SPSS多元线性回归分析实例操作步骤之欧阳歌谷创编
SPSS多元线性回归分析实例操作步骤
SPSS多元线性回归分析实例操作步骤在数据分析领域,多元线性回归分析是一种强大且常用的工具,它能够帮助我们理解多个自变量与一个因变量之间的线性关系。
接下来,我将为您详细介绍使用 SPSS 进行多元线性回归分析的具体操作步骤。
首先,准备好您的数据。
数据应该以特定的格式整理,通常包括自变量和因变量的列。
确保数据的准确性和完整性,因为这将直接影响分析结果的可靠性。
打开 SPSS 软件,在菜单栏中选择“文件”,然后点击“打开”,找到您存放数据的文件并导入。
在导入数据后,点击“分析”菜单,选择“回归”,再点击“线性”。
这将打开多元线性回归的对话框。
在“线性回归”对话框中,将您的因变量拖放到“因变量”框中,将自变量拖放到“自变量”框中。
接下来,点击“统计”按钮。
在“统计”对话框中,您可以选择一些常用的统计量。
例如,勾选“估计”可以得到回归系数的估计值;勾选“置信区间”可以得到回归系数的置信区间;勾选“模型拟合度”可以评估模型的拟合效果等。
根据您的具体需求选择合适的统计量,然后点击“继续”。
再点击“图”按钮。
在这里,您可以选择生成一些有助于直观理解回归结果的图形。
比如,勾选“正态概率图”可以检查残差的正态性;勾选“残差图”可以观察残差的分布情况等。
选择完毕后点击“继续”。
然后点击“保存”按钮。
您可以选择保存预测值、残差等变量,以便后续进一步分析。
完成上述设置后,点击“确定”按钮,SPSS 将开始进行多元线性回归分析,并输出结果。
结果通常包括多个部分。
首先是模型摘要,它提供了一些关于模型拟合度的指标,如 R 方、调整 R 方等。
R 方表示自变量能够解释因变量变异的比例,越接近 1 说明模型拟合效果越好。
其次是方差分析表,用于检验整个回归模型是否显著。
如果对应的p 值小于给定的显著性水平(通常为 005),则说明模型是显著的。
最重要的是系数表,它给出了每个自变量的回归系数、标准误差、t 值和 p 值。
回归系数表示自变量对因变量的影响程度,p 值用于判断该系数是否显著不为 0。
SPSS多元线性回归分析实例操作步骤
SPSS 统计分析多元线性回归分析方法操作与分析实验目的:引入1998~2008年上海市城市人口密度、城市居民人均可支配收入、五年以上平均年贷款利率和房屋空置率作为变量,来研究上海房价的变动因素。
实验变量:以年份、商品房平均售价(元/平方米)、上海市城市人口密度(人/平方公里)、城市居民人均可支配收入(元)、五年以上平均年贷款利率(%)和房屋空置率(%)作为变量。
实验方法:多元线性回归分析法软件:spss19.0操作过程:第一步:导入Excel数据文件1.open data document——open data——open;2. Opening excel data source——OK.第二步:1.在最上面菜单里面选中Analyze——Regression——Linear ,Dependent(因变量)选择商品房平均售价,Independents(自变量)选择城市人口密度、城市居民人均可支配收入、五年以上平均年贷款利率、房屋空置率;Method 选择Stepwise.进入如下界面:2.点击右侧Statistics,勾选Regression Coefficients(回归系数)选项组中的Estimates;勾选Residuals(残差)选项组中的Durbin-Watson、Casewise diagnostics默认;接着选择Model fit、Collinearity diagnotics;点击Continue.3.点击右侧Plots,选择*ZPRED(标准化预测值)作为纵轴变量,选择DEPENDNT(因变量)作为横轴变量;勾选选项组中的Standardized Residual Plots(标准化残差图)中的Histogram、Normal probability plot;点击Continue.4.点击右侧Save,勾选Predicted Vaniues(预测值)和Residuals(残差)选项组中的Unstandardized;点击Continue.5.点击右侧Options,默认,点击Continue.6.返回主对话框,单击OK.输出结果分析:1.引入/剔除变量表Variables Entered/Removed aModel Variables Entered Variables Removed Method1 城市人口密度(人/平方公里) . Stepwise (Criteria:Probability-of-F-to-enter<= .050,Probability-of-F-to-remove >=.100).2 城市居民人均可支配收入(元) . Stepwise (Criteria:Probability-of-F-to-enter<= .050,Probability-of-F-to-remove >=.100).a. Dependent Variable: 商品房平均售价(元/平方米)该表显示模型最先引入变量城市人口密度(人/平方公里),第二个引入模型的是变量城市居民人均可支配收入(元),没有变量被剔除。
SPSS多元线性回归分析教程
线性回归分析的SPSS操作本节内容主要介绍如何确定并建立线性回归方程。
包括只有一个自变量的一元线性回归和和含有多个自变量的多元线性回归。
为了确保所建立的回归方程符合线性标准,在进行回归分析之前,我们往往需要对因变量与自变量进行线性检验。
也就是类似于相关分析一章中讲过的借助于散点图对变量间的关系进行粗略的线性检验,这里不再重复。
另外,通过散点图还可以发现数据中的奇异值,对散点图中表示的可能的奇异值需要认真检查这一数据的合理性。
一、一元线性回归分析1.数据以本章第三节例3的数据为例,简单介绍利用SPSS如何进行一元线性回归分析。
数据编辑窗口显示数据输入格式如下图7-8(文件7-6-1.sav):图7-8:回归分析数据输入2.用SPSS进行回归分析,实例操作如下:2.1.回归方程的建立与检验(1)操作①单击主菜单Analyze / Regression / Linear…,进入设置对话框如图7-9所示。
从左边变量表列中把因变量y选入到因变量(Dependent)框中,把自变量x选入到自变量(Independent)框中。
在方法即Method一项上请注意保持系统默认的选项Enter,选择该项表示要求系统在建立回归方程时把所选中的全部自变量都保留在方程中。
所以该方法可命名为强制进入法(在多元回归分析中再具体介绍这一选项的应用)。
具体如下图所示:图7-9 线性回归分析主对话框②请单击Statistics…按钮,可以选择需要输出的一些统计量。
如Regression Coefficients(回归系数)中的Estimates,可以输出回归系数及相关统计量,包括回归系数B、标准误、标准化回归系数BETA、T值及显著性水平等。
Model fit项可输出相关系数R,测定系数R2,调整系数、估计标准误及方差分析表。
上述两项为默认选项,请注意保持选中。
设置如图7-10所示。
设置完成后点击Continue返回主对话框。
图7-10:线性回归分析的Statistics选项图7-11:线性回归分析的Options选项回归方程建立后,除了需要对方程的显著性进行检验外,还需要检验所建立的方程是否违反回归分析的假定,为此需进行多项残差分析。
利用SPSS进行logistic回归分析(二元、多项)之欧阳法创编
线性回归是很重要的一种回归方法,但是线性回归只适用于因变量为连续型变量的情况,那如果因变量为分类变量呢?比方说我们想预测某个病人会不会痊愈,顾客会不会购买产品,等等,这时候我们就要用到logistic回归分析了。
Logistic回归主要分为三类,一种是因变量为二分类得logistic回归,这种回归叫做二项logistic回归,一种是因变量为无序多分类得logistic回归,比如倾向于选择哪种产品,这种回归叫做多项logistic 回归。
还有一种是因变量为有序多分类的logistic回归,比如病重的程度是高,中,低呀等等,这种回归也叫累积logistic回归,或者序次logistic 回归。
二值logistic回归:选择分析——回归——二元logistic,打开主面板,因变量勾选你的二分类变量,这个没有什么疑问,然后看下边写着一个协变量。
有没有很奇怪什么叫做协变量?在二元logistic回归里边可以认为协变量类似于自变量,或者就是自变量。
把你的自变量选到协变量的框框里边。
细心的朋友会发现,在指向协变量的那个箭头下边,还有一个小小的按钮,标着a*b,这个按钮的作用是用来选择交互项的。
我们知道,有时候两个变量合在一起会产生新的效应,比如年龄和结婚次数综合在一起,会对健康程度有一个新的影响,这时候,我们就认为两者有交互效应。
那么我们为了模型的准确,就把这个交互效应也选到模型里去。
我们在右边的那个框框里选择变量a,按住ctrl,在选择变量b,那么我们就同时选住这两个变量了,然后点那个a*b的按钮,这样,一个新的名字很长的变量就出现在协变量的框框里了,就是我们的交互作用的变量。
然后在下边有一个方法的下拉菜单。
默认的是进入,就是强迫所有选择的变量都进入到模型里边。
除去进入法以外,还有三种向前法,三种向后法。
一般默认进入就可以了,如果做出来的模型有变量的p值不合格,就用其他方法在做。
再下边的选择变量则是用来选择你的个案的。
多元线性回归分析spss
多元线性回归分析spss
多元线性回归分析是一种常用的统计分析技术,用于对各因素之间的相互关系进行研究。
使用多元线性回归分析,可以检验一个或多个自变量对因变量具有统计学显著性的影响,从而推断出实际世界存在的不同因素可能带来的影响。
在spss中,我们使用下拉菜单选择“分析”>“回归”>“多元”来开始多元线性回归分析。
在多元线性回归窗口中,我们可以在右边的“可用变量”列中选择变量,拖拽到“因变量”和“自变量”栏中。
接下来,我们可以选择要使用的模型类型,其中包括多元线性回归,截距,变量中心以及相关的其他预测结果。
在进行模型拟合之前,我们可以在“多重共线性”复选框中对共线性进行调整,进行预测和显著性检验,并调整“参数估计”和“残差”复选框,自由地绘制结果。
在运行了多元线性回归分析之后,在spss中,我们可以在输出窗口中查看多元回归方程的系数和检验的结果,以及它们对回归系数的影响,残差分布情况,多重共线性分析和其他一些输出参数。
总而言之,spss中多元线性回归分析是一种有效的统计分析方法,可以用来检验多个自变量对回归方程的影响。
它具有许多内置功能,可以容易地针对回归系数和其他参数进行各种分析,提供了可信的结果,帮助人们深入了解各类因素对研究结果的影响。
SPSS多元线性回归分析实例操作步骤
SPSS多元线性回归分析实例操作步骤多元线性回归是一种常用的统计分析方法,用于探究多个自变量对因变量的影响程度。
SPSS(Statistical Package for the Social Sciences)是一款常用的统计软件,可以进行多元线性回归分析,并提供了简便易用的操作界面。
本文将介绍SPSS中进行多元线性回归分析的实例操作步骤,帮助您快速掌握该分析方法的使用。
步骤一:准备数据在进行多元线性回归分析之前,首先需要准备好相关的数据。
数据应包含一个或多个自变量和一个因变量,以便进行回归分析。
数据可以来自实验、调查或其他来源,但应确保数据的质量和可靠性。
步骤二:导入数据在SPSS软件中,打开或创建一个新的数据集,然后将准备好的数据导入到数据集中。
可以通过导入Excel、CSV等格式的文件或手动输入数据的方式进行数据导入。
确保数据被正确地导入到SPSS中,并正确地显示在数据集的各个变量列中。
步骤三:进行多元线性回归分析在SPSS软件中,通过依次点击"分析"-"回归"-"线性",打开线性回归分析对话框。
在对话框中,将因变量和自变量移入相应的输入框中。
可以使用鼠标拖拽或双击变量名称来快速进行变量的移动。
步骤四:设置分析选项在线性回归分析对话框中,可以设置一些分析选项,以满足具体的分析需求。
例如,可以选择是否计算标准化回归权重、残差和预测值,并选择是否进行方差分析和共线性统计检验等。
根据需要,适当调整这些选项。
步骤五:获取多元线性回归分析结果点击对话框中的"确定"按钮后,SPSS将自动进行多元线性回归分析,并生成相应的分析结果。
结果包括回归系数、显著性检验、残差统计和模型拟合度等信息,这些信息可以帮助我们理解自变量对因变量的贡献情况和模型的拟合程度。
步骤六:解读多元线性回归分析结果在获取多元线性回归分析结果之后,需要对结果进行解读,以得出准确的结论。
SPSS多元线性回归分析实例操作步骤之欧阳歌谷创作
SPSS 统计分析欧阳歌谷(2021.02.01)多元线性回归分析方法操作与分析实验目的:引入1998~上海市城市人口密度、城市居民人均可支配收入、五年以上平均年贷款利率和房屋空置率作为变量,来研究上海房价的变动因素。
实验变量:以年份、商品房平均售价(元/平方米)、上海市城市人口密度(人/平方公里)、城市居民人均可支配收入(元)、五年以上平均年贷款利率(%)和房屋空置率(%)作为变量。
实验方法:多元线性回归分析法 软件:spss19.0 操作过程:第一步:导入Excel 数据文件 第二步:进入如下界面: 输出结果分析: 1.引入/剔除变量表该表显示模型最先引入变量城市人口密度 (人/平方公里),第二个引入模型的是变量城市居民人均可支配收入(元),没有变量Variables Entered/RemovedaModel Variables Entered Variables RemovedMethod1城市人口密度 (人/平方公里). Stepwise (Criteria: ProbabilityofFtoenter <= .050,ProbabilityofFtoremove >= .100).2城市居民人均可支配收入(元). Stepwise (Criteria: ProbabilityofFtoenter <= .050,ProbabilityofFtoremove >= .100).a. Dependent Variable: 商品房平均售价(元/平方米)该表显示各模型的方差分析结果。
从表中可以看出,模型的F统计量的观察值为23832.156,概率p值为0.000,在显著性水平为0.05的情形下,可以认为:商品房平均售价(元/平方米)与城市人口密度 (人/平方公里),和城市居民人均可支配收入(元)之间有线性关系。
3.回归系数CoefficientsaMinimum Maximum Mean Std. Deviation N Predicted Value3394.718382.835465.641957.30211Residual47.03540.271.00025.35711 Std. Predicted Value 1.058 1.490.000 1.00011 Std. Residual 1.659 1.420.000.89411 a. Dependent Variable: 商品房平均售价(元/平方米)该表为回归模型的残差统计量,标准化残差(Std.Residual)的绝对值最大为1.659,没有超过默认值3,不能发现奇异值。
多元回归分析SPSS案例
多元返回分解之阳早格格创做正在大普遍的本质问题中,效率果变量的果素不是一个而是多个,咱们称那类回问题为多元返回分解.不妨修坐果变量y 与各自变量x j(j=1,2,3,…,n)之间的多元线性返回模型:其中:b0是返回常数;b k(k=1,2,3,…,n)是返回参数;e是随机缺面.多元返回正在病虫预报中的应用真例:某天区病虫测报站用相闭系数法采用了以下4个预报果子;x1为最多连绝10天诱蛾量(头);x2为4月上、中旬百束小谷草把乏计降卵量(块);x3为4月中旬降火量(毫米),x4为4月中旬雨日(天);预报一代粘虫幼虫爆收量y(头/m2).分级别数值列成表2-1.预报量y:每仄圆米幼虫0~10头为1级,11~20头为2级,21~40头为3级,40头以上为4级.预报果子:x1诱蛾量0~300头为l级,301~600头为2级,601~1000头为3级,1000头以上为4级;x2卵量0~150块为1级,15l~300块为2级,301~550块为3级,550块以上为4级;x3降火量毫米为1级,毫米为2级,毫米为3级,毫米以上为4级;x4雨日0~2天为1级,3~4天为2级,5天为3级,6天大概6天以上为4级.表2-1x1 x2 x3 x4 y年蛾量级别卵量级别降火量级别雨日级别幼虫稀度级别1960 1022 4 112 1 1 2 1 10 1 1961 300 1 440 3 1 1 1 4 1 1962 699 3 67 1 1 1 1 9 1 1963 1876 4 675 4 4 7 4 55 4 1965 43 1 80 1 1 2 1 1 1 1966 422 2 20 1 0 1 0 1 3 1 1967 806 3 510 3 2 3 2 28 3 1976 115 1 240 2 1 2 1 7 1 1971 718 3 1460 4 4 4 2 45 4 1972 803 3 630 4 3 3 2 26 3数据死存正在“”文献中.1)准备分解数据正在SPSS数据编写窗心中,创修“年份”、“蛾量”、“卵量”、“降火量”、“雨日”战“幼虫稀度”变量,并输进数据.再创修蛾量、卵量、降火量、雨日战幼虫稀度的分级变量“x1”、“x2”、“x3”、“x4”战“y”,它们对于应的分级数值不妨正在SPSS数据编写窗心中通过预计爆收.编写后的数据隐现如图2-1.2-1大概者挨开已存留的数据文献“”.2)开用线性返回历程单打SPSS主菜单的“Analyze”下的“Regression”中“Linear”项,将挨开如图2-2所示的线性返回历程窗心.图2-2 线性返回对于话窗心3) 树坐分解变量树坐果变量:用鼠标选中左边变量列表中的“幼虫稀度[y]”变量,而后面打“Dependent”栏左边的背左推按钮,该变量便移到“Dependent”果变量隐现栏里.树坐自变量:将左边变量列表中的“蛾量[x1]”、“卵量[x2]”、“降火量[x3]”、“雨日[x4]”变量,选移到“Independent(S)”自变量隐现栏里.树坐统造变量: 原例子中不使用统造变量,所以不采用所有变量.采用标签变量: 采用“年份”为标签变量.采用加权变量: 原例子不加权变量,果此不做所有树坐.4)返回办法原例子中的4个预报果子变量是通过相闭系数法采用出去的,正在返回分解时不干筛选.果此正在“Method”框中选中“Enter”选项,修坐齐返回模型.5)树坐输出统计量单打“Statistics”按钮,将挨开如图2-3所示的对于话框.该对于话框用于树坐相闭参数.其中各项的意思分别为:图2-3 “Statistics”对于话框①“Regression Coefficients”返回系数选项:“Estimates”输出返回系数战相闭统计量.“Confidence interval”返回系数的95%置疑区间.“Covariance matrix”返回系数的圆好-协圆好矩阵.原例子采用“Estimates”输出返回系数战相闭统计量.②“Residuals”残好选项:“Durbin-Watson”Durbin-Watson考验.“Casewise diagnostic”输出谦脚采用条件的瞅丈量的相闭疑息.采用该项,底下二项处于可选状态:“Outliers outside standard deviations”采用尺度化残好的千万于值大于输进值的瞅丈量;“All cases”采用所有瞅丈量.原例子皆不选.③其余输进选项“Model fit”输出相闭系数、相闭系数仄圆、安排系数、预计尺度误、ANOVA表.“R squared change”输出由于加进战剔除变量而引起的复相闭系数仄圆的变更.“Descriptives”输出变量矩阵、尺度好战相闭系数单侧隐著性火仄矩阵.“Part and partial correlation”相闭系数战偏偏相闭系数.“Collinearity diagnostics”隐现单个变量战共线性分解的公好.原例子采用“Model fit”项.6)画图选项正在主对于话框单打“Plots”按钮,将挨开如图2-4所示的对于话框窗心.该对于话框用于树坐要画造的图形的参数.图中的“X”战“Y”框用于采用X轴战Y轴相映的变量.图2-4“Plots”画图对于话框窗心左上框中各项的意思分别为:•“DEPENDNT”果变量.•“ZPRED”尺度化预测值.•“ZRESID”尺度化残好.•“DRESID”简略残好.•“ADJPRED”安排预测值.•“SRESID”教死氏化残好.•“SDRESID”教死氏化简略残好.“Standardized Residual Plots”树坐各变量的尺度化残好图形输出.其中共包罗二个选项:“Histogram”用曲圆图隐现尺度化残好.“Normal probability plots”比较尺度化残好与正态残好的分集示企图.“Produce all partial plot”偏偏残好图.对于每一个自变量死成其残好对于果变量残好的集面图.原例子不做画图,不采用.7) 死存分解数据的选项正在主对于话框里单打“Save”按钮,将挨开如图2-5所示的对于话框.图2-5 “Save”对于话框①“Predicted Values”预测值栏选项:Unstandardized 非尺度化预测值.便会正在目前数据文献中新增加一个以字符“PRE_”开头命名的变量,存搁根据返回模型拟合的预测值.Standardized 尺度化预测值.Adjusted 安排后预测值.S.E. of mean predictions 预测值的尺度误.原例选中“Unstandardized”非尺度化预测值.②“Distances”距离栏选项:Mahalanobis: 距离.Cook’s”: Cook距离.Leverage values: 杠杆值.③“Prediction Intervals”预测区间选项:Mean: 区间的核心位子.Individual: 瞅丈量上限战下限的预测区间.正在目前数据文献中新增加一个以字符“LICI_”开头命名的变量,存搁预测区间下限值;以字符“UICI_”开头命名的变量,存搁预测区间上限值.Confidence Interval:置疑度.原例不选.④“Save to New File”死存为新文献:选中“Coefficient statistics”项将返回系数死存到指定的文献中.原例不选.⑤“Export model information to XML file”导出统计历程中的返回模型疑息到指定文献.原例不选.⑥“Residuals” 死存残好选项:“Unstandardized”非尺度化残好.“Standardized”尺度化残好.“Studentized”教死氏化残好.“Deleted”简略残好.“Studentized deleted”教死氏化简略残好.原例不选.⑦“Influence Statistics” 统计量的效率.“DfBeta(s)”简略一个特定的瞅测值所引起的返回系数的变更.“Standardized DfBeta(s)”尺度化的DfBeta值.“DiFit” 简略一个特定的瞅测值所引起的预测值的变更.“Standardized DiFit”尺度化的DiFit值.“Covariance ratio”简略一个瞅测值后的协圆好矩隈的止列式战戴有局部瞅测值的协圆好矩阵的止列式的比率.原例子不死存所有分解变量,不采用.8)其余选项正在主对于话框里单打“Options”按钮,将挨开如图2-6所示的对于话框.图2-6 “Options”树坐对于话框①“Stepping Method Criteria”框用于举止逐步返回时里里数值的设定.其中各项为:“Use probability of F”如果一个变量的F值的概率小于所树坐的加进值(Entry),那么那个变量将被选进返回圆程中;当变量的F值的概率大于树坐的剔除值(Removal),则该变量将从返回圆程中被剔除.由此可睹,树坐“Use probability of F”时,应使加进值小于剔除值.“Ues F value”如果一个变量的F值大于所树坐的加进值(Entry),那么那个变量将被选进返回圆程中;当变量的F值小于树坐的剔除值(Removal),则该变量将从返回圆程中被剔除.共时,树坐“Use F value”时,应使加进值大于剔除值.原例是齐返回不树坐.②“Include constant in equation”采用此项表示正在返回圆程中有常数项.原例选中“Include constant in equation”选项正在返回圆程中死存常数项.③“Missing Values”框用于树坐对于缺得值的处理要领.其中各项为:“Exclude cases listwise”剔除所有含有缺得值的瞅测值.“Exchude cases pairwise”仅剔除介进统计分解预计的变量中含有缺得值的瞅丈量.“WordStr with mean”用变量的均值与代缺得值.原例选中“Exclude cases listwise”.9)提接真止正在主对于话框里单打“OK”,提接真止,截止将隐现正在输出窗心中.主要截止睹表2-2至表2-4.10) 截止分解主要截止:表2-2表2-2 是返回模型统计量:R 是相闭系数;R Square 相闭系数的仄圆,又称判决系数,判决线性返回的拟合程度:用去证明用自变量阐明果变量变同的程度(所占比率);Adjusted R Square 安排后的判决系数;Std. Error of the Estimate 预计尺度缺面.表2-3表2-3 返回模型的圆好分解表,F值为,隐著性概率是,标明返回极隐著.表2-4分解:修坐返回模型:根据多元返回模型:把表6-9中“非尺度化返回系数”栏目中的“B”列系数代进上式得预报圆程:预测值的尺度好可用结余均圆预计:返回圆程的隐著性考验:从表6-8圆好分解表中得知:F统计量为,系统自动考验的隐著性火仄为.F(0.05,4,11)值为,F(0.01,4,11) 值为,F(0.001,4,11) 值为.果此返回圆程相闭非常隐著.(F值可正在Excel中用FINV( )函数赢得).回代考验需要做预报效验的考证时,正在主对于话框(图6-8)里单打“Save”按钮,正在挨开如图3-6所示对于话框里,选中“Predicted Values”预测值选项栏中的“Unstandardized”非尺度化预测值选项.那样正在历程运算时,便会正在目前文献中新增加一个“PRE_1”命名的变量,该变量存搁根据返回模型拟合的预测值.而后,正在SPSS数据窗心预计“y”与“PRE_1”变量的好值(图2-7),原例子把千万于好值大于视为不切合,反之则切合.截止切合的年数为15年,1年不切合,履历切合率为93.75%.图2-7 多元返回分解法可概括多个预报果子的效率,做出预报,正在统计预报中是一种应用较为一致的要领.正在本质使用中,采与将预报果子战预报量按一定尺度分为多级,用分级尺度代换较大的数字,更能掀穿预报果子与预报量的闭系,预报效验比采与数量值统计要领有明隐的普及,正在本质应用中具备一定的现真意思.。
多元回归分析SPSS
多元回归分析SPSS
SPSS可以进行多元回归分析的步骤如下:
1.导入数据:首先需要将所需的数据导入SPSS软件中。
可以使用SPSS的数据导入功能,将数据从外部文件导入到工作空间中。
2.选择自变量和因变量:在进行多元回归分析之前,需要确定作为自
变量和因变量的变量。
在SPSS中,可以使用变量视图来选择所需的变量。
3.进行多元回归分析:在SPSS的分析菜单中,选择回归选项。
然后
选择多元回归分析,在弹出的对话框中将因变量和自变量输入相应的框中。
可以选择是否进行数据转换和标准化等选项。
4.分析结果的解释:多元回归分析完成后,SPSS将生成一个回归模
型的结果报告。
该报告包括各个自变量的系数、显著性水平、调整R平方
等统计指标。
根据这些统计指标可以判断自变量与因变量之间的关系强度
和显著性。
5.进一步分析:在多元回归分析中,还可以进行进一步的分析,例如
检查多重共线性、检验模型的假设、进一步探索变量之间的交互作用等。
通过多元回归分析可以帮助研究者理解因变量与自变量之间的关系,
预测因变量的值,并且确定哪些自变量对因变量的解释更为重要。
在
SPSS中进行多元回归分析可以方便地进行数值计算和统计推断,提高研
究的科学性和可信度。
总结来说,多元回归分析是一种重要的统计分析方法,而SPSS是一
个功能强大的统计软件工具。
通过结合SPSS的多元回归分析功能,研究
者可以更快速、准确地进行多元回归分析并解释结果。
以上就是多元回归分析SPSS的相关内容简介。
SPSS多元线性回归分析教程.doc
SPSS多元线性回归分析教程.doc
1. 软件安装和数据导入
安装完SPSS软件,打开软件,在主界面中选择“Open an existing data source”选项,找到导入的数据文件,点击“Open”按钮将数据导入SPSS。
2. 变量检查和描述性统计分析
在“Variable View”选项卡中,查看每个变量的数据类型和属性是否正确。
在“Data View”选项卡中,选中变量列表,点击“Analyze”菜单中的“Descriptive Statistics”选项,进行数据描述性统计分析。
3. 模型构建和回归分析
在“Regression”菜单中,选择“Linear”选项,进入线性回归分析设置页面。
将自
变量和因变量移动到变量框中,点击“OK”按钮进行回归分析。
在分析结果界面中,查看
回归分析的显著性和方程式,判断回归模型的拟合程度和自变量对因变量的解释度。
4. 结果解释和模型优化
根据分析结果,解释各个变量对因变量的影响程度和统计显著性。
如果存在模型缺陷,可以考虑添加、删除或转换自变量,优化回归模型并重新进行分析。
同时,需要注意验证
模型的可靠性和稳定性,避免过度拟合或欠拟合的情况。
5. 结果呈现和报告撰写
将回归分析结果进行图表制作和文字描述,清晰、简洁地呈现分析结果。
在报告撰写
过程中,需要注意逻辑性和一致性,避免遗漏关键内容和出现明显错误。
总之,SPSS多元线性回归分析需要掌握数据导入、变量检查、描述性统计分析、模型构建、回归分析、结果解释、模型优化、结果呈现和报告撰写等技能,才能有效地进行数
据分析研究。
SPSS多元线性回归分析报告实例操作步骤
SPSS多元线性回归分析报告实例操作步骤步骤1:导入数据首先,打开SPSS软件,并导入准备进行多元线性回归分析的数据集。
在菜单栏中选择"File",然后选择"Open",在弹出的窗口中选择数据集的位置并点击"Open"按钮。
步骤2:选择变量在SPSS的数据视图中,选择需要用于分析的相关自变量和因变量。
选中的变量将会显示在变量视图中。
确保选择的变量是数值型的,因为多元线性回归只适用于数值型变量。
步骤3:进行多元线性回归分析在菜单栏中选择"Analyze",然后选择"Regression",再选择"Linear"。
这将打开多元线性回归的对话框。
将因变量移动到"Dependent"框中,将自变量移动到"Independent(s)"框中,并点击"OK"按钮。
步骤4:检查多元线性回归的假设在多元线性回归的结果中,需要检查多元线性回归的基本假设。
这些假设包括线性关系、多重共线性、正态分布、独立性和等方差性。
可以通过多元线性回归的结果来进行检查。
步骤5:解读多元线性回归结果多元线性回归的结果会显示在输出窗口的回归系数表中。
可以检查各个自变量的回归系数、标准误差、显著性水平和置信区间。
同时,还可以检查回归模型的显著性和解释力。
步骤6:完成多元线性回归分析报告根据多元线性回归的结果,可以编写一份完整的多元线性回归分析报告。
报告应包括简要介绍、研究问题、分析方法、回归模型的假设、回归结果的解释以及进一步分析的建议等。
下面是一个多元线性回归分析报告的示例:标题:多元线性回归分析报告介绍:本报告基于一份数据集,旨在探究x1、x2和x3对y的影响。
通过多元线性回归分析,我们可以确定各个自变量对因变量的贡献程度,并检验模型的显著性和准确性。
研究问题:本研究旨在探究x1、x2和x3对y的影响。
SPSS多元线性回归分析教程
SPSS多元线性回归分析教程多元线性回归是一种广泛应用于统计分析和预测的方法,它可以用于处理多个自变量和一个因变量之间的关系。
SPSS是一种流行的统计软件,提供了强大的多元线性回归分析功能。
以下是一个关于如何使用SPSS进行多元线性回归分析的教程。
本文将涵盖数据准备、模型建立、结果解读等内容。
第一步是数据的准备。
首先,打开SPSS软件并导入所需的数据文件。
数据文件可以是Excel、CSV等格式。
导入数据后,确保数据的变量类型正确,如将分类变量设置为标称变量,数值变量设置为数值变量。
还可以对数据进行必要的数据清洗和变换,如删除缺失值、处理离群值等。
数据准备完成后,可以开始建立多元线性回归模型。
打开“回归”菜单,选择“线性”选项。
然后,将因变量和自变量添加到模型中。
可以一次添加多个自变量,并选择不同的方法来指定自变量的顺序,如逐步回归或全部因素回归。
此外,还可以添加交互项和多项式项,以处理可能存在的非线性关系。
在建立好模型后,点击“统计”按钮可以进行更多的统计分析。
可以选择输出相关系数矩阵、残差分析、变量的显著性检验等。
此外,还可以进行回归方程的诊断,以检查模型是否符合多元线性回归的假设。
完成模型设置后,点击“确定”按钮运行回归分析。
SPSS将输出多个结果表,包括回归系数、显著性检验、模型拟合度和预测结果等。
对于每个自变量,回归系数表示自变量单位变化对因变量的影响;显著性检验则用于判断自变量是否对因变量有显著影响;模型拟合度则表示模型的解释力如何。
在解读结果时,需要关注以下几个方面。
首先,回归系数的正负号表示因变量随自变量的增加而增加或减少。
其次,显著性检验结果应该关注到p值,当p值小于显著性水平(如0.05)时,可以认为自变量对因变量有显著影响。
最后,要关注模型拟合度的指标,如R方值、调整R方值和残差分析。
如果模型结果不满足多元线性回归的假设,可以尝试进行模型修正。
可以尝试剔除不显著的自变量、添加其他自变量、转换自变量或因变量等方法来改善模型的拟合度。
SPSS多元线性回归分析实例操作步骤
SPSS多元线性回归分析实例操作步骤SPSS(Statistical Package for the Social Sciences)是一种统计分析软件,广泛应用于社会科学研究领域。
其中,多元线性回归分析是SPSS中常用的一种统计方法,用于探讨多个自变量与一个因变量之间的关系。
本文将演示SPSS中进行多元线性回归分析的操作步骤,帮助读者了解和掌握该方法。
一、数据准备在进行多元线性回归分析之前,首先需要准备好数据。
数据应包含一个或多个因变量和多个自变量,以及相应的观测值。
这些数据可以通过调查问卷、实验设计、观察等方式获得。
确保数据的准确性和完整性对于获得可靠的分析结果至关重要。
二、打开SPSS软件并导入数据1. 启动SPSS软件,点击菜单栏中的“文件(File)”选项;2. 在下拉菜单中选择“打开(Open)”选项;3. 导航到保存数据的文件位置,并选择要导入的数据文件;4. 确保所选的文件类型与数据文件的格式相匹配,点击“打开”按钮;5. 数据文件将被导入到SPSS软件中,显示在数据编辑器窗口中。
三、创建多元线性回归模型1. 点击菜单栏中的“分析(Analyse)”选项;2. 在下拉菜单中选择“回归(Regression)”选项;3. 在弹出的子菜单中选择“线性(Linear)”选项;4. 在“因变量”框中,选中要作为因变量的变量;5. 在“自变量”框中,选中要作为自变量的变量;6. 点击“添加(Add)”按钮,将自变量添加到回归模型中;7. 可以通过“移除(Remove)”按钮来删除已添加的自变量;8. 点击“确定(OK)”按钮,创建多元线性回归模型。
四、进行多元线性回归分析1. 多元线性回归模型创建完成后,SPSS将自动进行回归分析并生成结果;2. 回归结果将显示在“回归系数”、“模型总结”和“模型拟合优度”等不同的输出表中;3. “回归系数”表显示各个自变量的回归系数、标准误差、显著性水平等信息;4. “模型总结”表提供模型中方程的相关统计信息,包括R方值、F 统计量等;5. “模型拟合优度”表显示模型的拟合优度指标,如调整后R方、残差平方和等;6. 可以通过菜单栏中的“图形(Graphs)”选项,绘制回归模型的拟合曲线图、残差图等。
SPSS多元线性回归分析实例操作步骤
SPSS 统计分解之阳早格格创做多元线性返回分解要领支配取分解真验手段:引进1998~上海市都会人心稀度、都会住户人均可支配支进、五年以上仄衡年贷款利率战房屋空置率动做变量,去钻研上海房价的变动果素.真验变量:以年份、商品房仄衡卖价(元/仄圆米)、上海市都会人心稀度(人/仄圆公里)、都会住户人均可支配支进(元)、五年以上仄衡年贷款利率(%)战房屋空置率(%)动做变量.真验要领:多元线性返回分解法支配历程:第一步:导进Excel数据文献该表隐现模型最先引进变量都会人心稀度 (人/仄圆公里),第二个引进模型的是变量都会住户人均可支配支进(元),不变量被剔除.该表隐现各模型的圆好分解截止.从表中不妨瞅出,模型的F 统计量的瞅察值为23832.156,概率p值为0.000,正在隐著性火仄为0.05的情形下,不妨认为:商品房仄衡卖价(元/仄圆米)取都会人心稀度 (人/仄圆公里),战都会住户人均可支配支进(元)之间有线性闭系.3.返回系数该表为返回模型的残好统计量,尺度化残好(Std. Residual)的千万于值最大为1.659,不超出默认值3,不克不迭创制偶同值.7.返回尺度化残好的直圆图该图为返回尺度化残好的直圆图,正态直线也被隐现正在直圆图上,用以推断尺度化残好是可呈正态分集.然而是由于样本数惟有11个,所以只可大概推断其呈正态分集.该图返回尺度化的正态PP图,该图给出了瞅测值的残好分集取假设的正态分集的比较,由图可知尺度化残好集面分集靠拢直线,果而可推断尺度化残好呈正态分集.该图隐现的是果变量取返回尺度化预测值的集面图,其中DEPENDENT为x轴变量,*ZPRED为y轴变量.由图可睹,二变量呈直线趋势.附件:本初数据:自变量集面图:由集面图不妨瞅出,可加进分解的变量为都会人心稀度、都会住户人均可支配支进.。
SPSS多元线性回归分析教程
SPSS多元线性回归分析教程线性回归分析的SPSS操作本节容主要介绍如何确定并建立线性回归方程。
包括只有一个自变量的一元线性回归和和含有多个自变量的多元线性回归。
为了确保所建立的回归方程符合线性标准,在进行回归分析之前,我们往往需要对因变量与自变量进行线性检验。
也就是类似于相关分析一章中讲过的借助于散点图对变量间的关系进行粗略的线性检验,这里不再重复。
另外,通过散点图还可以发现数据中的奇异值,对散点图中表示的可能的奇异值需要认真检查这一数据的合理性。
一、一元线性回归分析1数据以本章第三节例3的数据为例,简单介绍利用SPSS如何进行一元线性回归分析。
数据编辑窗口显示数据输入格式如下图7-8 (文件7-6-1.sav):图7-8 :回归分析数据输入2?用SPSS进行回归分析,实例操作如下:2.1.回归方程的建立与检验(1) 操作①单击主菜单An alyze / Regression / Li near ,?进入设置对话框如图7-9所示。
从左边变量表列中把因变量y选入到因变量(Depe ndent)框中,把自变量x选入到自变量(I ndepe ndent)框中。
在方法即Method —项上请注意保持系统默认的选项Enter,选择该项表示要求系统在建立回归方程时把所选中的全部自变量都保留在方程中。
所以该方法可命名为强制进入法(在多元回归分析中再具体介绍这一选项的应用)。
具体如下图所示:②请单击Statistics 按钮,可以选择需要输出的一些统计量。
女口Regression Coefficients (回归系数)中的Estimates ,可以输出回归系数及相关统计量,包括回归系数 B 、标准误、标准化回归系数BETA 、T 值及显著性水平等。
Model fit 项可输出相关系数R ,测定系数R 2,调整系数、成后点击Continue 返回主对话框。
回归方程建立后,除了需要对方程的显著性进行检验外,还需要检验所建立的方程是否违反回归分析的假定,为此需进行多项残差分析。
SPSS多元线性回归分析研究实例操作步骤
SPSS 统计分析多元线性回归分析方法操作与分析实验目地:引入1998~2008年上海市城市人口密度、城市居民人均可支配收入、五年以上平均年贷款利率和房屋空置率作为变量,来研究上海房价地变动因素.实验变量:以年份、商品房平均售价(元/平方米)、上海市城市人口密度(人/平方公里)、城市居民人均可支配收入(元)、五年以上平均年贷款利率(%)和房屋空置率(%)作为变量.实验方法:多元线性回归分析法软件:spss19.0操作过程:第一步:导入Excel数据文件;1.open data document——open data——openi me an dAl l th i ng si nt he i r b ei n ga 2. Opening excel data source——OK.第二步:1.在最上面菜单里面选中Analyze——Regression——Linear ,Dependent (因变量)选择商品房平均售价,Independents (自变量)选择城市人口密度、城市居民人均可支配收入、五年以上平均年贷款利率、房屋空置率;Method 选择Stepwise.DXDiTa9E3d进入如下界面:2.点击右侧Statistics ,勾选Regression Coefficients (回归系数)选项组中地Estimates ;勾选Residuals (残差)选项组中地Durbin-i me an dAl l th i ng si nt he i r b ei n ga r e go od f o rs Watson 、Casewise diagnostics 默认;接着选择Model fit 、Collinearity diagnotics ;点击Continue.3.点击右侧Plots ,选择*ZPRED (标准化预测值)作为纵轴变量,选择DEPENDNT (因变量)作为横轴变量;勾选选项组中地StandardizedResidual Plots (标准化残差图)中地Histogram 、Normal probability plot ;点击Continue.5PCzVD7HxAAl l th i ng si nt he i r b ei n ga r e go od f o r4.点击右侧Save ,勾选Predicted Vaniues (预测值)和Residuals (残差)选项组中地Unstandardized ;点击Continue.5.点击右侧Options ,默认,点击Continue.t i mer b ei n ga r e go od f o rs om 6.返回主对话框,单击OK.输出结果分析:1.引入/剔除变量表该表显示模型最先引入变量城市人口密度 (人/平方公里),第二个引入模型地是变量城市居民人均可支配收入(元),没有变量被剔除.2.模型汇总Model Summary ct me an dAi n ga r e g该表显示模型地拟合情况.从表中可以看出,模型地复相关系数(R )为1.000,判定系数(R Square )为1.000,调整判定系数(Adjusted R Square )为1.000,估计值地标准误差(Std. Error of the Estimate )为28.351,Durbin-Watson 检验统计量为2.845,当DW≈2时说明残差独立.LDAYtRyKfE3.方差分析表该表显示各模型地方差分析结果.从表中可以看出,模型地F 统计量地观察值为23832.156,概率p 值为0.000,在显著性水平为0.05地情形下,可以认为:商品房平均售价(元/平方米)与城市人口密度 (人/平方公里),和城市居民人均可支配收入(元)之间有线性关系.Zzz6ZB2Ltk4.回归系数Coefficients ant he i r b e该表显示地是回归方程外地各模型变量地有关统计量,可见模型方程外地各变量偏回归系数经重检验,概率p 值均大于0.10,故不能引入方程.6ewMyirQFL6.共线性诊断i ng si n该表是多重共线性检验地特征值以及条件指数.对于第二个模型,最大特征值为2.891,其余依次快速减小.第三列地各个条件指数,可以看出有多重共线性.7.残差统计量该表为回归模型地残差统计量,标准化残差(Std. Residual )地绝对值最大为1.659,没有超过默认值3,不能发现奇异值.y6v3ALoS898.回归标准化残差地直方图t he i r b ei 该图为回归标准化残差地直方图,正态曲线也被显示在直方图上,用以判断标准化残差是否呈正态分布.但是由于样本数只有11个,所以只能大概判断其呈正态分布.M2ub6vSTnP9.回归标准化地正态P-P 图该图回归标准化地正态P-P图,该图给出了观测值地残差分布与假设地正态分布地比较,由图可知标准化残差散点分布靠近直线,因而可判断标准化残差呈正态分布.10.因变量与回归标准化预测值地散点图附件:原始数据:自变量散点图:由散点图可以看出,可进入分析地变量为城市人口密度、城市居民人均可支配收入.版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.用户可将本文地内容或服务用于个人学习、研究或欣赏,以及其他非商业性或非盈利性用途,但同时应遵守著作权法及其他相关法律地规定,不得侵犯本网站及相关权利人地合法权利.除此以外,将本文任何内容或服务用于其他用途时,须征得本人及相关权利人地书面许可,并支付报酬.Users may use the contents or services of this article for personal study, research or appreciation, and other non-commercial or non-profit purposes, but at the same time, they shall abide by the provisions of copyright law and other relevant laws, and shall not infringe upon the legitimate rights of this website and its relevant obligees. In addition, when any content or service of this article is used for other purposes, written permission and remuneration shall be obtained from the person concerned and the relevant obligee.转载或引用本文内容必须是以新闻性或资料性公共免费信息为使用目地地合理、善意引用,不得对本文内容原意进行曲解、修改,并自负版权等法律责任.Reproduction or quotation of the content of this article must be reasonable and good-faith citation for the use of news or informative public free information. It shall notmisinterpret or modify the original intention of the content of this article, and shall bear legal liability such ascopyright.。
SPSS线性回归描述之欧阳美创编
SPSS 10.0高级教程十二:多元线性回归与曲线拟合,国内生物医药的突破之年。
不仅有干细胞发现的新突破,还有转基因作物政策的新举措。
回归分析是处理两个及两个以上变量间线性依存关系的统计方法。
在医学领域中,此类问题很普遍,如人头发中某种金属元素的含量与血液中该元素的含量有关系,人的体表面积与身高、体重有关系;等等。
回归分析就是用于说明这种依存变化的数学关系。
§10.1Linear过程10.1.1 简单操作入门调用此过程可完成二元或多元的线性回归分析。
在多元线性回归分析中,用户还可根据需要,选用不同筛选自变量的方法(如:逐步法、向前法、向后法,等)。
例10.1:请分析在数据集Fat surfactant.sav中变量fat对变量spovl的大小有无影响?显然,在这里spovl是连续性变量,而fat是分类变量,我们可用用单因素方差分析来解决这个问题。
但此处我们要采用和方差分析等价的分析方法回归分析来解决它。
回归分析和方差分析都可以被归入广义线性模型中,因此他们在模型的定义、计算方法等许多方面都非常近似,下面大家很快就会看到。
这里spovl是模型中的因变量,根据回归模型的要求,它必须是正态分布的变量才可以,我们可以用直方图来大致看一下,可以看到基本服从正态,因此不再检验其正态性,继续往下做。
10.1.1.1 界面详解在菜单中选择Regression==>liner,系统弹出线性回归对话框如下:除了大家熟悉的内容以外,里面还出现了一些特色菜,让我们来一一品尝。
【Dependent框】用于选入回归分析的应变量。
【Block按钮组】由Previous和Next两个按钮组成,用于将下面Independent 框中选入的自变量分组。
由于多元回归分析中自变量的选入方式有前进、后退、逐步等方法,如果对不同的自变量选入的方法不同,则用该按钮组将自变量分组选入即可。
下面的例子会讲解其用法。
【Independent框】用于选入回归分析的自变量。
多元线性回归的计算方法之欧阳地创编
多元线性回归的计算方法摘要在实际经济问题中,一个变量往往受到多个变量的影响。
例如,家庭消费支出,除了受家庭可支配收入的影响外,还受诸如家庭所有的财富、物价水平、金融机构存款利息等多种因素的影响,表现在线性回归模型中的解释变量有多个。
这样的模型被称为多元线性回归模型。
多元线性回归的基本原理和基本计算过程与一元线性回归相同,但由于自变量个数多,计算相当麻烦,一般在实际中应用时都要借助统计软件。
这里只介绍多元线性回归的一些基本问题。
但由于各个自变量的单位可能不一样,比如说一个消费水平的关系式中,工资水平、受教育程度、职业、地区、家庭负担等等因素都会影响到消费水平,而这些影响因素(自变量)的单位显然是不同的,因此自变量前系数的大小并不能说明该因素的重要程度,更简单地来说,同样工资收入,如果用元为单位就比用百元为单位所得的回归系数要小,但是工资水平对消费的影响程度并没有变,所以得想办法将各个自变量化到统一的单位上来。
前面学到的标准分就有这个功能,具体到这里来说,就是将所有变量包括因变量都先转化为标准分,再进行线性回归,此时得到的回归系数就能反映对应自变量的重要程度。
这时的回归方程称为标准回归方程,回归系数称为标准回归系数,表示如下:Zy=β1Zx1+β2Zx2+…+βkZxk注意,由于都化成了标准分,所以就不再有常数项a 了,因为各自变量都取平均水平时,因变量也应该取平均水平,而平均水平正好对应标准分0,当等式两端的变量都取0时,常数项也就为0了。
多元线性回归模型的建立多元线性回归模型的一般形式为Yi=β0+β1X1i+β2X2i+…+i i i i h x υβ+=1,2,…,n 其中 k 为解释变量的数目,j β=(j=1,2,…,k)称为回归系数(regression coefficient)。
上式也被称为总体回归函数的随机表达式。
它的非随机表达式为E(Y∣X1i,X2i,…Xki,)=β0+β1X1i+β2X2i+…+βkXk iβj也被称为偏回归系数(partial regression coefficient)多元线性回归的计算模型一元线性回归是一个主要影响因素作为自变量来解释因变量的变化,在现实问题研究中,因变量的变化往往受几个重要因素的影响,此时就需要用两个或两个以上的影响因素作为自变量来解释因变量的变化,这就是多元回归亦称多重回归。
多元回归分析SPSS案例之欧阳物创编
多元回归分析时间:2021.02.07 命题人:欧阳物在大多数的实际问题中,影响因变量的因素不是一个而是多个,我们称这类回问题为多元回归分析。
可以建立因变量y与各自变量x j(j=1,2,3,…,n)之间的多元线性回归模型:其中:b0是回归常数;b k(k=1,2,3,…,n)是回归参数;e是随机误差。
多元回归在病虫预报中的应用实例:某地区病虫测报站用相关系数法选取了以下4个预报因子;x1为最多连续10天诱蛾量(头);x2为4月上、中旬百束小谷草把累计落卵量(块);x3为4月中旬降水量(毫米),x4为4月中旬雨日(天);预报一代粘虫幼虫发生量y(头/m2)。
分级别数值列成表2-1。
预报量y:每平方米幼虫0~10头为1级,11~20头为2级,21~40头为3级,40头以上为4级。
预报因子:x1诱蛾量0~300头为l级,301~600头为2级,601~1000头为3级,1000头以上为4级;x2卵量0~150块为1级,15l~300块为2级,301~550块为3级,550块以上为4级;x3降水量0~10.0毫米为1级,10.1~13.2毫米为2级,13.3~17.0毫米为3级,17.0毫米以上为4级;x4雨日0~2天为1级,3~4天为2级,5天为3级,6天或6天以上为4级。
表2-1x1 x2 x3 x4 y年蛾量级别卵量级别降水量级别雨日级别幼虫密度级别1960 1022 4 112 1 4.3 1 2 1 10 1 1961 300 1 440 3 0.1 1 1 1 4 1 1962 699 3 67 1 7.5 1 1 1 9 1 1963 1876 4 675 4 17.1 4 7 4 55 4 1965 43 1 80 1 1.9 1 2 1 1 1数据保存在“DATA6-5.SAV”文件中。
1)准备分析数据在SPSS数据编辑窗口中,创建“年份”、“蛾量”、“卵量”、“降水量”、“雨日”和“幼虫密度”变量,并输入数据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
SPSS 统计分析
欧阳歌谷(2021.02.01)
多元线性回归分析方法操作与分析
实验目的:
引入1998~2008年上海市城市人口密度、城市居民人均可支配收入、五年以上平均年贷款利率和房屋空置率作为变量,来研究上海房价的变动因素。
实验变量:
以年份、商品房平均售价(元/平方米)、上海市城市人口密度(人/平方公里)、城市居民人均可支配收入(元)、五年以上平均年贷款利率(%)和房屋空置率(%)作为变量。
实验方法:多元线性回归分析法
软件:spss19.0
操作过程:
第一步:导入Excel数据文件
1.open data document——open data——open;
2. Opening excel data source——OK.
第二步:
1.在最上面菜单里面选中Analyze——Regression——Linear ,Dependent(因变量)选择商品房平均售价,Independents(自变量)选择城市人口密度、城市居民人均可支配收入、五年以上平均年贷款利率、房屋空置率;Method选择Stepwise.
进入如下界面:
2.点击右侧Statistics,勾选Regression Coefficients(回归系数)选项组中的Estimates;勾选Residuals(残差)选项组中的Durbin-Watson、Casewise diagnostics默认;接着选择Model fit、Collinearity diagnotics;点击Continue.
3.点击右侧Plots,选择*ZPRED(标准化预测值)作为纵轴变量,选择DEPENDNT(因变量)作为横轴变量;勾选选项组中的Standardized Residual Plots(标准化残差图)中的Histogram、Normal probability plot;点击Continue.
4.点击右侧Save,勾选Predicted Vaniues(预测值)和Residuals (残差)选项组中的Unstandardized;点击Continue.
5.点击右侧Options,默认,点击Continue.
6.返回主对话框,单击OK.
输出结果分析:
1.引入/剔除变量表
Variables Entered/Removed a
Model Variables Entered Variables Removed Method
1 城市人口密度 (人/平方公里) . Stepwise (Criteria:
Probability-of-F-to-enter
<= .050, Probability-of-F-to-
remove >= .100).
2 城市居民人均可支配收入(元) . Stepwise (Criteria:
Probability-of-F-to-enter
<= .050, Probability-of-F-to-
remove >= .100).
a. Dependent Variable: 商品房平均售价(元/平方米)
该表显示模型最先引入变量城市人口密度 (人/平方公里),第
二个引入模型的是变量城市居民人均可支配收入(元),没有变量
被剔除。
2 Regression 38310296.528 2 19155148.264 23832.156 .000b
Residual 6430.018 8 803.752
Total 38316726.545 10
a. Predictors: (Constant), 城市人口密度 (人/平方公里)
b. Predictors: (Constant), 城市人口密度 (人/平方公里), 城市居民人均可支配收入(元)
c. Dependent Variable: 商品房平均售价(元/平方米)
该表显示各模型的方差分析结果。
从表中可以看出,模型的
F统计量的观察值为23832.156,概率p值为0.000,在显著性水
平为0.05的情形下,可以认为:商品房平均售价(元/平方米)与
城市人口密度 (人/平方公里),和城市居民人均可支配收入(元)之间
有线性关系。
4.回归系数
该图为回归标准化残差的直方图,正态曲线也被显示在直方图上,用以判断标准化残差是否呈正态分布。
但是由于样本数只有11个,所以只能大概判断其呈正态分布。
9.回归标准化的正态P-P图
该图回归标准化的正态P-P图,该图给出了观测值的残差分布与假设的正态分布的比较,由图可知标准化残差散点分布靠近直线,因而可判断标准化残差呈正态分布。
10.因变量与回归标准化预测值的散点图
该图显示的是因变量与回归标准化预测值的散点图,其中DEPENDENT为x轴变量,*ZPRED为y轴变量。
由图可见,两变量呈直线趋势。
附件:
原始数据:
自变量散点图:
由散点图可以看出,可进入分析的变量为城市人口密度、城市居民人均可支配收入。