][]0,1,0,1λμ∈∈,则下列结论正确的是()A .当1//B P 平面1A BD 时,1B P 可能垂直1CD B .若1B P 与平面11CC D D 所成角为4π,则点P 的轨迹长度为2πC .当λμ=时,1||DP A P + 的最小值为2+D .当1λ=时,正方体经过点1A 、P 、C 的截面面积的取值范围为[2【答案】ABD 【分析】依题意画出图形,建立空间直角坐标系,利用空间向量法计算A 、D ,连接1C P ,则11B PC ∠即为1B P 与平面11CC D D 所成角,根据锐角三角函数得到P 的轨迹,即可判断B ,将平面1CD D 与平面11A BCD 沿1CD 展成平面图形,化曲为直,利用余弦定理计算即可判断C ;【详解】解:对于A 选项:建立如图所示的空间直角坐标系A xyz -,则()0,0,0A ,()1,0,0B ,()0,1,0D ,()1,1,0C ,()10,0,1A ,()11,1,1C ,()10,1,1D ,所以()11,0,1CD =- ,11B P B C CP =+ 11B C CD CC λμ=++ (),1,1λμ=--,则()11,0,1BA =- ,()1,1,0BD =- ,设平面1A BD 的一个法向量为(),,n x y z = ,所以100BA n x z BD n x y ⎧⋅=-+=⎨⋅=-+=⎩ ,令1x =,则1y z ==,即平面1A BD 的一个法向量为()1,1,1n = ,若1//B P 平面1A BD ,则10n B P ⋅= ,B 选项:因为11BC ⊥平面11CCD D ,连接1C P ,则若1B P 与平面11CC D D 所成角为4π,则1tan B PC ∠即点P 的轨迹是以1C 为圆心,以1为半径的14个圆,于是点C 选项:如图,将平面1CD D 与平面11A BCD 沿CD 线段1A D 即为1DP A P + 的最小值,利用余弦定理可知2221111112A D A D DD A D DD =+-⋅所以122A D =+,故C 错误;。
空间向量的应用综合练习题
空间向量的应用综合练习题空间向量是解决空间几何问题的重要工具,具有广泛的应用。
本文将为大家提供一些空间向量的应用综合练习题,帮助大家熟悉空间向量的使用方法。
1. 设A(1, 2, 3),B(4, -1, 2),C(-1, 3, 5)为空间中的三个点,求向量AB和向量BC的和。
解答:首先计算向量AB,AB = (4-1, -1-2, 2-3) = (3, -3, -1);然后计算向量BC,BC = (-1-4, 3-(-1), 5-2) = (-5, 4, 3);最后计算向量AB和向量BC的和,(3, -3, -1) + (-5, 4, 3) = (-2, 1, 2)。
2. 已知空间中一点A(1, 2, 3)和向量a(2, -1, 3),求点A向量a的倍数为4时的点的坐标。
解答:点A向量a的倍数为4时,乘以4,得到坐标为(8, -4, 12)的点。
3. 已知向量a(-2, 1, 3),向量b(4, -1, -2),求向量a和向量b的点积以及它们的夹角。
解答:向量a和向量b的点积为a·b = (-2)(4) + (1)(-1) + (3)(-2) = -8 - 1 - 6 = -15。
向量a和向量b的模分别为|a| = √((-2)² + 1² + 3²) = √4 + 1 + 9 = √14,|b| = √(4² + (-1)² + (-2)²) = √16 + 1 + 4 = √21。
根据点积公式,可以计算出它们的夹角cosθ = (a·b) / (|a||b|) = -15 / (√14 * √21) ≈ -0.782,从而夹角θ ≈ arccos(-0.782) ≈ 139.2°。
4. 已知向量a(3, 2, -1)和向量b(-1, 1, 4),求向量a和向量b的叉积以及它们的模。
解答:向量a和向量b的叉积为a × b = (2)(4) - (-1)(1), (-1)(-1) - (3)(4), (3)(1) - (2)(-1) = (11, -13, 7)。
高中 空间向量的应用 知识点+例题 分类全面
[例1] 若直线1l 与2l 的方向向量分别为)4,4,2(-=a 与)6,9,6(-=b ,则两条直线的位置关系是_________.垂直[巩固1] 已知直线l 的一个方向向量为)2,1,1(--=a ,平面α的一个法向量为)4,2,2(--=b ,则直线l 与平面α的位置关系是____________.垂直[巩固2]两个不重合平面的法向量分别为)1,0,1(1-=v 与)2,0,2(2-=v ,则这两个平面的位置关系是___________.平行[巩固3]已知直线l 的方向向量是e ,平面α,β的法向量分别是1n 与2n ,若a =βα ,且1n e ⊥,2n e ⊥,则l 与a 的关系是_______.平行或重合[例2] 已知平面α,β的法向量分别是(-2,3,m ),(4,λ,0),若α∥β,则λ+m 的值_________.-6[巩固1] 已知平面α的法向量是(2,3,-1),平面β的法向量是(4,λ,-2),若α//β,则λ的值为_______.6[巩固2] 若平面α,β的法向量分别是(-1,2,4),(x ,-1,-2)并且α⊥β,则x 的值为_________.-10[例3] 已知正方体ABCD-A 1B 1C 1D 1的棱长为2,E ,F 分别是BB 1,DD 1的中点,求证: (1)FC 1∥平面ADE ; (2)平面ADE ∥平面B 1C 1F .精典例题透析[巩固]在边长是2的正方体ABCD-A 1B 1C 1D 1中,E ,F 分别为AB ,A 1C 的中点.应用空间向量方法求解下列问题. (1)求EF 的长(2)证明:EF ∥平面AA 1D 1D ; (3)证明:EF ⊥平面A 1CD.1.求异面直线所成角设异面直线l 1,l 2的方向向量分别为m 1,m 2,则l 1与l 2所成的角θ满足cos θ=><21,cos m m .(]2,0(πθ∈)[例]已知直三棱柱ABC —A 1B 1C 1,∠ACB =90°,CA =CB =CC 1,D 为B 1C 1的中点,求异面直线BD 和A 1C 所成角的余弦值.如图所示,以C 为原点,直线CA 、CB 、CC 1分别为x 轴、y 轴、z 轴建立空间直角坐标系. 设CA =CB =CC 1=2,则A 1(2,0,2),C (0,0,0),B (0,2,0),D (0,1,2), ∴BD →=(0,-1,2),A 1C →=(-2,0,-2),知识模块3空间向量的应用∴cos 〈BD →,A 1C →〉=BD →·A 1C →|BD →||A 1C →|=-105.∴异面直线BD 与A 1C 所成角的余弦值为105.[巩固]如图所示,在棱长为a 的正方体ABCD —A 1B 1C 1D 1中,求异面直线BA 1和AC 所成的角.解 ∵BA 1→=BA →+BB 1→,AC →=AB →+BC →,∴BA 1→·AC →=(BA →+BB 1→)·(AB →+BC →) =BA →·AB →+BA →·BC →+BB 1→·AB →+BB 1→·BC →. ∵AB ⊥BC ,BB 1⊥AB ,BB 1⊥BC , ∴BA →·BC →=0,BB 1→·AB →=0, BB 1→·BC →=0,BA →·AB →=-a 2, ∴BA 1→·AC →=-a 2. 又BA 1→·AC →=|BA 1→|·|AC →|·cos 〈BA 1→,AC →〉,∴cos 〈BA 1→,AC →〉=-a 22a ×2a=-12.∴〈BA 1→,AC →〉=120°.∴异面直线BA 1与AC 所成的角为60°.2.求线面所成角设直线l 的方向向量和平面α的法向量分别为m ,n ,则直线l 与平面α所成角θ满足sin θ=><n m ,cos .(]2,0[πθ∈)[例]如图,已知两个正方形ABCD 和DCEF 不在同一平面内,M ,N 分别为AB ,DF 的中点.若平面ABCD ⊥平面DCEF ,求直线MN 与平面DCEF 所成角的正弦值.设正方形ABCD ,DCEF 的边长为2,以D 为坐标原点,分别以射线DC ,DF ,DA 为x ,y ,z 轴正半轴建立空间直角坐标系如图.则M (1,0,2),N (0,1,0),可得MN →=(-1,1,-2). 又DA →=(0,0,2)为平面DCEF 的法向量,可得cos 〈MN →,DA →〉=MN →·DA →|MN →||DA →|=-63.所以MN 与平面DCEF 所成角的正弦值为|cos 〈MN →,DA →〉|=63.[巩固]如图所示,在几何体ABCDE 中,△ABC 是等腰直角三角形,∠ABC =90°,BE 和CD 都垂直于平面ABC ,且nmαlnmαlBE =AB =2,CD =1,点F 是AE 的中点.求AB 与平面BDF 所成角的正弦值. 解 以点B 为原点,BA 、BC 、BE 所在的直线分别为x ,y ,z 轴, 建立如图所示的空间直角坐标系,则B (0,0,0),A (2,0,0),C (0,2,0),D (0,2,1),E (0,0,2),F (1,0,1). ∴BD →=(0,2,1),DF →=(1,-2,0). 设平面BDF 的一个法向量为 n =(2,a ,b ),∵n ⊥DF →,n ⊥BD →,∴⎩⎪⎨⎪⎧n ·DF →=0,n ·BD →=0.即⎩⎪⎨⎪⎧(2,a ,b )·(1,-2,0)=0,(2,a ,b )·(0,2,1)=0. 解得a =1,b =-2.∴n =(2,1,-2). 设AB 与平面BDF 所成的角为θ,则法向量n 与BA →的夹角为π2-θ,∴cos ⎝⎛⎭⎫π2-θ=BA →·n |BA →||n |=(2,0,0)·(2,1,-2)2×3=23,即sin θ=23,故AB 与平面BDF 所成角的正弦值为23.3.求二面角(],0[πθ∈)如图①,AB 、CD 是二面角α—l —β的两个面内与棱l 垂直的直线,则二面角的大小θ=><CD AB ,.如图②③,n 1,n 2分别是二面角α—l —β的两个半平面α,β的法向量,则二面角的大小θ满足cos θ=><21,cos n n 或><-21,cos n n .[例]如图,ABCD 是直角梯形,∠BAD =90°,SA ⊥平面ABCD ,SA =BC =BA =1,AD =12,求面SCD 与面SBA 所成角的余弦值大小.建系如图,则A (0,0,0), D ⎝⎛⎭⎫12,0,0,C (1,1,0), B (0,1,0),S (0,0,1), ∴AS →=(0,0,1),SC →=(1,1,-1),SD →=⎝⎛⎭⎫12,0,-1,AB →=(0,1,0),AD →=⎝⎛⎭⎫12,0,0. ∴AD →·AS →=0,AD →·AB →=0. ∴AD →是面SAB 的法向量,设平面SCD 的法向量为n =(x ,y ,z ),则有n ·SC →=0且n ·SD →=0.即⎩⎪⎨⎪⎧x +y -z =0,12x -z =0.令z =1,则x =2,y =-1.∴n =(2,-1,1).∴cos 〈n ,AD →〉=n ·AD →|n ||AD →|=2×126×12=63.故面SCD 与面SBA 所成的二面角的余弦值为63.[巩固]如图,在三棱锥S —ABC 中,侧面SAB 与侧面SAC 均为等边三角形,∠BAC =90°,O 为BC 中点.(1)证明:SO ⊥平面ABC ;(2)求二面角A —SC —B 的余弦值.(1)证明 由题设AB =AC =SB =SC =SA .连接OA ,△ABC 为等腰直角三角形,所以OA =OB =OC =22SA ,且AO ⊥BC .又△SBC 为等腰三角形,故SO ⊥BC ,且SO =22SA .从而OA 2+SO 2=SA 2,所以△SOA 为直角三角形,SO ⊥AO . 又AO ∩BC =O ,所以SO ⊥平面ABC .(2)解 以O 为坐标原点,射线OB 、OA 、OS 分别为x 轴、y 轴、z 轴的正半轴,建立如图的空间直角坐标系Oxyz ,如右图. 设B (1,0,0),则C (-1,0,0), A (0,1,0),S (0,0,1).SC 的中点M ⎝⎛⎭⎫-12,0,12, MO →=⎝⎛⎭⎫12,0,-12,MA →=⎝⎛⎭⎫12,1,-12, SC →=(-1,0,-1), ∴MO →·SC →=0,MA →·SC →=0.故MO ⊥SC ,MA ⊥SC ,〈MO →,MA →〉等于二面角A —SC —B 的平面角.cos 〈MO →,MA →〉=MO →·MA →|MO →||MA →|=33,所以二面角A —SC —B 的余弦值为33.4.异面直线间距离的求法与两条异面直线均垂直、相交的直线叫两条异面直线的公垂线,两条异面直线的公垂线有且只有一条. 两条异面直线的公垂线段的长度,叫两条异面直线的距离.设l 1,l 2是两条异面直线,n 是l 1,l 2的公垂线段AB 的方向向量,又C 、D 分别是l 1,l 2上的任意两点,则nn DC AB ⋅=[例]正四面体ABCD ,棱长均为a 求异面直线AD 、BC 的距离。
2023北京高三一模数学汇编:空间向量的应用
2023北京高三一模数学汇编空间向量的应用一、单选题 1.(2023·北京房山·统考一模)如图,已知正方体1111ABCD A B C D −,则下列结论中正确的是( )A .与三条直线111,,AB CCD A 所成的角都相等的直线有且仅有一条 B .与三条直线111,,AB CC D A 所成的角都相等的平面有且仅有一个 C .到三条直线111,,AB CC D A 的距离都相等的点恰有两个 D .到三条直线111,,AB CC D A 的距离都相等的点有无数个2.(2023·北京丰台·统考一模)如图,在直三棱柱111ABC A B C 中,AC BC ⊥,2AC =,1BC =,12AA =,点D 在棱AC 上,点E 在棱1BB 上,给出下列三个结论:①三棱锥E ABD −的体积的最大值为23;②1A D DB +③点D 到直线1C E . 其中所有正确结论的个数为( ) A .0 B .1C .2D .3二、填空题3.(2023·北京西城·统考一模)如图,在棱长为2的正方体1111ABCD A B C D −中,点M ,N 分别在线段1AD 和11B C 上.给出下列四个结论: ①MN 的最小值为2;②四面体NMBC 的体积为43;③有且仅有一条直线MN 与1AD 垂直; ④存在点M ,N ,使MBN △为等边三角形. 其中所有正确结论的序号是____. 三、解答题4.(2023·北京房山·统考一模)如图,四棱锥P ABCD −的底面是矩形,PD ⊥底面ABCD ,2PD DC AD ===,M 为BC 的中点.(1)求证:AM ⊥平面PBD ;(2)求平面ABCD 与平面APM 所成角的余弦值; (3)求D 到平面APM 的距离.5.(2023·北京海淀·统考一模)如图,直三棱柱111ABC A B C 中,1AC BC ==,12AA =,AC BC ⊥,D 是1AA 的中点.(1)证明:1C D ⊥平面BCD ;(2)求直线CD 与平面1BC D 所成角的正弦值.6.(2023·北京门头沟·统考一模)如图,在三棱锥−P ABC 中,2AB BC ==,2PA PB PC ===,O 为AC 的中点.(1)证明:PB AC ⊥;(2)再从条件①、条件②这两个条件中选择一个作为已知,求二面角B PC A −−的余弦值及点A 到平面BPC 的距离.①AC =PO BC ⊥.7.(2023·北京西城·统考一模)如图,在四棱锥P ABCD −中,PA ⊥平面ABCD ,//AB CD ,AB AD ⊥,1AB =,2PA AD CD ===.E 为棱PC 上一点,平面ABE 与棱PD 交于点F .再从条件①、条件②这两个条件中选择一个作为己知,完成下列两个问题(1)求证:F 为PD 的中点; (2)求二面角B FC P −−的余弦值. 条件①://BE AF ; 条件②:BE PC ⊥.注:如果选择条件①和条件②分别解答,按第一个解答计分.8.(2023·北京丰台·统考一模)如图,在四棱锥P ABCD −中,底面是边长为2的菱形,AC 交BD 于点O ,60BAD ∠=︒,PB PD =.点E 是棱P A 的中点,连接OE ,OP .(1)求证://OE 平面PCD ;(2)若平面P AC 与平面PCD知,求线段OP 的长.条件①:平面PBD ⊥平面ABCD ; 条件②:PB AC ⊥.注:如果选择条件①和条件②分别解答,按第一个解答计分.9.(2023·北京东城·统考一模)如图,在长方体1111ABCD A B C D −中,12AA AD ==,1BD 和1B D 交于点E ,F 为AB 的中点.(1)求证:EF ∥平面11ADD A ;(2)再从条件①、条件②这两个条件中选择一个作为已知,求 (i )平面CEF 与平面BCE 的夹角的余弦值; (ii )点A 到平面CEF 的距离. 条件①:1CE B D ⊥;条件②:直线1B D 与平面11BCC B 所成的角为4π. 注:如果选择条件①和条件②分别解答,按第一个解答计分.10.(2023·北京朝阳·统考一模)如图,在三棱柱111ABC A B C 中,1AA ⊥平面ABC ,D ,E 分别为AC ,11AC 的中点,AB BC ==,12AC AA==.(1)求证:AC ⊥平面BDE ;(2)求直线DE 与平面ABE 所成角的正弦值; (3)求点D 到平面ABE 的距离.11.(2023·北京石景山·统考一模)如图,在四棱锥P ABCD −中,底面ABCD 是边长为2的正方形,侧面PAD 为等腰直角三角形,且π2PAD ∠=,点F 为棱PC 上的点,平面ADF 与棱PB 交于点E .(1)求证://(2)从条件①、条件②、条件③这三个条件中选择两个作为已知,求平面PCD与平面ADFE所成锐二面角的大小.条件①:AE=条件②:平面PAD⊥平面ABCD;⊥.条件③:PB FD注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.参考答案1.D【分析】所成的角都相等的直线有无数条,A 错误,成的角相等的平面有无数个,B 错误,距离相等的点有无数个,C 错误,D 正确,得到答案.【详解】对选项A :根据对称性知1AC 与三条直线的夹角相等,则与1AC 平行的直线都满足条件,有无数条,错误;对选项B :根据对称性知平面1A BD 与三条直线所成的角相等,则与平面1A BD 平行的平面都满足条件,有无数个,错误;对选项C :如图所示建立空间直角坐标系,设正方体边长为1,()1,0,0A ,()1,1,0B ,1DB 上一点(),,P a a a ,则()0,1,0AB =,()1,,PA a a a =−,(cos ,AB PA AB PA AB PAa ⋅==⋅P 到直线AB的距离为21cos ,PA PA AB ⋅−==,同理可得P 到直线1CC 和11D A 1DB 上的点到三条直线111,,AB CC D A 的距离都相等,故有无数个,错误;对选项D :1DB 上的点到三条直线111,,AB CC D A 的距离都相等,故有无数个,正确; 故选:D 2.C【分析】根据锥体的体积公式判断①,将将ABC 翻折到与矩形11ACC A 共面时连接1A B 交AC 于点D ,此时1A D DB +取得最小值,利用勾股定理求出距离最小值,即可判断②,建立空间直角坐标系,利用空间向量法求出点到距离,再根据函数的性质计算可得. 【详解】在直三棱柱111ABC A B C 中1BB ⊥平面ABC ,对于①:因为点E 在棱1BB 上112A B A B ==,所以[]0,2BE ∈,又13E ABD ABDV BE S−=⋅,又AC BC ⊥,2AC =,1BC =,点D 在棱AC 上,所以[]0,2AD ∈,[]110,122ABDSAD BC AD =⋅=∈,所以1233E ABD ABDV BE S−=⋅≤,当且仅当D 在C 点、E 在1B 点时取等号,故①正确; 对于②:如图将ABC 翻折到与矩形11ACC A 共面时连接1A B 交AC 于点D ,此时1A D DB +取得最小值,因为1112AC CC ==,1BC =,所以13BC =,所以1A B 即1A D DB +对于③:如图建立空间直角坐标系,设(),0,0D a ,[]0,2a ∈,()0,1,E c ,[]0,2c ∈,()10,0,2C ,所以()1,0,2C D a =−,()10,1,2C E c =−,则点D 到直线1C E 的距离221111CD CE d C D C E ⎛⎫⋅⎪=−=⎪⎝⎭当2c =时2d =,当02c ≤<时()2024c <−≤,()21142c ≤−,()215142c +≥−,则()241601512c <≤+−,所以当()()224221c c −−+取最大值165,且20a =时min d == 即当D 在C 点E 在B 点时点D 到直线1C E故选:C 3.①②④【分析】对于①,利用直线之间的距离即可求解;对于②,以M 为顶点,NBC 为底面即可求解;对于③,利用直线的垂直关系即可判断;对于④,利用空间坐标即可求解.【详解】对于①,由于M 在1AD 上运动,N 在11B C 上运动,所以MN 的最小值就是两条直线之间距离11D C ,而112D C =,所以MN 的最小值为2;对于②,111233M BNC BNC BNC V SD C S −=⋅⋅=⋅,而12222BNCS=⨯⨯=,所以四面体NMBC 的体积为43; 对于③,由题意可知,当M 与1D 重合,N 与1C 重合时, 111D C AD ⊥,又根据正方体性质可知,111AD A B CD ⊥,所以当M 为1AD 中点,N 与1B 重合时,此时1MN AD ⊥,故与1AD 垂直的MN 不唯一,③错误;对于④,当MBN △为等边三角形时,BM BN =,则此时1AM B N =.所以只需要BM 与BN 的夹角能等于π3即可.以D 为原点,DA 、DC 、1DD 分别为x轴、y 轴、z 轴建立空间直角坐标系,如下图,设1AM B N n ==,则由题意可得2M ⎛⎝,()2,2,0B ,()2,2,2N n −,则可得BM ⎛=−− ⎝,(),0,2BN n =−,则12cos2n BM BN MBN n BM BN⋅∠===⋅,整理可得2120n n ⎫−+⎪⎪⎝⎭,该方程看成关于n 的二次函数,44140⎫∆=−⨯⨯>⎪⎪⎝⎭,所以存在n 使得MBN △为等边三角形. 故答案为:①②④ 4.(1)证明过程见解析【分析】(1)根据线面垂直的性质,结合相似三角形的判定定理和性质、线面垂直的判定定理进行证明即可;(2)建立空间直角坐标系,利用空间向量夹角公式进行求解即可; (3)利用空间点到直线距离公式进行求解即可.【详解】(1)因为2DC AD ==,M 为BC 的中点,所以AD ABAB AM== 因为四棱锥P ABCD −的底面是矩形, 所以π2DAB MBA ∠=∠=, 所以Rt Rt DAB ABM ∽,所以DBA AMB ∠=∠, 而π2MBD DBA ∠+∠=,即π2MBD ANB AM DB ∠+∠=⇒⊥,因为PD ⊥底面ABCD ,AM ⊂底面ABCD , 所以PD AM ⊥,而,,DB PB B DB PB =⊂平面PBD ,所以AM ⊥平面PBD ;(2)因为PD ⊥平面ABCD ,,AD DC ⊂平面ABCD , 所以,PD AD PD DC ⊥⊥,因为因为四棱锥P ABCD −的底面是矩形,所以AD DC ⊥,建立如下图所示的空间直角坐标系,()()())0,0,0,0,0,2,,D P A M,因为PD ⊥平面ABCD ,所以平面ABCD 的法向量为()0,0,2DP =, 设平面APM 的法向量为(),,n x y z =,()22PA =−,()2,2,0MA =−,于是有()202,1,220n PA z n n MA y ⎧⎧⊥−=⎪⎪⇒⇒=⎨⎨⊥−=⎪⎪⎩⎩,平面ABCD 与平面APM 所成角的余弦值为2DP nDP n ⋅=⋅⨯(3)由(2)可知平面APM 的法向量为()2,1,2n=,4cos ,7DP n 〈〉=所以D 到平面APM的距离为cos ,2DP DP n ⋅〈〉=5.(1)证明见解析 【分析】(1)以点C 为坐标原点,CA 、CB 、1CC 所在直线分别为x 、y 、z 轴建立空间直角坐标系,利用空间向量法证明出1C D CB ⊥,1C D CD ⊥,再利用线面垂直的判定定理可证得结论成立; (2)利用空间向量法可求得直线CD 与平面1BC D 所成角的正弦值.【详解】(1)证明:在直三棱柱111ABC A B C 中,1CC ⊥平面ABC ,且AC BC ⊥,以点C 为坐标原点,CA 、CB 、CC 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,则点()0,1,0B 、()0,0,0C 、()10,0,2C 、()1,0,1D ,()0,1,0CB =、()1,0,1CD =、()11,0,1C D =−,所以,10CB C D ⋅=,11010CD C D ⋅=+−=,则1C D CB ⊥,1C D CD ⊥, 又因为CB CD C =,CB 、CD ⊂平面BCD ,因此,1C D ⊥平面BCD . (2)解:设平面1BC D 的法向量为(),,m x y z =,()10,1,2BC =−,则11200m BC y z m C D x z ⎧⋅=−+=⎪⎨⋅=−=⎪⎩,取1z =,可得()1,2,1m =,所以,cos ,2CD mCD m CD m ⋅==⋅ 因此,CD 与平面1BC D6.(1)证明见解析.(2)二面角B PC A −−A 到平面BPC 【分析】(1)先证明AC ⊥平面POB ,即得AC PB ⊥;(2)由所选条件先证明OB ,OC ,OP 两两垂直,建立空间直角坐标系,求平面PBC 和平面PAC 的法向量,计算法向量的夹角余弦,计算PA 的投影的绝对值,即可得二面角的余弦及A 到平面BPC 的距离.【详解】(1)证明:连接PO ,OB ,因为AB BC =,所以OB AC ⊥,同理得:PO AC ⊥,又因为PO OB O =,PO ⊂平面POB ,BO ⊂平面POB ,所以AC ⊥平面POB ,因为PB ⊂平面POB ,所以AC PB ⊥.(2)选择①,由题222AB BC AC +=,所以AB BC ⊥,同理得PA PC ⊥,则OP OB =222PO OB PB +=,所以PO OB ⊥,由(1)可得PO AC ⊥,所以OB ,OC ,OP 两两垂直,建立如图所示坐标系,则B,C ,P,(2,0,PB =,(0,PC =,设平面PBC 的一个法向量为1(,,)n x y z =,则1100PB n PC n ⎧⋅=⎪⎨⋅=⎪⎩,即0==,取1(1,1,1)n =,平面PAC 的一个法向量2(1,0,0)n =,可得,121cos ,3n n <>=所以二面角B PC A −−(0,A ,(0,PA =,点A 到平面BPC 的距离112PA n d n ⋅==, 所以A 到平面BPC . 选择② 由(1)得,PO AC ⊥,PO BC ⊥,AC ⊂平面ABC ,BC ⊂平面ABC ,ACBC C =,所以PO ABC ⊥平面, 由题PA PB PC ==,则BO AO CO ==,可得ABC 为直角三角形,2AB BC ==,得OB OC OA ==所以OB ,OC ,OP 两两垂直,建立如图所示坐标系,则B ,C,P,(2,0,PB =,(0,PC =,设平面PBC 的一个法向量为1(,,)n x y z =,则1100PB n PC n ⎧⋅=⎪⎨⋅=⎪⎩,即00==,取1(1,1,1)n =, 平面PAC 的一个法向量2(1,0,0)n =,可得,121cos ,3n n <>=所以二面角B PC A −−(0,A ,(0,PA =,点A 到平面BPC 的距离112PA n d n ⋅==, 所以A 到平面BPC. 7.(1)证明见解析【分析】(1)若选条件①,利用线面平行判定定理和性质定理即可得出四边形ABEF 为平行四边形,又12AB CD =即可得EF 为PCD 的中位线即可得出证明;若选条件②,利用勾股定理可得E 为PC 的中点,再利用线面平行判定定理和性质定理即可得CD EF ∥,即可得出证明;(2)建立以A 为坐标原点的空间直角坐标系,求出平面BCF 的法向量为(2,1,3)m =−,易知AF 是平面PCD 的一个法向量,根据空间向量夹角与二面角之间的关系即可求得结果.【详解】(1)选条件①:BE AF ∥因为//AB CD ,AB ⊄平面PCD ,CD ⊂平面PCD ,所以//AB 平面PCD因为平面ABEF ⋂平面PCD EF =,所以AB EF ∥又//BE AF , 所以四边形ABEF 为平行四边形.所以AB EF ∥且AB EF =.因为//AB CD 且12AB CD =,所以//EF CD 且12EF CD =. 所以EF 为PCD 的中位线.所以F 为PD 的中点.选条件②:BE PC ⊥.因为PA ⊥平面ABCD ,,AB AD ⊂平面ABCD ,所以,PA AB PA AD ⊥⊥.在Rt PAB 中,PB在直角梯形ABCD 中,由1AB =,2AD CD ==,可求得BC PB BC =.因为BE PC ⊥,所以E 为PC 的中点.因为AB CD ,AB ⊄平面PCD ,CD ⊂平面PCD , 所以//AB 平面PCD .因为平面ABEF ⋂平面PCD EF =,所以AB EF ∥.所以CD EF ∥,所以F 为PD 的中点;(2)由题可知因为PA ⊥平面ABCD ,所以,PA AB PA AD ⊥⊥.又AB AD ⊥,所以,,AB AD AP 两两相互垂直.如图建立空间直角坐标系A xyz −,则(0,0,0)A ,(1,0,0)B ,(2,2,0)C ,(0,0,2)P ,(0,2,0)D ,(0,1,1)F .所以(1,2,0)BC =,(,,)111BF =−,(0,1,1)AF =.设平面BCF 的法向量为(,,)m x y z =,则·0·0m BC m BF ⎧=⎪⎨=⎪⎩,即20,0.x y x y z +=⎧⎨−++=⎩ 令1y =−,则2x =,3z =.于是(2,1,3)m =−.因为AB ⊥平面PAD ,且//AB CD ,所以CD ⊥平面PAD ,又AF ⊂平面PAD ,所以AF CD ⊥.又PA AD =,且F 为PD 的中点,所以AF PD ⊥.,,CD PD D CD PD ⋂=⊂平面PCD ,所以AF ⊥平面PCD ,所以AF 是平面PCD 的一个法向量. 7cos ,7m AFm AF m AF ⋅==由题设,二面角B FC P −−的平面角为锐角,所以二面角B FC P −−. 8.(1)证明见解析【分析】(1)根据线面平行的判定定理证明;(2)利用空间向量的坐标运算表示出平面P AC 与平面PCD 的夹角的余弦值,即可求解.【详解】(1)因为底面ABCD 是菱形,所以O 是AC 中点,因为E 是棱P A 的中点,所以//OE PC ,又因为PC ⊂平面PCD , OE ⊄平面PCD ,所以//OE 平面PCD.(2)选择条件①:因为PB PD =,O 是BD 的中点,所以PO BD ⊥,因为平面PBD ⊥平面ABCD ,平面PBD 平面ABCD BD =, PO ⊂平面PBD ,所以PO ⊥平面ABCD ,因为AC ⊂平面ABCD ,所以PO AC ⊥,又AC BD ⊥,所以,,OB OC OP 两两垂直,以O 为原点建立空间直角坐标系O xyz −,因为菱形的边长为2,60BAD ︒∠=所以2,BD AC ==所以(1,0,0),C D −设(0,0,)(0),P t t > 所以(1,3,0),(1,0,)DC DP t ==,设(,,)n x y z =为平面PCD 的一个法向量,由,,n DC n DP ⎧⊥⎪⎨⊥⎪⎩得0,0,n DC n DP ⎧⋅=⎪⎨⋅=⎪⎩所以0,0,x x tz ⎧=⎪⎨+=⎪⎩取,,x y t z =−=(3,,n t t =−, 因为BO ⊥平面PAC ,所以平面PAC 的一个法向量为1(1,0,0)=n ,平面P AC 与平面PCD所以115cos ,5n n <>=所以22543t t =+,所以23t =,因为0t >,所以0t >,所以t =所以线段OP选择条件②:因为PB AC ⊥.在菱形ABCD 中,BD AC ⊥,因为BD ⊂平面,PBD PB ⊂平面,PBD PBBD B =,所以AC ⊥平面PBD ,因为PO ⊂平面PBD ,所以AC PO ⊥,因为,PO BD AC BD ⊥⊥,所以,,OB OC OP 两两垂直,以O 为原点建立空间直角坐标系O xyz −,因为菱形的边长为2,60BAD ︒∠=所以2,BD AC ==所以(1,0,0),C D −设(0,0,)(0),P t t >所以(1,3,0),(1,0,)DC DP t ==,设(,,)n x y z =为平面PCD 的一个法向量,由,,n DC n DP ⎧⊥⎪⎨⊥⎪⎩得0,0,n DC n DP ⎧⋅=⎪⎨⋅=⎪⎩所以0,0,x x tz ⎧=⎪⎨+=⎪⎩取,,x y t z =−=(3,,n t t =−, 因为BO ⊥平面PAC ,所以平面PAC 的一个法向量为1(1,0,0)=n ,平面P AC 与平面PCD所以115cos ,5n n <>=所以22543t t =+,所以23t =,因为0t >,所以0t >,所以t =所以线段OP9.(1)证明见解析(2)(ⅰ) (ⅱ) 1 【分析】(1)利用空间中直线与平面平行的判定定理,结合三角形中位线即可证明;(2)若选条件①,利用1CE B D ⊥,通过推理论证得到1CD B C ==,建立空间直角坐标系,求平面法向量,再根据面面夹角的向量公式及点到面的距离公式运算求解;若选条件②,利用1B D 与平面11BCC B 所成角为4π,通过推理论证得到1CD B C ==标系,求平面法向量,再根据面面夹角的向量公式及点到面的距离公式运算求解.【详解】(1)如图,连接1AD ,11B D ,BD .因为长方体1111ABCD A B C D −中,1BB ∥1DD 且11BB DD =,所以四边形11BB D D 为平行四边形.所以E 为1BD 的中点,在1ABD 中,因为E ,F 分别为1BD 和AB 的中点,所以EF ∥1AD .因为EF ⊄平面11ADD A ,1AD ⊂平面11ADD A , 所以EF ∥平面11ADD A .(2)选条件①:1CE B D ⊥.(ⅰ)连接1B C .因为长方体中12AA AD ==,所以1=B C .在1CBD △中,因为E 为1B D 的中点,1CE B D ⊥,所以1CD B C ==如图建立空间直角坐标系D xyz −,因为长方体中12A A AD ==,CD =,则(0,0,0)D ,(2,0,0)A,C,B,F ,1B,(1E .所以(1,CE =,(2,CF =,(2,0,0)CB =.设平面CEF 的法向量为111(,,)m x y z =,则0,0,m CE m CF ⎧⋅=⎪⎨⋅=⎪⎩即111110,20.x z x ⎧+=⎪⎨=⎪⎩ 令11x =,则1y =11z =,可得(1,2,1)m =.设平面BCE 的法向量为222(,,)n x y z =,则0,0,n CE n CB ⎧⋅=⎪⎨⋅=⎪⎩即22220,20.x z x ⎧+=⎪⎨=⎪⎩ 令21y =,则20x =,2z (0,1,2)n =.设平面CEF 与平面BCE 的夹角为θ , 则||6cos |cos ,|.3||||m n m n m n θ⋅=<>== 所以平面CEF 与平面BCE . (ⅱ)因为(0,AF =,所以点A 到平面CEF 的距离为||1||AF m d m ⋅==. 选条件②:1B D 与平面11BCC B 所成角为4π.连接1B C .因为长方体1111ABCD A B C D −中,CD ⊥平面11BCC B ,1B C ⊂平面11BCC B ,所以1CD B C ⊥.所以1DB C ∠为直线1B D 与平面11BCC B 所成角,即14DB C π∠=. 所以1DB C 为等腰直角三角形.因为长方体中12AA AD ==,所以1=B C .所以1CD B C ==以下同选条件① .10.(1)证明见解析;. 【分析】(1)根据线面垂直的性质得到DE AC ⊥,根据等腰三角形三线合一的性质得到AC BD ⊥,然后利用线面垂直的判定定理证明即可;(2)利用空间向量的方法求线面角即可;(3)利用空间向量的方法求点到面的距离即可.【详解】(1)在三棱柱中,D ,E 为AC ,11AC 的中点,∴1DE AA∥, ∵1AA ⊥平面ABC ,∴DE ⊥平面ABC ,∵AC ⊂平面ABC ,∴DE AC ⊥,在三角形ABC 中,AB BC =,D 为AC 中点,∴AC BD ⊥,∵DE BD D ⋂=,,DE BD 平面BDE ,∴AC ⊥平面BDE .(2)如图,以D 为原点,分别以,,DA DB DE 为,,x y z 轴建立空间直角坐标系,在直角三角形ABD 中,AB 112AD AC ==,∴2BD =,()0,0,0D ,()0,0,2E ,()1,0,0A ,()0,2,0B ,()0,0,2DE =,()1,2,0AB =−,()1,0,2AE =−,设平面ABE 的法向量为(),,m x y z =,2020AB m x y AE m x z ⎧⋅=−+=⎪⎨⋅=−+=⎪⎩,令2x =,则1y =,1z =,所以()2,1,1m =, 设直线DE 与平面ABE 所成角为θ,所以sin cos ,2DE mDE m DE m θ⋅===⨯⋅.(3)设点D 到平面ABE 的距离为d ,所以26DE m d m ⋅=== 11.(1)证明见解析 (2)π3【分析】(1)根据条件可以证明//AD 平面PBC ,再利用线面平行的性质定理即可证明出结论;(2)选条件①②可以证明出,,AB AD AP 两两垂直,建立空间直角坐标系A xyz −,求出相应坐标,再求出两平面的法向量,进而求出结果;选条件①③或②③同样可以证明求解.【详解】(1)证明:因为底面ABCD 是正方形,所以//AD BC ,BC ⊂平面PBC ,AD ⊄平面PBC ,所以//AD 平面PBC ,又因为平面ADF 与PB 交于点E . AD ⊂平面ADFE ,平面PBC ⋂平面,ADFE EF = 所以//EF AD .(2)选条件①②侧面PAD 为等腰直角三角形,且π,2PAD ∠=即2PA AD ==,PA AD ⊥平面PAD ⊥平面ABCD ,平面PAD ⋂平面ABCD AD =,PA ⊂平面PAD ,则PA ⊥平面ABCD ,又ABCD 为正方形,所以,,PA AB PA AD AB AD ⊥⊥⊥. 以点A 为坐标原点,,,AB AD AP 分别为x 轴,y 轴,z 轴正方向,建立如图所示空间直角坐标系A xyz −,则(0,0,0),(0,0,2),(2,2,0),(2,0,0),(0,2,0)A P C B D 因为2AE =,所以点E 为PB 的中点,则(1,0,1)E从而:(2,2,2),(0,2,0),(1,0,1)PC AD AE =−==,设平面ADFE 的法向量为:(,,)n x y z =, 则020n AE x z n AD y ⎧⋅=+=⎪⎨⋅==⎪⎩, 令1x =,可得(1,0,1)n =−设平面PCD 的法向量为:(,,)n a b c =,则2202220n PD b c n PC a b c ⎧⋅=−=⎪⎨⋅=+−=⎪⎩, 令1b =,可得(0,1,1)n = 所以1cos ,2PB nPB n PB n ⋅== 则两平面所成的锐二面角为π3选条件①③侧面PAD 为等腰直角三角形,且,2PAD π∠=即2,PA AD PA AD ==⊥,AD AB PA AB A ⊥⋂=,且两直线在平面内,可得AD ⊥平面PAB ,PB ⊂平面PAB ,则AD PB ⊥. 又因为,,PB FD AD FD D ⊥⋂=且两直线在平面内,则PB ⊥平面ADFE ,AE ⊂平面,ADFE 则PB AE ⊥因为PA AB =,所以PAB 为等腰三角形,所以点E 为PB 的中点又因为AE =PAB 为等腰直角三角形,下面同①②选条件②③侧面PAD 为等腰直角三角形,且2PAD π∠=,即2,PA AD PA AD ==⊥第21页/共21页 平面PAD ⊥平面ABCD ,平面PAD ⋂平面ABCD AD =,PA ⊂平面PAD ,则PA ⊥平面,ABCD ABCD 为正方形,所以,,PA AB PA AD AB AD ⊥⊥⊥.又因为,,PB FD AD FD D ⊥⋂=且两直线在平面内,则PB ⊥平面ADFE ,AE ⊂平面,ADFE 则PB AE ⊥因为PA AB =,所以PAB 为等腰三角形,所以点E 为PB 的中点.下面同①②。
1.4 空间向量的应用(精练)(解析版).
1.4空间向量的应用(精练)法向量的求法1.(2022·湖北·高二阶段练习)已知平面α内有两点()1,1,2M -,(),3,3N a ,平面α的一个法向量为()6,3,6n =-,则=a ()A .4B .3C .2D .1【答案】C【解析】因为()1,1,2M -,(),3,3N a ,所以()1,4,1MN a =-,因为平面α的一个法向量为()6,3,6n =-,所以n MN ⊥r uuu r ,则()613460n MN a ⋅=--⨯+=,解得2a =,故选:C.2.(2022·全国·高二课时练习)在直三棱柱111ABC A B C -中,以下向量可以作为平面ABC 法向量的是()A .ABB .11AC C .1BCD .1AA 【答案】D 【解析】如图,∵1CC 、1AA 、1BB 均垂直于平面ABC ,故选项D 中1AA 可以作为平面ABC 的法向量.故选:D .3.(2022·全国·高二课时练习)已知正方体1111ABCD A B C D -,分别写出对角面11A ACC 和平面1ACB 的一个法向量.【答案】平面11A ACC 的一个法向量为()1,1,0m =,平面1ACB 的一个法向量为()1,1,1n =-;【解析】如图建立空间直角坐标系,设正方体的棱长为1,则()1,0,0A 、()0,1,0C 、()10,1,1C 、()11,1,1B 、()11,0,1A ,所以()1,1,0AC =-,()10,1,1AB =,()10,0,1AA =,设面11A ACC 的法向量为(),,m x y z =,所以100m AC x y m AA z ⎧⋅=-+=⎪⎨⋅==⎪⎩,令1x =,则1y =,0z =,所以()1,1,0m =,即平面11A ACC 的一个法向量为()1,1,0m =,设平面1ACB 的法向量为(),,n a b c =,则100n AC a b n AB b c ⎧⋅=-+=⎪⎨⋅=+=⎪⎩,令1a =,则1b =,1c =-,所以()1,1,1n =-,所以平面1ACB 的一个法向量为()1,1,1n =-;4.(2022·全国·高二)已知()1,1,1A ,()0,2,0B ,()2,3,1C .(1)写出直线BC 的一个方向向量;(2)写出平面ABC 的一个法向量.【答案】(1)()2,1,1BC =;(2)()2,1,3n =--.【解析】(1)因为()0,2,0B ,()2,3,1C ,所以()2,1,1BC =,所以直线BC 的一个方向向量为()2,1,1BC =.(2)因为()1,1,1A ,()0,2,0B ,()2,3,1C ,所以()1,2,0AC =,()2,1,1BC =,设平面ABC 的一个法向量为(),,n x y z =,则0,0n AC n BC ⋅=⋅=,即2020x y x y z +=⎧⎨++=⎩,令1y =-,则2x =,3z =-,所以()2,1,3n =--,所以平面ABC 的一个法向量为()2,1,3n =--.空间向量证平行1.(2022·全国·高二课时练习)已知直线的方向向量()1,1,2a =-,平面α的一个法向量为()0,2,1n =,则线面的位置关系是()A .平行B .在平面内C .垂直D .平行或在平面内【答案】D 【解析】由题可知:()1012210a n ⋅=⨯+-⨯+⨯=,故直线平行或在平面内.故选:D.2.(2022·全国·高二课时练习)如图,在正方体ABCD A B C D ''''-中,点E ,F ,G ,H ,M ,N 分别是该正方体六个面的中心,求证:平面EFG ∥平面HMN .【答案】证明见解析.【解析】由题意知,建立如图空间直角坐标系D xyz -,设正方体的棱长为2,则()()()()()()1,1,01,0,12,1,11,1,21,2,10,1,1E F G H M N ,,,,,,得()()()()0,1,11,1,00,1,11,1,0EF FG HM NM =-==-=,,,,所以////EF HM FG NM ,,即////EF HM FG NM ,,又HM ⊂平面HMN ,NM ⊂平面HMN ,所以//EF 平面HMN ,//FG 平面HMN ,又EF ⊂平面EFG ,FG ⊂平面EFG ,EF FG F ⋂=,所以平面EFG //平面HMN.3.(2021·全国·高二课时练习)如图,在正方体1111ABCD A B C D -中,棱长为2,M ,N 分别为1A B ,AC 的中点,证明:1MN B C ∥.【答案】证明见解析.【解析】连接1AB ,如图,由正方体知四边形11ABB A 是正方形,且M 是1A B 的中点,所以11AB A B M ⋂=,即M 是1AB 的中点,又N 是AC 的中点,所以1MN B C ∥.4.(2022·全国·高二)如图,已知矩形ABCD 和矩形ADEF 所在平面相交于AD ,点M ,N分别在对角线BD ,AE 上,且13BM BD =,13AN AE =.求证://MN 平面CDE .【答案】证明见解析【解析】证明:因为M 在BD 上,且13BM BD =,所以111333MB DB DA AB ==+.同理1133AN AD DE =+.又CD BA AB ==-,所以MN MB BA AN =++11113333DA AB BA AD DE ⎛⎫⎛⎫=++++ ⎪ ⎪⎝⎭⎝⎭,21213333BA DE CD DE =+=+.又CD 与DE 不共线,所以MN ,CD ,DE 共面.因为MN 不在平面CDE 内,所以//MN 平面CDE .5.(2022·全国·高二)如图,在正方体1111ABCD A B C D -中,点M ,N 分别在线段1A B ,11D B 上,且113BM BA =,11113B N B D =,P 为棱11BC 的中点.求证://MN BP .【答案】证明见解析【解析】证明:11MN MB BB B N =++.因为113BM BA =,11113B N B D =,所以11111133MN BA BB B D =-++,()()111111111133BB B A BB B A A D =-++++,11111121213333BB A D BB B C =+=+.又因为P 为11B C 中点,所以111111111321322332BP BB B P BB B C BB B C MN ⎛⎫=+=+=+= ⎪⎝⎭,从而BP 与MN 为共线向量.因为直线MN 与BP 不重合,所以//MN BP .6.(2021·全国·高二课时练习)如图,在四棱锥P ABCD -中,PA ⊥平面ABCD .2PA AB AD ===,四边形ABCD 满足AB AD ⊥,//BC AD ,4BC =,点M 为PC 的中点,求证://DM 平面PAB .【答案】证明见解析【解析】证明:因为PA ⊥平面ABCD ,所以PA AD ⊥,PA AB ⊥.又AB AD ⊥,所以PA ,AB ,AD 两两垂直.以A 为坐标原点建立空间直角坐标系,如图所示:则()002P ,,,()2,0,0B ,()0,2,0D ,()2,4,0C .因为点M 为PC 的中点,所以()1,2,1 M ,故()1,0,1DM =.又()0,0,2AP =,()2,0,0AB =,所以1122DM AP AP =+.所以DM ,AP ,AB 为共面向量.又DM ⊄平面PAB ,所以//DM 平面PAB .7.(2022广东)如图,在四棱锥P -ABCD 中,PC ⊥平面ABCD ,PC =2,在四边形ABCD 中,∠B =∠C =90°,AB =4,CD =1,点M 在PB 上,PB =4PM ,PB 与平面ABCD 成30°角.求证:CM ∥平面PAD .【答案】证明见解析.【解析】证明:由题意知,CB,CD,CP两两垂直,以C为坐标原点,CB所在直线为x轴,CD所在直线为y轴,CP所在直线为z轴建立如图所示的空间直角坐标系Cxyz.因为PC⊥平面ABCD,所以∠PBC为PB与平面ABCD所成的角,所以∠PBC=30°.因为PC=2,所以BC=3PB=4,所以D(0,1,0),B30,0),A34,0),P(0,0,2),M33 () 22,所以DP=(0,-1,2),DA=33,0),CM=33 () 22.设n=(x,y,z)为平面PAD的一个法向量,由DP nDA n⎧⋅=⎨⋅=⎩得202330y zy-+=⎧⎪⎨+=⎪⎩取y=2,得x3z=1,所以n=(32,1)是平面PAD的一个法向量.因为333201022n CM⋅=⨯+⨯,所以n CM⊥,.又CM⊄平面PAD,所以CM∥平面PAD.8.(2022·吉林)如图,已知在正方体ABCD-A1B1C1D1中,M,N,P分别是AD1,BD,B1C 的中点,利用向量法证明:(1)MN ∥平面CC 1D 1D ;(2)平面MNP ∥平面CC 1D 1D .【答案】(1)证明见解析;(2)证明见解析.【解析】(1)证明:以D 为坐标原点,DA ,DC ,1DD 的方向分别为x ,y ,z 轴的正方向,建立空间直角坐标系,设正方体的棱长为2,则A (2,0,0),C (0,2,0),D (0,0,0),M (1,0,1),N (1,1,0),P (1,2,1).由正方体的性质,知AD ⊥平面CC 1D 1D ,所以DA =(2,0,0)为平面CC 1D 1D 的一个法向量.由于MN =(0,1,-1),则·MN DA =0×2+1×0+(-1)×0=0,所以MN ⊥DA .又MN ⊄平面CC 1D 1D ,所以MN ∥平面CC 1D 1D.(2)证明:因为DA =(2,0,0)为平面CC 1D 1D 的一个法向量,由于MP =(0,2,0),MN =(0,1,-1),则·0·0MP DA MN DA ⎧=⎪⎨=⎪⎩,即DA =(2,0,0)也是平面MNP 的一个法向量,所以平面MNP ∥平面CC 1D 1D.9.(2021·全国·高二课时练习)四边形ABCD 为正方形,PD ⊥平面ABCD ,1//,2PD QA QA AB PD ==,.求证://PC 平面BAQ .【答案】证明见解析.【解析】如图所示,以D 为坐标原点,线段DA 的长为单位长度,DA 为x 轴的正方向建立如图所示的空间直角坐标系,可得(1,0,0),(0,0,1),(0,1,0)DA AB AQ ===,则0,0DA AB DA AQ ⋅=⋅=,所以DA 时平面BAQ 的一个法向量,又因为(0,2,1)PC =-,且0DA PC ⋅=,即DA PC ⊥且PC ⊄平面BAQ ,所以//PC 平面BAQ .10.(2022福建)如图,在四棱锥O ﹣ABCD 中,OA ⊥底面ABCD ,且底面ABCD 是边长为2的正方形,且OA =2,M ,N 分别为OA ,BC 的中点.求证:直线MN ∥平面OCD ;【答案】证明见解析【解析】分别以AB 、AD 、AO 为x 、y 、z 轴,建立如图坐标系可得B (2,0,0),C (2,2,0),D (0,2,0),O (0,0,2),M (0,0,1),N (2,1,0)∴MN =(2,1,﹣1),DO =(0,﹣2,2),DC =(2,0,0),AB =uu u r (2,0,0),BN =(0,1,0)设平面OCD 的法向量为n =(x ,y ,z ),由00n DO n DC ⎧⋅=⎨⋅=⎩,得22020y z x -+=⎧⎨=⎩取y =1,得z =1,x =0,所以平面OCD 的法向量为n =(0,1,1),∴MN •n =2×0+1×1+(﹣1)×1=0,可得MN ⊥n又∵MN ⊄平面OCD ,∴直线MN ∥平面OCD .11.(2021·青海)如图,在正方体1111ABCD A B C D -中,点M 是线段AC 的中点,点N 是线段1A B 上的点,若//MN 平面11B BCC ,试确定点N 的位置,并说明理由.【答案】点N 是线段1A B 的中点;理由见解析.【解析】设()101BN BA λλ=≤≤,因为//MN 平面11B BCC ,所以存在实数x ,y ,使得1MN xBC yBB =+.①又()()()111122MN BN BM BA BC BA BB BA BC BA λλ=-=-+=+-+11122BC BB BA λλ⎛⎫ ⎪⎝⎭=-++-,②比较①②,可知102λ-=,即12λ=,即点N 是线段1A B 的中点.空间向量证垂直1.(2022·江苏·滨海县五汛中学高二期中)已知平面α的法向量为(342)n =-,,,(342)AB =--,,,则直线AB 与平面α的位置关系为()A .AB α∥B .AB α⊥C .AB α⊂D .AB α⊂或AB α∥【答案】B【解析】因为AB n =-,即(342)n =-,,与(342)AB =--,,平行,所以直线AB 与平面α垂直.故选:B2.(2022·福建泉州)在正方体1111ABCD A B C D -中,E ,F ,G 分别是111A A C D ,,11A D 的中点,则()A .//AC 平面EFGB .1//AC 平面EFG C .1B C ⊥平面EFGD .BD ⊥平面EFG【答案】A【解析】取1CC 、BC 、AB 的中点分别记为H 、I 、J ,连接FH 、HI 、IJ 、EJ ,根据正方体的性质可得面EFG 即为平面EGFHIJ ,对于A :如图1,//AC IJ ,AC ⊄平面EFG ,IJ ⊂平面EFG ,所以//AC 平面EFG ,故A 正确;对于B :如图2,在平面11A D CB 中,1A C GI K =,则1A C平面EFG K =,所以B 错误;对于C 、D :如图3,1B D ⊥平面EGFHIJ ,因为过平面EGFHIJ 外一点作1B (D )仅能作一条垂线垂直该平面,故C 、D 错误;其中1B D ⊥平面EGFHIJ 可按如下证明:如图建立空间直角坐标系,设正方体的棱长为2,则()0,2,0D ,()12,0,2B ,()0,0,1E ,()0,1,2G ,()1,2,2F ,所以()12,2,2DB =-,()0,1,1EG =,()1,2,1EF =,所以10DB EG ⋅=,()12122210DB EF ⋅=⨯+⨯-+⨯=,即1DB EG ⊥,1DB EF ⊥,又EGEF E =,,EG EF ⊂平面EFG ,所以1B D ⊥平面EFG ;故选:A3.(2022·江苏·连云港高中高二期中)(多选)给出下列命题,其中是真命题的是()A .若直线l 的方向向量()1,1,2a =-,直线m 的方向向量12,1,2⎛⎫=- ⎪⎝⎭r b ,则l 与m 垂直B .若直线l 的方向向量()0,1,1a =-,平面α的法向量()1,1,1n =--r,则l α⊥C .若平面α,β的法向量分别为()10,1,3=u r n ,()21,0,2=u u rn ,则αβ⊥D .若存在实数,,x y 使,=+MP xMA yMB 则点,,,P M A B 共面【答案】AD【解析】对于A :因为直线l 的方向向量()1,1,2a =-,直线m 的方向向量12,1,2⎛⎫=- ⎪⎝⎭r b ,且()12,1,21101,1,22a b ⎛⎫-=--= ⎪⎝⎭⋅=-⋅,所以a b ⊥,所以l 与m 垂直.故A 正确;对于B :因为直线l 的方向向量()0,1,1a =-,平面α的法向量()1,1,1n =--r,且a n λ≠,所以l α⊥不成立.故B 不正确;对于C :因为平面α,β的法向量分别为()10,1,3=u r n ,()21,0,2=u u rn ,且2100660n n =++≠⋅=,所以12,n n 不垂直,所以αβ⊥不成立.故C 不正确;对于D :若,MA MB 不共线,则可以取,MA MB 为一组基底,由平面向量基本定理可得存在实数,,x y 使,=+MP xMA yMB 则点,,,P M A B 共面;若,MA MB 共线,则存在实数,,x y 使,=+MP xMA yMB 所以,,,P M A B 共线,则点,,,P M A B 共面也成立.综上所述:点,,,P M A B 共面.故D 正确.故选:AD4.(2022·全国·高二课时练习)(多选)给定下列命题,其中正确的命题是()A .若1n u r ,2n u u r分别是平面α,β的法向量,则12n n αβ⇔∥∥B .若1n u r ,2n u u r分别是平面α,β的法向量,则120n n αβ⇔⋅=∥C .若n 是平面α的法向量,且向量a 是平面α内的直线l 的方向向量,则0a n ⋅=D .若两个平面的法向量不垂直,则这两个平面一定不垂直【答案】ACD【解析】对A ,若1n u r ,2n u u r分别是平面α,β的法向量,则12n n αβ⇔∥∥,故A 正确B 错误;对C ,若n 是平面α的法向量,则n 与平面α的任意直线的方向向量均垂直,所以0a n ⋅=,故C 正确;对D ,若两个平面垂直时,它们的法向量垂直是真命题,所以它的逆否命题“若两个平面的法向量不垂直,则这两个平面一定不垂直”也是真命题,故D 正确.故选:ACD.5.(2022·江苏·泗阳县实验高级中学高二阶段练习)(多选)已知12,v v 分别为直线的12,l l 方向向量(12,l l 不重合),12,n n 分别为平面,αβ的法向量(,αβ不重合),则下列说法中,正确的是()A .1212//v v l l ⇔⊥B .1212v v l l ⊥⇔⊥C .12//n n αβ⇔⊥D .12n n αβ⊥⇔⊥【答案】BD【解析】因为1v ,2v 分别为直线1l ,2l 的方向向量1(l ,2l 不重合),则1212////v v l l ⇔,故选项A 错误;则1212v v l l ⊥⇔⊥,故选项B 正确;因为1n u r ,2n u u r分别为平面α,β的法向量(α,β不重合),则12////n n αβ⇔,故选项C 错误;则12n n αβ⊥⇔⊥,故选项D 正确.故选:BD .6.(2022·江苏·盐城市伍佑中学高二阶段练习)(多选)已知直线l 的方向向量为m ,平面α的法向量为n ,则能使l α⊥的是()A .(1,2,1),(1,0,1)m n ==B .(0,1,0),(0,3,0)m n ==C .11(1,2,1),,1,22m n ⎛⎫=-=-- ⎝⎭D .(1,2,3),(2,2,2)m n =-=-【答案】BC【解析】因为直线l 的方向向量为m ,平面α的法向量为n ,要使l α⊥,只需m ∥n .对于A :(1,2,1),(1,0,1)m n ==.因为101121≠≠,所以m 、n 不平行.故A 错误;对于B :(0,1,0),(0,3,0)m n ==.因为13n m =,所以m ∥n .故B 正确;对于C :11(1,2,1),,1,22m n ⎛⎫=-=-- ⎪⎝⎭.因为2n m =-,所以m ∥n .故C 正确;对于D :(1,2,3),(2,2,2)m n =-=-.因为123222-≠≠-,所以m 、n 不平行.故D 错误;故选:BC.7.(2022·全国·高二课时练习)如图,在正方体1111ABCD A B C D -中,1CD 和1DC 相交于点O ,求证:1AO A B ⊥.【答案】证明见解析【解析】证明:如图建立空间直角坐标系,设正方体的棱长为2,则()2,0,0A 、()0,1,1O 、()12,0,2A 、()2,2,0B ,所以()2,1,1AO =-,()10,2,2A B =-,所以()12012120AO A B ⋅=-⨯+⨯+⨯-=,所以1AO A B ⊥,即1AO A B⊥8.(2022西安)如图,PA ⊥平面ABCD ,四边形ABCD 是正方形,PA =AD =2,M 、N 分别是AB 、PC 的中点.求证:平面MND ⊥平面PCD ;【答案】证明见解析【解析】∵PA ⊥平面ABCD ,AB ⊥AD ,∴AB 、AD 、AP 两两互相垂直,如图所示,分别以AB 、AD 、AP 所在直线为x 轴、y 轴和z 轴建立空间直角坐标系,可得A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),P (0,0,2),M (1,0,0),N (1,1,1),∴MN =(0,1,1),ND =(﹣1,1,﹣1),PD =(0,2,﹣2)设m =(x ,y ,z )是平面MND 的一个法向量,可得00m MN y z m ND x y z ⎧⋅=+=⎪⎨⋅=-+-=⎪⎩,取y =﹣1,得x =﹣2,z =1,∴m =(﹣2,﹣1,1)是平面MND 的一个法向量,同理可得n =(0,1,1)是平面PCD 的一个法向量,∵m •n =-2×0+(﹣1)×1+1×1=0,∴m n ⊥,即平面MND 的法向量与平面PCD 的法向量互相垂直,可得平面MND ⊥平面PCD .9.(2022·北京)如图,在正三棱柱111ABC A B C -中,113AB AA a ==,E ,F 分别是1BB ,1CC 上的点,且BE a =,2CF a =,求证:平面AEF ⊥平面ACF .【答案】证明见解析.【解析】以A 为坐标原点,建立如图所示的空间直角坐标系A xyz -,不妨设2a =,则()0,0,0A ,)3,1,2E ,()0,2,4F ,∴)3,1,2AE =,()0,2,4AF =.∵x 轴⊥平面ACF ,∴可取平面ACF 的一个法向量为()1,0,0m =.设平面AEF 的法向量为(),,n x y z =,则320240n AE x y z n AF y z ⎧⋅=++=⎪⎨⋅=+=⎪⎩,取1z =,得()0,2,1n =-为平面AEF 的一个法向量.∵0m n ⋅=,∴m n ⊥,∴平面AEF ⊥平面ACF .10.(2022·全国·专题练习)已知正方体ABCD -A 1B 1C 1D 1中,E 为棱CC 1上的动点.(1)求证:A 1E ⊥BD ;(2)若平面A 1BD ⊥平面EBD ,试确定E 点的位置.【答案】(1)证明见解析;(2)E 为CC 1的中点.【解析】以D 为坐标原点,以DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,如图,设正方体的棱长为a ,则A (a ,0,0),B (a ,a ,0),C (0,a ,0),A 1(a ,0,a ),C 1(0,a ,a ).设E (0,a ,e )(0≤e ≤a ).(1)1A E →=(-a ,a ,e -a ),BD →=(-a ,-a ,0),1A E BD →→⋅=a 2-a 2+(e -a )·0=0,∴1A E BD →→⊥,即A 1E ⊥BD ;(2)设平面A 1BD ,平面EBD 的法向量分别为1n →=(x 1,y 1,z 1),2n →=(x 2,y 2,z 2).∵DB →=(a ,a ,0),1DA →=(a ,0,a ),DE →=(0,a ,e )∴10n DB →→⋅=,110n DA →→⋅=,20n DB →→⋅=,10n DE →→⋅=.∴11110,0,ax ay ax az +=⎧⎨+=⎩,22220,0.ax ay ay ez +=⎧⎨+=⎩取x 1=x 2=1,得1n →=(1,-1,-1),2n →=(1,-1,a e).由平面A 1BD ⊥平面EBD 得1n →⊥2n →.∴2-a e=0,即e =2a .∴当E 为CC 1的中点时,平面A 1BD ⊥平面EBD .11.(2022·全国·高二专题练习)如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,AB AD ⊥,AC CD ⊥,60ABC ∠=︒2PA AB BC ===,E 是PC的中点.求证:(1)CD AE ⊥;(2)PD ⊥平面ABE .【答案】(1)证明见解析;(2)证明见解析.【解析】方法一(1)以A 为坐标原点,AB ,AD ,AP 所在直线分别为x ,y ,z 轴,建立如图所示的空间直角坐标系,则()0,0,0A ,()2,0,0B,()C,D ⎛⎫ ⎪ ⎪⎝⎭,()002P ,,,12E ⎛⎫ ⎪⎝⎭,所以1,3CD ⎛⎫⎪⎝⎭=-,1,122AE ⎛⎫ ⎪⎭=⎝,所以110102CD AE ⋅=-⨯++⨯=,所以CD AE ⊥.(2)由(1),得2PD ⎛⎫=- ⎪ ⎪⎝⎭,()2,0,0AB =,12AE ⎛⎫ ⎪⎭=⎝.设向量(),,n x y z =是平面ABE 的法向量,则00n AB n AE ⎧⋅=⎨⋅=⎩,即201023x x y z =⎧⎪⎨++=⎪⎩,取2y =,则(0,2,n =,所以3PD =,所以//PD n uu u r r,所以PD ⊥平面ABE .方法二(1)∵PA ⊥底面ABCD ,∴PA CD ⊥.又AC CD ⊥,PA AC A =,∴CD ⊥平面PAC .∵AE ⊂平面PAC ,∴CD AE ⊥.(2)∵PA ⊥底面ABCD ,∴PA AB ⊥.又AB AD ⊥,PA AD A ⋂=,∴AB ⊥平面PAD ,∴AB PD ⊥.由题可得2PA AC ==,由E 是PC 的中点,∴AE PC ⊥.又CD AE ⊥,PCCD C =,∴AE ⊥平面PCD ,∴AE PD ⊥.∵AB PD ⊥,AE PD ⊥,AB AE A =,∴PD ⊥平面ABE .12.(2021·全国·高二课时练习)如图所示,已知ADB △和ADC 都是以D 为直角顶点的直角三角形,且AD BD CD ==,60BAC ∠=.求证:BD ⊥平面ADC .【答案】证明见解析【解析】不妨设1AD BD CD ===,则2AB AC ==,由空间向量数量积的定义可得cos 601AB AC AB AC ⋅=⋅=,因为1AD CD ==且45CAD ∠=,所以,cos 451AD AC AD AC ⋅=⋅=,所以,()110BD AC AD AB AC AC AD AB AC ⋅=-⋅=⋅-⋅=-=,BD AC ∴⊥,又因为BD AD ⊥,ACAD A =,因此,BD ⊥平面ACD .空间向量求空间角1.(2022·贵州·遵义市第五中学)在三棱锥P —ABC 中,PA 、PB 、PC 两两垂直,且PA =PB =PC ,M 、N 分别为AC 、AB 的中点,则异面直线PN 和BM 所成角的余弦值为()A 3B 3C .63D .66【答案】B【解析】以点P 为坐标原点,以PA ,PB ,PC 方向为x 轴,y 轴,z 轴的正方向建立如图所示的空间直角坐标系,令2PA =,则()0,0,0P ,()0,2,0B ,()1,0,0M ,()1,1,0N ,则(1,1,0)PN =,(1,2,1)BM =-,设异面直线PN 和BM 所成角为θ,则||3cos 6||||PN BM PN BM θ⋅==.故选:B.2.(2022·青海·海东市第一中学如图,在三棱柱111ABC A B C -中,11222A C AA AB AC BC ====,160BAA ∠=︒.(1)证明:平面ABC ⊥平面11AA B B .(2)设P 是棱1CC 的中点,求AC 与平面11PA B 所成角的正弦值.【答案】(1)证明见解析(2)64【解析】(1)设2AB =.在四边形11AA B B 中,∵12AA AB =,160BAA ∠=︒,连接1A B ,∴由余弦定理得2221112cos6012A B AA AB AA AB =+-⋅︒=,即13A B =∵22211A B AB AA +=,∴1A B AB ⊥.又∵22211A B BC A C +=,∴1A B BC ⊥,AB BC B ⋂=,∴1A B ⊥平面ABC ,∵1A B ⊂平面11AA B B ,∴平面ABC ⊥平面11AA B B .(2)取AB 中点D ,连接CD ,∵AC BC =,∴CD AB ⊥,由(1)易知CD ⊥平面11AA B B ,且3CD =如图,以B 为原点,分别以射线BA ,1BA 为x ,y 轴的正半轴,建立空间直角坐标系B -xyz ,则(2,0,0)A ,13,0)A ,3)C ,1(2,23,0)B -,1(1,23,3)C -,3,3)P .11(2,0,0)A B =-,1(0,3,3)A P =-,设平面11PA B 的法向量为(,,)n x y z =,则11100n A B n A P ⎧⋅=⎪⎨⋅=⎪⎩,得20330x -=⎧⎪⎨-=⎪⎩,令1y =,则取(0,1,1)n =,(3)AC =-uuu r ,||36cos ,||||22AC n AC n AC n ⋅〈〉===AC 与平面11PA B 63.(2022·广西)如图,PO 是三棱锥P ABC -的高,PA PB =,AB AC ⊥,E 是PB的中点.(1)证明://OE 平面PAC ;(2)若30ABO CBO ∠=∠=︒,3PO =,5PA =,求二面角C AE B --的正弦值.【答案】(1)证明见解析(2)1113【解析】(1)证明:连接BO 并延长交AC 于点D ,连接OA 、PD ,因为PO 是三棱锥P ABC -的高,所以PO ⊥平面ABC ,,AO BO ⊂平面ABC ,所以PO AO ⊥、PO BO ⊥,又PA PB =,所以POA POB ≅△△,即OA OB =,所以OAB OBA ∠=∠,又AB AC ⊥,即90BAC ∠=︒,所以90OAB OAD ∠+∠=︒,90OBA ODA ∠+∠=︒,所以ODA OAD∠=∠所以AO DO =,即AO DO OB ==,所以O 为BD 的中点,又E 为PB 的中点,所以//OE PD ,又OE ⊄平面PAC ,PD ⊂平面PAC ,所以//OE 平面PAC(2)解:过点A 作//Az OP ,如图建立平面直角坐标系,因为3PO =,5AP =,所以224OA AP PO =-=,又30OBA OBC ∠=∠=︒,所以28BD OA ==,则4=AD ,43AB =所以12AC =,所以()23,2,0O ,()43,0,0B ,()23,2,3P ,()0,12,0C ,所以333,1,2E ⎛⎫ ⎪⎝⎭,则333,1,2AE ⎛⎫= ⎪⎝⎭,()43,0,0AB =,()0,12,0AC =,设平面AEB 的法向量为(),,n x y z =,则33302430n AE y z n AB x ⎧⋅=++=⎪⎨⎪⋅==⎩,令2z =,则3y =-,0x =,所以()0,3,2n =-;设平面AEC 的法向量为(),,m a b c =,则33302120m AE b c m AC b ⎧⋅=++=⎪⎨⎪⋅==⎩,令3a =6c =-,0b =,所以)3,0,6m =-;所以cos ,n m n m n m⋅===设二面角C AE B --为θ,由图可知二面角C AE B --为钝二面角,所以cos θ=11sin 13θ==故二面角C AE B --的正弦值为1113;4.(2022·江苏南京·高二期末)如图,斜三棱柱111ABC A B C -中,ABC 为正三角形,D 为棱AC 的中点,1A D ⊥平面ABC .(1)证明:BD ⊥平面11ACC A ;(2)若12AA AB ==,求直线1AB 与平面1BB C 所成角的正弦值.【答案】(1)证明见解析【解析】(1)在正ABC 中,因为D 为AC 的中点,所以BD AC ⊥.因为1A D ⊥平面ABC ,BD ⊂平面ABC 所以1BD A D⊥因为1AC A D D ⋂=,AC ,1A D 均在平面11ACC A 内,所以BD ⊥平面11ACC A (2)因为1A D ⊥平面ABC .所以1A D DC ⊥,1A D DB ⊥.即1DA ,DC ,DB 两两相互垂直.以{}1,,DB DC DA 为正交基底建立如图所示的空间直角坐标系D xyz -.因为12AB AC AA ===,所以点()0,1,0A -,)B ,()0,1,0C,(1A所以(1AA =,)AB =,()BC =从而11AB AA AB =+=,(11BB AA ==设平面1BB C 的一个法向量为(),,n x y z =,则0n BC ⋅=uu u rr ,10n BB ⋅=即00y y ⎧+=⎪⎨=⎪⎩,令y =则()1n =-记直线1AB 与平面1BB C 所成角为θ.则111sin cos ,5AB n AB n AB nθ⋅=<>==⨯,所以,直线1AB 与平面1BB C.5.(2022·内蒙古)如图,在四棱锥P —ABCD 中,底面ABCD 为正方形,PD ⊥底面ABCD ,M 为线段PC 的中点,PD AD =,N 为线段BC上的动点.(1)证明:平面MND ⊥平面PBC(2)当点N 在线段BC 的何位置时,平面MND 与平面PAB 所成锐二面角的大小为30°?指出点N 的位置,并说明理由.【答案】(1)证明见解析(2)点N 在线段BC 的中点【解析】(1)证明:因为PD ⊥底面ABCD ,BC ⊂底面ABCD ,所以PD BC ⊥,因为CD BC ⊥,CDPD D =,所以BC ⊥平面PCD ,因为DM ⊂平面PCD ,所以BC DM ⊥,因为四边形ABCD 为正方形,PD AD =,所以PD CD =,因为在PDC △中,PD CD =,M 为线段PC 的中点,所以DM PC ⊥,因为PC BC C ⋂=,所以DM ⊥平面PBC ,因为DM ⊂平面DMN ,所以平面MND ⊥平面PBC ,(2)当点N 在线段BC 的中点时,平面MND 与平面PAB 所成锐二面角的大小为30°,理由如下:因为PD ⊥底面ABCD ,,⊂DA DC 平面ABCD ,所以,PD DA PD DC ⊥⊥,因为DA DC ⊥,所以,,DA DC DP 两两垂直,所以以D 为原点,以,,DA DC DP 所在的直线分别为,,x y z 轴建立空间直角坐标系,如图所示,设1PD AD ==,则11(0,0,0),(1,0,0),(1,1,0),(0,0,1),(0,1,0),0,,22D A B P C M ⎛⎫⎪⎝⎭,设(,1,0)(01)N λλ<<,则11(1,0,1),(0,1,0),(,1,0),0,,22AP AB DN DM λ⎛⎫=-=== ⎪⎝⎭,设(,,)m x y z =为平面PAB 的法向量,则m AP x z m AB y ⎧⋅=-+=⎨⋅==⎩,令1x =,则=(1,0,1)m u r ,设(,,)n a b c =为平面MND 的法向量,则011022n DN a b n DM b c λ⎧⋅=+=⎪⎨⋅=+=⎪⎩,令1a =,则(1,,)n λλ=-,因为平面MND 与平面PAB 所成锐二面角的大小为30°,所以cos ,2m n m n m n⋅===,化简得24410λλ-+=,得12λ=,所以当点N 在线段BC 的中点时,平面MND 与平面PAB 所成锐二面角的大小为30°6.(2022·四川·成都七中)如图1,在边上为4的菱形ABCD 中,60DAB ∠=︒,点M ,N 分别是边BC ,CD 的中点,1AC BD O ⋂=,AC MN G ⋂=.沿MN 将CMN △翻折到PMN 的位置,连接PA ,PB ,PD ,得到如图2所示的五棱锥P ABMND -.(1)在翻折过程中是否总有平面PBD ⊥平面PAG ?证明你的结论;(2)当四棱锥P MNDB -体积最大时,求直线PB 和平面MNDB 所成角的正弦值;(3)在(2)的条件下,在线段PA 上是否存在一点Q ,使得二面角Q MN P --余弦值的绝对值为1010?若存在,试确定点Q 的位置;若不存在,请说明理由.【答案】(1)在翻折过程中总有平面PBD ⊥平面PAG ,证明见解析(2)3010(3)Q 存在且Q 为线段PA 的中点【解析】(1)在翻折过程中总有平面PBD ⊥平面PAG ,证明如下:∵点M ,N 分别是边CD ,CB 的中点,又60DAB ∠=︒,∴BD MN ∥,且PMN 是等边三角形,∵G 是MN 的中点,∴MN PG ⊥,∵菱形ABCD 的对角线互相垂直,∴BD AC ⊥,∴MN AC ⊥,∵AC PG G ⋂=,AC ⊂平面PAG ,PG ⊂平面PAG ,∴MN ⊥平面PAG ,∴BD ⊥平面PAG ,∵BD ⊂平面PBD ,∴平面PBD ⊥平面PAG .(2)由题意知,四边形MNDB 为等腰梯形,且4DB =,2MN =,1O G =,所以等腰梯形MNDB 的面积()242S +==要使得四棱锥P MNDB -体积最大,只要点P 到平面MNDB 的距离最大即可,∴当PG ⊥平面MNDB 时,点P 到平面MNDB此时四棱锥P MNDB -体积的最大值为133V =⨯=,直线PB 和平面MNDB 所成角的为PBG ∠,连接BG ,在直角三角形PBG 中,PG =BG =由勾股定理得:PB ==sin10PG PBG PB ∠==.(3)假设符合题意的点Q 存在.以G 为坐标原点,GA ,GM ,GP 所在直线分别为x 轴、y 轴、z 轴,建立如图所示空间直角坐标系,则()A ,()0,1,0M ,()0,1,0N -,(P ,由(2)知,AG PG ⊥,又AG MN ⊥,且MN PG G ⋂=,MN ⊂平面PMN ,PG ⊂平面PMN ,AG ⊥平面PMN ,故平面PMN 的一个法向量为()11,0,0n =u r,设AQ AP λ=(01λ≤≤),∵()33,0,3AP =-,()33,0,3AQ λλ=-,故()()331,0,3λλ-,∴()0,2,0NM =,()()331,1,3QM λλ=--,平面QMN 的一个法向量为()2222,,n x y z =,则20n NM ⋅=,20n QM ⋅=,即()222220,33130,y x y z λλ=⎧⎪⎨-+-=⎪⎩令21z =,所以()220,31y x λλ=⎧⎪⎨=⎪-⎩()()()()211,0,1,0,313131n λλλλ⎛⎫==- ⎪ ⎪--⎝⎭,则平面QMN 的一个法向量()(),0,31n λλ=-,设二面角Q MN P --的平面角为θ,则()122110cos 1091n n n n λθλλ⋅===+-,解得:12λ=,故符合题意的点Q 存在且Q 为线段PA 的中点.空间向量求距离1.(2022·青海)如图,在四棱锥A -BCDE 中,底面BCDE 为矩形,M 为CD 中点,连接BM ,CE 交于点F ,G 为△ABE 的重心.(1)证明://GF 平面ABC(2)已知平面ABC ⊥BCDE ,平面ACD ⊥平面BCDE ,BC =3,CD =6,当平面GCE 与平面ADE 所成锐二面角为60°时,求G 到平面ADE 的距离.【答案】(1)证明见解析3【解析】(1)延长EG 交AB 于N ,连接NC ,因为G 为△ABE 的重心,所以点N 为AB 的中点,且2EGGN=,因为//CM BE ,故CMF EBF ∽,所以2EF BECF CM==,故EF EGCF GN=,故//GF NC ,而NC ⊂平面ABC ,GF ⊄平面ABC,故//GF 平面ABC ;(2)由题意知,平面ABC ⊥平面BCDE ,平面ABC平面BCDE=BC ,DC BC ⊥,DC ⊂平面BCDE ,故DC ⊥平面ABC,AC ⊂平面ABC,则DC AC ⊥,同理BC AC ⊥,又,,BCDC C BC DC =⊂平面BCDE,所以AC ⊥平面BCDE ,以C 为原点,以CB,CD,CA 所在直线分别为x,y,z 轴,建立空间直角坐标系,设点G 到平面BCDE 的距离为(0)t t >,则(0,0,3),(3,0,0),(3,6,0),(2,2,),(0,6,0)A t B E G t D ,故(2,2,),(3,6,0),(0,6,3),(3,0,0)CG t CE AD t DE ===-=,设平面GCE 的法向量为111(,,)m x y z =,则00m CG m CE ⎧⋅=⎨⋅=⎩,即11111220360x y tz x y ++=⎧⎨+=⎩,取11y =,则112,,2,z x t ==-即2(2,1,)m t=-,设平面ADE 的法向量为222(,,)n x y z =,则00n AD n DE ⎧⋅=⎨⋅=⎩,即22263030y tz x -=⎧⎨=⎩,取22z =,则2y t =,则(0,,2)n t =,所以4||||1cos 602||||t m n t m n ︒+⋅==⋅,解得212,t t ==,又(2,4,DG =-,故点G 到平面ADE的距离为||4||DG n d n ⋅===.2(2022·上海交大附中)已知正四棱柱1111ABCD A B C D -,其中13AB AA ==,.(1)若点P 是棱1AA 上的动点,求三棱锥1B PBC -的体积.(2)求点1D 到平面1ACB 的距离【答案】(1)【解析】(1)实际上需求三棱锥1P B BC -的体积.由正四棱柱,1113,3BB AA BC AB A B AB ======角形1B BC的面积为1111322B BC S BC BB =⋅⋅=⨯⨯=△因为P 是棱1AA 上的动点且1AA 与平面11BCC B 平行,则只需写出1AA 与平面11BCC B 间的距由于1A B ⊥平面11BCC B ,不妨记三棱锥的高为1A B则三棱锥1P B BC -的体积11111333P B BC B BC V S A B -=⋅⋅=⨯=△(2)以D为原点,如图建立空间直角坐标系.则11(3,0,0),(0,3,0),A B C D可知111(3,3,0),(3,3,0),D B CA CB ==-=设平面1ACB 的法向量为(,,)n x y z =则13300030y xx y n CA n CB x z ⎧⎧=⎧-=⋅=⎪⎪⎪⇒⇒⎨⎨⎨⋅=+==⎪⎪⎪⎩⎩⎩不妨设(2,2,n =,同时设点1D 到平面1ACB 的距离为d则11||n D B d n ⋅=故点1D 到平面1ACB3.(2022·北京)如图,在三棱柱111ABC A B C -中,ABC 为等边三角形,四边形11BCC B 是边长为2的正方形,D 为AB中点,且1A D =(1)求证:CD ⊥平面11ABB A ;(2)若点P 在线段1B C 上,且直线AP 与平面1A CD求点P 到平面1A CD【答案】(1)证明见解析【解析】(1)证明:由题知112,1,AA AD A D ===,因为222115AD A A A D +==,所以1⊥A A AD ,又111,B B BC B B A A ⊥∥,所以1A A BC ⊥,又ADBC B =,所以1A A ⊥平面ABC ,又CD ⊂平面ABC ,所以1CD AA ⊥,在正三角形ABC 中,D 为AB 中点,于是CD AB ⊥,又1AB AA A ⋂=,所以CD ⊥平面11ABB A (2)取BC 中点为11,O B C 中点为Q ,则,OA BC OQ BC ⊥⊥,由(1)知1A A ⊥平面ABC ,且OA ⊂平面ABC ,所以1OA AA ⊥,又11B B A A ∥,所以11,OA BB BB BC B ⊥⋂=,所以OA ⊥平面11BCC B ,于是,,OA OB OQ 两两垂直如图,以O 为坐标原点,,,OB OQ OA 的方向为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系则()((()()1110,0,0,,0,,1,0,0,,1,2,02O A A C D B ⎛- ⎝⎭所以(()(113,1,2,,2,2,0,1,0,2CD CA CB AC ⎛====-- ⎝⎭设平面1A CD 的法向量为(),,n x y z =r,则100n CD n CA ⎧⋅=⎪⎨⋅=⎪⎩,即30220x z x y ⎧=⎪⎨⎪+=⎩令1x =,则1z y ==于是(1,1,n =设()[]12,2,0,0,1CP CB λλλλ==∈,则(121,2,AP AC CP CB λλλ=+==-由于直线AP 与平面1A CD于是25cos ,5AP n ==,即21λ+=,整理得24830λλ-+=,由于[]0,1λ∈,所以12λ=于是()11,1,0CP CB λ==设点P 到平面1A CD 的距离为d 则11255113CP n d n⋅+===++所以点P 到平面1A CD 的距离为2554.(2022·北京市第五中学三模)如图,在三棱柱111ABC A B C -中,平面ABC ⊥平面11CC B B ,11CC B B 是矩形,已知132CC AC BC AC BC =⊥==,,,动点D 在棱1AA 上,点E 在棱1CC 上,且12CE EC =.(1)求证:BC ED ⊥;(2)若直线AB 与平面1DEB 31A D DA 的值;(3)在满足(2)的条件下,求点1A 到平面1DEB 的距离.【答案】(1)证明见解析;(2)1=2A D DA ;(3)点1A 到平面1DEB 的距离为263.【解析】(1)因为四边形11CC B B 是矩形,所以1BC CC ⊥,又AC BC ⊥,1AC CC C =,1,AC CC ⊂平面11ACC A ,所以BC ⊥平面11ACC A ,又ED ⊂平面11ACC A ,所以BC ED ⊥,(2)因为平面ABC ⊥平面11CC B B ,平面ABC平面11CC B B BC =,AC ⊂平面ABC ,AC BC ⊥,所以AC ⊥平面11CC B B ,又1BC CC ⊥,所以1,,AC BC CC 两两相互垂直,以C 为原点,CA ,CB ,1CC 为x ,y ,z 轴的正方向建立空间直角坐标系,则(2,0,0)A ,(0,2,0)B ,1(0,2,3)B ,(0,0,2)E ,设1(01)ADAA λλ=≤≤,则(2,0,3)D λ,所以1(0,2,1)EB =,(2,0,32)ED λ=-,=(2,2,0)AB -设平面1DEB 的法向量为n ,=(,,)n x y z ,则100n EB n ED ⎧⋅=⎨⋅=⎩,202(32)0y z x z λ+=⎧⎨+-=⎩,取2z =,可得=(23,1,2)n λ--,设直线AB 与平面1DEB 的夹角为θ,则sin cos ,AB n AB n AB nθ⋅===3,化简可得231030λλ-+=,又01λ≤≤,所以1=3λ,所以1=2A D DA;(3)由(2)平面1DEB 的法向量为n ,=(1,1,2)n -,又1(0,0,2)A D =-,设点1A 到平面1DEB 的距离为d ,则1263A D n d n⋅===.所以点1A 到平面1DEB 5.(2022·天津·耀华中学二模)如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 是直角梯形,其中//AD BC ,AB AD ⊥,4PA =,122AB AD BC ===,E 为棱BC 上的点,且14BE BC =.(1)求证:DE ⊥平面PAC ;(2)求二面角A PC D --的余弦值;(3)求点E 到平面PCD 的距离.【答案】(1)证明过程见解析;;(3)2.【解析】(1)因为PA ⊥平面ABCD ,,AB AD ⊂平面ABCD ,所以,PA AB PA AD ⊥⊥,而AB AD ⊥,因此可以建立如下图所示的空间直角坐标系,则有(0,0,4),(2,0,0),(2,4,0),(0,2,0),(2,1,0)P B C D E ,(2,1,0)DE =-,(0,0,4)AP =,(2,4,0)AC =,因为20(1)0040,22(1)4000DE AP DE AC ⋅=⨯+-⨯+⨯=⋅=⨯+-⨯+⨯=,所以,DE PA DE AC ⊥⊥,而,PA AC ⊂平面PAC ,所以DE ⊥平面PAC ;(2)设平面PDC 的法向量为(,,)m x y z =,(2,4,4),(0,2,4)PC PD =-=-,则有24400(2,2,1)2400x y z m PC m PC m y z m PD m PD ⎧⎧+-=⎧⊥⋅=⇒⇒⇒=-⎨⎨⎨-=⊥⋅=⎩⎩⎩,由(1)可知平面PAC 的法向量为(2,1,0)DE =-,所以有222225cos ,5(2)212(1)m DE m DE m DE⋅〈〉===-⋅-++⨯+-,由图知二面角A PC D --为锐角,所以二面角A PC D --的余25;(3)由(2)可知:平面PDC 的法向量为(2,2,1)m =-,(2,1,4)PE =-,所以可得:222222222141cos ,21(2)2121(4)PE m PE m PE m⋅-⨯+⨯-⨯〈〉===⋅-++⨯++-所以点E 到平面PCD 的距离为2222cos ,21(4)221PE PE m ⋅〈〉++-=.6.(2022·山东临沂)在正方体1111ABCD A B C D -中,E 为11A D 的中点,过1AB E 的平面截此正方体,得如图所示的多面体,F 为棱1CC上的动点.(1)点H 在棱BC 上,当14CH CB =时,//FH 平面1AEB ,试确定动点F 在棱1CC 上的位置,并说明理由;(2)若2AB =,求点D 到平面AEF 的最大距离.【答案】(1)F 为1CC 中点,证明见解析(2)263【解析】(1)设平面11BCC B 与平面1AEB 的交线为l ,因为FH ∥平面1AEB ,平面11BCC B 平面1AEB l =,FH ⊂平面11BCC B 所以//FH l .由正方体1111ABCD A B C D -知,平面1ADD E ∥平面11BCC B ,又因为平面1ADD E平面1AEB AE =,平面11BCC B 平面1AEB l =,所以//AE l ,所以AE FH∥取BC 中点G ,连接1C G ,易知1AE GC ∥,所以1GC FH ∥,又因为H 为CG 中点,所以F 为1CC 中点.(2)以点D 为原点,1,,DA DC DD 分别为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系,则有()()()()0,0,0,2,0,0,1,0,2,0,2,D A E F t ,其中[]0,2t ∈()()()1,0,2,2,2,,2,0,0AE AF t DA =-=-=设平面AEF 的法向量为(),,n x y z =则有2002200x z n AE x y tz n AF ⎧-+=⎧⋅=⇒⎨⎨-++=⋅=⎩⎩,不妨取2x =,则2,2,12t n ⎛⎫=-⎪⎝⎭所以D AEFAD n dn-⋅=2t =,即点F 与点1C 重合时,取等..所以点D到平面AEF的最大距离为3。
高中试卷-专题03 空间向量的应用(含答案)
专题03 空间向量的应用一、单选题1.(2020·贵州省铜仁第一中学高二开学考试)已知两个异面直线的方向向量分别为a r ,b r ,且|a r |=|b r|=1,a r •12b r =-,则两直线的夹角为( )A .30°B .60°C .120°D .150°【答案】B【解析】设两直线的夹角为θ,则由题意可得1×1×cos a r <,12b =-r >,∴cos a r <,12b =-r >,∴a r <,23b p =r >,∴θ3p =,故选:B .2.(2019·穆棱市第一中学高二期末)若平面,a b 的法向量分别为1,1,3,(1,2,6)2a b æö=-=--ç÷èør r ,则( )A .//a bB .a 与b 相交但不垂直C .a b^D .//a b 或a 与b 重合【答案】D【解析】因为12a b =-r r ,所以平面,a b 的法向量共线,故//a b 或a 与b 重合.故选:D.3.(2020·北京高二期末)已知直线l 的方向向量为m u r ,平面a 的法向量为n r ,则“0m n ×=u r r”是“l ∥a ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B【解析】Q 0m n ×=u r r \m n^u r r Q 0m n ×=u r r ,即m n ^u r r ,不一定有l ∥a ,也可能l aÌ\“0m n ×=u r r ”是“l ∥a ”的不充分条件Q l ∥a ,可以推出m n ^u r r ,\“0m n ×=u r r ”是“l ∥a ”是必要条件,综上所述, “0m n ×=u r r ”是“l ∥a ”必要不充分条件.故选:B.4.(2019·山东省济南一中高二期中)在平面ABCD 中,(0,1,1)A ,(1,2,1)B ,(1,0,1)C --,若(1,,)a y z =-v ,且a v 为平面ABCD 的法向量,则2y 等于( )A .2B .0C .1D .无意义【答案】C【解析】由题得,(1,1,0)AB =uuu r ,(1,1,2)AC =--uuu r ,又a r 为平面ABCD 的法向量,则有00a AB a AC ì×=í×=îuuu v v uuu v v ,即10120y y z -+=ìí-+=î,则1y =,那么21y =.故选:C5.(2019·四川省双流中学高三月考)已知点P 是正方体1111ABCD A B C D -的棱CD 的中点,给出以下结论:①11A P C D ^;②1A P BD ^;③11A P BC ^;④1AP ^平面1BC D 其中正确命题的序号是( )A .①B .②C .③D .④【答案】C【解析】设正方体边长为2,建立如图空间直角坐标系.则()12,1,2A P =--uuur .对①, ()10,2,2C D =--uuuu r ,因为110242A P C D ×=-+=uuur uuuu r ,故①错误.对②, ()2,2,0BD =--uuu r ,因为1422A P BD ×=-=uuur uuu r ,故②错误.对③, ()12,0,2BC =-uuuu r ,因为1440A P BD ×=-=uuur uuu r ,故③正确.对④,由②有1A P BD ^不成立,故1AP ^平面1BC D 不成立.故④错误.故选:C6.(2019·穆棱市第一中学高二期末)如图,在正方体ABCD 1111A B C D 中,以D 为原点建立空间直角坐标系,E 为B 1B 的中点,F 为11A D 的中点,则下列向量中,能作为平面AEF 的法向量的是( )A .(1,-2,4)B .(-4,1,-2)C .(2,-2,1)D .(1,2,-2)【答案】B【解析】设正方体棱长为2,则A (2,0,0),E (2,2,1),F (1,0,2),∴AE uuu r =(0,2,1),AF uuu r =(﹣1,0,2)设向量n r=(x ,y ,z )是平面AEF 的一个法向量则2020n AE y z n AF x z ì×=+=ïí×=-+=ïîuuu r r uuu r r ,取y=1,得x=﹣4,z=﹣2∴n r =(﹣4,1,﹣2)是平面AEF 的一个法向量因此可得:只有B 选项的向量是平面AEF 的法向量故选:B .7.(2019·包头市第四中学高二期中)在棱长为2的正方体1111ABCD A B C D -中,E ,F 分别为棱1AA 、1BB 的中点,M 为棱11A B 上的一点,且1(02)A M l l =<<,设点N 为ME 的中点,则点N 到平面1D EF 的距离为( )ABCD【答案】D【解析】以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,则M (2,λ,2),D 1(0,0,2),E (2,0,1),F (2,2,1),1ED uuuu v =(﹣2,0,1),EF uuu r =(0,2,0),EM uuuu r =(0,λ,1),设平面D 1EF 的法向量n r=(x ,y ,z ),则1·20·20n ED x z n EF y ì=-+=í==îuuuu v v uuuv v ,取x =1,得n r =(1,0,2),∴点M 到平面D 1EF=N 为EM 中点,所以N ,选D .8.(2020·湖南省高二期末)已知直三棱柱111ABC A B C -中,底面边长和侧棱长都相等,则异面直线1AB 与1BC 所成的角的余弦值为( )A .12B .18C .14D .34【答案】C【解析】立空间坐标系如图,设边长为2,得到A (2,0,0),1B (12),B (10),1C (0,0,2)向量()()112,1,2AB BC =-=uuuv uuuu v 设异面直线夹角为q ,则1111cos =||||AB BC AB BC q ×=×uuuv uuuu v uuuv uuuu v 14故答案为C9.(2018·山西省山西大附中高二期中)过正方形ABCD 的顶点A ,作PA ^平面ABCD ,若PA BA =,则平面ABP 和平面CDP 所成的锐二面角的大小是A .30°B .45°C .60°D .90°【答案】B【解析】法一:建立如图(1)所示的空间直角坐标系,不难求出平面APB 与平面PCD 的法向量分别为n 1=(0,1,0),n 2=(0,1,1),故平面ABP 与平面CDP 所成二面角的余弦值为1212n n n n=,故所求的二面角的大小是45°.法二:将其补成正方体.如图(2),不难发现平面ABP 和平面CDP 所成的二面角就是平面ABQP 和平面CDPQ 所成的二面角,其大小为45°.10.(2020·山东省章丘四中高二月考)在正方形1111ABCD A B C D -中,棱AB ,11A D 的中点分别为E ,F ,则直线EF 与平面11AA D D 所成角的余弦值为( )A B C D 【答案】D【解析】以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,设正方体1111ABCD A B C D -的棱长为2,则()2,1,0E , ()1,0,2F , ()1,1,2EF =--uuu r ,平面11AA D D 的法向量()0,1,0n =r ,设直线EF 与平面11AA D D 所成角为q ,0,2p éùqÎêúëû,则||sin ||||EF n EF n q ===uuu r r g uuu r r g .所以cos q ==\直线EF 与平面11AA D D 故选:D .二、多选题11.(2020·山东省高二期末)已知ν为直线l 的方向向量,1n ,2n 分别为平面α,β的法向量(α,β不重合),那么下列选项中,正确的是( )A .12////n n a bÛB .12n n a b^Û^C .1////n l n aÛD .1//n l n a ^Û【答案】AB【解析】A 选项,平面α,β不重合,所以平面α,β的法向量平行等价于平面α,β平行,正确;B 选项,平面α,β不重合,所以平面α,β的法向量垂直等价于平面α,β垂直,正确;C 选项,直线的方向向量平行于平面的法向量等价于直线垂直于平面,错误;D 选项,直线的方向向量垂直于平面的法向量等价于直线平行于平面或直线在平面内,错误.故选:AB12.(2019·山东省高三)正方体1111ABCD A B C D -的棱长为1,,,E F G 分别为11,,BC CC BB 的中点.则( )A .直线1D D 与直线AF 垂直B .直线1A G 与平面AEF 平行C .平面AEF 截正方体所得的截面面积为98D .点C 和点G 到平面AEF 的距离相等【答案】BC【解析】对选项A :(方法一)以D 点为坐标原点,DA 、DC 、1DD 所在的直线分别为x 、y 、z 轴,建立空间直角坐标系,则(0,0,0)D 、(1,0,0)A 、1(1,0,1)A 、1,1,02E æöç÷èø、10,1,2F æöç÷èø、11,1,2G æöç÷èø.从而1(0,0,1)DD =uuuu r ,11,1,2AF æö=-ç÷èø,从而1102DD AF ×=¹uuuu r uuu r ,所以1DD 与直线AF 不垂直,选项A 错误;(方法二)取1DD 的中点N ,连接AN ,则AN 为直线AF 在平面11ADD A 内的射影,AN 与1DD 不垂直,从而AF 与1DD 也不垂直,选项A 错误;取BC 的中点为M ,连接1A M 、GM ,则1A M AE ∥,GM EF ∥,易证1A MG AEF 平面∥平面,从而1A G AEF ∥平面,选项B 正确;对于选项C ,连接1AD ,1D F ,易知四边形1AEFD 为平面,且1D H AH ==,1A D =132AD H S D ==,而113948AD H AEFD S S ==四边形△,从而选项C 正确;对于选项D :(方法一)由于111111112222224GEF EBG BEFG S S S D D æö=-=+´-´´=ç÷èø梯形,而11112228ECF S D =´´=,而13A GEF EFG V S AB -D =×,13A ECF ECF V S AB -D =×,所以2A GEF A ECF V V --=,即2G AEFC AEF V V --=,点G 到平面AEF 的距离为点C 到平面AEF 的距离的二倍.从而D 错误.(方法二)假设点C 与点G 到平面AEF 的距离相等,即平面AEF 将CG 平分,则平面AEF 必过CG 的中点,连接CG交EF于点O ,易知O 不是CG 的中点,故假设不成立,从而选项D 错误.13.(2020·福建省高二期末)正方体1111ABCD A B C D -中,E 、F 、G 、H 分别为1CC 、BC 、CD 、BB 、1BB 的中点,则下列结论正确的是( )A .1B G BC^B .平面AEF I 平面111AA D D AD =C .1//A H 面AEFD .二面角E AF C --的大小为4p 【答案】BC【解析】由题可知,1B G 在底面上的射影为BG ,而BC 不垂直BG ,则1B G 不垂直于BC ,则选项A 不正确;连接1AD 和1BC ,E 、F 、G 、H 分别为1CC 、BC 、CD 、BB 、1BB 的中点,可知11////EF BC AD ,所以AEF D Ì平面1AD EF ,则平面AEF I 平面111AA D D AD =,所以选项B 正确;由题知,可设正方体的棱长为2,以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,则各点坐标如下:()()()()()()12,0,0,0,2,0,0,2,1,2,0,2,2,2,1,1,2,0A C E A H F ()()()()110,2,1,1,2,0,1,0,1,0,0,2A H AF EF AA =-=-=-=uuuu r uuu r uuu r uuur ,设平面AEF 的法向量为(),,n x y z =r ,则00n AF n EF ì×=í×=îuuu v v uuu v v ,即200x y x z -+=ìí-=î,令1y =,得2,2x z ==,得平面AEF 的法向量为()2,1,2n =r ,所以10A H n ×=uuuu r r ,所以1//A H 平面AEF ,则C选项正确;由图可知,1AA ^平面AFC ,所以1AA uuur是平面AFC 的法向量,则1112cos ,3AA n AA n AA n×<>===×uuur r uuur r uuur r .得知二面角E AF C --的大小不是4p ,所以D 不正确.故选:BC.三、填空题14.(2019·山东省济南一中高二期中)若平面a的一个法向量为(n =v,直线l的一个方向向量为a =v ,则l 与a 所成角的正弦值为________.【答案】15【解析】由题,设l 与a 所成角为q,可得||1sin 5||||n a n a q ×===v v v v .故答案为:1515.(2019·陕西省西北大学附中高二期中)如图,在正三棱柱111ABC A B C -中,12,AB AC AA === ,E F 分别是,BA11A C 的中点.设D 是线段11B C 上的(包括两个端点)动点,当直线BD 与EF,则线段BD 的长为_______.【答案】【解析】以E 为原点,EA,EC 为x,y轴建立空间直角坐标系,如下图.1(0,0,0),,2),(0,1,0),(0,,2)(11)2E F B D t t --££1,2),(0,1,2)2EF BD t ==+uuu v uuuv cos q =解得t=1,所以BD =,填.点睛:利用空间向量求解空间角与距离的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.16.(2019·浙江省宁波市鄞州中学高二期中)正方体1111ABCD A B C D -中,,E F 分别是1,AA AB 的中点,则EF 与直线1AC 所成角的大小为______ ;EF 与对角面11BDD B 所成角的正弦值是 __________.【答案】2p 12【解析】如图所示建立空间直角坐标系,设正方体的边长为2,则()2,0,1E ,()2,1,0F ,()2,0,0A ,()10,2,2C ,故()0,1,1EF =-uuu r ,()12,2,2AC =-uuuu r .故10EF AC ×=uuu r uuuu r ,故EF 与直线1AC 所成角的大小为2p .易知对角面11BDD B 的一个法向量为()1,1,0n =-r ,设EF 与对角面11BDD B 所成角为q ,故1sin cos ,2EF n EF n EF n q ×===×uuu r r uuu r r uuu r r .故答案为:2p ;12.17.(2019·江西省会昌中学高二月考)已知正方体1111ABCD A B C D -的棱长为a ,点E ,F ,G 分别为棱A B ,1AA ,11C D 的中点,下列结论中,正确结论的序号是___________.①过E ,F ,G 三点作正方体的截面,所得截面为正六边形;②11//B D 平面EFG ;③1BD ^平面1ACB ;④异面直线EF 与1BD ;⑤四面体11ACB D 的体积等于312a .【答案】①③④【解析】延长EF 分别与1l B A ,1B B 的延长线交于N ,Q ,连接GN 交11A D 于H ,设HG 与11B C 的延长线交于P ,连接P Q 交1CC 于I ,交BC 于M ,连FH ,HG ,GI ,IM ,ME ,EF ,如图:则截面六边形EFHGIM 为正六边形,故①正确:因为11B D 与HG 相交,故11B D 与平面EFG 相交,所以②不正确:1,BD AC BD AC ^\^Q (三垂线定理),1111,BC B C BD B C ^\^Q (三垂线定理),且AC 与1B C 相交,所以1BD ^平面1ACB ,故③正确;以D 为原点,1,,DA DC DD 分别为,,x y z 轴建立空间直角坐标系,则1(0,0,0),(,,0),(,0,),(,,0),(0,0,)22a a D E a F a B a a D a ,则(0,,)22a a EF =-uuu r ,1(,,)BD a a a =--uuuu r ,所以111cos ,||||EF BD EF BD EF BD ×<>=uuu r uuuu r uuu r uuuu r uuu r uuuur ===所以1sin ,EF BD <>==uuu r uuuu r=所以111sin ,tan ,cos ,EF BD EF BD EF BD <><>=<>uuu r uuuu r uuu r uuuu r uuu r uuuur ==,所以异面直线EF 与1BD,故④正确;因为四面体11ACB D 的体积等于正方体的体积减去四个正三棱锥的体积,即为3331114323a a a -´´=,故⑤不正确.故答案为:①③④四、解答题18.(2019·广西壮族自治区田东中学高二期中)已知三棱柱111ABC A B C -的侧棱垂直于底面,90BAC Ð=°,12AB AA ==,1AC =,M ,N 分别是11A B ,BC 的中点.(1)求证:1AB AC ^;(2)求证://MN 平面11ACC A .【答案】(1)证明见解析 (2) 证明见解析【解析】Q 三棱柱为直三棱柱 1AA \^平面ABC 1AA AC \^,1AA AB ^又90BAC Ð=o ,则1,,AB AC AA 两两互相垂直,可建立如下图所示的空间直角坐标系则()0,0,0A ,()0,2,0B ,()1,0,0C -,()11,0,2C -,()0,1,2M ,1,1,02N æö-ç÷èø(1)()0,2,0AB =uuu r Q ,()11,0,2AC =-uuuu r ()10120020AB AC \×=´-+´+´=uuu r uuuu r 1AB AC \^(2)由题意知:AB uuu r是平面11ACC A 的一个法向量()0,2,0AB =uuu r Q ,1,0,22MN æö=--ç÷èøuuuu r ()10200202AB MN æö\×=´-+´+´-=ç÷èøuuu r uuuu r AB MN \^uuu r uuuu r MN ËQ 平面11ACC A //MN \平面11ACC A 19.(2020·陕西省高二期末)如图,在棱长为2的正方体1111ABCD A B C D -中E ,F 分别为AB ,1A C的中点.(1)求EF ;(2)求证://EF 平面11AA D D【答案】(1;(2)证明见解析【解析】(1)由题知,(2,1,0)E ,(1,1,1)F ,∴(1,0,1)EF =-uuu r ,∴||EF ==uuu r (2)由题知,(2,0,0)A ,1(0,0,2)D ,∴1(2,0,2)AD =-uuuu r ,∴12AD EF =uuuu r uuu r ,故//AD EF ,又1AD Ì平面11AA D D ,EF Ë平面11AA D D∴EF ∥平面11AA D D .20.(2020·北京高二期末)如图,在直三棱柱111ABC A B C -中,3AC =,4BC =,5AB =,14AA =,点D 是AB 的中点.(1)求异面直线AC 与1BC 所成的角;(2)求证:1//AC 平面1CDB .【答案】(1)2p (2)证明见解析【解析】(1)因为3AC =,4BC =,5AB =,所以222AC BC AB +=,所以ABC D 是直角三角形,所以2ACB p=,所以AC BC^因为三棱柱111ABC A B C -为直三棱柱,所以1C C ^平面ABC ,所以1C C AC ^,1C C BC^以C 为原点,分别以CA 、CB 、1CC 为x 轴、y 轴、z 轴,建立空间直角坐标系,则(0C ,0,0),(3A ,0,0),(0B ,4,0),1(0C ,0,4)所以直线AC 的方向向量为(3,0,0)CA =uuu r ,直线1BC 的方向向量为1(0,4,4)BC =-uuuu r ,设异面直线AC 与1BC 所成的角为q ,因为10CA BC =uuu r uuuu r g ,所以cos 0q =,所以异面直线AC 与1BC 所成的角为2p.(2)由(1)可知3,2,02D æöç÷èø,1(0B ,4,4),则3,2,02CD æö=ç÷èøuuu r ,1(0,4,4)CB =uuur 设平面1CDB 的法向量为(,,)n x y z =r ,则1·0·0CD n CB n ì=ïí=ïîuuu v v uuuv v ,所以3202440x y y z ì+=ïíï+=î令4x =,则3y =-,3z =,所以(4,3,3)n =-r直线1AC 的方向向量为1(3,0,4)AC =-uuuu r ,因为10AC n =uuuu r r g ,1AC Ë平面1CDB , 所以1//AC 平面1CDB .21.(2020·银川三沙源上游学校高二期末)如图,在直三棱柱111ABC A B C -中,AB AC ^,2AB AC ==,1AA =,D 为棱BC 的中点.(1)求直线1DB 与平面11AA C C 所成角的正弦值;(2)求平面11AA C C 与平面1ADB 所成二面角的余弦值.【答案】(12).【解析】则(0,0,0)A ,1(0,0,A ,(2,0,0)C ,(0,2,0)B ,(1,1,0)D ,1(0,2,B ,所以(2,0,0)AC =uuu r ,1(0,0,AA =uuur ,(1,1,0)AD =uuu r ,1(1,1,DB =-uuuu r ,如下图:(1)设平面11AA C C 的一个法向量为(,,)m x y z =u r ,则100AC m AA m ì×=ïí×=ïîuuu v v uuuv v,即00ìïí=ïî,取(0,1,0)m =u r ,所以1cos ,DB m <=uuuu r u r ,所以直线1DB 与平面11AA C C(2)设平面1ADB 的一个法向量为111(,,)n x y z =r ,则100AD n DB n ì×=ïí×=ïîuuu v v uuuu v v,即1111100x y x y +=ìïí-++=ïî,取(1,n =-r ,所以cos ,m n <=u r r ,所以求平面11AA C C 与平面1ADB所成二面角的余弦值.22.(2019·江苏省苏州实验中学高一月考)直四棱柱1111ABCD A B C D -中,2AB BC ==,90ABC Ð=°,E 、F 分别为棱AB 、11B C 上的点,2AE EB =,112C F FB =.求证:(1)//EF 平面11AA C C ;(2)线段AC 上是否存在一点G ,使面EFG ^面11AA C C .若存在,求出AG 的长;若不存在,请说明理由.【答案】(1)证明见解析(2)存在,AG =【解析】(1)如图所示:以1A 为原点,11A D ,11A B ,1A A 分别为,,x y z 轴建立空间直角坐标系:则1(0,0,0)A ,1(0,2,0)B ,1(2,2,0)C ,设(0,0,)A a ,则4(0,,)3E a ,2(,2,0)3F ,所以22(,,)33EF a =-uuu r ,1(0,0,)A A a =uuur ,11(2,2,0)AC =uuuu r ,因为11113EF A A A C =-+uuu r uuur uuuu r ,所以EF uuu r ,1A A uuur ,11AC uuuu r 共面,又EF 不在平面11AA C C 内,所以//EF 平面11AA C C(2)线段AC 上存在一点G ,使面EFG ^面11AA C C ,且AG =证明如下:在三角形AGE 中,由余弦定理得EG ====,所以222AG EG AE +=,即EG AG ^,又1A A ^平面ABCD ,EG Ì平面ABCD ,所以1A A EG ^,而1AG A A A Ç=,所以EG ^平面11AA C C ,因为EG Ì平面EFG ,所以EFG ^面11AA C C .23.(2020·北京高二期末)如图,在底面是正方形的四棱锥P ABCD -中,PA ^平面ABCD ,2AP AB ==,,,E F G 是,,BC PC CD 的中点.(1)求证:BG ^平面PAE ;(2)在线段BG 上是否存在点H ,使得//FH 平面PAE ?若存在,求出BH BG 的值;若不存在,说明理由.【答案】(1)证明见解析;(2)存在,35.【解析】(1)证明:因为四棱锥P ABCD -底面是正方形,且PA ^平面ABCD ,以点A 为坐标原点,,,AB AD AP所在直线分别为,,x y z 轴建立如图所示空间直角坐标系.则(0,0,0),(2,0,0),(0,0,2),A B P ,(2,2,0),(0,2,0)C D ,因为,,E F G 是,,BC PC CD 的中点,所以(2,1,0),(1,1,1),(1,2,0)E F G ,所以(1,2,0)BG =-uuu v ,(0,0,2),(2,1,0),AP AE ==uuu v uuu v 所以0BG AP ×=uuu v uuu v ,且0BG AE ×=uuu v uuu v . 所以BG AP ^,BG AE ^,且AE AP A =I .所以BG ⊥平面PAE .(2)假设在线段BG 上存在点H ,使得FH //平面PAE . 设BH BG l =uuuv uuu v (01)l ££,则(1,21,1)FH FB BH AB AF BG l l l =+=-+=---uuuv uuu v uuuv uuu v uuu v uuu v .因为FH //平面PAE ,BG ⊥平面PAE ,所以(1)(12(21)0(1)530FH GB l l l ×=-×-+-+´-=-=uuuv uuu v . 所以35l =. 所以,在线段BG 上存在点H ,使得FH //平面PAE .其中35BH BG =.。
高三空间向量专题(一)平行垂直应用
一:合理选择坐标系并写出所有点的坐标 1、(2013浙江理)如图,在四面体A−BCD 中,AD ⊥平面BCD ,BC ⊥CD ,AD=2,BD=22.M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且AQ=3QC .问:我在建系过程中,是如何选择坐标系的,先建立的是 轴然后如何选择另外的坐标轴的 2、(2012浙江理)如图,在四棱锥ABCD P -中,底面是 边长为32的菱形,︒=∠120BAD ,且⊥PA 平面ABCD ,26PA =,M ,N 分别为PB ,PD 的中点.问:我在建系过程中,是如何选择坐标系的,先建立的是 轴然后如何选择另外的坐标轴的 3、(2011浙江理)如图,在三棱锥P-ABC 中,AB =AC ,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上,已知BC =8,PO =4,AO =3,OD =2 问:我在建系过程中,是如何选择坐标系的,先建立的是 轴然后如何选择另外的坐标轴的 4、(2010浙江理)如图, 在矩形ABCD 中,点E,F 分别在线段AB,AD 上,432====FD AF EB AE .沿直线EF将AEF ∆ 翻折成EF A '∆,使平面EF A '⊥面BEF. 问:我在建系过程中,是如何选择坐标系的,先建立的是 轴然后如何选择另外的坐标轴的ABCDPQM(第1题图)-中,平面ABC⊥平面5、(2014浙江理)如图,在四棱锥A BCDEAC=.==,1AB CDCDE BEDBCDE,90∠=∠=︒,2DE BE==,2二:用向量法证明平行与垂直(1)第1题中证明:PQ∥平面BCD.自我体验:第2题中证明:MN∥平面ABCD;(2)第3题中证明:AP⊥BC;(3)第5题中证明:DE⊥平面ACD;A1 DCB AB1D1C1OE练习1:正方体ABCD-A1B1C1D1的棱长为2,且AC 与BD 交于点O ,E 为棱DD1的中点。
8.7空间向量在立体几何中的应用——证明平行与垂直
1.用向量表示直线或点在直线上的位置(1)给定一个定点A 和一个向量a ,再任给一个实数t ,以A 为起点作向量AP →=t a ,则此向量方程叫做直线l 以t 为参数的参数方程.向量a 称为该直线的方向向量.(2)对空间任一确定的点O ,点P 在直线l 上的充要条件是存在唯一的实数t ,满足等式OP →=(1-t )OA →+tOB →,叫做空间直线的向量参数方程. 2.用向量证明空间中的平行关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)⇔v 1∥v 2.(2)设直线l 的方向向量为v ,与平面α共面的两个不共线向量v 1和v 2,则l ∥α或l ⊂α⇔存在两个实数x ,y ,使v =x v 1+y v 2.(3)设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ⊂α⇔v ⊥u . (4)设平面α和β的法向量分别为u 1,u 2,则α∥β⇔u 1 ∥u 2. 3.用向量证明空间中的垂直关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2⇔v 1⊥v 2⇔v 1·v 2=0. (2)设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α⇔v ∥u . (3)设平面α和β的法向量分别为u 1和u 2,则α⊥β⇔u 1⊥u 2⇔u 1·u 2=0. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)直线的方向向量是唯一确定的.( × ) (2)平面的单位法向量是唯一确定的.( × ) (3)若两平面的法向量平行,则两平面平行.( √ ) (4)若两直线的方向向量不平行,则两直线不平行.( √ ) (5)若a ∥b ,则a 所在直线与b 所在直线平行.( × )(6)若空间向量a 平行于平面α,则a 所在直线与平面α平行.( × )1.平面α的法向量为(1,2,-2),平面β的法向量为(-2,-4,k ),若α∥β,则k 等于( ) A.2 B.-4 C.4 D.-2 答案 C解析 ∵α∥β,∴两平面法向量平行, ∴-21=-42=k-2,∴k =4. 2.已知A (1,0,0),B (0,1,0),C (0,0,1),则下列向量是平面ABC 法向量的是( ) A.(-1,1,1) B.(1,-1,1) C.(-33,-33,-33) D.(33,33,-33) 答案 C解析 设n =(x ,y ,z )为平面ABC 的法向量, 则⎩⎪⎨⎪⎧n ·AB →=0,n ·AC →=0,化简得⎩⎪⎨⎪⎧-x +y =0,-x +z =0,∴x =y =z .故选C.3.已知直线l 的方向向量为v =(1,2,3),平面α的法向量为u =(5,2,-3),则l 与α的位置关系是____________. 答案 l ∥α或l ⊂α解析 ∵v ·u =0,∴v ⊥u ,∴l ∥α或l ⊂α.4.(教材改编)设u ,v 分别是平面α,β的法向量,u =(-2,2,5),当v =(3,-2,2)时,α与β的位置关系为________;当v =(4,-4,-10)时,α与β的位置关系为________. 答案 α⊥β α∥β解析 当v =(3,-2,2)时,u ·v =(-2,2,5)·(3,-2,2)=0⇒α⊥β. 当v =(4,-4,-10)时,v =-2u ⇒α∥β.5.(教材改编)如图所示,在正方体ABCD -A 1B 1C 1D 1中,O 是底面正方形ABCD 的中心,M 是D 1D 的中点,N 是A 1B 1的中点,则直线ON ,AM 的位置关系是________. 答案 垂直解析 以A 为原点,分别以AB →,AD →,AA 1→所在直线为x ,y ,z 轴,建立空间直角坐标系,设正方体棱长为1,则A (0,0,0),M (0,1,12),O (12,12,0),N (12,0,1),AM →·ON →=(0,1,12)·(0,-12,1)=0, ∴ON 与AM 垂直.题型一 利用空间向量证明平行问题例1 如图所示,平面P AD ⊥平面ABCD ,ABCD 为正方形,△P AD 是直角三角形,且P A =AD =2,E ,F ,G 分别是线段P A ,PD ,CD 的中点.求证:PB ∥平面EFG . 证明 ∵平面P AD ⊥平面ABCD ,且ABCD 为正方形,∴AB ,AP ,AD 两两垂直,以A 为坐标原点,建立如图所示的空间直角坐标系Axyz ,则A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),P (0,0,2),E (0,0,1),F (0,1,1),G (1,2,0). ∴PB →=(2,0,-2),FE →=(0,-1,0),FG →=(1,1,-1), 设PB →=sFE →+tFG →,即(2,0,-2)=s (0,-1,0)+t (1,1,-1), ∴⎩⎪⎨⎪⎧t =2,t -s =0,-t =-2,解得s =t =2.∴PB →=2FE →+2FG →,又∵FE →与FG →不共线,∴PB →,FE →与FG →共面. ∵PB ⊄平面EFG ,∴PB ∥平面EFG . 引申探究本例中条件不变,证明平面EFG ∥平面PBC . 证明 ∵EF →=(0,1,0),BC →=(0,2,0), ∴BC →=2EF →,∴BC ∥EF .又∵EF ⊄平面PBC ,BC ⊂平面PBC , ∴EF ∥平面PBC ,同理可证GF ∥PC ,从而得出GF ∥平面PBC . 又EF ∩GF =F ,EF ⊂平面EFG ,FG ⊂平面EFG , ∴平面EFG ∥平面PBC .思维升华 (1)恰当建立空间直角坐标系,准确表示各点与相关向量的坐标,是运用向量法证明平行和垂直的关键.(2)证明直线与平面平行,只需证明直线的方向向量与平面的法向量的数量积为零,或证直线的方向向量与平面内的不共线的两个向量共面,或证直线的方向向量与平面内某直线的方向向量平行,然后说明直线在平面外即可.这样就把几何的证明问题转化为向量运算.如图,在四面体A -BCD 中,AD ⊥平面BCD ,BC ⊥CD ,AD =2,BD =22,M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且AQ=3QC .证明:PQ ∥平面BCD .证明 方法一 如图,取BD 的中点O ,以O 为原点,OD 、OP 所在射线分别为y 、z轴的正半轴,建立空间直角坐标系Oxyz .由题意知,A (0,2,2),B (0,-2,0),D (0,2,0). 设点C 的坐标为(x 0,y 0,0). 因为AQ →=3QC →,所以Q ⎝⎛⎭⎫34x 0,24+34y 0,12.因为M 为AD 的中点,故M (0,2,1). 又P 为BM 的中点,故P ⎝⎛⎭⎫0,0,12, 所以PQ →=⎝⎛⎭⎫34x 0,24+34y 0,0.又平面BCD 的一个法向量为a =(0,0,1),故PQ →·a =0. 又PQ ⊄平面BCD ,所以PQ ∥平面BCD .方法二 在线段CD 上取点F ,使得DF =3FC ,连接OF ,同方法一建立空间直角坐标系,写出点A 、B 、C 的坐标,设点C 坐标为(x 0,y 0,0). ∵CF →=14CD →,设点F 坐标为(x ,y,0),则(x -x 0,y -y 0,0)=14(-x 0,2-y 0,0),∴⎩⎨⎧x =34x 0y =24+34y∴OF →=(34x 0,24+34y 0,0)又由方法一知PQ →=(34x 0,24+34y 0,0),∴OF →=PQ →,∴PQ ∥OF .又PQ ⊄平面BCD ,OF ⊂平面BCD , ∴PQ ∥平面BCD .题型二 利用空间向量证明垂直问题 命题点1 证线面垂直例2 如图所示,正三棱柱ABC —A 1B 1C 1的所有棱长都为2,D 为CC 1的中点.求证:AB 1⊥平面A 1BD .证明 方法一 设平面A 1BD 内的任意一条直线m 的方向向量为m .由共面向量定理,则存在实数λ,μ,使m =λBA 1→+μBD →.令BB 1→=a ,BC →=b ,BA →=c ,显然它们不共面,并且|a |=|b |=|c |=2,a ·b =a·c =0,b·c =2,以它们为空间的一个基底,则BA 1→=a +c ,BD →=12a +b ,AB 1→=a -c ,m =λBA 1→+μBD →=⎝⎛⎭⎫λ+12μa +μb +λc , AB 1→·m =(a -c )·⎣⎡⎦⎤⎝⎛⎭⎫λ+12μa +μb +λc =4⎝⎛⎭⎫λ+12μ-2μ-4λ=0.故AB 1→⊥m ,结论得证. 方法二 如图所示,取BC 的中点O ,连接AO . 因为△ABC 为正三角形, 所以AO ⊥BC .因为在正三棱柱ABC —A 1B 1C 1中,平面ABC ⊥平面BCC 1B 1, 所以AO ⊥平面BCC 1B 1.取B 1C 1的中点O 1,以O 为原点,分别以OB →,OO 1→,OA →所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,则B (1,0,0),D (-1,1,0),A 1(0,2,3), A (0,0,3),B 1(1,2,0).设平面A 1BD 的法向量为n =(x ,y ,z ),BA 1→=(-1,2,3),BD →=(-2,1,0). 因为n ⊥BA 1→,n ⊥BD →,故⎩⎪⎨⎪⎧n ·BA 1→=0,n ·BD →=0,⇒⎩⎨⎧-x +2y +3z =0,-2x +y =0,令x =1,则y =2,z =-3,故n =(1,2,-3)为平面A 1BD 的一个法向量, 而AB 1→=(1,2,-3),所以AB 1→=n ,所以AB 1→∥n , 故AB 1⊥平面A 1BD . 命题点2 证面面垂直例3 如图,在三棱锥P ABC 中,AB =AC ,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上.已知BC =8,PO =4,AO =3,OD =2. (1)证明:AP ⊥BC ;(2)若点M 是线段AP 上一点,且AM =3.试证明平面AMC ⊥平面BMC . 证明 (1)如图所示,以O 为坐标原点,以射线OP 为z 轴的正半轴建立空间直角坐标系Oxyz .则O (0,0,0),A (0,-3,0), B (4,2,0),C (-4,2,0),P (0,0,4).于是AP →=(0,3,4), BC →=(-8,0,0),∴AP →·BC →=(0,3,4)·(-8,0,0)=0, 所以AP →⊥BC →,即AP ⊥BC . (2)由(1)知|AP |=5,又|AM |=3,且点M 在线段AP 上, ∴AM →=35AP →=⎝⎛⎭⎫0,95,125, 又BC →=(-8,0,0),AC →=(-4,5,0),BA →=(-4,-5,0), ∴BM →=BA →+AM →=⎝⎛⎭⎫-4,-165,125, 则AP →·BM →=(0,3,4)·⎝⎛⎭⎫-4,-165,125=0, ∴AP →⊥BM →,即AP ⊥BM ,又根据(1)的结论知AP ⊥BC ,且BM ∩BC =C , ∴AP ⊥平面BMC ,于是AM ⊥平面BMC . 又AM ⊂平面AMC ,故平面AMC ⊥平面BCM . 思维升华 证明垂直问题的方法(1)利用已知的线面垂直关系构建空间直角坐标系,准确写出相关点的坐标,从而将几何证明转化为向量运算.其中灵活建系是解题的关键.(2)其一证明直线与直线垂直,只需要证明两条直线的方向向量垂直;其二证明线面垂直,只需证明直线的方向向量与平面内不共线的两个向量垂直即可,当然 ,也可证直线的方向向量与平面法向量平行;其三证明面面垂直:①证明两平面的法向量互相垂直;②利用面面垂直的判定定理,只要能证明一个平面内的一条直线的方向向量为另一个平面的法向量即可.(1)如图所示,已知直三棱柱ABC —A 1B 1C 1中,△ABC 为等腰直角三角形,∠BAC =90°,且AB =AA 1,D 、E 、F 分别为B 1A 、C 1C 、BC 的中点.求证: ①DE ∥平面ABC ; ②B 1F ⊥平面AEF .证明 ①如图建立空间直角坐标系Axyz , 令AB =AA 1=4,则A (0,0,0),E (0,4,2),F (2,2,0),B (4,0,0),B 1(4,0,4). 取AB 中点为N ,连接CN , 则N (2,0,0),C (0,4,0),D (2,0,2), ∴DE →=(-2,4,0),NC →=(-2,4,0),∴DE →=NC →,∴DE ∥NC ,又∵NC ⊂平面ABC ,DE ⊄平面ABC . 故DE ∥平面ABC .②B 1F →=(-2,2,-4),EF →=(2,-2,-2),AF →=(2,2,0). B 1F →·EF →=(-2)×2+2×(-2)+(-4)×(-2)=0, B 1F →·AF →=(-2)×2+2×2+(-4)×0=0.∴B 1F →⊥EF →,B 1F →⊥AF →,即B 1F ⊥EF ,B 1F ⊥AF , 又∵AF ∩EF =F ,∴B 1F ⊥平面AEF .(2)如图所示,在四棱锥P -ABCD 中,PC ⊥平面ABCD ,PC =2,在四边形ABCD 中,∠B =∠C =90°,AB =4,CD =1,点M 在PB 上,PB =4PM ,PB 与平面ABCD 成30°角.①求证:CM ∥平面P AD ; ②求证:平面P AB ⊥平面P AD .证明 ①以C 为坐标原点,分别以CB 所在直线为x 轴,CD 所在直线为y 轴,CP 所在直线为z 轴建立如图所示的空间直角坐标系Cxyz , ∵PC ⊥平面ABCD ,∴∠PBC 为PB 与平面ABCD 所成的角, ∴∠PBC =30°.∵PC =2,∴BC =23,PB =4.∴D (0,1,0),B (23,0,0),A (23,4,0),P (0,0,2), M (32,0,32), ∴DP →=(0,-1,2),DA →=(23,3,0),CM →=(32,0,32),令n =(x ,y ,z )为平面P AD 的一个法向量, 则⎩⎪⎨⎪⎧DP →·n =0,DA →·n =0,即⎩⎨⎧-y +2z =0,23x +3y =0,∴⎩⎨⎧z =12y ,x =-32y ,令y =2,得n =(-3,2,1).∵n ·CM →=-3×32+2×0+1×32=0,∴n ⊥CM →,又CM ⊄平面P AD , ∴CM ∥平面P AD .②取AP 的中点E ,则E (3,2,1),BE →=(-3,2,1). ∵PB =AB ,∴BE ⊥P A .又∵BE →·DA →=(-3,2,1)·(23,3,0)=0, ∴BE →⊥DA →,∴BE ⊥DA ,又P A ∩DA =A ,∴BE ⊥平面P AD , 又∵BE ⊂平面P AB , ∴平面P AB ⊥平面P AD .题型三 利用空间向量解决探索性问题例4 如图,棱柱ABCD -A 1B 1C 1D 1的所有棱长都等于2,∠ABC 和∠A 1AC 均为60°,平面AA 1C 1C ⊥平面ABCD . (1)求证:BD ⊥AA 1;(2)求二面角D -A 1A -C 的余弦值;(3)在直线CC 1上是否存在点P ,使BP ∥平面DA 1C 1,若存在,求出点P 的位置,若不存在,请说明理由. (1)证明 设BD 与AC 交于点O ,则BD ⊥AC ,连接A 1O ,在△AA 1O 中,AA 1=2,AO =1,∠A 1AO =60°,∴A 1O 2=AA 21+AO 2-2AA 1·AO cos 60°=3, ∴AO 2+A 1O 2=AA 21, ∴A 1O ⊥AO .由于平面AA 1C 1C ⊥平面ABCD ,∴A 1O ⊥平面ABCD .以OB ,OC ,OA 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则A (0,-1,0),B (3,0,0),C (0,1,0),D (-3,0,0),A 1(0,0,3),C 1(0,2,3). 由于BD →=(-23,0,0),AA 1→=(0,1,3), AA 1→·BD →=0×(-23)+1×0+3×0=0, ∴BD →⊥AA 1→,即BD ⊥AA 1. (2)解 由于OB ⊥平面AA 1C 1C ,∴平面AA 1C 1C 的一个法向量为n 1=(1,0,0). 设n 2=(x ,y ,z )为平面DAA 1D 1的一个法向量, 则⎩⎪⎨⎪⎧n 2·AA 1→=0,n 2·AD →=0, 即⎩⎨⎧y +3z =0,-3x +y =0,取n 2=(1,3,-1),则〈n 1,n 2〉即为二面角D -A 1A -C 的平面角,∴cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=55,所以,二面角D -A 1A -C 的余弦值为55. (3)解 假设在直线CC 1上存在点P ,使BP ∥平面DA 1C 1,设CP →=λCC 1,P (x ,y ,z ),则(x ,y -1,z )=λ(0,1,3). 从而有P (0,1+λ,3λ),BP →=(-3,1+λ,3λ). 设n 3=(x 3,y 3,z 3)⊥平面DA 1C 1,则⎩⎪⎨⎪⎧n 3⊥A 1C 1→,n 3⊥DA 1→,又A 1C 1→=(0,2,0),DA 1→=(3,0,3),则⎩⎨⎧2y 3=0,3x 3+3z 3=0,取n 3=(1,0,-1),因为BP ∥平面DA 1C 1,则n 3⊥BP →, 即n 3·BP →=-3-3λ=0,得λ=-1, 即点P 在C 1C 的延长线上,且C 1C =CP .思维升华 对于“是否存在”型问题的探索方式有两种:一种是根据条件作出判断,再进一步论证;另一种是利用空间向量,先设出假设存在点的坐标,再根据条件求该点的坐标,即找到“存在点”,若该点坐标不能求出,或有矛盾,则判定“不存在”.在四棱锥P —ABCD 中,PD ⊥底面ABCD ,底面ABCD 为正方形,PD =DC ,E 、F 分别是AB 、PB 的中点. (1)求证:EF ⊥CD ;(2)在平面P AD 内求一点G ,使GF ⊥平面PCB ,并证明你的结论. (1)证明 如图,分别以DA 、DC 、DP 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,设AD =a ,则D (0,0,0), A (a,0,0),B (a ,a,0), C (0,a,0),E ⎝⎛⎭⎫a ,a2,0, P (0,0,a ),F ⎝⎛⎭⎫a 2,a 2,a 2.EF →=⎝⎛⎭⎫-a 2,0,a 2,DC →=(0,a,0). ∵EF →·DC →=0,∴EF →⊥DC →,即EF ⊥CD .(2)解 设G (x,0,z ),则FG →=⎝⎛⎭⎫x -a 2,-a 2,z -a 2, 若使GF ⊥平面PCB ,则由FG →·CB →=⎝⎛⎭⎫x -a2,-a 2,z -a 2·(a,0,0) =a ⎝⎛⎭⎫x -a 2=0,得x =a2;由FG →·CP →=⎝⎛⎭⎫x -a2,-a 2,z -a 2·(0,-a ,a ) =a 22+a ⎝⎛⎭⎫z -a 2=0,得z =0. ∴G 点坐标为⎝⎛⎭⎫a 2,0,0,即G 点为AD 的中点.17.利用向量法解决立体几何问题典例 (12分)(2014·湖北)如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E ,F ,M ,N 分别是棱AB ,AD ,A 1B 1,A 1D 1的中点,点P ,Q 分别在棱DD 1,BB 1上移动,且DP =BQ =λ(0<λ<2).(1)当λ=1时,证明:直线BC 1∥平面EFPQ ;(2)是否存在λ,使平面EFPQ 与平面PQMN 所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由. 规范解答解 以D 为原点,射线DA ,DC ,DD 1分别为x ,y ,z 轴的正半轴,建立如图所示的空间直角坐标系Dxyz .[1分]由已知得B (2,2,0),C 1(0,2,2),E (2,1,0),F (1,0,0),P (0,0,λ),M (2,1,2),N (1,0,2),BC 1→=(-2,0,2),FP →=(-1,0,λ),FE →=(1,1,0),MN →=(-1,-1,0),NP →=(-1,0,λ-2).[3分] (1)证明 当λ=1时,FP →=(-1,0,1), 因为BC 1→=(-2,0,2), 所以BC 1→=2FP →,即BC 1∥FP .而FP ⊂平面EFPQ ,且BC 1⊄平面EFPQ , 故直线BC 1∥平面EFPQ .[7分](2)解 设平面EFPQ 的一个法向量为n =(x ,y ,z ),则由⎩⎪⎨⎪⎧ FE →·n =0,FP →·n =0,可得⎩⎪⎨⎪⎧x +y =0,-x +λz =0. 于是可取n =(λ,-λ,1).[9分]同理可得平面PQMN 的一个法向量为m =(λ-2,2-λ,1).若存在λ,使平面EFPQ 与平面PQMN 所成的二面角为直二面角,则m ·n =(λ-2,2-λ,1)·(λ,-λ,1)=0,即λ(λ-2)-λ(2-λ)+1=0,解得λ=1±22.[11分] 故存在λ=1±22,使平面EFPQ 与平面PQMN 所成的二面角为直二面角.[12分] 温馨提醒 (1)利用向量法证明立体几何问题,可以建坐标系或利用基底表示向量;(2)建立空间直角坐标系时,要根据题中条件找出三条互相垂直的直线;(3)利用向量除了可以证明线线平行、垂直,线面、面面平行、垂直外,还可以利用向量求夹角、距离,从而解决线段长度问题、体积问题等.[方法与技巧]1.用向量法解决立体几何问题,是空间向量的一个具体应用,体现了向量的工具性,这种方法可把复杂的推理证明、辅助线的作法转化为空间向量的运算,降低了空间想象演绎推理的难度,体现了由“形”转“数”的转化思想.2.两种思路:(1)选好基底,用向量表示出几何量,利用空间向量有关定理与向量的线性运算进行判断.(2)建立空间直角坐标系,进行向量的坐标运算,根据运算结果的几何意义解释相关问题.[失误与防范]用向量知识证明立体几何问题,仍然离不开立体几何中的定理.如要证明线面平行,只需要证明平面外的一条直线和平面内的一条直线平行,即化归为证明线线平行,用向量方法证明直线a ∥b ,只需证明向量a =λb (λ∈R )即可.若用直线的方向向量与平面的法向量垂直来证明线面平行,仍需强调直线在平面外.A 组 专项基础训练(时间:40分钟)1.若直线l 的方向向量为a =(1,0,2),平面α的法向量为n =(-2,0,-4),则( )A.l ∥αB.l ⊥αC.l ⊂αD.l 与α相交答案 B解析 ∵n =-2a ,∴a 与α的法向量平行,∴l ⊥α.2.已知平面α内有一点M (1,-1,2),平面α的一个法向量为n =(6,-3,6),则下列点P 中,在平面α内A.P (2,3,3)B.P (-2,0,1)C.P (-4,4,0)D.P (3,-3,4)答案 A解析 逐一验证法,对于选项A ,MP →=(1,4,1),∴MP →·n =6-12+6=0,∴MP →⊥n ,∴点P 在平面α内,同理可验证其他三个点不在平面α内.3.若AB →=λCD →+μCE →,则直线AB 与平面CDE 的位置关系是( )A.相交B.平行C.在平面内D.平行或在平面内答案 D解析 ∵AB →=λCD →+μCE →,∴AB →、CD →、CE →共面,∴AB 与平面CDE 平行或在平面CDE 内.4.如图,正方形ABCD 与矩形ACEF 所在平面互相垂直,AB =2,AF =1,M 在EF 上,且AM ∥平面BDE ,则M 点的坐标为( )A.(1,1,1)B.(23,23,1) C.(22,22,1) D.(24,24,1) 答案 C解析 设M 点的坐标为(x ,y,1),AC ∩BD =O ,则O (22,22,0), 又E (0,0,1),A (2,2,0),∴OE →=(-22,-22,1),AM →=(x -2,y -2,1), ∵AM ∥平面BDE ,∴OE →∥AM →,∴⎩⎨⎧ x -2=-22,y -2=-22,⇒⎩⎨⎧ x =22,y =22.5.已知平面α内的三点A (0,0,1),B (0,1,0),C (1,0,0),平面β的一个法向量n =(-1,-1,-1),则不重合的两个平面α与β的位置关系是___________________________________.解析 设平面α的法向量为m =(x ,y ,z ),由m ·AB →=0,得x ·0+y -z =0⇒y =z ,由m ·AC →=0,得x -z =0⇒x =z ,取x =1,∴m =(1,1,1),m =-n ,∴m ∥n ,∴α∥β.6.已知点P 是平行四边形ABCD 所在的平面外一点,如果AB →=(2,-1,-4),AD →=(4,2,0),AP →=(-1,2,-1).对于结论:①AP ⊥AB ;②AP ⊥AD ;③AP →是平面ABCD 的法向量;④AP →∥BD →.其中正确的是________.答案 ①②③解析 ∵AB →·AP →=0,AD →·AP →=0,∴AB ⊥AP ,AD ⊥AP ,则①②正确.又AB →与AD →不平行,∴AP →是平面ABCD 的法向量,则③正确.∵BD →=AD →-AB →=(2,3,4),AP →=(-1,2,-1),∴BD →与AP →不平行,故④错误.7.如图,四棱锥P -ABCD 的底面为正方形,侧棱P A ⊥底面ABCD ,且P A =AD=2,E ,F ,H 分别是线段P A ,PD ,AB 的中点.求证:(1)PB ∥平面EFH ;(2)PD ⊥平面AHF .证明 建立如图所示的空间直角坐标系Axyz .∴A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),P (0,0,2),E (0,0,1),F (0,1,1),H (1,0,0).(1)∵PB →=(2,0,-2),EH →=(1,0,-1),∴PB →=2EH →,∴PB ∥EH .∵PB ⊄平面EFH ,且EH ⊂平面EFH ,∴PB ∥平面EFH .(2)PD →=(0,2,-2),AH →=(1,0,0),AF →=(0,1,1),∴PD →·AF →=0×0+2×1+(-2)×1=0,PD →·AH →=0×1+2×0+(-2)×0=0,∴PD ⊥AF ,PD ⊥AH ,又∵AF ∩AH =A ,∴PD ⊥平面AHF .8.如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD ∥QA ,QA =AB =12PD .证明:平面PQC ⊥平面DCQ .证明 如图,以D 为坐标原点,线段DA 的长为单位长,射线DA 、DP 、DC 分别为x 轴、y 轴、z 轴的正半轴建立空间直角坐标系Dxyz .依题意有Q (1,1,0),C (0,0,1),P (0,2,0),则DQ →=(1,1,0),DC →=(0,0,1),PQ →=(1,-1,0).∴PQ →·DQ →=0,PQ →·DC →=0.即PQ ⊥DQ ,PQ ⊥DC ,又DQ ∩DC =D ,∴PQ ⊥平面DCQ ,又PQ ⊂平面PQC ,∴平面PQC ⊥平面DCQ .9.如图,在底面是矩形的四棱锥P -ABCD 中,P A ⊥底面ABCD ,E ,F 分别是PC ,PD 的中点,P A =AB =1,BC =2.(1)求证:EF ∥平面P AB ;(2)求证:平面P AD ⊥平面PDC .证明 以A 为原点,AB 所在直线为x 轴,AD 所在直线为y 轴,AP 所在直线为z 轴,建立如图所示的空间直角坐标系,则A (0,0,0),B (1,0,0),C (1,2,0),D (0,2,0),P (0,0,1),∴E (12,1,12),F (0,1,12),EF →=(-12,0,0),PB →=(1,0,-1),PD →=(0,2,-1),AP →=(0,0,1),AD →=(0,2,0),DC →=(1,0,0),AB →=(1,0,0).(1)∵EF →=-12AB →,∴EF →∥AB →,即EF ∥AB , 又AB ⊂平面P AB ,EF ⊄平面P AB ,∴EF ∥平面P AB .(2)∵AP →·DC →=(0,0,1)·(1,0,0)=0,AD →·DC →=(0,2,0)·(1,0,0)=0,∴AP →⊥DC →,AD →⊥DC →,即AP ⊥DC ,AD ⊥DC .又AP ∩AD =A ,∴DC ⊥平面P AD .∵DC ⊂平面PDC ,∴平面P AD ⊥平面PDC .B 组 专项能力提升(时间:25分钟)10.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F 分别是棱BC ,DD 1上的点,如果B 1E ⊥平面ABF ,则CE 与DF 的和的值为________.答案 1解析 以D 1A 1,D 1C 1,D 1D 分别为x ,y ,z 轴建立空间直角坐标系,设CE =x ,DF =y ,则易知E (x,1,1),B 1(1,1,0),F (0,0,1-y ),B (1,1,1),∴B 1E →=(x -1,0,1),∴FB →=(1,1,y ),由于B 1E ⊥平面ABF ,∴FB →·B 1E →=(1,1,y )·(x -1,0,1)=0⇒x +y =1.11.在正方体ABCD —A 1B 1C 1D 1中,P 为正方形A 1B 1C 1D 1四边上的动点,O 为底面正方形ABCD 的中心,M ,N 分别为AB ,BC 的中点,点Q 为平面ABCD 内一点,线段D 1Q与OP 互相平分,则满足MQ →=λMN →的实数λ有________个.答案 2解析 建立如图的空间直角坐标系,设正方体的边长为2,则P (x ,y,2),O (1,1,0),∴OP 的中点坐标为⎝⎛⎭⎫x +12,y +12,1, 又知D 1(0,0,2),∴Q (x +1,y +1,0),而Q 在MN 上,∴x Q +y Q =3,∴x +y =1,即点P 坐标满足x +y =1.∴有2个符合题意的点P ,即对应有2个λ.12.如图,在长方体ABCD -A 1B 1C 1D 1中,AA 1=AD =1,E 为CD 的中点.(1)求证:B 1E ⊥AD 1;(2)在棱AA 1上是否存在一点P ,使得DP ∥平面B 1AE ?若存在,求AP 的长;若不存在,说明理由.(1)证明 以A 为原点,AB →,AD →,AA 1→的方向分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系(如图).设AB =a ,则A (0,0,0),D (0,1,0),D 1(0,1,1),E ⎝⎛⎭⎫a 2,1,0,B 1(a,0,1),故AD 1→=(0,1,1),B 1E →=⎝⎛⎭⎫-a 2,1,-1,AB 1→=(a,0,1),AE →=⎝⎛⎭⎫a 2,1,0. ∵B 1E →·AD 1→=-a 2×0+1×1+(-1)×1=0, ∴B 1E ⊥AD 1.(2)解 假设在棱AA 1上存在一点P (0,0,z 0).使得DP ∥平面B 1AE ,此时DP →=(0,-1,z 0).又设平面B 1AE 的法向量n =(x ,y ,z ).∵n ⊥平面B 1AE ,∴n ⊥AB 1→,n ⊥AE →,得⎩⎪⎨⎪⎧ ax +z =0,ax 2+y =0. 取x =1,得平面B 1AE 的一个法向量n =⎝⎛⎭⎫1,-a 2,-a . 要使DP ∥平面B 1AE ,只要n ⊥DP →,有a 2-az 0=0, 解得z 0=12. 又DP ⊄平面B 1AE ,∴存在点P ,满足DP ∥平面B 1AE ,此时AP =12. 13.如图所示,四棱锥S —ABCD 的底面是正方形,每条侧棱的长都是底面边长的2倍,P 为侧棱SD 上的点.(1)求证:AC ⊥SD .(2)若SD ⊥平面P AC ,则侧棱SC 上是否存在一点E ,使得BE ∥平面P AC .若存在,求SE ∶EC 的值;若不存在,试说明理由.(1)证明 连接BD ,设AC ∩BD =O ,则AC ⊥BD .由题意知SO ⊥平面ABCD .以O 为坐标原点,OB →,OC →,OS →分别为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系,如图.设底面边长为a ,则高SO =62a , 于是S ⎝⎛⎭⎫0,0,62a ,D ⎝⎛⎭⎫-22a ,0,0, B ⎝⎛⎭⎫22a ,0,0,C ⎝⎛⎭⎫0,22a ,0,OC →=⎝⎛⎭⎫0,22a ,0, SD →=⎝⎛⎭⎫-22a ,0,-62a ,则OC →·SD →=0. 故OC ⊥SD .从而AC ⊥SD .(2)解 棱SC 上存在一点E ,使BE ∥平面P AC .理由如下:由已知条件知DS →是平面P AC 的一个法向量,且DS →=⎝⎛⎭⎫22a ,0,62a ,CS →=⎝⎛⎭⎫0,-22a ,62a ,BC →=⎝⎛⎭⎫-22a ,22a ,0. 设CE →=tCS →,则BE →=BC →+CE →=BC →+tCS → =⎝⎛⎭⎫-22a ,22a (1-t ),62at , 而BE →·DS →=0⇔t =13. 即当SE ∶EC =2∶1时,BE →⊥DS →.而BE 不在平面P AC 内,故BE ∥平面P AC .∴存在一点E ,使得BE ∥平面P AC ,此时SE ∶EC =2.。
空间向量在立体几何中的应用
nn··CC→→PB==00,⇒( (xx′′, ,yy′′, ,zz′′) )··( (0,2,-01,,01))==00,⇒-2yx′′+=z′=0,0.
令 y′=-1,则 z′=-1,故 n=(0,-1,-1),
∴cos〈m,n〉=m|m·||nn| =
3 3.
∴二面角
A-PB
-C
的余弦值为
3 3.
则 A(0,0,0),M(0,a2, 2a),
C1(- 23a,a2, 2a),B(0,a,0),
故A→MA→=C1(=0,(-a2,23a2,a)a2,, 2a), B→C1=(- 23a,-a2, 2a).
设平面 AMC1 的法向量为 n=(x,y,z).
则A→C1·n=0,∴- 23ax+a2y+ 2az=0,
正方向建立空间直角坐标系,则 B(1,0,0),D(-1,1,0),
A1(0,2, 3),A(0,0, 3),B1(1,2,0).2 分
设平面 A1AD 的法向量为 n=(x,y,z),A→D=(-1,1,- 3),A→A1
=(0,2,0).
因为 n⊥A→D,n⊥A→A1, 得nn··AA→→AD1==00,,得2-y=x+0,y- 3z=0,
【示例】 如图,在四棱锥 O-ABCD 中,底面 π
ABCD 是边长为 1的菱形,∠ABC= 4 , OA⊥底面 ABCD,OA=2,M 为 OA 的 中点,N 为 BC 的中点. (1)证明:直线MN∥平面OCD; (2)求异面直线AB与MD所成角的大小. [思路分析]建系→求相关点坐标→求相关向量坐标→向量 运算→结论. 解 作AP⊥CD于点P,分别以AB,AP,AO所在的直线 为x,y,z轴建立空间直角坐标系A-xyz,如图所示,
1.5 专题研究 空间向量应用的综合问题
∴- 23=-|cos〈n1,n2〉|=-|n|n11·||nn22| |=-
6 (t-1)2+(3-t)2+4·
, 6
∴t=1 或 3,∴B2P=1.
第6页
探究1
(1)在建立空标系,这样才会容易求得解题时需要的坐标.
第15页
∴以点 O 为坐标原点,OC,OH,OE 所在直线分别为 x 轴、y 轴、z 轴,建 立空间直角坐标系.
∵AB=1,BE=2, ∴A(-1,1,0),B(-1,0,0),C(1,0,0),G(2,0, 3),
则nn11· ·PA→→A2C2=2=0,0,∴2-x12+x1( -12-y1+t)2zz11==00.,
不妨设 z1=2,则 x1=t-1,y1=3-t,∴n1=(t-1,3-t,2). 设平面 A2C2D2 的法向量为 n2=(x2,y2,z2),
第5页
则nn22· ·AA→→22CD22==00,,∴--22xy22-+2z2y=2+0.2z2=0,
第14页
(2)求图 2 中的二面角 B-CG-A 的大小.
【解析】 (2)如图,分别取 BC,AC 的中点为 O,H,连接 OE,OH,则 OH∥AB, ∴OH⊥BC.
∵四边形 BFGC 为菱形,且∠FBC=60°, ∴OE⊥BC. 又∵AB⊥平面 BCGE,OE⊂平面 BCGE, ∴AB⊥OE. ∵BC⊂平面 ABC,AB⊂平面 ABC,AB∩BC=B, ∴OE⊥平面 ABC,
∴A→C=(2,4,0),A→P=(0,0,2),D→E=(2,-1,0).
第9页
∵A→C·D→E=2×2+4×(-1)+0×0=0,A→P·D→E=0×2+0×(-1)+2×0=