deform 3d热处理

合集下载

Deform3D操作介绍

Deform3D操作介绍

Deform3D操作介绍第⼆章DEFORM-3D操作介绍2.1DEFORM-3D软件介绍20世纪70年代后期,位于美国加州伯克利的加利福尼亚⼤学⼩林研究室在美国军⽅的⽀持下开发出有限元软件ALPID,20世纪90年代在这⼀基础上开发出DEFORM-2D软件,该软件的开发者后来独⽴出来成⽴了SFTC公司,并推出了DEFORM-3D软件。

DEFORM-3D 是⼀套基于有限元分析⽅法的专业⼯艺仿真系统,⽤于分析⾦属三维成形及其相关的各种成形⼯艺和热处理⼯艺。

⼆⼗多年来的⼯业实践证明其有着卓越的准确性和稳定性,模拟引擎在⼤流动、⾏程、载荷和产品缺陷预测等⽅⾯同实际⽣产相符,被国际成形模拟领域公认为处于同类模拟软件的领先地位。

DEFORM-3D不同于⼀般的有限元软件,它是专门为⾦属成形⽽设计。

DEFORM-3D可以⽤于模拟零件制造的全过程,从成形、机加⼯到热处理。

通过DEFORM-3D模拟整个加⼯过程,可以帮助设计⼈员:设计⼯具和产品的⼯艺流程,减少实验成本;提⾼模具设计效率,降低⽣产和材料成本;缩短新产品的研究开发周期;分析现有⼯艺存在的问题,辅助找出原因和解决⽅法。

2.1.1DEFORM-3D特点1)DEFORM-3D具有⾮常友好的图形⽤户界⾯,可⽅便⽤户进⾏数据准备和成形分析。

2)DEFORM-3D具有完善的IGES、STL、IDEAS、PATRAN、等CAD和CAE接⼝,⽅便⽤户导⼊模型。

3)DEFORM-3D具有功能强⼤的有限元⽹格⾃动⽣成器以及⽹格重划分⾃动触发系统,能够分析⾦属成形过程中多个材料特性不同的关联对象在耦合作⽤下的⼤变形和热特性,由此能够保证⾦属成形过程中的模拟精度,使得分析模型、模拟环境与实际⽣产环境⾼度⼀致。

DEFORM-3D采⽤独特的密度控制⽹格划分⽅法,⽅便地得到合理的⽹格分布。

计算过程中,在任何有必要的时候能够⾃⾏触发⾼级⾃动⽹格重划⽣成器,⽣成细化、优化的⽹格模型。

4)DEFORM-3D系统⾃带材料模型包含有弹性、弹塑性、刚塑性、热弹塑性、热刚粘塑性、粉末材料、刚性材料及⾃定义材料等类型,并提供丰富的开放式材料数据库,包括美国、⽇本、德国的各种钢、铝合⾦、钛合⾦、⾼温合⾦等250种材料的相关数据。

Deform-3d热处理模拟操作全解

Deform-3d热处理模拟操作全解

Deform-3d热处理模拟操作热处理工艺在机械制造中占有十分重要的地位。

随着机械制造现代化和热处理质量管理现代化的发展,对热处理工艺提出了更高的要求。

热处理工艺过程由于受到加热方式、冷却方式、加热温度、冷却温度、加热时间、冷却时间等影响,金属内部的组织也会发生不同的变化,因此是个十分复杂的过程,同时工艺参数的差异,也会造成热处理加工对象硬度过高过低、硬度不均匀等现象。

Deform-3d 软件提供一种热处理模拟模块,可以帮助热处理工艺员,通过有限元数值模拟来获得正确的热处理参数,从而来指导热处理生产实际。

减少批量报废的质量事故发生。

热处理模拟,涉及到热应力变形、热扩散和相变等方面,因此计算很复杂,软件采用牛顿迭代法,即牛顿-拉夫逊法进行求解。

它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。

多数方程不存在求根公式,因此求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要。

方法使用函数f(x)的泰勒级数的前面几项来寻找方程f(x) = 0的根。

牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程f(x) = 0的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根等。

但由于目前Deform-3d软件的材料库只带有45钢、15NiCr13和GCr15等三种材料模型,而且受到相变模型的局限,因此只能做淬火和渗碳淬火分析,更多分析需要进行二次开发。

本例以45钢热处理淬火工艺的模拟过程为例,通过应用Deform-3d 热处理模块,让读者基本了解热处理工艺过程有限元模拟的基本方法与步骤。

1 、问题设置点击“文档”(File)或“新问题”(New problem),创建新问题。

在弹出的图框中,选择“热处理导向”(heat treatment wizard),见图1。

图1 设置新问题2、初始化设置完成问题设置后,进入前处理设置界面。

首先修改公英制,将默认的英制(English)修改成公制(SI),同时选中“形变”(Deformation)、“扩散”(Diffusion)和“相变”(Phase transformation),见图2。

DEFORM-3D基本操作指南

DEFORM-3D基本操作指南

不变化,仍需要给物体设置一适当的温度值,否则可能得不到正确的模
拟结果。在DEFORM3D v6.1的版本中,默认工件温度为68°F。(修改
温度的方式为在物体窗口中选中物体Workpiece,点击General按钮,然
后点击按钮
在弹出的输入物体温度窗口中,输入所需
温度。)
七、设置材料
对于那些非刚性材料和考虑 传热影响的刚体(Rigid)材料, 必须按需要设置材料的属性。
限元网格: 1.点击按钮进入网格划分窗口; 2.可以在网格数量输入框中输入单元数或用滑动条来设定。在本例
中,默认为8000(在DEFORM3D中只能划分四面体网格,如果你想用六 面体网格可以点击按钮Import,输入IDEAS或PATRAN的网格)
3.点击下面的按钮Preview可 以预览,如果满意,可以点击按 钮Generate Mesh来生成网格。 注:1)preview只划分元件表面;
2、提高模具设计效率,降低生产和材料成 本;
3、缩短新产品的研究开发周期。
DEFORM-3D简介
DEFORM-3D是一套基于工艺模拟系统的有限元 系统(FEM),专门设计用于分析各种金属成形过 程中的三维(3D)流动,提供极有价值的工艺分析 数据,及有关成形过程中的材料和温度的流动。
DEFORM-3D可以应用于金属成形的冷加工、热加工 等工
1)、deformation:变形模拟 2)、heat transfer:传热模拟 3)、transfmation:相变模拟 4)、diffusion:扩散模拟 5)、grain:晶粒度模拟 6)、heating:热处理模拟
二、导入毛坯几何文件
1.在前处理的物体操作窗口中点击按钮
(Geometry) ,然后再选

Deform-3d热处理模拟操作全解

Deform-3d热处理模拟操作全解

Deform-3d热处理模拟操作热处理工艺在机械制造中占有十分重要的地位。

随着机械制造现代化和热处理质量管理现代化的发展,对热处理工艺提出了更高的要求。

热处理工艺过程由于受到加热方式、冷却方式、加热温度、冷却温度、加热时间、冷却时间等影响,金属内部的组织也会发生不同的变化,因此是个十分复杂的过程,同时工艺参数的差异,也会造成热处理加工对象硬度过高过低、硬度不均匀等现象.Deform—3d软件提供一种热处理模拟模块,可以帮助热处理工艺员,通过有限元数值模拟来获得正确的热处理参数,从而来指导热处理生产实际.减少批量报废的质量事故发生.热处理模拟,涉及到热应力变形、热扩散和相变等方面,因此计算很复杂,软件采用牛顿迭代法,即牛顿-拉夫逊法进行求解.它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法.多数方程不存在求根公式,因此求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要。

方法使用函数f(x)的泰勒级数的前面几项来寻找方程f(x) = 0的根.牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程f(x) = 0的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根等.但由于目前Deform-3d软件的材料库只带有45钢、15NiCr13和GCr15等三种材料模型,而且受到相变模型的局限,因此只能做淬火和渗碳淬火分析,更多分析需要进行二次开发.本例以45钢热处理淬火工艺的模拟过程为例,通过应用Deform-3d 热处理模块,让读者基本了解热处理工艺过程有限元模拟的基本方法与步骤.1 、问题设置点击“文档”(File)或“新问题”(New problem),创建新问题。

在弹出的图框中,选择“热处理导向”(heat treatment wizard),见图1。

图1 设置新问题2、初始化设置完成问题设置后,进入前处理设置界面。

首先修改公英制,将默认的英制(English)修改成公制(SI),同时选中“形变”(Deformation)、“扩散”(Diffusion)和“相变”(Phase transformation),见图2。

deform-3d热处理

deform-3d热处理

热处理模块实验1.生成一个新问题2.初始设置3.导入几何模型4.网格划分5.定义材料6.工件设置7. 介质定义8. 定义时间立程9. 仿真设置10. 进行仿真11. 后处理问题摘要:在处理复杂的热传递问题时,热处理模块是一个非常方便的工具。

这个实验将展示的是这个模块如何对一个刚构建进行渗碳,淬火,回火处理。

这个实验同时能够帮助用户理解deform-ht’s在计算相变方面的能力。

1.生成新的问题开始一个名为“GearHT”的新的热处理问题。

你也可以单击“New problem”按钮,选择“Heat treatment”。

或者,你也可以右击导航树来创建一个空的目录,在主界面的右侧单击“HT”。

2.初始设置在“初始设置”对话框里,设置单位为国际单位。

勾选“变形”,“扩散”和“相变”。

点击下一步。

3.导入模型在“模型”页面里,选择“导入几何,key,或DB文件”,单击下一步。

进入目录,载入模型文件。

4.划分网格在“划分网格”页面里,选择8000个非结构的网格划分。

用结构面层的第一层,将“Thinkness mode”设置成“ratio to object overall dimension”,层厚设置成0.005。

(结构面网格划分可以帮助我们利用更少的计算时间来获得更好的关于热学和散射的结果。

)单击下一步。

5.定义材料在“材料”页面里,选择“Import form .DB and .KEY”点击下一步。

从目录里导入材料“Demo_Temper_Steel.KEY”。

你可以单击“Advance”按钮来观察,编辑材料和转换数据。

注意这是一种由八种成分(相)组成的混合材料,包括奥氏体(A),珠光体+贝氏体(PB),马氏体(B),铁素体(F),低碳马氏体(LM),回火贝氏体(TB),回火铁素体+渗碳体(TFC)。

相间的转换历程包括A_>F,A_>TB,A_>M,PB_>A,M_>LM,M_>A,LM_>TFC和TFC_>A。

DEFORM-3D基本操作指南

DEFORM-3D基本操作指南

3、设置模拟类型
1)、deformation:变形模拟 2)、heat transfer:传热模拟 3)、transfmation:相变模拟 4)、diffusion:扩散模拟 5)、grain:晶粒度模拟 6)、heating:热处理模拟
二、导入毛坯几何文件
1.在前处理的物体操作窗口中点击按钮 (Geometry) ,然后再选 择 (Import Geometry),选择在CAD中或其他CAE软 件中的造型文件。(本例中选择安装目录下DEFORM3D\V6.1\Labs 的Block_Billet.STL。) 2.在DEFORM3D v6.1的版 本中,默认第一个物体是 工件(毛坯),所以物体 属性默认为Rigid-plastic。
四、导入模具文件
1. 导入上下模具的几何文件。在前处理控制窗口中点击增加物体按钮 Inter Objects…进入物体窗口。可以看到在Objects列表中增加了 一个名为Top Die的物体。 2.在当前选择默认Top Die 物体的情况下,直接 选择 然后选 3.本例中选择安装目录下 DEFORM3D\V6.1\ Labs的 Block_Top Die .STL
DEFORM-3D可以应用于金属成形的冷加工、热加工 等工 艺。 DEFORM-3D的典型应用:拉深、锻造、挤压、压塑、 冷 镦、机加工、轧制、开坯、镦锻等。
(更多相关应用请见)
说明:
1、 DEFORM-3D软件不支持中文,因此文件夹及其模 型文件中不能出现中文,否则无法读取。 2、 DEFORM-3D不具备三维造型功能,所以该软件所 用模型均在其它三维软件中建立。 3、 DEFORM-3D软件操作环境的坐标与Pore、UG软件 中默认的坐标系相同。所以在创建模型的时候最好把位臵 关系安排好,这样调进来的模型比较容易调整。 4、使用有限元软件时,要养成分析每个问题创建新 的文件夹的习惯。因为打开DEFORM-3D软件,其默认安装 目录下会自动生成一文件夹,所作模拟都会放臵在该文件 夹下,不便于管理。

Deform-3d热处理模拟操作全解

Deform-3d热处理模拟操作全解

Deform-3d热处理模拟操作热处理工艺在机械制造中占有十分重要的地位。

随着机械制造现代化和热处理质量管理现代化的发展,对热处理工艺提出了更高的要求。

热处理工艺过程由于受到加热方式、冷却方式、加热温度、冷却温度、加热时间、冷却时间等影响,金属内部的组织也会发生不同的变化,因此是个十分复杂的过程,同时工艺参数的差异,也会造成热处理加工对象硬度过高过低、硬度不均匀等现象。

Deform-3d软件提供一种热处理模拟模块,可以帮助热处理工艺员,通过有限元数值模拟来获得正确的热处理参数,从而来指导热处理生产实际。

减少批量报废的质量事故发生。

热处理模拟,涉及到热应力变形、热扩散和相变等方面,因此计算很复杂,软件采用牛顿迭代法,即牛顿-拉夫逊法进行求解。

它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。

多数方程不存在求根公式,因此求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要。

方法使用函数f(x)的泰勒级数的前面几项来寻找方程f(x) = 0的根。

牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程f(x) = 0的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根等。

但由于目前Deform-3d软件的材料库只带有45钢、15NiCr13和GCr15等三种材料模型,而且受到相变模型的局限,因此只能做淬火和渗碳淬火分析,更多分析需要进行二次开发。

本例以45钢热处理淬火工艺的模拟过程为例,通过应用Deform-3d 热处理模块,让读者基本了解热处理工艺过程有限元模拟的基本方法与步骤。

1 、问题设置点击“文档”(File)或“新问题”(New problem),创建新问题。

在弹出的图框中,选择“热处理导向”(heat treatment wizard),见图1。

sgniht图1 设置新问题2、初始化设置完成问题设置后,进入前处理设置界面。

首先修改公英制,将默认的英制t h i ng si nt he i rb ei n ga re go od fo rs (English )修改成公制(SI ),同时选中“形变”(Deformation )、“扩散”(Diffusion)和“相变”(Phase transformation),见图2。

DEFORM功能

DEFORM功能

1. 成形分析冷、温、热锻的成形和热传导耦合分析(DEFORM所有产品)。

丰富的材料数据库,包括各种钢、铝合金、钛合金和超合金(DEFORM所有产品)。

用户自定义材料数据库允许用户自行输入材料数据库中没有的材料(DEFORM所有产品)。

提供材料流动、模具充填、成形载荷、模具应力、纤维流向、缺陷形成和韧性破裂等信息(DEFORM所有产品)。

刚性、弹性和热粘塑性材料模型,特别适用于大变形成形分析(DEFORM 所有产品)。

弹塑性材料模型适用于分析残余应力和回弹问题(DEFORM-Pro, 2D, 3D)。

烧结体材料模型适用于分析粉末冶金成形(DEFORM-Pro, 2D, 3D)。

完整的成形设备模型可以分析液压成形、锤上成形、螺旋压力成形和机械压力成形(DEFORM所有产品)。

用户自定义子函数允许用户定义自己的材料模型、压力模型、破裂准则和其他函数(DEFORM-2D,3D)。

网格划线(DEFORM-2D,PC,Pro)和质点跟踪(DEFORM所有产品)可以分析材料内部的流动信息及各种场量分布温度、应变、应力、损伤及其他场变量等值线的绘制使后处理简单明了(DEFORM所有产品)。

自我接触条件及完美的网格再划分使得在成形过程中即便形成了缺陷,模拟也可以进行到底(DEFORM-2D,Pro)多变形体模型允许分析多个成形工件或耦合分析模具应力(DEFORM-2D,Pro,3D)。

基于损伤因子的裂纹萌生及扩展模型可以分析剪切、冲裁和机加工过程(DEFORM-2D)。

2. 热处理模拟正火、退火、淬火、回火、渗碳等工艺过程预测硬度、晶粒组织成分、扭曲和含碳量。

专门的材料模型用于蠕变、相变、硬度和扩散。

可以输入顶端淬火数据来预测最终产品的硬度分布。

可以分析各种材料晶相,每种晶相都有自己的弹性、塑性、热和硬度属性。

混合材料的特性取决于热处理模拟中每步各种金属相的百分比。

DEFORM用来分析变形、传热、热处理、相变和扩散之间复杂的相互作用。

DEFORM功能介绍

DEFORM功能介绍

DEFORM系列产品 1.DEFORM-2D(二维) 适用于各种常见的UNIX工作站平台(HP,SGI,SUN,DEC,IBM)和Windows-NT微机平台。

可以分析平面应变和轴对称等二维模型。

它包含了最新的有限元分析技术,既适用于生产设计,又方便科学研究。

2.DEFORM-3D(三维) 适用于各种常见的UNIX工作站平台(HP,SGI,SUN,DEC,IBM)和Windows-NT微机平台。

可以分析复杂的三维材料流动模型。

用它来分析那些不能简化为二维模型的问题尤为理想。

3.DEFORM-PC(微机版) 适用于运行Windows 95,98和NT的微机平台。

可以分析平面应变问题和轴对称问题。

适用于有限元技术刚起步的中小企业。

4.DEFORM-PC Pro(Pro版) 适用于运行Windows 95,98和NT的微机平台。

比DEFORM-PC功能强大,它包含了DEFORM-2D的绝大部分功能。

5.DEFORM-HT(热处理) 附加在DEFORM-2D和DEFORM-3D之上。

除了成形分析之外,DEFORM-HT还能分析热处理过程,包括:硬度、晶相组织分布、扭曲、残余应力、含碳量等。

DEFORM功能 1.成形分析 l冷、温、热锻的成形和热传导耦合分析(DEFORM所有产品)。

l丰富的材料数据库,包括各种钢、铝合金、钛合金和超合金(DEFORM所有产品)。

l用户自定义材料数据库允许用户自行输入材料数据库中没有的材料(DEFORM所有产品)。

l提供材料流动、模具充填、成形载荷、模具应力、纤维流向、缺陷形成和韧性破裂等信息(DEFORM所有产品)。

l刚性、弹性和热粘塑性材料模型,特别适用于大变形成形分析(DEFORM所有产品)。

l弹塑性材料模型适用于分析残余应力和回弹问题(DEFORM-Pro, 2D, 3D)。

l烧结体材料模型适用于分析粉末冶金成形(DEFORM-Pro, 2D, 3D)。

l完整的成形设备模型可以分析液压成形、锤上成形、螺旋压力成形和机械压力成形(DEFORM所有产品)。

DEFORM功能

DEFORM功能

DEFORM功能1. 成形分析冷、温、热锻的成形和热传导耦合分析(DEFORM所有产品)。

丰富的材料数据库,包括各种钢、铝合金、钛合金和超合金(DEFORM所有产品)。

用户自定义材料数据库允许用户自行输入材料数据库中没有的材料(DEFORM所有产品)。

提供材料流动、模具充填、成形载荷、模具应力、纤维流向、缺陷形成和韧性破裂等信息(DEFORM所有产品)。

刚性、弹性和热粘塑性材料模型,特别适用于大变形成形分析(DEFORM 所有产品)。

弹塑性材料模型适用于分析残余应力和回弹问题(DEFORM-Pro, 2D, 3D)。

烧结体材料模型适用于分析粉末冶金成形(DEFORM-Pro, 2D, 3D)。

完整的成形设备模型可以分析液压成形、锤上成形、螺旋压力成形和机械压力成形(DEFORM所有产品)。

用户自定义子函数允许用户定义自己的材料模型、压力模型、破裂准则和其他函数(DEFORM-2D,3D)。

网格划线(DEFORM-2D,PC,Pro)和质点跟踪(DEFORM所有产品)可以分析材料内部的流动信息及各种场量分布温度、应变、应力、损伤及其他场变量等值线的绘制使后处理简单明了(DEFORM所有产品)。

自我接触条件及完美的网格再划分使得在成形过程中即便形成了缺陷,模拟也可以进行到底(DEFORM-2D,Pro)多变形体模型允许分析多个成形工件或耦合分析模具应力(DEFORM-2D,Pro,3D)。

基于损伤因子的裂纹萌生及扩展模型可以分析剪切、冲裁和机加工过程(DEFORM-2D)。

2. 热处理模拟正火、退火、淬火、回火、渗碳等工艺过程预测硬度、晶粒组织成分、扭曲和含碳量。

专门的材料模型用于蠕变、相变、硬度和扩散。

可以输入顶端淬火数据来预测最终产品的硬度分布。

可以分析各种材料晶相,每种晶相都有自己的弹性、塑性、热和硬度属性。

混合材料的特性取决于热处理模拟中每步各种金属相的百分比。

DEFORM用来分析变形、传热、热处理、相变和扩散之间复杂的相互作用。

Deform软件介绍

Deform软件介绍

Deform软件介绍Deform系列软件介绍一、概述DEFORM是一套基于有限元的工艺仿真系统,用于分析金属成形及其相关工业的各种成形工艺和热处理工艺。

通过在计算机上模拟整个加工过程,帮助工程师和设计人员:设计工具和产品工艺流程,减少昂贵的现场试验成本。

提高工模具设计效率,降低生产和材料成本。

缩短新产品的研究开发周期。

二、Deform系列软件1. DEFORM-2D(二维)适用于各种常见的UNIX工作站平台(HP,SGI,SUN,DEC,IBM)和Windows-NT 微机平台。

可以分析平面应变和轴对称等二维模型。

它包含了最新的有限元分析技术,既适用于生产设计,又方便科学研究。

2. DEFORM-3D(三维)适用于各种常见的UNIX工作站平台(HP,SGI,SUN,DEC,IBM)和Windows-NT 微机平台。

可以分析复杂的三维材料流动模型。

用它来分析那些不能简化为二维模型的问题尤为理想。

3. DEFORM-PC(微机版)适用于运行Windows 95,98和NT的微机平台。

可以分析平面应变问题和轴对称问题。

适用于有限元技术刚起步的中小企业。

4. DEFORM-PC Pro(Pro版)适用于运行Windows 95,98和NT的微机平台。

比DEFORM-PC功能强大,它包含了DEFORM-2D的绝大部分功能。

5. DEFORM-HT(热处理)附加在DEFORM-2D和DEFORM-3D之上。

除了成形分析之外,DEFORM-HT还能分析热处理过程,包括:硬度、晶相组织分布、扭曲、残余应力、含碳量等。

三、Deform功能模块1. 成形分析模块冷、温、热锻的成形和热传导耦合分析(DEFORM所有产品);丰富的材料数据库,包括各种钢、铝合金、钛合金和超合金(DEFORM所有产品);用户自定义材料数据库允许用户自行输入材料数据库中没有的材料(DEFORM所有产品);提供材料流动、模具充填、成形载荷、模具应力、纤维流向、缺陷形成和韧性破裂等信息(DEFORM所有产品);刚性、弹性和热粘塑性材料模型,特别适用于大变形成形分析(DEFORM所有产品);弹塑性材料模型适用于分析残余应力和回弹问题(DEFORM-Pro, 2D, 3D);烧结体材料模型适用于分析粉末冶金成形(DEFORM-Pro, 2D, 3D);完整的成形设备模型可以分析液压成形、锤上成形、螺旋压力成形和机械压力成形(DEFORM所有产品);用户自定义子函数允许用户定义自己的材料模型、压力模型、破裂准则和其他函数(DEFORM-2D,3D);网格划线(DEFORM-2D,PC,Pro)和质点跟踪(DEFORM所有产品)可以分析材料内部的流动信息及各种场量分布;温度、应变、应力、损伤及其他场变量等值线的绘制使后处理简单明了(DEFORM 所有产品);自我接触条件及完美的网格再划分使得在成形过程中即便形成了缺陷,模拟也可以进行到底(DEFORM-2D,Pro);多变形体模型允许分析多个成形工件或耦合分析模具应力(DEFORM-2D,Pro,3D);基于损伤因子的裂纹萌生及扩展模型可以分析剪切、冲裁和机加工过程(DEFORM-2D)。

DEFORM-3D基本操作指南

DEFORM-3D基本操作指南

注意:在输入几何体后,必须检查输入的对象是否出现问题, 检查方法如下: 1)、点击按钮 ,查看弹出的对话框。对于一个封闭 的几何体,必有1个面, 0个自由边,0个无效的 实体。 2)、外法线方向的检查。 点击按钮 查看对象的外法线是否 指向对象外。如果方 向反了,点击按钮 。
三、划分网格 对于那些非刚性材料和考虑传热影响的刚体(Rigid)材料,需要划分有
前处理操作窗口由图形显示窗口、物体参数输入窗口、 物体显示及选择窗口以及各种快捷按钮组成。
物体选择窗口
物体显示窗口
图形显示窗口 物体参数输入窗口
一、设置模拟控制方式及模拟名称
1.点击按钮 进入模拟控制参数设臵窗口。 2.在Simulation Title一栏中把标题改为BLOCK。 3.设臵Units为English,勾选Deformation选项。 4.点击OK按钮,返回到前处理操作窗口。
3、设置模拟类型
1)、deformation:变形模拟 2)、heat transfer:传热模拟 3)、transfmation:相变模拟 4)、diffusion:扩散模拟 5)、grain:晶粒度模拟 6)、heating:热处理模拟
二、导入毛坯几何文件
1.在前处理的物体操作窗口中点击按钮 (Geometry) ,然后再选 择 (Import Geometry),选择在CAD中或其他CAE软 件中的造型文件。(本例中选择安装目录下DEFORM3D\V6.1\Labs 的Block_Billet.STL。) 2.在DEFORM3D v6.1的版 本中,默认第一个物体是 工件(毛坯),所以物体 属性默认为Rigid-plastic。
六、设置物体温度 由于某些材料属性与温度相关,所以即使在整个模拟过程中温度并

Deform3D 操作介绍

Deform3D 操作介绍

第二章DEFORM-3D操作介绍2.1DEFORM-3D软件介绍20世纪70年代后期,位于美国加州伯克利的加利福尼亚大学小林研究室在美国军方的支持下开发出有限元软件ALPID,20世纪90年代在这一基础上开发出DEFORM-2D软件,该软件的开发者后来独立出来成立了SFTC公司,并推出了DEFORM-3D软件。

DEFORM-3D 是一套基于有限元分析方法的专业工艺仿真系统,用于分析金属三维成形及其相关的各种成形工艺和热处理工艺。

二十多年来的工业实践证明其有着卓越的准确性和稳定性,模拟引擎在大流动、行程、载荷和产品缺陷预测等方面同实际生产相符,被国际成形模拟领域公认为处于同类模拟软件的领先地位。

DEFORM-3D不同于一般的有限元软件,它是专门为金属成形而设计。

DEFORM-3D可以用于模拟零件制造的全过程,从成形、机加工到热处理。

通过DEFORM-3D模拟整个加工过程,可以帮助设计人员:设计工具和产品的工艺流程,减少实验成本;提高模具设计效率,降低生产和材料成本;缩短新产品的研究开发周期;分析现有工艺存在的问题,辅助找出原因和解决方法。

2.1.1DEFORM-3D特点1)DEFORM-3D具有非常友好的图形用户界面,可方便用户进行数据准备和成形分析。

2)DEFORM-3D具有完善的IGES、STL、IDEAS、PATRAN、等CAD和CAE接口,方便用户导入模型。

3)DEFORM-3D具有功能强大的有限元网格自动生成器以及网格重划分自动触发系统,能够分析金属成形过程中多个材料特性不同的关联对象在耦合作用下的大变形和热特性,由此能够保证金属成形过程中的模拟精度,使得分析模型、模拟环境与实际生产环境高度一致。

DEFORM-3D采用独特的密度控制网格划分方法,方便地得到合理的网格分布。

计算过程中,在任何有必要的时候能够自行触发高级自动网格重划生成器,生成细化、优化的网格模型。

4)DEFORM-3D系统自带材料模型包含有弹性、弹塑性、刚塑性、热弹塑性、热刚粘塑性、粉末材料、刚性材料及自定义材料等类型,并提供丰富的开放式材料数据库,包括美国、日本、德国的各种钢、铝合金、钛合金、高温合金等250种材料的相关数据。

DEFORM3DV11介绍

DEFORM3DV11介绍

DEFORM3DV11介绍DEFORM 3D V11介绍1 DEFORM概览DEFORM是一款基于有限元法(FEM)的模拟分析软件。

其在金属材料成形及其相关领域被用来分析各种材料的成形过程以及热处理过程。

通过在计算机上模拟材料的制造成型过程,这款软件可以在以下方面帮助到工艺设计师和工程师:减少进行昂贵的车间试验以及重新设计工具和流程的需求改善工具和模具的设计来降低生产成本及材料浪费缩短将新产品推向市场的时间改善产品的微观结构及强度提升工艺控制质量不同于别的通用的有限元软件,DEFORM只为成型设计。

DEFORM的友好型界面可以让工程师们更好地专注于成型的工艺设计而不是繁琐的软件学习上。

DEFORM一个很大的亮点就在于它能够自动地重画网格来优化网格质量。

DEFORM -HT能够很好地模拟热处理过程,包括回火,退火,淬火,正火以及渗碳。

DEFORM-HT可以预测硬度,残余应力,淬火变形以及其他与热处理相关的机械性能和材料性能。

DEFORM同样具备其他先进的功能,如预测塑性断裂,微观组织演化,切削加工变形和切屑形态。

可扩展的用户子程序使高级研究人员可以自定义他们自己的本构、断裂和微观结构模型以及压力机规格和非金属材料。

Multiple Operation(MO)界面允许用户建立连续的模拟过程,其可自动按顺序完成模拟不用用户挨个操作。

DEFORM具有用于特定过程的不同向导,例如形状轧制,环锭轧制,挤压,逆向热处理,机加工,嵌齿,热处理,热处理炉等,这些向导是自定义的,可帮助用户轻松设置复杂的过程。

DOE(Design of Experiment)帮助用户研究指定范围内各种参数对过程的影响。

OPTIMIZA TION可帮助用户优化特定参数,例如模具负载,最大值。

钢坯应变,损伤值等最后,DEFORM能够研究从铸锭转换到成型,加工和热处理,再到最终产品安装的整个制造链。

同时,现代的用户界面设计使生产工程师和研究科学家均可轻松应用2 利用DEFORM分析的流程设计工艺过程可以从变形前变形后工件的形状,材料,变形温度等方面考虑采用哪种工具收集所需数据最主要的就是材料数据,如材料的应力应变方程,材料的属性值等处理条件数据在前处理界面设置好模拟过程提交模拟使用后处理查看结果假如结果不对。

DEFORM-3D-操作指南(清华大学)

DEFORM-3D-操作指南(清华大学)

机械工程系版权所有翻印必究DEFORM-3D v5.0基本操作指南编写方刚刘海军清华大学机械工程系2004年02月机械工程系版权所有翻印必究DEFORM 软件简介DEFORM 系列软件是由位于美国Ohio Clumbus 的科学成形技术公司(Science Forming Technology Corporation)开发的。

该系列软件主要应用于金属塑性加工、热处理等工艺数值模拟。

它的前身是美国空军Battelle 试验室开发的ALPID 软件。

在1991年成立的SFTC 公司将其商业化,目前,DEFORM 软件已经成为国际上流行的金属加工数值模拟的软件之一。

主要软件产品有:DEFORM-2DDEFORM-3DDEFORM-PCDEFORM-HT ModuleDEFORM-Tools机械工程系版权所有翻印必究练习01金属塑性成形的前处理前处理是有限元分析的主要步骤,它所占用的操作时间占到用户操作时间的80%,有很多定义都是在前处理阶段进行的。

前处理出要包括:1.几何模型建立或导入2.网格划分3.材料定义4.物体的接触和摩擦定义5.模拟参数的设定机械工程系版权所有翻印必究几何模型建立或导入在DEFORM-3D 软件中,不能直接建立三维的几何模型,必须通过其他CAD/CAE 软件建模后导入到系统中。

目前,DEFORM-3D 的几何模型接口格式有:1.STL: 几乎所有CAD 软件都有这个接口,它是通过一系列的三角形拟合曲面而成;2.UNV: SDRC 公司(现合并到EDS 公司)软件IDEAS 的三维实体造型及有限元网格文件格式,DEFORM 接受其划分的网格。

3.PDA: MSC 公司的软件Patran 的三维实体造型及有限元网格文件格式。

4.AMG :这种格式DEFORM 存储已经导入的几何实体。

机械工程系版权所有翻印必究网格划分在DEFORM-3D 中,如果用其自身带的网格剖分程序,只能划分四面体单元,这主要是为了考虑网格重划分时的方便和快捷。

DEFORM热处理工艺

DEFORM热处理工艺

DEFORM热处理工艺此案例是一个齿轮的热处理工序,包含淬火、渗碳、回火等过程。

零件如图1所示,考虑到零件的周期对称特点,这里取半个齿进行分析,如图2所示。

图 1 齿轮零件图2 半齿模型5个阶段热处理方案如下:(1)在550℃预热半小时(1800s);(2)在850℃渗碳2h(7200s);(3)在100℃油淬火20min(1200s);(4)在280℃回火1h(3600s);(5)在空气中冷却1h(3600s)。

1 新建一个热处理问题单击新问题图标来创建新问题。

出现“问题设置”窗口。

选择“DEFORM MO预处理器”单选按钮和“SI单位”单选按钮,然后单击next进入MO前处理器后,见下图,输入项目名称,标题,存储路径等点击OK然后点击左侧栏的Explorer,找到3D HT Wizard后点击旁边的。

可以看到右侧Pre下有热处理过程设置。

2 过程设置按照需要把模式选上,这里把三个都勾上,即考虑相转变、扩散、变形过程。

点击next3 材料定义点击“Import material from ”。

从deform安装文件家中导入“Demo_Temper_Steel.KEY”文件(参考路径:D:\Program Files\SFTC\DEFORM\v11.0\3D\LABS,我安装在了D盘),点击Next。

4 坯料定义1)将坯料定义为弹塑性体。

next2)导入几何同样是在软件安装目录下,导入GearTooth.STL。

(参考路径D:\Program Files\SFTC\DEFORM\v11.0\3D\LABS),点击next。

3)生成网格输入网格数8000,Generate Mesh,next4)赋予材料选择刚刚定义的材料5)定义边界条件首先定义对称边界条件,选中对应两个面然后因为是弹塑性体的模拟,所以需要定义固定边界条件。

这里对一个节点的x,y,z方向的位移进行固定约束。

当然,考虑到上面已经定义了两个对称边界条件,也可以只进行Z方向上的约束。

deform 热处理报告

deform 热处理报告

材料成型专业综合性实验报告热处理工艺对45#钢组织性能的影响学生专业: 材料成型与控制工程学生班级:学生学号: 1学生姓名:指导老师:报告日期: 2016年7月目录一、综述、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、3二、实验目的、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、7三、材料及仪器、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、8四、实验过程及热处理模拟操作、、、、、、、、、、、、、、、、、、、8五、实验结果及热处理模拟对比分析、、、、、、、、、、、、、、、、9六、结果分析、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、16七、结论、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、16参考文献、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、17一、综述1、钢的热处理钢的热处理就就是把钢在固态下加热到一定的温度进行必要的保温,并以适当的速度冷却到室温,以改变钢的内部组织,从而得到所需性能的工艺方法。

热处理与其她加工方法(铸造、锻压、焊接、切削加工等)不同,它只改变金属材料的组织与性能,而不改变其形状与大小,所以用它来处理零件、工具等制成品,处理各种工具、刀具、齿轮与转轴等。

钢在热处理条件下所得到的组织与钢的平衡组织有很大的差别,钢加热到临界点(A)以上时发生奥氏体转变,奥氏体在非常缓1慢冷却时才能得到平衡组织状态的珠光体或珠光体+铁素体(或渗碳体),但大部分热处理工艺,如退火、正火、淬火、(回火或时效例外)都就是将钢加热到奥氏体状态,然后以不同的冷却速度(或冷却方式)冷却到室温。

退火、正火、淬火的冷却速度的不同,则会得到不同的组织,其力学性能或物理性能也不同。

2.45#钢的综述45号钢就是GB中的叫法,JIS中称为:S45C,ASTM中称为1045,080M46,DIN为:C45。

Deform 3D 介绍

Deform 3D 介绍
DEFORM™具有如下突出特色:
——模拟范围广:材料流动,锻造负荷,模具应力,晶粒流动,缺陷成因等
——适用工艺广:(a)冷、热、温过程;(b)锻造,拉拔,挤压,镦头,镦粗,轧制,摆辗,机加工车削,冲切等;(c)正火,退火,淬火,回火,时效,渗碳,蠕变,硬化等
——适用设备多:液压锻机,锻锤,摩擦压力机,机械压力机,轧机,摆辗机等
其它
—— DEFORM软件持续升级,并支持定期培训。
——定期举行DEFORM用户会。
——输出结果包括图形、原始数据、硬拷贝和动画。
—— HTML格式的在线帮助(web browser)。
—— SFTC为DEFORM材料数据库提供了146种材料的宝贵数据。
DEFORM是国际上最著名的2D/3D成形加工和热处理工艺模拟分析软件,专为生产实际应用而设计开发,使用起来特别简便。保证用户缩短设计、生产周期,优化最佳工艺,提高生产率。
DEFORM -HT主旨在于帮助设计人员在制造周期的早期能够检查、了解和修正潜在的问题或缺陷。
DEFORM–HT图形用户界面(GUI)非常便于输入工艺参数、几何数据、材料性能、热性能、扩散和材料金相组织数据。DEFORM-HT能够模拟复杂的材料流动特性,自动进行网格重划和插值处理。除了变形过程模拟外,还能够考虑材料相变、含碳量、体积变化和相变引起的潜热。马氏体体积分数,残留奥氏体百分比,残余应力,热处理变形和硬度等一系列相变引发的参数变量。能够模拟的热处理工艺类型:正火、退火、淬火、回火、时效处理、渗碳,希望的金相组织临界点和最终产品的机械性能。
——具有2D切片功能,可以显示工件或模具剖面结果。
——程序具有多联变形体处理能力,能够分析多个塑性工件和组合模具应力。
——后处理中的镜面反射功能,为用户提供了高效处理具有对称面或周期对称面的机会,并且可以在后处理中显示整个模型。
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

热处理模块实验
1.生成一个新问题
2.初始设置
3.导入几何模型
4.网格划分
5.定义材料
6.工件设置
7. 介质定义
8. 定义时间立程
9. 仿真设置
10. 进行仿真
11. 后处理
问题摘要:
在处理复杂的热传递问题时,热处理模块是一个非常方便的工具。

这个实验将展示的是这个模块如何对一个刚构建进行渗碳,淬火,回火处理。

这个实验同时能够帮助用户理解deform-ht’s在计算相变方面的能力。

1.生成新的问题
开始一个名为“GearHT”的新的热处理问题。

你也可以单击“New problem”按钮,选择“Heat treatment”。

或者,你也可以右击导航树来创建一个空的目录,在主界面的右侧单击“HT”。

2.初始设置
在“初始设置”对话框里,设置单位为国际单位。

勾选“变形”,“扩散”和“相变”。

点击下一步。

3.导入模型
在“模型”页面里,选择“导入几何,key,或DB文件”,单击下一步。

进入目录,载入模型文件。

4.划分网格
在“划分网格”页面里,选择8000个非结构的网格划分。

用结构面层的第一层,将“Thinkness mode”设置成“ratio to object overall dimension”,层厚设置成0.005。

(结构面网格划分可以帮助我们利用更少的计算时间来获得更好的关于热学和散射的结果。

)单击下一步。

5.定义材料
在“材料”页面里,选择“Import form .DB and .KEY”点击下一步。

从目录里导入材料“Demo_Temper_Steel.KEY”。

你可以单击“Advance”按钮来观察,编辑材料和转换数据。

注意这是一种由八种成分(相)组成的混合材料,包括奥氏体(A),珠光体+贝氏体(PB),马氏体(B),铁素体(F),低碳马氏体(LM),回火贝氏体(TB),回火铁素体+渗碳体(TFC)。

相间的转换历程包括A_>F,A_>TB,A_>M,PB_>A,M_>LM,M_>A,LM_>TFC和TFC_>A。

在这些转换里,A_>F,A_>TB,M_>LM和LM_>TFC是通过TTT曲线进行散射约束的。

A_>M应用马氏体转换模型,PB_>A,M_>A,TB_>A和TFC_>A用简单的散射模型。

另外,A_>F有一个取决于碳含量的平衡体积分数。

6.工件设置
在“工件设置”页面,"Temperature"选择"Uniform"并设成20度。

"Atom"选项里选择"Uniform"并设成0.2。

对于"Phase volume fraction",选择"Uniform",将"Pearlite + Banite"设成1.0,其余设成0。

7.介质定义
在“Medium details”页面里,你将定义不同的媒介和热传导区域二者之间的联系。

1)将第一媒介重新命名为“Heating Furnace”,设置“default”热传导系数(HTC)设成常数0.1
2)加入媒介“Carb. Furnace”(Carb. for Carburization)。

设置“default”热传导系数(HTC)
为常数0.05。

对于“Carb. Furnace”,把“Diffusion Surface Reaction Rate”设成0.0001。

3)加入媒介“Oil”。

勾选“Radiation”。

将“default”的HTC设为5.5。

为媒介“Oil”增加一个热传导区(Zone #1)。

单击工件的边界,对于如下图所示就是单击工件的底部区域。

注意,你需要用到左下方的窗口来调整选取模式。

对于Zone #1,如下表定义温度方程的热传导系数:
4)再增加一个媒介“Air”。

热传导系数为0.02。

8.定义时间历程
在“Schedule”页面里,如下输入五个时间段。

1)半个小时(1800s)预热至550度
2)在850度的条件下进行两个小时(7200s)的渗碳处理。

指定“Atom”接触为0.8
3)100度的油淬火20分钟(1200s)
4)280度回火30分钟(1800s)
5)空气中冷却一小时(3600s)
9.仿真控制
在“Step Definition”里,将"Temp. change per step"调整到2。

默认其他选项。

接下来,需要像下图一样指定两个对称面。

(注意这个几何模型画的是齿轮的半个齿)。

用户需要在选取物体相应表面之前指定"symmetric planes"。

另外,由于要模拟出弹塑性变形,需要定义固定节点的边界条件。

为了加载边界条件,选择一个边界条件选项然后施加到适当的节点上。

对于这样模型来说,对称面提供了X,Y方向的约束和转动约束,我们只需要再约束Z方向即可。

下图里我们约束了底部的一个节点。

接下来,单击“Finish“按钮生成关键字(.KEY)文件,数据(.DB)文件和并联操作控制(.MET)文件。

10.开始仿真
退出热处理模块,单击主窗口里的"Run"。

11.后处理
计算结束后,利用后处理来观察计算结果。

温度历程如下如所示:
在后处理中,我们要观察以下结果:
1.检查工件在用油淬火之后的状态。

状态变量的结果可能根据含碳量,马氏体体积分数
(M),铁素体(F),珠光体+贝氏体(PB)和残余应力的不同而不同。

值得注意的是,齿面附近的M值高达0.77,最大等效应力是479KSI。

(真实情况下如此高的应力可能导致断裂)
2.回火后同样要查看状态变量。

这时齿面附近的M值为0.2,大多数都转化为调制的铁素
体+渗碳体(TFC)。

最大等效应力减小到180KSI。

3.另外,对于工件不同位置点的相体积函数追踪也可以帮助我们更好的理解渗碳和热处理
过程中的复杂现象。

相关文档
最新文档