七年级数学上册整式计算题专项练习(含答案)

合集下载

人教版数学七年级上册第二章整式的加减单元测试卷(含答案)

人教版数学七年级上册第二章整式的加减单元测试卷(含答案)

人教版数学七年级上学期第二章整式的加减测试一、选择题(共12小题,总分36分)1.代数式π,x2+21x+,x+xy,3x2+nx+4,﹣x,3,5xy,yx中,整式共有( )A. 7个B. 6个C. 5个D. 4个2.下列关于单项式235xy-的说法中,正确的是()A. 系数是25-,次数是2 B. 系数是35,次数是2C. 系数是一3,次数是3D. 系数是35,次数是33.多项式6x2y-3x-1的次数和常数项分别是()A 3和-1 B. 2和-1 C. 3和1 D. 2和14.下列运算中,“去括号”正确的是( )A. a+(b-c)=a-b-cB. a-(b+c)=a-b-cC. m-2(p-q)=m-2p+qD. x²-(-x+y)=x²+x+y5.对于式子:22x y+,2ab,12,3x2+5x-2,abc,0,2x yx+,m,下列说法正确是( )A 有5个单项式,1个多项式 B. 有3个单项式,2个多项式C. 有4个单项式,2个多项式D. 有7个整式6. 下列计算,正确的是( )A. 3+2ab="5ab"B. 5xy–y="5x"C. -52m n+5n2m=" 0" D.–x =7.如果单项式x2y m+2与x n y的和仍然是一个单项式,则m、n的值是( ).A. m=2,n=2B. m=-1,n=2C. m=-2,n=2D. m=2,n=-18.多项式23635x x-+与3231257x mx x+-+相加后,不含二次项,则常数的值是( )A. B. 3- C. 2- D. 8-9.若m﹣x=2,n+y=3,则(m﹣n)﹣(x+y)=( )A. ﹣1B. 1C. 5D. ﹣510.一个多项式减去x2﹣2y2等于x2+y2,则这个多项式 ( )A. ﹣2x2+y2B. 2x2﹣y2C. x2﹣2y2D. ﹣x2+2y211.长方形一边长为2a +b ,另一边为a -b ,则长方形周长为( )A. 3aB. 6a +bC. 6aD. 10a -b12.两个完全相同的大长方形,长为a ,各放入四个完全一样的小长方形后,得到图(1)、图(2),那么图(1)阴影部分的周长与图(2)阴影部分的周长的差是( )(用含a 的代数式表示)A. 12aB. 32a C. a D. 54a 二、填空题(共6小题,总分18分) 13.请写出一个系数是-2,次数是3的单项式:________________.14.若5m x n 3与-6m 2n y 是同类项,则xy 的值等于_________.15.若整式(8x 2-6ax +14)-(8x 2-6x +6)的值与x 的取值无关,则a 的值是________.16.若多项式2x 2+3x+7的值为10,则多项式6x 2+9x ﹣7的值为_____.17.己知多项式1A ay =-,351B ay y =--,且多项式2A B +中不含字母,则的值为__________. 18.观察下面的一列单项式:2x,-4x 2,8x 3,-16x 4,…根据你发现的规律,第n 个单项式为__________.三、解答题(共8小题,总分66分)19.化简:(1)3x 2-3x 2-y 2+5y +x 2-5y +y 2; (2) a 2b -0.4ab 2-12a 2b +25ab 2. 20.先化简,再求值:(1)2xy -12 (4xy -8x 2y 2)+2(3xy -5x 2y 2),其中x =13,y =-3. (2)-a 2b +(3ab 2-a 2b )-2(2ab 2-a 2b ),其中a =1,b =-2.21.如果x 2-x+1的2倍减去一个多项式得到3x 2+4x-1,求这个多项式.22.若3x m y n 是含有字母x 和y 的五次单项式,求m n 的最大值.23.老师在黑板上写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如下:-(a 2+4ab +4b 2)=a 2-4b 2(1)求所捂的多项式;(2)当a =-1,b =2时,求所捂的多项式的值.24.已知A =2a 2-a,B =-5a +1.(1)化简:3A -2B +2;(2)当a =-12时,求3A -2B +2的值. 25.先化简,再求值:已知a 2﹣1=0,求(5a 2+2a ﹣1)﹣2(a+a 2)的值.26.阅读下面材料:计算1+2+3+…+99+100时,如果一个一个顺次相加显然太繁杂,我们仔细观察这个式子的特点,发现运用加法的运算律,可简化计算,提高计算速度.1+2+3+…+99+100=(1+100)+(2+99)+…+(50+51)=101×50=5050.根据阅读材料提供的方法,计算:a+(a+m)+(a+2m)+(a+3m)+…+(a+100m).答案与解析一、选择题(共12小题,总分36分)1.在代数式π,x2+21x+,x+xy,3x2+nx+4,﹣x,3,5xy,yx中,整式共有( )A. 7个B. 6个C. 5个D. 4个【答案】B【解析】【分析】分母中含有字母的式子一定不是多项式也不是单项式,因此其不是整式.所有单项式和多项式都是整式.【详解】在代数式π,x2+21x+,x+xy,3x2+nx+4,﹣x,3,5xy,yx中,整式有:π,x+xy,3x2+nx+4,﹣x,3,5xy,共有6个.故选B【点睛】本题考核知识点:整式. 解题关键点:理解整式的意义.2.下列关于单项式235xy-的说法中,正确的是()A. 系数是25-,次数是2 B. 系数是35,次数是2C. 系数是一3,次数是3D. 系数是35,次数是3【答案】D【解析】【分析】根据单项式系数和次数的定义判断即可.【详解】235xy-的系数是35,次数是3.故选D.【点睛】本题考查单项式系数与次数的定义,关键在于牢记定义即可判断.3.多项式6x2y-3x-1的次数和常数项分别是()A. 3和-1B. 2和-1C. 3和1D. 2和1 【答案】A【解析】【分析】运用多项式不含字母的项叫做常数项,多项式中次数最高的项的次数叫做多项式的次数即可得出答案.【详解】∵多项式不含字母的项叫做常数项,多项式中次数最高的项的次数叫做多项式的次数∴多项式6x2y-3x-1的次数和常数项分别是:3和-1.故选A.【点睛】考查了多项式相关概念,正确把握多项式次数和常数项的定义(多项式不含字母的项叫做常数项,多项式中次数最高的项的次数叫做多项式的次数)是解题关键.4.下列运算中,“去括号”正确的是( )A. a+(b-c)=a-b-cB. a-(b+c)=a-b-cC. m-2(p-q)=m-2p+qD. x²-(-x+y)=x²+x+y【答案】B【解析】【分析】对原式各项进行去括号变形得到结果,即可作出判断.【详解】解:A、a+(b-c)=a+b-c,错误;B、a-(b+c)=a-b-c,正确;C、m-2(p-q)=m-2p+2q,错误;D、x²-(-x+y)=x2+x-y,错误,故选B.【点睛】本题考查了去括号,熟练掌握去括号法则是解本题的关键.5.对于式子:22x y+,2ab,12,3x2+5x-2,abc,0,2x yx+,m,下列说法正确的是( )A. 有5个单项式,1个多项式B. 有3个单项式,2个多项式C. 有4个单项式,2个多项式D. 有7个整式【答案】C【解析】分析:分别利用多项式以及单项式的定义分析得出答案.详解:22x y+,2ab,12,3x2+5x﹣2,abc,0,2x yx+,m中:有4个单项式:12,abc,0,m;2个多项式为:22x y+,3x2+5x-2.故选C.点睛:此题主要考查了多项式以及单项式,正确把握相关定义是解题关键.6. 下列计算,正确的是( )A. 3+2ab="5ab"B. 5xy–y="5x"C. -52m=" 0" D.–x =m n+5n2【答案】C【解析】分析:根据同类项的概念及合并同类项的法则得出.详解:A、一个是数字,一个是字母,不是同类项,不能合并,错误;B、字母不同,不是同类项,不能合并,错误;C、正确;D、字母的指数不同,不是同类项,不能合并,错误.故选C.点睛:本题主要考查同类项的概念和合并同类项的法则.同类项的概念是所含字母相同,相同字母的指数也相同的项是同类项,不是同类项的一定不能合并.合并同类项的法则,即系数相加作为系数,字母和字母的指数不变.7.如果单项式x2y m+2与x n y的和仍然是一个单项式,则m、n的值是( ).A. m=2,n=2B. m=-1,n=2C. m=-2,n=2D. m=2,n=-1【答案】B【解析】试题分析:本题考查同类项的定义,单项式x2y m+2与x n y的和仍然是一个单项式,意思是x2y m+2与x n y是同类项,根据同类项中相同字母的指数相同得出.解:由同类项的定义,可知2=n,m+2=1,解得m=﹣1,n=2.故选B.考点:同类项.8.多项式2x mx x+-+相加后,不含二次项,则常数的值是( )312573635x x-+与32A. B. 3- C. 2- D. 8-【答案】B【解析】由题意可知36+12m=0,解得m=-3,故选B.9.若m﹣x=2,n+y=3,则(m﹣n)﹣(x+y)=( )A. ﹣1B. 1C. 5D. ﹣5【答案】A【解析】【分析】原式去括号整理后,将已知等式代入计算即可求出值.详解】∵m-x=2,n+y=3,∴原式=m-n-x-y=(m-x)-(n+y)=2-3=-1,故选A.【点睛】考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.10.一个多项式减去x2﹣2y2等于x2+y2,则这个多项式是( )A. ﹣2x2+y2B. 2x2﹣y2C. x2﹣2y2D. ﹣x2+2y2【答案】B【解析】【分析】根据:被减式=减式+差,列式计算即可得出答案.【详解】解:这个多项式为:x2﹣2y2+(x2+y2),=(1+1)x2+(﹣2+1)y2,=2x2﹣y2,故选B.【点睛】本题主要考查整式的加减.熟练应用整式加减法计算法则进行计算是解题的关键.11.长方形一边长为2a+b,另一边为a-b,则长方形周长为()A. 3aB. 6a+bC. 6aD. 10a-b 【答案】C【解析】【分析】根据长方形的周长公式列出算式后化简合并即可.【详解】∵长方形一边长为2a+b,另一边为a-b,∴长方形周长为:2(2a+b+a-b)=6a.故选C.【点睛】本题考查了整式的加减的应用,根据长方形的周长公式列出算式是解决问题的关键.12.两个完全相同的大长方形,长为a,各放入四个完全一样的小长方形后,得到图(1)、图(2),那么图(1)阴影部分的周长与图(2)阴影部分的周长的差是()(用含a的代数式表示)A. 12a B.32a C. a D.54a【答案】C【解析】【分析】设小长方形的长为x,宽为y,大长方形宽为b,表示出x、y、a、b之间的关系,然后求出阴影部分周长之差即可.【详解】设图中小长方形的长为x,宽为y,大长方形的宽为b,根据题意,得:x+2y=a、x=2y,则4y=a,图(1)中阴影部分周长为2b+2(a-x)+2x=2a+2b,图(2)中阴影部分的周长为2(a+b-2y)=2a+2b-4y,图(1)阴影部分周长与图(2)阴影部分周长之差为:(2a+2b)-(2a+2b-4y)=4y=a,故选C.【点睛】考查了整式的加减,以及列代数式,熟练掌握运算法则是解本题的关键.二、填空题(共6小题,总分18分)13.请写出一个系数是-2,次数是3的单项式:________________.【答案】-2a3(答案不唯一)【解析】分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.依此写出一个系数是-2,次数是3的单项式.【详解】解:系数是-2,次数是3单项式有:-2a3.(答案不唯一)故答案是:-2a3(答案不唯一).【点睛】考查了单项式的定义,注意确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.14.若5m x n3与-6m2n y是同类项,则xy的值等于_________.【答案】6【解析】【分析】根据同类项定义即可求x 、y 的值出答案.【详解】∵5m x n 3与-6m 2n y 是同类项,∴x=2,y=3∴xy=6.故答案是:6.【点睛】考查同类项的概念,解题的关键是熟练运用同类项的概念(含相同字母,且相同字母的指数也相同)求出x 、y 的值.15.若整式(8x 2-6ax +14)-(8x 2-6x +6)的值与x 的取值无关,则a 的值是________.【答案】1【解析】【分析】把多项式(8x 2-6ax+14)-(8x 2-6x+6)化简整理成(6-6a)x+8的形式,再根据其值与x 无关,可得关于a 的方程,解方程即可.【详解】原式=8x 2-6ax+14-8x 2+6x-6=(6-6a)x+8,∵整式(8x 2-6ax+14)-(8x 2-6x+6)的值与x 无关,∴6-6a=0,解得:a=1,故答案是:1.【点睛】考查的是整式的加减,熟知整式的加减实质上是合并同类项是解答此题的关键.16.若多项式2x 2+3x+7的值为10,则多项式6x 2+9x ﹣7的值为_____.【答案】2【解析】试题分析:由题意可得:2x 2+3x+7=10,所以移项得:2x 2+3x=10-7=3,所求多项式转化为:6x 2+9x ﹣7=3(6x 2+9x)-7=3×3-7=9-7=2,故答案为2.考点:求多项式的值.17.己知多项式1A ay =-,351B ay y =--,且多项式2A B +中不含字母,则的值为__________.【答案】1【解析】试题解析:2A+B=2(ay-1)+(3ay-5y-1)=2ay-2+3ay-5y-1=5ay-5y-3=5y(a-1)-3∴a-1=0,∴a=1故答案为118.观察下面的一列单项式:2x,-4x2,8x3,-16x4,…根据你发现的规律,第n个单项式为__________.【答案】(-1)n+1·2n·x n【解析】分析】通过观察题意可得:n为奇数时,单项式为正数;n为偶数时,单项式为负数.x的指数为n的值,2的指数为(n-1).由此可解出本题.【详解】解:∵2x=(-1)1+1•21•x1;-4x2=(-1)2+1•22•x2;8x3=(-1)3+1•23•x3;-16x4=(-1)4+1•24•x4;第n个单项式为(-1)n+1•2n•x n,故答案为:(-1)n+1•2n•x n.三、解答题(共8小题,总分66分)19.化简:(1)3x2-3x2-y2+5y+x2-5y+y2; (2) a2b-0.4ab2-12a2b+25ab2.【答案】(1) x2;(2)12a2b.【解析】【分析】直接合并同类项即可.【详解】(1)原式=(3x2-3x2+x2)+(y2-y2)+(5y-5y)=x2.(2)原式=(a2b-12a2b)+(-0.4a b2+25ab2)=12a2b.【点睛】考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.20.先化简,再求值:(1)2xy -12 (4xy -8x 2y 2)+2(3xy -5x 2y 2),其中x =13,y =-3. (2)-a 2b +(3ab 2-a 2b )-2(2ab 2-a 2b ),其中a =1,b =-2.【答案】(1)-12;(2)-4.【解析】【分析】原式去括号合并得到最简结果,把x 与y 的值代入计算即可求出值;【详解】(1)2xy -12(4xy -8x 2y 2)+2(3xy -5x 2y 2) =2xy -2xy +4x 2y 2+6xy -10x 2y 2=6xy -6x 2y 2,当x =13,y =-3时,原式=6×13×(-3)-6×21()3×(-3)2=-6-6=-12. (2)原式=-a 2b +3ab 2-a 2b -4ab 2+2a 2b=(-1-1+2)a 2b +(3-4)ab 2=-ab 2,当a =1,b =-2时,原式=-1×(-2)2=-4. 【点睛】考查了整式的加减-化简求值,熟练掌握整式的运算法则是解本题的关键.21.如果x 2-x+1的2倍减去一个多项式得到3x 2+4x-1,求这个多项式.【答案】263x x --+【解析】试题分析:==这个多项式为考点: 整式的加减22.若3x m y n 是含有字母x 和y 的五次单项式,求m n 的最大值.【答案】9【解析】【分析】根据单项式的概念即可求出答案.【详解】因为3x m y n是含有字母x和y的五次单项式,所以m+n=5,且m、n均为正整数.当m=1,n=4时,m n=14=1;当m=2,n=3时,m n=23=8;当m=3,n=2时,m n=32=9;当m=4,n=1时,m n=41=4,故m n的最大值为9.【点睛】考查单项式的概念,解题关键是运用单项式的概念和分类讨论的思想.23.老师在黑板上写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如下:-(a2+4ab+4b2)=a2-4b2(1)求所捂的多项式;(2)当a=-1,b=2时,求所捂的多项式的值.【答案】(1) 2a2+4ab;(2)-6.【解析】【分析】(1)根据题意列出整式相加减的式子,再去括号,合并同类项即可;(2)把3(1)中的式子即可.【详解】(1)所捂的多项式为:(a2-4b2)+(a2+4ab+4b2)=a2-4b2+a2+4ab+4b2=2a2+4ab.(2)当a=-1,b=2时,2a2+4ab=2×(-1)2+4×(-1)×2=2-8=-6.【点睛】考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.24.已知A=2a2-a,B=-5a+1.(1)化简:3A-2B+2;(2)当a=-12时,求3A-2B+2的值.【答案】(1)6a2+7a(2)-2 【解析】试题分析:(1)把A、B代入3A﹣2B+2,再去括号、合并同类项;(2)把a=-12代入上式计算.试题解析:解:(1)3A﹣2B+2, =3(2a2﹣a)﹣2(﹣5a+1)+2,=6a2﹣3a+10a﹣2+2,=6a2+7a;(2)当a=-12时,3A﹣2B+2=6×(-12)2+7×(-12)=-2.考点:整式的加减—化简求值;整式的加减25.先化简,再求值:已知a2﹣1=0,求(5a2+2a﹣1)﹣2(a+a2)的值.【答案】2.【解析】【分析】原式去括号整理后,将已知等式变形后代入计算即可求出值.【详解】解:(5a2+2a-1)-2(a+a2)=5a2+2a-1-2a-2a2=3a2-1,因为a2-1=0,所以a2=1,所以原式=3×1-1=2.【点睛】考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.26.阅读下面材料:计算1+2+3+…+99+100时,如果一个一个顺次相加显然太繁杂,我们仔细观察这个式子的特点,发现运用加法的运算律,可简化计算,提高计算速度.1+2+3+…+99+100=(1+100)+(2+99)+…+(50+51)=101×50=5050.根据阅读材料提供的方法,计算:a+(a+m)+(a+2m)+(a+3m)+…+(a+100m).【答案】101a+5050m.【解析】【分析】由阅读材料可以看出,100个数相加,用第一项加最后一项可得101,第二项加倒数第二项可得101,…,共100项,可分成50个101,在计算a+(a+m)+(a+2m)+(a+3m)+…+(a+100d)时,可以看出a共有100个,m,2m,3m,…100m,共有100个,m+100m=101m,2m+99d=101d,…共有50个101m,根据规律可得答案.【详解】a+(a+m)+(a+2m)+(a+3m)+…+(a+100m)=101a+(m+2m+3m+…+100m)=101a+(m+100m)+(2m+99m)+(3m+98m)+…+(50m+51m)=101a+101m×50=101a+5050m.【点睛】考查了整式的加法,关键是根据阅读材料找出其中的规律,根据规律得出解题的技巧.。

七年级数学上册整式计算题专项练习(有答案)

七年级数学上册整式计算题专项练习(有答案)

整式的乘除计算训练(1)1. )2()(b a b a -++-2. (x+2)(y+3)-(x+1)(y-2)3. 22)2)(2(y y x y x ++-4.x(x -2)-(x+5)(x -5)5. ⎪⎭⎫⎝⎛+-⎪⎭⎫ ⎝⎛--y x y x224 6.)94)(32)(23(22x y x y y x +---7. ()()3`122122++-+a a 8.()()()2112+--+x x x9. (x -3y)(x+3y)-(x -3y)2 10. 23(1)(1)(21)x x x +---11. 22)23()23(y x y x --+ 12.22)()(y x y x -+13. 0.125100×810014. 3022)2(21)x (4554---÷⎪⎭⎫⎝⎛--π-+⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛15. (1211200622332141)()()()-⨯+----16—19题用乘法公式计算16.999×1001 17.1992-18.298 19.2010200820092⨯-20.化简求值:)4)(12()12(2+-+-a a a ,其中2-=a 。

21. 化简求值2(2)2()()2(3)x y x y x y y x y +--++-,其中12,2x y =-=。

22. 5(x-1)(x+3)-2(x-5)(x-2) 23. (a-b)(a2+ab+b2)24. (3y+2)(y-4)-3(y-2)(y-3) 25. a(b-c)+b(c-a)+c(a-b)1y2)2 26. (-2mn2)2-4mn3(mn+1) 27. 3xy(-2x)3·(-428. (-x-2)(x+2) 29. 5×108·(3×102) 30. (x-3y)(x+3y)-(x-3y)231. (a+b-c)(a-b-c)答案1. 2. 3. 4.5. 6. 7. 8.9. 10. 11. 12.13. 14. 15.16. 原式=(1000-1)(1000+1) 17. 原式=(99+1)(99-1)=1000000-1 =10098=999999 =980018. 原式=(900-2)2 19. 原式=20092-(2009+1)(2009-1)=10000-400+4 =20092-20092+1=9604 =120.原式=,当时,原式=21.原式=,当,时,原式=22. 23. 24. 25. 0 26. 27. 28. 29.30. 31.北师大七年级数学上册《整式及其加减》计算题专项练习一一.解答题(共12小题)1.计算题①12﹣(﹣8)+(﹣7)﹣15;②﹣12+2×(﹣5)﹣(﹣3)3÷;③(2x﹣3y)+(5x+4y);④(5a2+2a﹣1)﹣4(3﹣8a+2a2).2.(1)计算:4+(﹣2)2×2﹣(﹣36)÷4;(2)化简:3(3a﹣2b)﹣2(a﹣3b).3.计算:(1)7x+4(x2﹣2)﹣2(2x2﹣x+3);(2)4ab﹣3b2﹣[(a2+b2)﹣(a2﹣b2)];(3)(3mn﹣5m2)﹣(3m2﹣5mn);(4)2a+2(a+1)﹣3(a﹣1).4.化简(1)2(2a2+9b)+3(﹣5a2﹣4b)(2)3(x3+2x2﹣1)﹣(3x3+4x2﹣2)5.(2009•柳州)先化简,再求值:3(x﹣1)﹣(x﹣5),其中x=2.6.已知x=5,y=3,求代数式3(x+y)+4(x+y)﹣6(x+y)的值.7.已知A=x2﹣3y2,B=x2﹣y2,求解2A﹣B.8.若已知M=x2+3x﹣5,N=3x2+5,并且6M=2N﹣4,求x.9.已知A=5a2﹣2ab,B=﹣4a2+4ab,求:(1)A+B;(2)2A﹣B;(3)先化简,再求值:3(A+B)﹣2(2A﹣B),其中A=﹣2,B=1.10.设a=14x﹣6,b=﹣7x+3,c=21x﹣1.(1)求a﹣(b﹣c)的值;(2)当x=时,求a﹣(b﹣c)的值.11.化简求值:已知a、b满足:|a﹣2|+(b+1)2=0,求代数式2(2a﹣3b)﹣(a﹣4b)+2(﹣3a+2b)的值.12.已知(x+1)2+|y﹣1|=0,求2(xy﹣5xy2)﹣(3xy2﹣xy)的值.北师大七年级数学上册《整式及其加减》计算题专项练习一参考答案与试题解析一.解答题(共12小题)1.计算题①12﹣(﹣8)+(﹣7)﹣15;②﹣12+2×(﹣5)﹣(﹣3)3÷;③(2x﹣3y)+(5x+4y);④(5a2+2a﹣1)﹣4(3﹣8a+2a2).考点:整式的加减;有理数的混合运算.专题:计算题.分析:(1)直接进行有理数的加减即可得出答案.(2)先进行幂的运算,然后根据先乘除后加减的法则进行计算.(3)先去括号,然后合并同类项即可得出结果.(4)先去括号,然后合并同类项即可得出结果.解答:解:①原式=12+8﹣7﹣15=﹣2;②原式=﹣1﹣10+27÷=﹣11+81=70;③原式=2x﹣3y+5x+4y=7x+y;④原式=5a2+2a﹣1﹣12+32a﹣8a2=﹣3a2+34a﹣13.点评:本题考查了整式的加减及有理数的混合运算,属于基础题,解答本题的关键熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.2.(1)计算:4+(﹣2)2×2﹣(﹣36)÷4;(2)化简:3(3a﹣2b)﹣2(a﹣3b).考点:整式的加减;有理数的混合运算.分析:(1)按照有理数混合运算的顺序,先乘方后乘除最后算加减;(2)运用整式的加减运算顺序计算:先去括号,再合并同类项.解答:解:(1)原式=4+4×2﹣(﹣9)=4+8+9=17;(2)原式=9a﹣6b﹣2a+6b=(9﹣2)a+(﹣6+6)b=7a.点评:在混合运算中要特别注意运算顺序:先三级,后二级,再一级;熟记去括号法则:﹣﹣得+,﹣+得﹣,++得+,+﹣得﹣;及熟练运用合并同类项的法则:字母和字母的指数不变,只把系数相加减.3.计算:(1)7x+4(x2﹣2)﹣2(2x2﹣x+3);(2)4ab﹣3b2﹣[(a2+b2)﹣(a2﹣b2)];(3)(3mn﹣5m2)﹣(3m2﹣5mn);(4)2a+2(a+1)﹣3(a﹣1).考点:整式的加减.分析:(1)先去括号,再合并同类项即可;(2)先去括号,再合并同类项即可;(3)先去括号,再合并同类项即可;(4)先去括号,再合并同类项即可.解答:解:(1)7x+4(x2﹣2)﹣2(2x2﹣x+3)=7x+4x2﹣8﹣4x2+2x﹣6=9x﹣14;(2)4ab﹣3b2﹣[(a2+b2)﹣(a2﹣b2)]=4ab﹣3b2﹣[a2+b2﹣a2+b2]=4ab﹣3b2﹣2b2=4ab﹣5b2;(3)(3mn﹣5m2)﹣(3m2﹣5mn)=3mn﹣5m2﹣3m2+5mn=8mn﹣8m2;(4)2a+2(a+1)﹣3(a﹣1)=2a+2a+2﹣3a+3=a+5.点评:本题考查了整式的加减,解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.4.化简(1)2(2a2+9b)+3(﹣5a2﹣4b)(2)3(x3+2x2﹣1)﹣(3x3+4x2﹣2)考点:整式的加减.专题:计算题.分析:(1)原式利用去括号法则去括号后,合并同类项即可得到结果;(2)原式利用去括号法则去括号后,合并同类项即可得到结果.解答:解:(1)原式=4a2+18b﹣15a2﹣12b=﹣11a2+6b;(2)原式=3x3+6x2﹣3﹣3x3﹣4x2+2=2x2﹣1.点评:此题考查了整式的加减,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.5.(2009•柳州)先化简,再求值:3(x﹣1)﹣(x﹣5),其中x=2.考点:整式的加减—化简求值.分析:本题应对方程去括号,合并同类项,将整式化为最简式,然后把x的值代入即可.解答:解:原式=3x﹣3﹣x+5=2x+2,当x=2时,原式=2×2+2=6.点评:本题考查了整式的化简.整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.6.已知x=5,y=3,求代数式3(x+y)+4(x+y)﹣6(x+y)的值.考点:整式的加减—化简求值.分析:先把x+y当作一个整体来合并同类项,再代入求出即可.解答:解:∵x=5,y=3,∴3(x+y)+4(x+y)﹣6(x+y)=x+y=5+3=8.点评:本题考查了整式的加减的应用,主要考查学生的计算能力,用了整体思想.7.已知A=x2﹣3y2,B=x2﹣y2,求解2A﹣B.考点:整式的加减.分析:直接把A、B代入式子,进一步去括号,合并得出答案即可.解答:解:2A﹣B=2(x2﹣3y2)﹣(x2﹣y2)=2x2﹣6y2﹣x2+y2=x2﹣5y2.点评:此题考查整式的加减混合运算,掌握去括号法则和运算的方法是解决问题的关键.8.若已知M=x2+3x﹣5,N=3x2+5,并且6M=2N﹣4,求x.考点:整式的加减;解一元一次方程.专题:计算题.分析:把M与N代入计算即可求出x的值.解答:解:∵M=x2+3x﹣5,N=3x2+5,∴代入得:6x2+18x﹣30=6x2+10﹣4,解得:x=2.点评:此题考查了整式的加减,熟练掌握运算法则是解本题的关键.9.已知A=5a2﹣2ab,B=﹣4a2+4ab,求:(1)A+B;(2)2A﹣B;(3)先化简,再求值:3(A+B)﹣2(2A﹣B),其中A=﹣2,B=1.考点:整式的加减;整式的加减—化简求值.专题:计算题.分析:(1)把A与B代入A+B中计算即可得到结果;(2)把A与B代入2A﹣B中计算即可得到结果;(3)原式去括号合并得到最简结果,把A与B的值代入计算即可求出值.解答:解:(1)∵A=5a2﹣2ab,B=﹣4a2+4ab,∴A+B=5a2﹣2ab﹣4a2+4ab=a2+2ab;(2)∵A=5a2﹣2ab,B=﹣4a2+4ab,∴2A﹣B=10a2﹣4ab+4a2﹣4ab=14a2﹣8ab;(3)原式=3A+3B﹣4A+2B=﹣A+5B,把A=﹣2,B=1代入得:原式=2+5=7.点评:此题考查了整式的加减,熟练掌握运算法则是解本题的关键.10.设a=14x﹣6,b=﹣7x+3,c=21x﹣1.(1)求a﹣(b﹣c)的值;(2)当x=时,求a﹣(b﹣c)的值.考点:整式的加减;代数式求值.专题:计算题.分析:(1)把a,b,c代入a﹣(b﹣c)中计算即可得到结果;(2)把x的值代入(1)的结果计算即可得到结果.解答:解:(1)把a=14x﹣6,b=﹣7x+3,c=21x﹣1代入得:a﹣(b﹣c)=a﹣b+c=14x﹣6+7x﹣3+21x﹣1=42x ﹣10;(2)把x=代入得:原式=42×﹣10=10.5﹣10=0.5.点评:此题考查了整式的加减,以及代数式求值,熟练掌握运算法则是解本题的关键.11.化简求值:已知a、b满足:|a﹣2|+(b+1)2=0,求代数式2(2a﹣3b)﹣(a﹣4b)+2(﹣3a+2b)的值.考点:整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.专题:计算题.分析:原式去括号合并得到最简结果,利用非负数的性质求出a与b的值,代入计算即可求出值.解答:解:原式=4a﹣6b﹣a+4b﹣6a+4b=﹣3a+2b,∵|a﹣2|+(b+1)2=0,∴a=2,b=﹣1,则原式=﹣6﹣2=﹣8.点评:此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.12.已知(x+1)2+|y﹣1|=0,求2(xy﹣5xy2)﹣(3xy2﹣xy)的值.考点:整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.分析:因为平方与绝对值都是非负数,且(x+1)2+|y﹣1|=0,所以x+1=0,y﹣1=0,解得x,y的值.再运用整式的加减运算,去括号、合并同类项,然后代入求值即可.解答:解:2(xy﹣5xy2)﹣(3xy2﹣xy)=(2xy﹣10xy2)﹣(3xy2﹣xy)=2xy﹣10xy2﹣3xy2+xy=(2xy+xy)+(﹣3xy2﹣10xy2)=3xy﹣13xy2,∵(x+1)2+|y﹣1|=0∴(x+1)=0,y﹣1=0∴x=﹣1,y=1.∴当x=﹣1,y=1时,3xy﹣13xy2=3×(﹣1)×1﹣13×(﹣1)×12=﹣3+13=10.答:2(xy﹣5xy2)﹣(3xy2﹣xy)的值为10.点评:整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.代入求值时要化简.。

人教版七年级上册数学《整式》练习题(含答案)

人教版七年级上册数学《整式》练习题(含答案)

2.1整 式一.判断题 (1)31+x 是关于x 的一次两项式. ( ) (2)-3不是单项式.( )(3)单项式xy 的系数是0.( )(4)x 3+y 3是6次多项式.( )(5)多项式是整式.( )二、选择题1.在下列代数式:21ab ,2b a +,ab 2+b+1,x 3+y2,x 3+ x 2-3中,多项式有( ) A .2个 B .3个 C .4个 D5个2.多项式-23m 2-n 2是( )A .二次二项式B .三次二项式C .四次二项式D 五次二项式3.下列说法正确的是( )A .3 x 2―2x+5的项是3x 2,2x ,5B .3x -3y 与2 x 2―2xy -5都是多项式 C .多项式-2x 2+4xy 的次数是3D .一个多项式的次数是6,则这个多项式中只有一项的次数是64.下列说法正确的是( )A .整式abc 没有系数B .2x +3y +4z 不是整式 C .-2不是整式 D .整式2x+1是一次二项式5.下列多项式中,是二次多项式的是( )A 、132+xB 、23xC 、3xy -1D 、253-x6.下列单项式次数为3的是( )×3×4 417.下列代数式中整式有( )x 1, 2x +y , 31a 2b , πy x -, xy 45, , a 个 个 个 个8.下列整式中,单项式是( )+1 -y D.21+x 9.下列各项式中,次数不是3的是( )A .xyz +1B .x 2+y +1C .x 2y -xy 2D .x 3-x 2+x -110.下列说法正确的是( )A .x(x +a)是单项式B .π12+x 不是整式C .0是单项式D .单项式-31x 2y 的系数是31 11.在多项式x 3-xy 2+25中,最高次项是( )A .x 3B .x 3,xy 2C .x 3,-xy 2D .2512.单项式-232xy 的系数与次数分别是( ) A .-3,3 B .-21,3 C .-23,2 D .-23,313.下列说法正确的是( )A .x 的指数是0B .x 的系数是0C .-10是一次单项式D .-10是单项式14.已知:32y x m -与n xy 5是同类项,则代数式n m 2-的值是( )A 、6-B 、5-C 、2-D 、5 15.系数为-21且只含有x 、y 的二次单项式,可以写出( ) A .1个B .2个C .3个D .4个 三.填空题1填一填 整式-ab πr 2 232ab - -a+b 2453-+y x A 3b 2-2a 2b 2+b 3-7ab+5 系数次数项2.单项式: 3234y x -的系数是 ,次数是 ; 3.220053xy 是 次单项式;4.y x 342-的一次项系数是 ,常数项是 ;5.单项式21xy 2z 是_____次单项式. 6.多项式a 2-21ab 2-b 2有_____项,其中-21ab 2的次数是 . 7.整式①21,②3x -y 2,③23x 2y ,④a ,⑤πx +21y ,⑥522a π,⑦x +1中 单项式有 ,多项式有8.x+2xy +y 是 次多项式.9.b 的311倍的相反数是 ; 10.设某数为x ,10减去某数的2倍的差是 ;11.42234263y y x y x x --+-的次数是 ;12.当x =2,y =-1时,代数式||||x xy -的值是 ;13.当y = 时,代数式3y -2与43+y 的值相等; 14.-23ab 的系数是 ,次数是 次.15.多项式x 3y 2-2xy 2-43xy -9是___次___项式,其中最高次项的系数是 ,二次项是 ,常数项是 .16.若2313m x y z -与2343x y z 是同类项,则m = . 17.在x 2, 21 (x +y),π1,-3中,单项式是 ,多项式是 ,整式是 .18.单项式7532c ab 的系数是____________,次数是____________.19.多项式x2y+xy-xy2-53中的三次项是____________.20.当a=____________时,整式x2+a-1是单项式.21.多项式xy-1是____________次____________项式.22.当x=-3时,多项式-x3+x2-1的值等于____________.23.一个n次多项式,它的任何一项的次数都____________.24.如果3x k y与-x2y是同类项,那么k=____ ____.四、合并下列多项式中的同类项(1)3x2+4x-2x2-x+x2-3x-1;(2)-a2b+2a2b(3)a3-a2b+ab2+a2b-2ab2+b3;(4)2a2b+3a2b-12a2b(5)(2x+3y)+(5x-4y);(6)(8a-7b)-(4a-5b)(7)(8x-3y)-(4x+3y-z)+2z;(8)(2x-3y)-3(4x-2y)(9)3a2+a2-2(2a2-2a)+(3a-a2)(10)3b-2c-[-4a+(c+3b)]+c五.先去括号,再合并同类项:(1)(2x+3y )+(5x -4y ); (2)(8a -7b )-(4a -5b )(3)(8x -3y )-(4x+3y -z )+2z (4)(2x -3y )-3(4x -2y )(5)3a 2+a 2-2(2a 2-2a )+(3a -a 2) (6)3b -2c -[-4a+(c+3b )]+c六、求代数式的值1.当x =-2时,求代数式132--x x 的值。

人教版数学七年级上册整式计算专项练习200题及答案详解

人教版数学七年级上册整式计算专项练习200题及答案详解

1当2已知,当3当4当5当当6若代数式7已知当8当9 C. D.如图所示的运算程序中,若开始输入的10B.C. D.按如图所示的程序计算:若开始输入的11 B.C.D.已知,则代数式的值是().12 B.C.D.已知,则式子的值为().13不能确定已知代数式的值是,则代数式的值是().14当时,代数式值为,那么当时,代数式的值是 ().1516化简17当18已知19已知代数式20化简21若22已知23如果24已知代数式25若代数式26整式化简求值:先化简,再求值:27已知整式化简求值:先化简,再求值:28已知三个有理数29已知30先化简,再求值31已知代数式32按照如图的运算顺序,输入33如图是一个数值转换机.若输入的34当35若36已知37已知多项式时,多项式的值是38已知.3940设41用整体思想解题:为了简化问题,我们往往把一个式子看成一个数42已知当43已知当44已知45先化简再求值:46设若代数式47若48已知49先化简再求值50若51已知52先化简,再求值:53先化简,在求值:5456当57化简求值:58化简:59请回答下列各题:60已知62已知63先化简,再求值:64先化简,再求值:65先化简,再求值:66回答下面问题;67先化简,再求值:68先化简,再求值:69化简再求值:70阅读框图并回答下列问题:.71先化简,再求值:72先化简,再求值.求73对于74先化简,再求值:75若76已知77已知78已知79奕铭在化简多项式80先化简,再求值81先化简,再求值:82先化简,再求值:83若84已知:85先化简再求值:86先化简,再求值:87已知88已知89已知90先化简,再求值:91已知92先化简,再求值:93若单项式94求多项式95设96已知97已知98求99若100若代数式1 23 4 5 67 8 9 10 11 1213 14 15 16 17 18 1920 21 22 23 24 25 26 2728 29 30 31 32 33 34 3536 37 38 39 40 41 4243 44 45 46 47 48 4950 51 52 53 54 55 5657 58 59 60 61 62 63 6465 66 67 68 69 70 7173 74 75 76 77 78 7981 82 83 84 85 8687 88 89 90 91 9293 94 9596 9798 99 100。

七年级上册《数学》整式的加减练习题(含答案)

七年级上册《数学》整式的加减练习题(含答案)

七年级上册《数学》整式的加减练习题2.1 第1课时单项式一、能力提升1.下列结论正确的是()A.a是单项式,它的次数是0,系数为1B.π不是单项式C.是一次单项式D.-是6次单项式,它的系数是-2.已知是8次单项式,则m的值是()A.4B.3C.2D.13.3×105xy的系数是,次数是.4.下列式子:①ab;②-;③;④-a2+a;⑤-1;⑥a-,其中是单项式的是.(填序号)5.写出一个含有字母x,y的五次单项式:.6.观察下面的单项式:a,2a2,4a3,8a4,…,根据你发现的规律,第8个式子是.7.某学校到文体商店买篮球,篮球单价为a元,买10个以上(包括10个)按8折优惠.用单项式填空:(1)购买9个篮球应付款元;(2)购买m(m≥10)个篮球应付款元.8.若单项式(k-3)x|k|y2是五次单项式,则k=.9.观察下列各数,用含n的单项式表示第n个数.-2,-4,-6,-8,-10,…,.二、创新应用10.观察下列单项式:-x,3x2,-5x3,7x4,…,-37x19,39x20,…,回答下列问题:(1)这组单项式的系数的规律是什么?(2)这组单项式的次数的规律是什么?(3)根据上面的归纳,你可以猜想出第n个单项式是什么吗?(4)请你根据猜想,写出第2020,2021个单项式.答案一、能力提升1.D a是单项式,次数、系数均为1,所以A错;因为π是单独的一个数,所以π是单项式,所以B错;的分母中含有字母,无法写成数字与字母的积,所以不是单项式,所以C错;对于D项,它的系数为-,次数为2+3+1=6,所以D正确.2.C由单项式的次数的定义,得2m+3+1=8,将A,B,C,D四选项分别代入验证知C为正确答案.3.3×105;2.4.①②⑤.5.-x4y(答案不唯一).6.128a8.7.(1)9a.(2)0.8ma.8.-3;由题意,得|k|+2=5,且k≠3,解得k=-3.9.-2n;-2,-4,-6,-8,-10,这些数都是负数,且都是偶数,因此第n个数为-2n.二、创新应用10.解:(1)这组单项式的系数的符号规律是(-1)n,系数的绝对值规律是2n-1,故系数的规律是(-1)n(2n-1).(2)次数即x的指数的规律是从1开始的连续自然数.(3)第n个单项式是(-1)n(2n-1)x n.(4)第2020个单项式是4039x2020,第2021个单项式是-4041x2021.2.1 第2课时多项式一、能力提升1.下列说法正确的是()A.多项式ax2+bx+c是二次多项式B.四次多项式是指多项式中各项均为四次单项式C.-ab2,-x都是单项式,也都是整式D.-4a2b,3ab,5是多项式-4a2b+3ab-5中的项2.如果一个多项式是五次多项式,那么它任何一项的次数()A.都小于5B.都等于5C.都不小于5D.都不大于53.一组按规律排列的多项式:a+b,a2-b3,a3+b5,a4-b7,……其中第10个式子是()A.a10+b19B.a10-b19C.a10-b17D.a10-b214.若x n-2+x3+1是五次多项式,则n的值是()A.3B.5C.7D.05.-3x2y-2x2y2+xy-4的最高次项为.6.若一个关于a的二次三项式的二次项系数为2,常数项和一次项系数都是-3,则这个二次三项式为.7.多项式的二次项系数是.8.如图(1)(2),某餐桌桌面可由圆形折叠成正方形(图中阴影部分表示可折叠部分).已知折叠前圆形桌面的直径为am,折叠成正方形后其边长为bm.如果一块正方形桌布的边长为am,并按图(3)所示把它铺在折叠前的圆形桌面上,那么桌布垂下部分的面积是多少?如果按图(4)方式把这块桌布铺在折叠后的正方形桌面上呢?并求当a=2,b=1.4时它们的面积大小(π取3.14).9.四人做传数游戏,甲任取一个数传给乙,乙把这个数加1传给丙,丙再把所得的数平方后传给丁,丁把所得的数减1报出答案,设甲任取的一个数为a.(1)请把游戏最后丁所报出的答案用整式的形式描述出来;(2)若甲取的数为19,则丁报出的答案是多少?二、创新应用10.如图,观察点阵图形和与之对应的等式,探究其中的规律:(1)请在④和⑤后面的横线上分别写出相应的等式:(2)通过猜想,写出与第n个图形相对应的等式.答案一、能力提升1.C.2.D;多项式的次数指的是次数最高项的次数,故一个五次多项式次数最高项的次数为5.3.B;根据多项式排列的规律,字母a的指数是按1,2,3,…的正整数排列,故第10个式子应为a10.字母b的指数是按1,3,5,7,…的奇数排列,故第10个式子应为b19.中间的符号第1个式子是正,第2个式子是负,这样正、负相间,故第10个式子应为a10-b19.4.C;由题意,得n-2=5,解得n=7.5.-2x2y2;6.2a2-3a-3.7.=-,二次项为,故二次项系数为.8.解:m2;(a2-b2)m2;2.04m2.当a=2,b=1.4时,a2-a2=22-×22=4-3.14=0.86(m2),a2-b2=22-1.42=2.04(m2).9.解:(1)由甲传给乙变为a+1;由乙传给丙变为(a+1)2;由丙传给丁变为(a+1)2-1.故丁所报出的答案为(a+1)2-1.(2)由(1)知,代入a=19,得399.二、创新应用10.解:(1)④4×3+1=4×4-3.⑤4×4+1=4×5-3.(2)4(n-1)+1=4n-3.2.2 第1课时合并同类项一、能力提升1.下列各组式子为同类项的是()A.x2y与-xy2B.0.5a2b与0.5a2cC.3b与3abcD.-0.1m2n与nm22.若-2a m b2m+n与5a n+2b2m+n可以合并成一项,则m-n的值是()A.2B.0C.-1D.13.若x a+2y4与-3x3y2b是同类项,则(a-b)2021的值是()A.-2021B.1C.-1D.20214.已知a=-2021,b=,则多项式3a2+2ab-a2-3ab-2a2的值为()A.1B.-1C.2021D.-5.若2x2y m与-3x n y3的和是一个单项式,则m+n=.6.若关于字母x的整式-3x2+mx+nx2-x+3的值与x的值无关,则m=,n=.7.把(x-y)和(x+y)各看作一个字母因式,合并同类项3(x+y)2-(x-y)+2(x+y)2+(x-y)-5(x+y)2=.8.合并下列各式的同类项:(1)-2x2-8y2+4y2-5x2-5x+5x-6xy;(2)3x2y-4xy2-3+5x2y+2xy2+5.9.已知-2a m bc2与4a3b n c2是同类项,求多项式3m2n-2mn2-m2n+mn2的值.10.先合并同类项,再求值:(1)7x2-3+2x-6x2-5x+8,其中x=-2;(2)3x-4x3+7-3x+2x3+1,其中x=-2.二、创新应用11.有这样一道题:“当a=0.35,b=-0.28时,求多项式7a3-6a3b+3a2b+3a3+6a3b-3a2b-10a3的值.”有一名同学指出,题目中给出的条件“a=0.35,b=-0.28”是多余的,他的说法有没有道理?为什么?答案一、能力提升1.D2.A;∵-2a m b2m+n与5a n+2b2m+n可以合并成一项,∴m=n+2,则m-n=2.故选A.3.C;由同类项的定义,得a+2=3,2b=4,解得a=1,b=2.所以(a-b)2021=(1-2)2021=(-1)2021=-1.4.A;把多项式合并同类项,得原式=-ab,当a=-2021,b=时,原式=1.5.5;2x2y m与-3x n y3的和是一个单项式,说明2x2y m与-3x n y3是同类项,即m=3,n=2,故m+n=5.6.1;3;算式的值与x的值无关,说明合并同类项后,所有含x项的系数均为0.-3x2+mx+nx2-x+3=(-3+n)x2+(m-1)x+3,则m=1,n=3.7.0.8.解:(1)-2x2-8y2+4y2-5x2-5x+5x-6xy=(-2-5)x2+(-8+4)y2+(-5+5)x-6xy=-7x2-4y2-6xy.(2)3x2y-4xy2-3+5x2y+2xy2+5=(3+5)x2y+(-4+2)xy2+(-3+5)=8x2y-2xy2+2.9.解:由同类项定义,得m=3,n=1.3m2n-2mn2-m2n+mn2=(3-1)m2n+(-2+1)mn2=2m2n-mn2.当m=3,n=1时,原式=2×32×1-3×12=18-3=15.10.解:(1)原式=(7-6)x2+(2-5)x+(8-3)=x2-3x+5,当x=-2时,原式=(-2)2-3×(-2)+5=15.(2)原式=-2x3+8,当x=-2时,原式=-2×(-2)3+8=24.二、创新应用11.解:他的说法有道理.因为原式=(7+3-10)a3+(-6+6)a3b+(3-3)a2b=0,所以原式的值与a,b的值无关.即题目中给出的条件“a=0.35,b=-0.28”是多余的.2.2 第2课时去括号一、能力提升1.三角形的第一条边长是(a+b),第二条边比第一条边长(a+2),第三条边比第二条边短3,这个三角形的周长为()A.5a+3bB.5a+3b+1C.5a-3b+1D.5a+3b-12.如果a-3b=-3,那么5-a+3b的值是()A.0B.2C.5D.83.今天数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记复习老师课上讲的内容,他突然发现一道题:(x2+3xy)-(2x2+4xy)=-x2【】.【】处被钢笔水弄污了,则此处中的一项是()A.-7xyB.7xyC.-xyD.xy4.化简(3x2+4x-1)+(-3x2+9x)的结果为.5.若一个多项式加上(-2x-x2)得到(x2-1),则这个多项式是.6.已知a-b=3,c+d=2,则(b+c)-(a-d)的值为.7.某轮船顺水航行了5h,逆水航行了3h,已知船在静水中的速度为akm/h,水流速度为bkm/h,则轮船顺水航行的路程比逆水航行的路程多.8.先化简,再求值:(1)(x2-y2)-4(2x2-3y2),其中x=-3,y=2;(2)a-2[3a+b-2(a+b)],其中a=-21,b=1000.9.已知A=2x2+3xy-2x-1,B=-x2+kxy-1,且A+B的值与y无关,求k的值.10.观察下列各式:①-a+b=-(a-b);②2-3x=-(3x-2);③5x+30=5(x+6);④-x-6=-(x+6).探索以上四个式子内的括号的变化情况,思考它和去括号法则有什么不同?利用你探索出来的规律,解答下面的题目:已知a2+b2=5,1-b=-2,求-1+a2+b+b2的值.二、创新应用11.有理数a,b,c在数轴上的位置如图所示,试化简|a-b|-|c-a|+|b-c|-|a|.答案一、能力提升1.B;三角形的周长为a+b+(a+b+a+2)+(a+b+a+2-3)=a+b+a+b+a+2+a+b+a+2-3=5a+3b+1.2.D;由a-3b=-3,得-(a-3b)=3,即-a+3b=3.因此5-a+3b=5+3=8.3.C.4.13x-1;(3x2+4x-1)+(-3x2+9x)=3x2+4x-1-3x2+9x=13x-1.5.2x2+2x-1;(x2-1)-(-2x-x2)=x2-1+2x+x2=2x2+2x-1.6.-1;由a-b=3,可得a-b的相反数为-3,即-(a-b)=-3,即-a+b=-3,因此(b+c)-(a-d)=b+c-a+d=(-a+b)+(c+d)=-3+2=-1.7.(2a+8b)km轮船在顺水中航行了5(a+b)km,在逆水中航行了3(a-b)km,因此轮船顺水航行的路程比逆水航行的路程多5(a+b)-3(a-b)=5a+5b-3a+3b=(2a+8b)km.8.解:(1)原式=-x2+y2.当x=-3,y=2时,原式=-.(2)原式=2b-a.当a=-21,b=1000时,原式=2021.解:A+B=(2x2+3xy-2x-1)+(-x2+kxy-1)=2x2+3xy-2x-1-x2+kxy-1=x2+(3+k) xy-2x-2.因为A+B的值与y无关,所以3+k=0,解得k=-3.10.解:因为a2+b2=5,1-b=-2,所以-1+a2+b+b2=-(1-b)+(a2+b2)=-(-2)+5=7.二、创新应用11.解:由题意知a-b<0,c-a>0,b-c<0,a<0,因此原式=-(a-b)-(c-a)-(b-c)-(-a)=-a+b-c+a-b+c+a=a.2.3 第3课时整式的加减一、能力提升1.已知一个多项式与3x2+9x的和等于3x2+4x-1,则这个多项式是()A.-5x-1B.5x+1C.-13x-1D.13x+12.化简-3x-的结果是()A.-16x+B.-16x+C.-16x-D.10x+3.如图①,将一个边长为a的正方形纸片剪去两个小长方形,得到一个“”图案,如图②所示,再将剪下的两个小长方形拼成一个新的长方形,如图③所示,则新长方形的周长可表示为()A.2a-3bB.4a-8bC.2a-4bD.4a-10b4.小明在复习课堂笔记时,发现一道题:=-x2-xy+y2,括号处被钢笔弄污了,则括号处的这一项是()A.y2B.3y2C.-y2D.-3y25.已知a3-a-1=0,则a3-a+2020=.6.多项式(4xy-3x2-xy+x2+y2)-(3xy-2x2+2y2)的值与无关.(填“x”或“y”)7.若a2+ab=8,ab+b2=9,则a2-b2的值是.8.若2x-y=1,则(x2+2x)-(x2+y-1)=.9.先化简,再求值:2(a2b+ab2)-(2ab2-1+a2b)-2,其中a=-,b=-2.10.计算:(1)3(a2-4a+3)-5(5a2-a+2);(2)3x2-.11.规定一种新运算:a*b=a+b,求当a=5,b=3时,(a2b)*(3ab)+5a2b-4ab的值.二、创新应用12.扑克牌游戏.小明背对小亮,让小亮按下列四个步骤操作:第一步:分发左、中、右三堆牌,每堆牌不少于两张,且各堆牌现有的张数相同;第二步:从左边一堆拿出两张,放入中间一堆;第三步:从右边一堆拿出一张,放入中间一堆;第四步:左边一堆有几张牌,就从中间一堆拿几张牌放入左边一堆.这时,小明准确地说出了中间一堆牌现有的张数.你认为中间一堆牌现有的张数是多少?并说明你的理由.13.小黄做一道题“已知两个多项式A,B,计算A-B”.小黄误将A-B看作A+B,求得结果是9x2-2x+7.若B=x2+3x-2,请你帮助小黄求出A-B的正确答案.答案一、能力提升1.A;由题意,得(3x2+4x-1)-(3x2+9x)=3x2+4x-1-3x2-9x=-5x-1.2.B.3.B;所得新长方形的长为a-b,宽为a-3b,则其周长为2[(a-b)+(a-3b)]=2(2a-4b)=4a-8b.4.C;=-x2+3xy-y2+x2-4xy-()=-x2-xy-y2-()=-x2-xy+y2,故括号处的这一项应是-y2.5.2021;由a3-a-1=0,得a3-a=1,整体代入得a3-a+2020=1+2020=2021.6.x;因为(4xy-3x2-xy+x2+y2)-(3xy-2x2+2y2)=4xy-3x2-xy+x2+y2-3xy+2x2-2y2=-y2, 所以多项式的值与x无关.7.-1;a2+ab-(ab+b2)=a2+ab-ab-b2=a2-b2=8-9=-1.8.2;当2x-y=1时,(x2+2x)-(x2+y-1)=x2+2x-x2-y+1=2x-y+1=1+1=2.故答案为2.9.解:原式=2a2b+2ab2-2ab2+1-a2b-2=a2b-1,当a=-,b=-2时,原式=×(-2)-1=×(-2)-1=--1=-.10.解:(1)3(a2-4a+3)-5(5a2-a+2)=3a2-12a+9-25a2+5a-10=-22a2-7a-1.(2)3x2-=3x2-5x+x-3-2x2=x2-x-3.11.解:原式=a2b+3ab+5a2b-4ab=(1+5)a2b+(3-4)ab=6a2b-ab.当a=5,b=3时,原式=6×52×3-5×3=450-15=435.二、创新应用12.解:设第一步每堆各有x张牌;第二步左边有(x-2)张牌,中间有(x+2)张牌,右边有x张牌;第三步左边有(x-2)张牌,中间有x+2+1=x+3张牌,右边有(x-1)张牌;第四步中间有x+3-(x-2)=x+3-x+2=5张牌,因此中间一堆牌现有的张数是5.13.解:因为A+B=9x2-2x+7,B=x2+3x-2,所以A=9x2-2x+7-(x2+3x-2)=9x2-2x+7-x2-3x+2=8x2-5x+9,所以A-B=8x2-5x+9-(x2+3x-2) =8x2-5x+9-x2-3x+2=7x2-8x+11.。

部编数学七年级上册专题05整式的化简求值(30题)专项训练(解析版)含答案

部编数学七年级上册专题05整式的化简求值(30题)专项训练(解析版)含答案

专题05 整式的化简求值(30题) 专项训练1.(2022·山东烟台·期末)先化简,再求值:()()22333244b a ab b a ab éùéù----+-ëûëû,其中a =-4,14b =.2.(2022·河南安阳·七年级期末)先化简,再求值:3(a ﹣ab )12-(6a ﹣b )12-b ,其中a =1,b =﹣2.3.(2022·陕西·七年级期末)先化简,再求值:()()2222x xy y x xy --+-+,其中3,2x y ==-.【答案】22x y -,5【分析】先去括号,然后再进行整式的加减运算,最后代值求解即可.【详解】解:原式=2222x xy y x xy ---+=22x y -;把3,2x y ==-代入得:原式=945-=.【点睛】本题主要考查整式的化简求值,熟练掌握整式的运算是解题的关键.4.(2022·江苏南京·七年级期末)先化简,再求值:5(3a 2b -ab 2)+4(ab 2-3a 2b ),其中a =-2,b =3.【答案】223a b ab -,54【分析】原式去括号合并同类项得到最简结果,再把a 与b 的值代入计算即可求出值.【详解】解:原式=2222155412a b ab ab a b -+-=223a b ab -当a =-2,b =3时,原式=()()2232323´-´--´=34329´´+´=54【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.5.(2022·湖南岳阳·七年级期末)先化简,再求值.()()22224235x xy y x xy y -+--+,其中1x =-,12y =-.6.(2022·湖南湘西·七年级期末)先化简,再求值:()()2222221x x x x +----,其中12x =-.7.(2022·黑龙江牡丹江·七年级期末)先化简,再求值:3xy -12(6xy -12x 2y 2)+2(3xy -5x 2y 2),其中21||(2)02x y -++=8.(2022·河北保定·七年级期末)化简求值 222221382(33)(3)3535x x xy y x xy y -+-+++,其中1,22x y =-=9.(2022·江西赣州·七年级期末)先化简再求值:22222(3)2(3)3a b ab ab a b ab ---+,其中2a =-,3b =-.【答案】29a b ,108-.【分析】根据整式的混合运算法则将式子化简,再将a ,b 的值代入计算即可.【详解】解:原式=222223263a b ab ab a b ab --++,=29a b .当2a =-,3b =-时,29(2)(3)108´-´-=-.【点睛】本题考查整式的化简求值,解题的关键是熟练掌握整式的混合运算法则.10.(2022·四川乐山·七年级期末)先化简,再求值.已知:()()222352mn n mn m mn éù----+ëû,其中1m =,2n =-.【答案】﹣9mn++6n 2+5m 2,47【分析】首先根据整式的加减运算法则,将整式化简,然后把给定的值代入求值.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.【详解】原式=﹣2mn +6n 2﹣5(mn ﹣m 2)﹣2mn =﹣2mn +6n 2﹣5mn +5m 2﹣2mn =﹣9mn++6n 2+5m 2当m =1,n =﹣2时,原式=()()229126251=18245=47-´´-+´-+´++.【点睛】本题考查了整式的乘法、去括号、合并同类项的知识点.解题的关键是熟练掌握整式的乘法、去括号、合并同类项法则.11.(2022·吉林松原·七年级期末)先化简,再求值:222(3)(2)()a b a b b a ---+-,其中2a =-,12b =-.【答案】22a b +,3【分析】先去括号,再合并同类项即可化简,然后把a 、b 值代入化简式计算即可.12.(2022·云南文山·七年级期末)先化简,再求值:2x 2+y 2+(2y 2﹣3x 2)﹣2(y 2﹣2x 2),其中x =﹣1,y =2【答案】3x 2+y 2,7【分析】先去括号,然后合并同类项,即把式子进行化简,然后代入数值即可求解.【详解】解:2x 2+y 2+(2y 2﹣3x 2)﹣2(y 2﹣2x 2)=2x 2+y 2+2y 2﹣3x 2﹣2y 2+4x 2=3x 2+y 2当x =﹣1,y =2时,原式=()223127´-+=.【点睛】本题主要考查了整式的加减的化简求值,正确去括号,合并同类项是解题的关键.13.(2022·黑龙江大庆·七年级期末)(1)化简:5(43)(92)a a b a b --+++;(2)先化简,再求值:()()323232242x y x y x ---+,其中3x =,2y =-.【答案】(1)b -;(2)3x -,27-【分析】(1)先去括号,再合并同类项即可得到答案;(2)先去括号,再合并同类项,最后将3x =代入计算即可得到答案.【详解】解:(1)()()54392a a b a b --+++54392a a b a b=---++b =-;(2)()()323232242x y x y x---+323232442x y x y x =--+-3x =-,当3x =时,原式3327=-=-.【点睛】本题考查整式的加减法则,解题的关键是熟练掌握去括号和合并同类项的法则.14.(2022·广西贵港·七年级期末)先化简,再求值:已知(2b −1)2+3|a +2|=0,求2(a 2b +ab 2)−(2ab 2−1+a 2b )−2的值.15.(2022·湖南衡阳·七年级期末)先化简,再求值:6(2a 2b ﹣ab 2)﹣3(﹣ab 2+4a 2b ),其中a =2,b =﹣3.【答案】23ab -,-54【分析】先去括号,再合并同类项,然后把a =2,b =﹣3代入化简后的结果,即可求解.【详解】解∶ 6(2a 2b ﹣ab 2)﹣3(﹣ab 2+4a 2b )()2222126312a b ab ab a b =---+ 2222126312a b ab ab a b =-+-23ab =-当a =2,b =﹣3时,原式()232354=-´´-=-【点睛】本题主要考查了整式加减中的化简求值,熟练掌握整式加减混合运算法则是解题的关键.16.(2022·海南·七年级期末)先化简,再求值:()()222234+---x y xy x y xy x y ,其中x =1,y =−1.【答案】255x y xy -+,0【分析】先去括号,再合并同类项进行化简,然后将x 、y 的值代入即可.【详解】解:()()222234+---x y xy x y xy x y22222334x y xy x y xy x y =+-+-,255x y xy =-+.当x =1,y =−1时,原式()()2511511550=-´´-+´´-=-=.【点睛】此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.17.(2022·河南三门峡·七年级期末)先化简,再求值:5x 2﹣(3y 2+5x 2)+(4y 2+7xy ),其中x =2,y =﹣1.(2)化简:33611106m n m n --+-+-(3)先化简,再求值:2222213242x y x y xy x y xy æöæö--+--ç÷ç÷,其中2x =-,14y =.19.(2022·河北保定·七年级期末)先化简,再求值:()()22222325x y xy xy x y ---+,其中1,33x y =-=.20.(2022·四川宜宾·七年级期末)先化简,再求值.22222(23)21,y x x y y éù+---+ëû其中22, 1.7x y ==-【答案】221y y ++,2【分析】先去括号,合并同类项对原式进行化简,再代入x 和y 的值计算即可.【详解】原式=222222321y x x y y éù+-+-+ëû=22321y y y +-+=221y y ++原式=2-1+1 =2.【点睛】本题考查整式的加减运算和化简求值,解题的关键是正确去括号和合并同类项.21.(2022·辽宁本溪·七年级期末)先化简,再求值:()()()322322232x y x y x y x -----+,其中3x =-,2y =-.【答案】2223y x y --+,8-【分析】利用去括号、合并同类项化简后,再代入求值即可.【详解】解:原式322324232x y x y x y x =--+-+-2223y x y=--+当3x =-,2y =-时,原式()()()22223328=-´--´-+´-=-.【点睛】本题考查整式的加减,掌握去括号、合并同类项法则是正确计算的前提.22.(2022·河北石家庄·七年级期末)计算与化简(1)计算:()223232a b ab a b ab ---+ (2)先化简,再求值:()()2254542x x x x -+++-+,其中2x =-.【答案】(1)25a b ab - (2)291x x ++,-13【分析】(1)根据整式的加减运算法则进行去括号、合并同类项即可;(2)先根据整式的加减运算法则进行去括号、合并同类项,再将2x =-代入化简的结果进行计算即可.(1)解:原式22364a b ab a b ab =--++25a b ab=-(2)解:原式2254542x x x x =-+++-+291x x =++当2x =-时,原式()()2292113=-+´-+=-.【点睛】本题考查了整式的加减运算以及化简求值,熟练掌握运算法则并仔细计算是解题的关键.23.(2022·安徽芜湖·七年级期末)先化简,再求值:2﹣3(a 2﹣2a )+2(﹣3a 2+a +1),其中a =﹣2.【答案】﹣9a 2+8a +4,-48【分析】先去括号,再合并同类项,最后把a 的值代入计算即可.【详解】解:原式=2﹣3a 2+6a ﹣6a 2+2a +2=﹣9a 2+8a +4,当a =﹣2时,原式=﹣9×(﹣2)2+8×(﹣2)+4=﹣9×4﹣16+4=﹣48.【点睛】本题考查了整式的加减运算与求值,属于常考题型,熟练掌握整式的加减运算法则是解题关键.24.(2022·浙江金华·七年级期末)先化简再求值:()()226922x xy x xy --+++,其中2x =-,15y =.25.(2022·广东惠州·七年级期末)已知22(1)0a b ++-=,化简计算:()221129433a ab a ab ---()题的关键.26.(2022·湖北荆州·七年级期末)先化简,再求值:()223242xy x xy xy x æö+---+ç÷,其中4x =-,3y =.27.(2022·四川成都·七年级期末)(1)计算:﹣12022+8×(12-)3+2×|﹣6+2|;(2)先化简,再求值:2(﹣3x 2y ﹣2xy 252+)﹣5(﹣xy 2﹣2x 2y +1)﹣xy 2,其中20|1|2x y ++()﹣=.当x =-1,y =2时,原式=4×1×2=8.【点睛】本题考查了整式的加减-化简求值,有理数的混合运算,偶次方和绝对值的非负性,准确熟练地进行计算是解题的关键.28.(2022·四川成都·七年级期末)先化简,再求值:2a 212-(ab +a 2)52-ab ,其中a =2,b =﹣4.29.(2022·云南红河·七年级期末)先化简,再求值:()()22225342x x x x x ---++,其中12x =-.30.(2022·辽宁大连·七年级期末)若()22120a b -++=,试求多项式:()22212322a b a a b æö-+-+ç÷的值.。

七年级上册 数学 第二章 整式的加减-专项练习100题含答案

七年级上册 数学 第二章 整式的加减-专项练习100题含答案

整式的加减专项练习1、3(a+5b)-2(b-a)2、3a-(2b-a)+b3、2(2a2+9b)+3(-5a2-4b)4、(x3-2y3-3x2y)-(3x3-3y3-7x2y)5、3x2-[7x-(4x-3)-2x2]6、(2xy-y)-(-y+yx)7、5(a2b-3ab2)-2(a2b-7ab)8、(-2ab+3a)-2(2a-b)+2ab 9、(7m2n-5mn)-(4m2n-5mn)10、(5a2+2a-1)-4(3-8a+2a2).11、-3x2y+3xy2+2x2y-2xy2;12、2(a-1)-(2a-3)+3.13、-2(ab-3a2)-[2b2-(5ab+a2)+2ab]14、(x2-xy+y)-3(x2+xy-2y)15、3x2-[7x-(4x-3)-2x2]16、a2b-[2(a2b-2a2c)-(2bc+a2c)];17、-2y3+(3xy2-x2y)-2(xy2-y3).18、2(2x-3y)-(3x+2y+1)19、-(3a2-4ab)+[a2-2(2a+2ab)].20、5m-7n-8p+5n-9m-p ;21、(5x 2y-7xy 2)-(xy 2-3x 2y ); 22、3(-3a 2-2a )-[a 2-2(5a-4a 2+1)-3a].23、3a 2-9a+5-(-7a 2+10a-5); 24、-3a 2b-(2ab 2-a 2b )-(2a 2b+4ab 2).25、(5a-3a 2+1)-(4a 3-3a 2); 26、-2(ab-3a 2)-[2b 2-(5ab+a 2)+2ab]27、(8xy -x 2+y 2)+(-y 2+x 2-8xy ); 28、(2x 2-21+3x )-4(x -x 2+21);29、3x 2-[7x -(4x -3)-2x 2]. 30、5a+(4b-3a )-(-3a+b );31、(3a 2-3ab+2b 2)+(a 2+2ab-2b 2); 32、2a 2b+2ab 2-[2(a 2b-1)+2ab 2+2].33、(2a 2-1+2a )-3(a-1+a 2); 34、2(x 2-xy )-3(2x 2-3xy )-2[x 2-(2x 2-xy+y 2)].35、 -32ab +43a 2b +ab +(-43a 2b )-1 36、(8xy -x 2+y 2)+(-y 2+x 2-8xy );37、2x -(3x -2y +3)-(5y -2); 38、-(3a +2b )+(4a -3b +1)-(2a -b -3)39、4x 3-(-6x 3)+(-9x 3) 40、3-2xy +2yx 2+6xy -4x 2y41、 1-3(2ab +a )十[1-2(2a -3ab )].42、 3x -[5x +(3x -2)];43、(3a 2b -ab 2)-(ab 2+3a 2b ) 44、()[]{}y x x y x --+--3233245、(-x 2+5+4x 3)+(-x 3+5x -4) 46、(5a 2-2a+3)-(1-2a+a 2)+3(-1+3a-a 2).47、5(3a 2b-ab 2)-4(-ab 2+3a 2b ). 48、4a 2+2(3ab-2a 2)-(7ab-1).49、 21xy+(-41xy )-2xy 2-(-3y 2x ) 50、5a 2-[a 2-(5a 2-2a )-2(a 2-3a )]51、5m-7n-8p+5n-9m+8p 52、(5x 2y-7xy 2)-(xy 2-3x 2y )53、 3x2y-[2x2y-3(2xy-x2y)-xy] 54、5556、(a2+4ab-4b2)-3(a2+b2)-7(b2-ab).57、a2+2a3+(-2a3)+(-3a3)+3a2;58、5ab+(-4a2b2)+8ab2-(-3ab)+(-a2b)+4a2b2; 59、(7y-3z)-(8y-5z);60、-3(2x2-xy)+4(x2+xy-6).61、(x3+3x2y-5xy2+9y3)+(-2y3+2xy2+x2y-2x3)-(4x2y-x3-3xy2+7y3)62、-3x2y+2x2y+3xy2-2xy2; 63、3(a2-2ab)-2(-3ab+b2);64、5abc-{2a2b-[3abc-(4a2b-ab2]}.65、5m2-[m2+(5m2-2m)-2(m2-3m)].66、-[2m-3(m-n+1)-2]-1.67、31a-( 21a-4b-6c)+3(-2c+2b) 68、 -5a n -a n -(-7a n )+(-3a n ) 69、x 2y-3xy 2+2yx 2-y 2x70、 41a 2b-0.4ab 2- 21a 2b+ 52ab 2;71、3a-{2c-[6a-(c-b )+c+(a+8b-6)]}72、-3(xy-2x 2)-[y 2-(5xy-4x 2)+2xy];73、化简、求值21x 2-2212- (x + y )2⎡⎤⎢⎥⎣⎦-23(-32x 2+31y 2),其中x =-2, y =-3474、化简、求值21x -2(x -31y 2)+(-23x +31y 2),其中x =-2,y =-32.75、x x x x x x 5)64(213223312323-++-⎪⎭⎫ ⎝⎛---其中x =-121;76、 化简,求值(4m+n )-[1-(m-4n )],m=52 n=-13177、化简、求值2(a2b+2b3-ab3)+3a3-(2ba2-3ab2+3a3)-4b3,其中a=-3,b=278、化简,求值:(2x3-xyz)-2(x3-y3+xyz)+(xyz-2y3),其中x=1,y=2,z=-3.79、化简,求值:5x2-[3x-2(2x-3)+7x2],其中x=-2.80、若两个多项式的和是2x2+xy+3y2,一个加式是x2-xy,求另一个加式.81、若2a2-4ab+b2与一个多项式的差是-3a2+2ab-5b2,试求这个多项式.82、求5x2y-2x2y与-2xy2+4x2y的和.83、求3x2+x-5与4-x+7x2的差.84、计算 5y+3x+5z2与12y+7x-3z2的和85、计算8xy2+3x2y-2与-2x2y+5xy2-3的差86、 多项式-x 2+3xy-21y 与多项式M 的差是-21x 2-xy+y ,求多项式M87、当3(x 2-2xy )-[3x 2-2y+2(xy+y )]的值.88、化简再求值5abc-{2a 2b-[3abc-(4ab 2-a 2b )]-2ab 2},其中a=-2,b=3,c=-4189、已知A=a 2-2ab+b 2,B=a 2+2ab+b 2(1)求A+B ; (2)求41(B-A);90、小明同学做一道题,已知两个多项式A ,B ,计算A+B ,他误将A+B 看作A-B ,求得9x 2-2x+7,若B=x 2+3x-2,你能否帮助小明同学求得正确答案?91、已知:M=3x 2+2x-1,N=-x 2-2+3x ,求M-2N .92、已知222244,5A x xy y B x xy y =-+=+-,求3A -B93、已知A =x 2+xy +y 2,B =-3xy -x 2,求2A -3B .94、已知2 a +(b +1)2=0,求5ab 2-[2a 2b -(4ab 2-2a 2b )]的值.95、化简求值:5abc-2a 2b+[3abc-2(4ab 2-a 2b )],其中a 、b 、c 满足|a-1|+|b-2|+c 2=0.96、已知a ,b ,z 满足:(1)已知|x-2|+(y+3)2=0,(2)z 是最大的负整数,化简求值:2(x 2y+xyz )-3(x 2y-xyz )-4x 2y .97、已知a+b=7,ab=10,求代数式(5ab+4a+7b )+(6a-3ab )-(4ab-3b )的值.98、已知m 2+3mn=5,求5m 2-[+5m 2-(2m 2-mn )-7mn-5]的值99、设A=2x 2-3xy+y 2+2x+2y ,B=4x 2-6xy+2y 2-3x-y ,若|x-2a|+(y-3)2=0,且B-2A=a ,求a 的值.100、有两个多项式:A =2a 2-4a +1,B =2(a 2-2a )+3,当a 取任意有理数时,请比较A 与B 的大小.整式的加减专项练习答案:1、3(a+5b )-2(b-a )=5a+13b2、3a-(2b-a )+b=4a-b .3、2(2a 2+9b )+3(-5a 2-4b )=—11a 2+6b 2 4、(x 3-2y 3-3x 2y )-(3x 3-3y 3-7x 2y )= -2x 3+y 3+4x 2y5、3x 2-[7x-(4x-3)-2x 2] = 5x 2 -3x-36、(2xy-y )-(-y+yx )= xy7、5(a 22b-3ab 2)-2(a 2b-7ab ) = -a 2b+11ab 8、(-2ab+3a )-2(2a-b )+2ab= -2a+b9、(7m 2n-5mn )-(4m 2n-5mn )= 3m 2n10、(5a 2+2a-1)-4(3-8a+2a 2)= -3a 2+34a-1311、-3x 2y+3xy 2+2x 2y-2xy 2= -x 2y+xy 212、2(a-1)-(2a-3)+3.=413、-2(ab-3a 2)-[2b 2-(5ab+a 2)+2ab]= 7a 2+ab-2b 214、(x 2-xy+y )-3(x 2+xy-2y )= -2x 2-4xy+7y15、3x 2-[7x-(4x-3)-2x 2]=5x 2-3x-3 16、a 2b-[2(a 2b-2a 2c )-(2bc+a 2c )]= -a 2b+2bc+6a 2c17、-2y 3+(3xy 2-x 2y )-2(xy 2-y 3)= xy 2-x 2y18、2(2x-3y )-(3x+2y+1)=2x-8y-1 19、-(3a 2-4ab )+[a 2-2(2a+2ab )]=-2a 2-4a20、5m-7n-8p+5n-9m-p = -4m-2n-9p21、(5x 2y-7xy 2)-(xy 2-3x 2y )=4xy 2-4x 2y22、3(-3a 2-2a )-[a 2-2(5a-4a 2+1)-3a]=-18a 2 +7a+223、3a 2-9a+5-(-7a 2+10a-5)=10a 2-19a+1024、-3a 2b-(2ab 2-a 2b )-(2a 2b+4ab 2)= -4a 2b-64ab 225、(5a-3a 2+1)-(4a 3-3a 2)=5a-4a 2+126、-2(ab-3a 2)-[2b 2-(5ab+a 2)+2ab]=7a 2+ab-2b 2 27、(8xy -x 2+y 2)+(-y 2+x 2-8xy )=028、(2x 2-21+3x )-4(x -x 2+21) = 6x 2-x-25 29、3x 2-[7x -(4x -3)-2x 2]= 5x 2-3x -330、5a+(4b-3a )-(-3a+b )= 5a+3b31、(3a 2-3ab+2b 2)+(a 2+2ab-2b 2)= 4a 2-ab32、2a 2b+2ab 2-[2(a 2b-1)+2ab 2+2].= -133、(2a 2-1+2a )-3(a-1+a 2)= -a 2-a+234、2(x 2-xy )-3(2x 2-3xy )-2[x 2-(2x 2-xy+y 2)]=-2x 2+5xy-2y 235、-32ab +43a 2b +ab +(-43a 2b )-1 = 31ab-1 36、(8xy -x 2+y 2)+(-y 2+x 2-8xy )=037、2x -(3x -2y +3)-(5y -2)=-x-3y-138、-(3a +2b )+(4a -3b +1)-(2a -b -3)= -a-4b+439、4x 3-(-6x 3)+(-9x 3)= x 340、3-2xy +2yx 2+6xy -4x 2y = -2 x 2y+441、 1-3(2ab +a )十[1-2(2a -3ab )]=2-7a42、 3x -[5x +(3x -2)]=-5x+243、(3a 2b -ab 2)-(ab 2+3a 2b )= -2ab 244、()[]{}y x x y x --+--32332 = 5x+y45、(-x 2+5+4x 3)+(-x 3+5x -4)= 3x 3-x 2+5x+146、(5a 2-2a+3)-(1-2a+a 2)+3(-1+3a-a 2)=a 2+9a-147、5(3a 2b-ab 2)-4(-ab 2+3a 2b ).=3a 2b-ab 248、4a 2+2(3ab-2a 2)-(7ab-1)=1-ab49、 21xy+(-41xy )-2xy 2-(-3y 2x )=41xy+xy 2 50、5a 2-[a 2-(5a 2-2a )-2(a 2-3a )]=11a 2-8a51、5m-7n-8p+5n-9m+8p=-4m-2n59、(7y-3z )-(8y-5z )=-y+2z60、-3(2x 2-xy )+4(x 2+xy-6)=-2x 2+7xy-24 61、(x 3+3x 2y-5xy 2+9y 3)+(-2y 3+2xy 2+x 2y-2x 3)-(4x 2y-x 3-3xy 2+7y 3)=0 62、-3x 2y+2x 2y+3xy 2-2xy 2 = -x 2y+xy 263、3(a 2-2ab )-2(-3ab+b 2)=3a 2-2b 264、5abc-{2a 2b-[3abc-(4a 2b-ab 2]}=8abc-6a 2b+ab 265、5m 2-[m 2+(5m 2-2m )-2(m 2-3m )]=m 2-4m66、-[2m-3(m-n+1)-2]-1=m-3n+467、31a-( 21a-4b-6c)+3(-2c+2b)= -61a+10b 68、 -5a n -a n -(-7a n )+(-3a n )= -2a n69、x 2y-3xy 2+2yx 2-y 2x=3x 2y-4xy 271、 41a 2b-0.4ab 2- 21a 2b+ 52ab 2 = -41a 2b 71、3a-{2c-[6a-(c-b )+c+(a+8b-6)]}= 10a+9b-2c-672、-3(xy-2x 2)-[y 2-(5xy-4x 2)+2xy]= 2x 2-y 2 73、化简、求值21x 2-2212- (x + y )2⎡⎤⎢⎥⎣⎦-23(-32x 2+31y 2),其中x =-2, y =-34 原式=2x 2+21y 2-2 =698 74、化简、求值21x -2(x -31y 2)+(-23x +31y 2),其中x =-2,y =-32. 原式=-3x+y 2=694 75、x x x x x x 5)64(213223312323-++-⎪⎭⎫ ⎝⎛---其中x =-121; 原式=x 3+x 2-x+6=683 76、 化简,求值(4m+n )-[1-(m-4n )],m=52 n=-131 原式=5m-3n-1=577、化简、求值2(a 2b +2b 3-ab 3)+3a 3-(2ba 2-3ab 2+3a 3)-4b 3,其中a =-3,b =2原式=-2ab 3+3ab 2=1278、化简,求值:(2x 3-xyz )-2(x 3-y 3+xyz )+(xyz-2y 3),其中x=1,y=2,z=-3.原式=-2xyz=679、化简,求值:5x 2-[3x-2(2x-3)+7x 2],其中x=-2.原式=-2x 2+x-6=-1680、若两个多项式的和是2x 2+xy+3y 2,一个加式是x 2-xy ,求另一个加式.(2x 2+xy+3y 2 ) ——( x 2-xy )= x 2+2xy+3y 281、若2a 2-4ab+b 2与一个多项式的差是-3a 2+2ab-5b 2,试求这个多项式.( 2a 2-4ab+b 2 )—(-3a 2+2ab-5b 2)=5a 2 -6ab+6b 282、求5x 2y -2x 2y 与-2xy 2+4x 2y 的和.(5x 2y -2x 2y )+(-2xy 2+4x 2y )=3xy 2+2x 2y83、 求3x 2+x -5与4-x +7x 2的差.(3x 2+x -5)—(4-x +7x 2)=—4x 2+2x -984、计算 5y+3x+5z 2与12y+7x-3z 2的和(5y+3x+5z 2)+(12y+7x-3z 2)=17y+10x+2z 285、计算8xy 2+3x 2y-2与-2x 2y+5xy 2-3的差(8xy 2+3x 2y-2)—(-2x 2y+5xy 2-3)=5x 2y+3xy 2+186、 多项式-x 2+3xy-21y 与多项式M 的差是-21x 2-xy+y ,求多项式M23y 87、当3(x 2-2xy )-[3x 2-2y+2(xy+y )]的值. 原式=-8xy+y= —1588、化简再求值5abc-{2a 2b-[3abc-(4ab 2-a 2b )]-2ab 2},其中a=-2,b=3,c=-41 原式=83abc-a 2b-2ab 2=3689、已知A=a 2-2ab+b 2,B=a 2+2ab+b 2 (1)求A+B ;(2)求41(B-A); A+B=2a 2+2b 2 41(B-A)=ab 90、小明同学做一道题,已知两个多项式A ,B ,计算A+B ,他误将A+B 看作A-B ,求得 9x 2-2x+7,若B=x 2+3x-2,你能否帮助小明同学求得正确答案?A=10x 2+x+5 A+B=11x 2+4x+391、已知:M=3x 2+2x-1,N=-x 2-2+3x ,求M-2N .M-2N=5x 2-4x+392、已知222244,5A x xy y B x xy y =-+=+-,求3A -B3A -B=11x 2-13xy+8y 293、已知A =x 2+xy +y 2,B =-3xy -x 2,求2A -3B .2A -3B= 5x 2+11xy +2y 294、已知2-a +(b +1)2=0,求5ab 2-[2a 2b -(4ab 2-2a 2b )]的值. 原式=9ab 2-4a 2b=3495、化简求值:5abc-2a 2b+[3abc-2(4ab 2-a 2b )],其中a 、b 、c 满足|a-1|+|b-2|+c 2=0. 原式=8abc-8a 2b=-3296、已知a ,b ,z 满足:(1)已知|x-2|+(y+3)2=0,(2)z 是最大的负整数,化简求值: 2(x 2y+xyz )-3(x 2y-xyz )-4x 2y .原式=-5x 2y+5xyz=9097、已知a+b=7,ab=10,求代数式(5ab+4a+7b )+(6a-3ab )-(4ab-3b )的值. 原式=10a+10b-2ab=5098、已知m 2+3mn=5,求5m 2-[+5m 2-(2m 2-mn )-7mn-5]的值原式=2m 2+6mn+5=1599、设A=2x 2-3xy+y 2+2x+2y ,B=4x 2-6xy+2y 2-3x-y ,若|x-2a|+(y-3)2=0,且B-2A=a ,求a 的值. B-2A=-7x-5y=-14a-15=a a=-1100、有两个多项式:A =2a 2-4a +1,B =2(a 2-2a )+3,当a 取任意有理数时,请比较A与B 的大小. A=2a 2-4a +1 B =2a 2-4a +3 所以A<B。

人教版七年级数学上册第二章 整式的加减 专题练习试题(含答案)

人教版七年级数学上册第二章 整式的加减 专题练习试题(含答案)

人教版七年级数学上册第二章整式的加减专题练习试题专题一、与整式加减相关的新定义问题方法指导:新定义问题,即给出一个新的数学符号标记,规定一种新的运算规则,并按新规定的运算规则进行计算.解题的关键是看懂规定的运算,将新规定的运算转化为整式加减运算问题,在转化过程中,要特别注意括号的作用.1.定义新运算:a#b=3a-2b,则(x+y)#(x-y)=x+5y.2.定义一种新运算:a⊕b=2a-b,a b=b-a,求(x⊕y)⊕(y x)=3x-y.专题二、利用数轴去绝对值符号化简1.有理数a,b在数轴上的位置如图所示,试解决下列问题:(1)因为a<0,所以|a|=-a;(2)因为b>0,-b<0,所以|b|=b;|-b|=b;(3)因为1+a>0,所以|1+a|=1+a;(4)因为1-b <0,所以|1-b|=-(1-b)=b-1;(5)因为a+b>0,所以|a+b|=a+b;(6)因为a-b <0,所以|a-b|=-(a-b)=b-a.2.有理数a,b在数轴上的位置如图所示,则化简式子|a+b|+a的结果是-b.3.有理数a,b在数轴上的位置如图所示,化简|a-b|-|b-a|的结果是(C)A.2a+2b B.2bC.0 D.2a4.有理数a,b在数轴上的位置如图所示,则化简|a-b|-2|a+b|的结果为(A)A.a+3b B.-3a-bC.3a+b D.-a-3b5.已知有理数a ,b ,c 在数轴上的对应点分别是A ,B ,C ,其位置如图所示,化简:2|b +c|-3|a -c|-4|a +b|.解:由数轴知,a <b <0<c ,且|b|<|c|,所以b +c >0,a -c <0,a +b <0,所以原式=2(b +c)-[-3(a -c)]-[-4(a +b)]=2b +2c +3(a -c)+4(a +b)=2b +2c +3a -3c +4a +4b=7a +6b -c.专题三、 整体思想在整式求值中的运用方法指导:整式的化简求值中,当单个字母的值不易求出或化简后的结果与已知值的式子相关联时,需要将已知式子的值整体代入计算.1.已知x -2y =5,那么5(x -2y)2-4(x -2y)-60的值为(B )A .55B .45C .80D .402.已知式子3y 2-2y +6的值是8,那么32y 2-y +1的值是(B ) A .1 B .2C .3D .43.若m -n =-1,则(m -n)2-2m +2n 的值为(A )A .3B .2C .1D .-14.若式子2x 2+3x +7的值是8,则式子4x 2+6x -9的值是(C )A .2B .-17C .-7D .75.已知x 2+2x -1=0,则3x 2+6x -2=1.6.如果m ,n 互为相反数,那么(3m -2n)-(2m -3n)=0.7.已知x =2y +3,则式子4x -8y +9的值是21.8.若2a -b =2,则6+4b -8a =-2.9.若a 2-5a -1=0,则5(1+2a)-2a 2的值为3.10.已知a 2+b 2=6,ab =-2,求(4a 2+3ab -b 2)-(7a 2-5ab +2b 2)的值.解:原式=-3a 2+8ab -3b 2=-3(a 2+b 2)+8ab ,因为a 2+b 2=6,ab =-2,所以原式=-3×6+8×(-2)=-34.专题四、 整式的化简与求值类型1 整式的加减运算1.计算:(1)6a 2+4b 2-4b 2-7a 2;解:原式=(6-7)a 2+(4-4)b 2=-a 2.(2)3(m 2-2m -1)-2(m 2-3m)-3;解:原式=3m 2-6m -3-2m 2+6m -3=m 2-6.(3)-12(4x 2-2x -2)+13(-3+6x 2); 解:原式=-2x 2+x +1-1+2x 2=x.(4)3x2y-[2xy-2(xy-23x2y)+xy].解:原式=3x2y-(2xy-2xy+43x2y+xy)=3x2y-2xy+2xy-43x2y-xy=53x2y-xy.2.已知A=x2-2x+1,B=2x2-6x+3.求:(1)A+2B;(2)2A-B.解:(1)A+2B=x2-2x+1+2(2x2-6x+3)=x2-2x+1+4x2-12x+6=5x2-14x+7.(2)2A-B=2(x2-2x+1)-(2x2-6x+3)=2x2-4x+2-2x2+6x-3=2x-1.类型2整式的化简求值3.先化简,再求值:(1)2(a2+3a-2)-3(2a+2),其中a=-2;解:原式=2a2+6a-4-6a-6=2a2-10.当a =-2时,原式=2×(-2)2-10=-2.(2)2x -y +(2y 2-x 2)-(x 2+2y 2),其中x =-12,y =-3; 解:原式=2x -y +2y 2-x 2-x 2-2y 2=-2x 2+2x -y.当x =-12,y =-3时, 原式=-2×14-1-(-3)=32. (3)2(a 2b -ab 2)-3(a 2b -1)+2ab 2+1,其中a =2,b =14; 解:原式=2a 2b -2ab 2-3a 2b +3+2ab 2+1=-a 2b +4.当a =2,b =14时, 原式=-22×14+4=3. (4)(5a 2+3a -1)-3(a +a 2),其中a 2-2=0;解:原式=5a 2+3a -1-3a -3a 2=2a 2-1.因为a 2-2=0,即a 2=2,所以原式=2×2-1=3.(5)3x 2y -[2xy 2-2(xy -32x 2y)+xy]+3xy 2,其中|x -3|+(y +13)2=0. 解:原式=3x 2y -2xy 2+2xy -3x 2y -xy +3xy 2=xy +xy 2.因为|x -3|+(y +13)2=0, 所以x =3,y =-13.所以原式=-1+13=-23.专题五、与整式的化简有关的说理题1.是否存在数m ,使化简关于x ,y 的多项式(mx 2-x 2+3x +1)-(5x 2-4y 2+3x)的结果中不含x 2项?若不存在,说明理由;若存在,求出m 的值.解:原式=mx 2-x 2+3x +1-5x 2+4y 2-3x=(m -6)x 2+4y 2+1.由题意,得m -6=0,所以m =6.2.有一道题“先化简,再求值:17x 2-(8x 2+5x)-(4x 2+x -3)+(5x 2+6x -1)-3,其中x =2 020.”小明做题时把“x =2 020”错抄成了“x =-2 020”.但他计算的结果却是正确的,请你说明这是什么原因.解:17x 2-(8x 2+5x)-(4x 2+x -3)+(5x 2+6x -1)-3=17x 2-8x 2-5x -4x 2-x +3+5x 2+6x -1-3=10x 2-1.因为当x =2 020和x =-2 020时,x 2的值相同,所以他计算的结果是正确的.3.已知关于x ,y 的多项式x 2+ax -y +b 与多项式bx 2-3x +6y -3的和的值与x 的取值无关,求式子3(a 2-2ab +b 2)-[4a 2-2(12a 2+ab -32b 2)]的值. 解:(x 2+ax -y +b)+(bx 2-3x +6y -3)=(b +1)x 2+(a -3)x +5y +b -3.因为该多项式的值与x 的取值无关,所以b +1=0,a -3=0.所以b =-1,a =3.原式=3a 2-6ab +3b 2-(3a 2-2ab +3b 2)=3a2-6ab+3b2-3a2+2ab-3b2=-4ab=12.4.嘉淇在计算一个多项式A减去多项式2b2-3b-5的差时,因一时疏忽忘了将两个多项式用括号括起来,因此得到的差是b2+3b-1.(1)求这个多项式A;(2)求这两个多项式运算的正确结果;(3)当b=-1时,求(2)中结果的值.解:(1)由题意,得A-2b2-3b-5=b2+3b-1,则A=(b2+3b-1)+(2b2+3b+5)=b2+3b-1+2b2+3b+5=3b2+6b+4.(2)这两个多项式运算的正确结果为(3b2+6b+4)-(2b2-3b-5)=3b2+6b+4-2b2+3b+5=b2+9b+9.(3)当b=-1时,原式=(-1)2+9×(-1)+9=1-9+9=1.5.已知一个两位数,其十位数字是a,个位数字是b.(1)写出这个两位数;(2)若a≠b,把这个两位数的十位数字与个位数字对换,得到一个新的两位数,则原两位数与新两位数的和能被11整除吗?为什么?其差又一定是哪个数的倍数?为什么?解:(1)10a+b.(2)由题意得,这两个数的和为(10a+b)+(10b+a)=11a+11b=11(a+b),因为a,b都是整数,所以a+b也是整数.所以这两个数的和能被11整除.这两个数的差为(10a+b)-(10b+a)=10a+b-10b-a=9a-9b=9(a-b),因为a,b都是整数,所以a-b也是整数.所以这两个数的差一定是9的倍数.专题六、规律探究类型1数式规律1.某校生物教师李老师在生物实验室做试验时,将水稻种子分组进行发芽试验:第1组取3粒,第2组取5粒,第3组取7粒,第4组取9粒,…,按此规律,那么请你推测第n组取的种子数是(2n+1)粒.2.按规律写出空格中的数:-2,4,-8,16,-32,64.3.已知一列数a,b,a+b,a+2b,2a+3b,3a+5b,……,按照这个规律写下去,第9个数是13a+21b.4.观察下列各等式:第一个等式3=2+1,第二个等式5=3+2,第三个等式9=5+4,第四个等式17=9+8,…,按此规律猜想第六个等式是65=33+32.5.观察下列各式:22-1=1×3,32-1=2×4,42-1=3×5,52-1=4×6,…,根据上述规律,第n个等式应表示为(n+1)2-1=n(n+2).6.观察以下图案和算式,解答问题:(1)1+3+5+7+9=25;(2)1+3+5+7+9+…+19=100;(3)猜想:1+3+5+7+…+(2n -1)=n 2.7.a 是不为1的有理数,我们把11-a 称为a 的差倒数,如2的差倒数为11-2=-1,-1的差倒数11-(-1)=12,已知a 1=5,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数…,依此类推,a 2 019的值是(D )A .5B .-14C .43D .458.观察下列等式:70=1,71=7,72=49,73=343,74=2 401,75=16 807,…,根据其中的规律可得70+71+72+…+72 019的结果的个位数字是(A )A .0B .1C .7D .89.观察下列单项式:-x ,3x 2,-5x 3,7x 4,…,-37x 19,39x 20,…,回答下列问题:(1)这组单项式的系数的规律是什么?(2)这组单项式的次数的规律是什么?(3)根据上面的归纳,你可以猜想出第n 个单项式是什么?(4)请你根据猜想,写出第2 019,2 020个单项式.解:(1)这组单项式的系数的符号规律是(-1)n ,系数的绝对值规律是2n -1.(2)这组单项式的次数的规律是从1开始的连续自然数.(3)第n 个单项式是(-1)n (2n -1)x n .(4)第2 019个单项式是-4 037x 2 019,第2 020个单项式是4 039x 2 020.类型2图形规律10.用棋子摆出下列一组图形:按照这种规律摆下去,第n个图形用的棋子个数为(D)A.3n B.6nC.3n+6 D.3n+311.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2 019个图形中共有6_058个〇.…12.归纳“T”字形,用棋子摆成的“T”字形如图所示,按照图①,图②,图③的规律摆下去,摆成第n个“T”字形需要的棋子个数为3n+2.…。

(必考题)七年级数学上册第二单元《整式加减》-解答题专项经典题(含答案解析)

(必考题)七年级数学上册第二单元《整式加减》-解答题专项经典题(含答案解析)

一、解答题1.如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,中间是边长为(a+b)米的正方形,规划部门计划将在中间的正方形修建一座雕像,四周的阴影部分进行绿化,(1)绿化的面积是多少平方米?(用含字母a、b的式子表示)(2)求出当a=20,b=12时的绿化面积.解析:(1)(5a2+3ab)平方米;(2)2720平方米【分析】(1)根据割补法,用含有a,b的式子表示出整个长方形的面积,然后用含有a,b的式子表示出中间空白处正方形的面积,然后两者相减,即可求出绿化部分的面积.(2)将a=20,b=12分别代入(1)问中求出的关系式即可解决.【详解】解:(1)(3a+b)(2a+b)﹣(a+b)2=6a2+3ab+2ab+b2﹣(a2+2ab+b2)=6a2+3ab+2ab+b2﹣a2﹣2ab﹣b2=5a2+3ab,答:绿化的面积是(5a2+3ab)平方米;(2)当a=20,b=12时5a2+3ab=5×202+3×20×12=2000+720=2720,答:当a=20,b=12时的绿化面积是2720平方米.【点睛】(1)本题考查了割补法,多项式乘多项式和完全平方式的运算法则,解决本题的关键是正确理解题意,能够熟练掌握多项式乘多项式的运算法则.(2)本题考查了整式的化简求值,解决本题的关键是熟练掌握整式的运算法则和步骤.2.生活中,有人喜欢把传送的便条折成形状,折叠过程是这样的(阴影部分表示纸条x,分别回答下列的反面):如果由信纸折成的长方形纸条(图①)长为26cm,宽为cm问题:(1)为了保证能折成图④的形状(即纸条两端均超出点P ),试求P 的取值范围. (2)如果不但要折成图④的形状,而且为了美观,希望纸条两端超出点P 的长度相等,即最终图形是轴对称图形,试求在开始折叠时起点M 与点P 的距离(用P 表示) 解析:(1) x <5.2(2) 13-1.5x【详解】分析:(1)按图中方式折叠后可得到除去两端,纸条使用的长度为5x ,那么纸条使用的长度应大于0,小于纸条总长度.(2)是轴对称图形,那么AM=AP+x .解答:解:(1)由折纸过程可知0<5x <26,∴0<x <5.2.(2)∵图④为轴对称图形,∴AM=2652x -+x=13-1.5x , 即点M 与点A 的距离是(13-1.5x )cm . 点评:本题考查学生的动手操作能力,难点是得到纸条除去两端使用的纸条的长度. 3.如图,将面积为2a 的小正方形和面积为2b 的大正方形放在同一水平面上(0b a >>)(1)用a 、b 表示阴影部分的面积;(2)计算当3a =,5b =时,阴影部分的面积.解析:(1)22111222a ab b ++;(2)492【分析】(1)阴影部分为两个直角三角形,根据面积公式即可计算得到答案;(2)将3a =,5b =代入求值即可.【详解】(1)()21122a ab b ⨯++, 22111222a ab b =++; (2)当3a =,5b =时, 原式221113355222=⨯+⨯⨯+⨯492=. 【点睛】 此题考察列式计算,根据图形边长正确列式表示图形的面积即可.4.某商店出售一种商品,其原价为m 元,现有如下两种调价方案:一种是先提价10%,在此基础上又降价10%;另一种是先降价10%,在此基础上又提价10%.(1)用这两种方案调价的结果是否一样?调价后的结果是不是都恢复了原价?(2)两种调价方案改为:一种是先提价20%,在此基础上又降价20%;另一种是先降价20%,在此基础上又提价20%,这时结果怎样?(3)你能总结出什么规律吗?解析:(1)这两种方案调价的结果一样,都没有恢复原价;(2)这两种方案调价的结果一样,都没有恢复原价;(3)在原价基础上,先提价百分之多少,在此基础上再降价同样的百分数,与先降价百分之多少,再提价同样的百分数,最后结果一样,但都没有恢复原价..【分析】(1)先提价10%为110m%,再降价10%后价钱为99m%;先降价10%为90m%,再提价10%后价钱为99m%,据此可得答案;(2)先提价20%为120%m ,再降价20%后价钱为96%m ;先降价20%为80%m ,再提价20%后价钱为96%m ,据此可得答案;(3)根据(1)(2)的结果得出规律即可.【详解】解:(1)方案一:先提价10%价钱为()110%110%m m +=,再降价10%后价钱为()110%110%99%m m ⨯-=;方案二:先降价10%价钱为()110%90%m m -=,再提价10%后价钱为()90%110%99%m m ⨯+=,故这两种方案调价的结果一样,都没有恢复原价;(2)方案一:先提价20%价钱为()120%120%m m +=,再降价20%后价钱为()120%120%96%m m ⨯-=;方案二:先降价20%价钱为()120%80%m m -=,再提价20%后价钱为()80%120%96%m m ⨯+=,故这两种方案调价的结果一样,都没有恢复原价;(3)在原价基础上,先提价百分之多少,在此基础上再降价同样的百分数,与先降价百分之多少,再提价同样的百分数,最后结果一样,但都没有恢复原价.【点睛】本题考查了列代数式的知识,解题的关键是能够表示出降价或涨价后的量,难度不大. 5.当0.2x =-时,求代数式22235735x x x x -+-+-的值。

七年级上册数学第二章整式的加减-专项练习100题含答案

七年级上册数学第二章整式的加减-专项练习100题含答案

整式的加减专项练习1、3(a+5b)-2 (b-a ) 2 、 3a- (2b-a ) +b3、2(2a2+9b)+3( -5a 2-4b )4、( x3-2y 3-3x 2y)- (3x3 -3y 3-7x 2y) 5 、 3x2-[7x- ( 4x-3 ) -2x 2] 6、( 2xy-y )- (-y+yx ) 7、 5( a2b-3ab 2) -2 (a2b-7ab )8、( -2ab+3a) -2 (2a-b )+2ab2 29 、(7mn-5mn)- (4mn-5mn)10 、(5a2+2a-1)-4 ( 3-8a+2a2).11、-3x 2y+3xy2 +2x2y-2xy 2;12、2(a-1 )- (2a-3 )+3. 13、-2 (ab-3a 2)-[2b 2 - ( 5ab+a2) +2ab]14、( x2-xy+y )-3 ( x2 +xy-2y )15、 3x2-[7x- (4x-3 ) -2x 2]16、a2b-[2 (a2 b-2a 2c) - ( 2bc+a2c)] ;17、-2y 3+(3xy2-x 2y)-2 ( xy2-y 3).18、2(2x-3y ) - (3x+2y+1)19、- (3a2-4ab )+[a 2 -2 (2a+2ab) ] .120、5m-7n-8p+5n-9m-p;21、( 5x2y-7xy 2)- ( xy2-3x 2y);22 、3( -3a 2-2a )-[a 2 -2 (5a-4a 2 +1)-3a] .23、3a2-9a+5- ( -7a 2+10a-5);24 、-3a 2b- ( 2ab2-a 2b) - ( 2a2b+4ab2).25、( 5a-3a 2+1)- (4a3-3a 2);26 、 -2 (ab-3a 2)-[2b 2- (5ab+a2)+2ab]27、(8xy-x2+ y2)+- y2+x2-xy;、x2- 1 +x-4(x- x2+1);( 8 ) 28(2 3 )22x2-[x-(4x-3)- x2].30、()(-3a+b);29、37 2 5a+ 4b-3a -2 2 2 2 2 2 2 2.31、(3a -3ab+2b)+( a +2ab-2b);32、2a b+2ab -[2(a b-1 )+2ab +2]33 (、2a2 -1+2a)-3( a-1+a2); 34 、(2x2-xy )-3(2x2-3xy )-2[x 2(-2x2-xy+y 2)] .35、-2 ab+3 a2b+ ab+( -3 a2 b) -1 36 、(8 xy- x2+y2) +( -y2+x2-8xy) ;3 4 4237、2x-(3 x- 2y+3) -(5 y-2) ; 38 、-(3 a+2b) + (4 a-3b+ 1) -(2 a-b-3) 39、4x3-( -6x3 ) +( -9x3) 40 、 3- 2xy+ 2yx 2+6xy- 4x2y41、 1 - 3(2 ab+a) 十 [1 -2(2 a-3ab)] .42、 3 x-[5 x+(3 x-2)] ;43、(3 a2b-ab2)-ab2+a2b44、 2x3 y 3x 2 3x y( 3 )45 、( -x2+5+4x3 ) + ( - x3+5x- 4) 46 、( 5a2-2a+3 )-(1-2a+a2)+3(-1+3a-a 2).47 、 5( 3a2b-ab 2)-4 (-ab 2+3a2 b).48 、 4a2+2( 3ab-2a 2)- (7ab-1 ).49、1 xy+( -1 xy)-2xy 2- (-3y 2x)50 、5a2-[a 2- (5a2-2a )-2 ( a2-3a )]2 451 、 5m-7n-8p+5n-9m+8p 52 、( 5x2y-7xy 2)- (xy2-3x 2y)353、 3x 2y-[2x 2 y-3 ( 2xy-x 2y)-xy] 54 、 3x2-[5x-4( 1 x2-1)]+5x 2255、2a3b- 1 a3 b-a 2b+ 1 a2b-ab 2;2 256、( a2+4ab-4b2)-3 (a2+b2)-7 ( b2-ab ). 57、a2+2a3+(-2a 3)+(-3a 3) +3a2;58 、5ab+(-4a 2 b2)+8ab2- ( -3ab ) +( -a 2b)+4a2b2; 59 、( 7y-3z )- (8y-5z );60、 -3 (2x2-xy )+4( x2 +xy-6 ).61、(x3+3x2 y-5xy 2+9y3) +( -2y 3+2xy2+x2y-2x 3)- (4x2y-x 3 -3xy 2+7y3)62、-3x 2y+2x2y+3xy2-2xy 2;63 、3(a2-2ab ) -2 (-3ab+b2);2 2 2 2 2 2 264、5abc-{2a b-[3abc- (4a b-ab ]} .65、5m-[m +( 5m-2m) -2 (m-3m) ] .66、-[2m-3 (m-n+1) -2]-1 .467、1 a-(1 a-4b-6c)+3(-2c+2b)3 268、 -5a n-a n- (-7a n) +( -3a n)69 、x2y-3xy 2 +2yx2-y 2x70、1 a2b-0.4ab 2- 1 a2b+ 2 ab2;71、 3a-{2c-[6a-(c-b )+c+( a+8b-6)]}4 2 572、-3 ( xy-2x 2)-[y 2 - ( 5xy-4x 2)+2xy] ;73、化简、求值1 x2-2-(1 22 -3(-2 x2+1 y2),其中 x=-, y=-4 22 x +y ) 2 33 2 374、化简、求值1 x- 2( x-1 y2) +( -3 x+1 y2 ) ,其中 x=- 2, y=-22 3 2 3 375、1 x 3 3x2 2 x 3 1 x 2 (4x 6) 5x其中 x=- 1 1;3 2 3 2 276、化简,求值( 4m+n)-[1- (m-4n)] ,m=2 n=-1 15 3577、化简、求值 2( a2b+2b3-ab3 ) + 3a3- (2 ba2-3ab2+3a3) -4b3,其中 a=- 3,b=278、化简,求值:(2x3-xyz )-2 (x3-y 3 +xyz)+(xyz-2y 3),其中 x=1,y=2,z=-3 .79、化简,求值: 5x2-[3x-2 ( 2x-3 ) +7x2] ,其中 x=-2 .80、若两个多项式的和是2x2 +xy+3y2,一个加式是 x2-xy ,求另一个加式.81、若 2a2-4ab+b2与一个多项式的差是 -3a 2 +2ab-5b2,试求这个多项式.82、求 5x2y-2x2y 与- 2xy2+4x2 y 的和.83、求 3x2+x-5 与 4- x+ 7x2的差.84、计算 5y+3x+5z 2与 12y+7x-3z 2的和85、计算 8xy 2 +3x 2 y-2 与-2x 2 y+5xy 2 -3 的差686、多项式 -x 2 +3xy- 1 y 与多项式 M的差是 - 1 x2-xy+y ,求多项式 M2 212287、当 x=- , y=-3 时,求代数式 3(x -2xy )-[3x -2y+2 (xy+y)] 的值.88、化简再求值 5abc-{2a 2 b-[3abc- (4ab 2 -a 2 b)]-2ab 2 } ,其中 a=-2 ,b=3,1c=-489、已知 A=a2 -2ab+b 2,B=a2 +2ab+b2(1)求 A+B;(2)求1 (B-A) ;490、小明同学做一道题,已知两个多项式 A,B,计算 A+B,他误将 A+B看作 A-B,求得 9x2 -2x+7 ,若 B=x2+3x-2 ,你能否帮助小明同学求得正确答案?2 291、已知: M=3x+2x-1 ,N=-x -2+3x ,求 M-2N.92、已知 A 4x24xy y2 , B x2xy 5 y2,求 3A-B93、已知 A=x2+xy+ y2,B=- 3xy- x2,求 2A-3B.794、已知 a 2 +( b+ 1) 2= 0,求 5ab2-[2 a2b-(4 ab2-2a2b)] 的值.22295、化简求值: 5abc-2a b+[3abc-2 ( 4ab -a b)] ,其中 a、b、c 满足2|a-1|+|b-2|+c =0.96、已知 a,b, z 满足:(1)已知 |x-2|+ (y+3)2=0,(2)z 是最大的负整数,化简求值:2 ( x2 y+xyz)-3 ( x2y-xyz )-4x 2 y.97、已知 a+b=7,ab=10,求代数式( 5ab+4a+7b)+(6a-3ab )- (4ab-3b )的值.2 2 2 298、已知 m+3mn=5,求 5m-[+5m- (2m-mn)-7mn-5]的值99、设 A=2x2 -3xy+y 2+2x+2y,B=4x2-6xy+2y 2-3x-y ,若 |x-2a|+ ( y-3 )2 =0,且B-2A=a,求 a 的值.100、有两个多项式: A= 2a2- 4a+1,B=2( a2-2a) +3,当 a 取任意有理数时,请比较A 与 B 的大小.8整式的加减专项练习答案:1、 3( a+5b) -2 ( b-a ) =5a+13b2、 3a- ( 2b-a ) +b=4a-b .3、 2( 2a2+9b) +3( -5a 2-4b ) =—11a 2 +6b 23323323+3+424、( x -2y -3x y) - ( 3x -3y -7x y) = -2x y x y 6、( 2xy-y ) - ( -y+yx ) = xy7、 5( a 22b-3ab2 ) -2( a2b-7ab ) = -a2b+11ab8、( -2ab+3a ) -2 ( 2a-b ) +2ab= -2a+b9、( 7m2 n-5mn) - ( 4m2 n-5mn) = 3m 2 n10 、( 5a2+2a-1 ) -4 ( 3-8a+2a 2)= -3a 2+34a-1311 、 -3x 2 y+3xy 2 +2x 2 y-2xy 2 = -x 2 y+xy 212 、 2( a-1 ) - ( 2a-3 ) +3.=413、 -2 ( ab-3a 2) -[2b 2 - ( 5ab+a 2) +2ab]= 7a 2 +ab-2b 214、( x 2-xy+y ) -3 ( x 2 +xy-2y )= -2x 2 -4xy+7y15、 3x 2-[7x- ( 4x-3 ) -2x 2 ]=5x 2 -3x-316、 a2b-[2 (a2b-2a 2c) - ( 2bc+a2c)]= -a2b+2bc+6a2c 17、 -2y 3+( 3xy 2-x 2y) -2 ( xy 2-y 3) = xy 2-x 2y18、 2(2x-3y ) - ( 3x+2y+1)=2x-8y-119、-(3a2-4ab )+[a2-2 ( 2a+2ab) ]=-2a2 -4a20、 5m-7n-8p+5n-9m-p = -4m-2n-9p21、( 5x 2y-7xy 2) - ( xy 2-3x 2y) =4xy 2-4x 2y22、 3( -3a 2-2a )-[a 2-2 ( 5a-4a 2+1) -3a]=-18a 2 +7a+223、 3a2-9a+5- ( -7a 2+10a-5 ) =10a2-19a+1024、 -3a 2b- (2ab2-a 2b) - ( 2a2b+4ab2) = -4a 2b-64ab 225、( 5a-3a 2+1) - ( 4a3-3a 2) =5a-4a 2+126、 -2 ( ab-3a 2)-[2b 2 - ( 5ab+a2)+2ab]=7a 2 +ab-2b227、 (8 xy-x2+ y2) + ( -y2+ x2-8xy)=028、 (2 x2-1+3x) - 4( x- x2+1 )= 6x 2 -x- 52 2 229、 3x2-[ 7x- (4 x-3) - 2x2] = 5 x2- 3x- 330、 5a+( 4b-3a ) - ( -3a+b ) = 5a+3b31、( 3a 2 -3ab+2b 2) +( a 2 +2ab-2b 2) = 4a 2 -ab32、 2a 2 b+2ab 2 -[2 ( a 2 b-1 ) +2ab 2 +2] . = -1933 、( 2a 2-1+2a ) -3 ( a-1+a 2) = -a 2-a+234、 2( x 2-xy ) -3 ( 2x 2-3xy ) -2[x 2- ( 2x 2-xy+y 2) ]=-2x 2+5xy-2y 235、- 2+ 3 2 ++(-3 2 )-1 = 1ab-1 3 ab a b ab a b 3 4 436、 (8 xy -x 2+ y 2) + ( - y 2+ x 2- 8xy)=0 37、 2x - (3 x - 2y +3) - (5 y -2)=-x-3y-138、- (3 a + 2b) + (4 a - 3b +1) - (2 a -b - 3)= -a-4b+439、 3 3 3 x 3 4x - ( -6x ) + ( -9x ) =40、 3- 2xy + 2yx 2+ 6xy - 4x 2y = -2 x 2y+441、 1 - 3(2 ab + a) 十 [1 - 2(2 a -3ab)]=2-7a42、 3 - [5 x + (3 - 2)]=-5x+2x x43、 (3 a 2b - ab 2) - ( ab 2+ 3a 2b)= -2 ab 244、 2x3y 3x2 3x y= 5x+y45、(- x 2+5+4 x 3)+(- x 3+ 5 x -4)= 3x 3 - x 2+ 5 x+146、( 5a 2-2a+3 ) - ( 1-2a+a 2) +3( -1+3a-a 2) =a 2+9a-12 2 2 2 2 247、 5( 3a b-ab ) -4 ( -ab +3a b ). =3a b-ab48 、 4a 2+2( 3ab-2a 2) - ( 7ab-1 )=1-ab49、1xy+( - 1xy ) -2xy 2 -( -3y2x ) = 1xy+xy22 4 450 、 5a 2-[a 2- (5a 2-2a ) -2 ( a 2-3a ) ]=11a 2-8a 51 、 5m-7n-8p+5n-9m+8p=-4m-2n52、( 5x 2y-7xy 2) - ( xy 2-3x 2y ) =8x 2y-6xy 253 、 3x 2y-[2x 2y-3( 2xy-x 2y ) -xy]=-2x 2y+7xy54、 3x 2-[5x-4( 1 x 2-1)]+5x2 = 10x 2 -5x-4 255、 2a 3b- 1a 3b-a 2b+ 1a 2b-ab 2= 3a 3b- 1a 2b-ab 222 2 22 2 2 2 2 2 256、( a +4ab-4b ) -3 ( a +b ) -7 ( b -ab ) =-2a +11ab-14b58、 5ab+(-4a 2b 2) +8ab 2- ( -3ab ) +( -a 2b ) +4a 2b 2=8ab+8ab 2-a 2b 59 、( 7y-3z ) - ( 8y-5z ) =-y+2z60 、 -3 ( 2x 2-xy ) +4(x 2+xy-6 ) =-2x 2+7xy-24322 332 232 3 2 361、( x +3x y-5xy +9y ) +(-2y +2xy +x y-2x ) -(4x y-x -3xy +7y )=062、 -3x 2y+2x2y+3xy 2-2xy 2= -x 2y+xy263、 3( a2-2ab ) -2 ( -3ab+b 2) =3a 2 -2b 264、 5abc-{2a 2 2 2 2 2b-[3abc- ( 4a b-ab ]}=8abc-6a b+ab2 2 2 2 265、 5m-[m +(5m-2m) -2 ( m-3m)]=m -4m66、 -[2m-3( m-n+1) -2]-1=m-3n+467、1 a-( 1 a-4b-6c)+3(-2c+2b)=- 1 a+10b3 2 6n n n n n68、 -5a -a - ( -7a ) +( -3a ) = -2a1071、1 a 2b-0.4ab 2- 1 a 2b+2 ab 2=- 1 a 2b 4 2 5 4 71、 3a-{2c-[6a- ( c-b ) +c+( a+8b-6 ) ]}=10a+9b-2c-672、 -3 ( xy-2x 2) -[y2- (5xy-4x 2)+2xy]= 2x 2 -y 273、化简、求值 1 2 - 2- ( 1 2 2 )- 3 2 2 1 2 ) ,其中 x =- 2, y =- 42 x 2 x + y( - 3 x + 3 y 32 原式 =2x 2+ 1y 2- 2 =6 82 974、化简、求值 1x - 2( x - 1y 2) + ( - 3x + 1y 2) ,其中 x =- 2, y =-223 2 33原式 =-3x+y 2=6 4975、 1 x 33 x 2 2 x 3 1 x 2( 4x 6) 5x 其中 x =- 1 1; 32 32233276、 化简,求值( 4m+n ) -[1- ( m-4n ) ] , m=2n=-1 15 3原式 =5m-3n-1=577、化简、求值 2( a 2b +2b 3- ab 3) +3a 3- (2 ba 2- 3ab 2+ 3a 3) -4b 3,其中 a =- 3, b =2原式 =-2 ab 3+3ab 2= 1278、化简,求值: ( 2x 3-xyz ) -2 ( x 3-y 3+xyz ) +( xyz-2y 3),其中 x=1, y=2, z=-3 . 原式 =-2xyz=679、化简,求值: 5x 2-[3x-2 ( 2x-3 ) +7x 2] ,其中 x=-2 .原式 =-2x 2+x-6=-1680、若两个多项式的和是 2x 2+xy+3y 2,一个加式是 x 2-xy ,求另一个加式.( 2x 2+xy+3y 2)——( x 2-xy ) = x 2+2xy+3y 281、若 2a 2-4ab+b 2与一个多项式的差是-3a 2+2ab-5b 2,试求这个多项式.( 2a 2-4ab+b 2)—( -3a 2+2ab-5b 2) =5a 2-6ab+6b 282、求 5x 2y -2x 2y 与- 2xy 2+ 4x 2y 的和.( 5x 2y - 2x 2y )+(- 2xy 2+ 4x 2y )=3xy 2+ 2x 2y 83、 求 3x 2+x - 5 与 4- x + 7x 2的差.( 3x 2+ x - 5)—( 4- x + 7x 2) =— 4x 2+2x - 9 84 、计算 5y+3x+5z 2与 12y+7x-3z 2的和( 5y+3x+5z 2) +( 12y+7x-3z 2) =17y+10x+2z 285、计算 8xy 2 +3x 2 y-2 与 -2x 2 y+5xy 2 -3 的差(8xy 2 +3x 2 y-2 )—( -2x 2 y+5xy 2 -3 ) =5x 2 y+3xy 2 +11186、 多项式 -x 2+3xy- 1 y 与多项式 M 的差是- 1 x 2-xy+y ,求多项式 M2 2M=- 1x 2+4xy — 3y2 287、当 x=- 1, y=-3 时,求代数式 3( x 2-2xy ) -[3x 2-2y+2 ( xy+y ) ] 的值.2原式 =-8xy+y= — 1588、化简再求值 5abc-{2a2 b-[3abc- (4ab 2-a 2b )]-2ab 2} ,其中 a=-2 ,b=3,c=- 1 原4式=83abc-a 2b-2ab 2=3689、已知 A=a 2-2ab+b 2, B=a 2+2ab+b 2(1)求 A+B ;( 2)求 1(B-A) ;4 A+B=2a 2 +2b 21 (B-A)=ab4290、小明同学做一道题, 已知两个多项式 ,A ,B ,计算 A+B ,他误将 A+B 看作 A-B ,求得 9x -2x+7若 B=x 2+3x-2 ,你能否帮助小明同学求得正确答案?A=10x 2+x+5 A+B=11x 2+4x+3 91、已知: M=3x 2+2x-1 , N=-x 2-2+3x ,求 M-2N .M-2N=5x 2- 4x+392、已知 A 4x 24xy y 2 , B x 2xy 5 y 2,求 3A - B 3A- B=11x 2-13xy+8y293、已知 A = x 2+ xy + y 2,B =- 3xy - x 2,求 2A - 3B .2A -2 2 3B= 5 x +11 xy + 2y 94、已知 a 2 +( b +1) 2= 0,求 5ab 2-[2 a 2b - (4 ab 2- 2a 2b)] 的值.原式 =9 2-4 2ab a b=3495、化简求值: 5abc-2a 2b+[3abc-2 ( 4ab 2-a 2b )] ,其中 a 、b 、c 满足 |a-1|+|b-2|+c2=0.原式=8abc-8a 2b=-3296、已知 a , b , z 满足:( 1)已知 |x-2|+( y+3) 2=0,(2) z 是最大的负整数,化简求值: 2( x 2y+xyz ) -3 (x 2y-xyz ) -4x 2y .原式 =-5x 2y+5xyz=9097、已知 a+b=7, ab=10,求代数式( 5ab+4a+7b ) +( 6a-3ab ) - ( 4ab-3b )的值.原式 =10a+10b-2ab=502 2 -[+5m 22298、已知 m+3mn=5,求 5m - ( 2m-mn) -7mn-5] 的值原式=2m+6mn+5=1599、设 A=2x2-3xy+y 2+2x+2y , B=4x2 -6xy+2y 2-3x-y ,若 |x-2a|+( y-3 )2 =0,且 B-2A=a,求a 的值.B-2A=-7x-5y=-14a-15=a a=-1100、有两个多项式: A=22-4+ 1, B=2(a2-2a)+3,当a取任意有理数时,请比较Aa a与 B 的大小.A=2 a2-4a+ 1 B = 2a2- 4a+3所以 A<B12。

人教版数学七年级上册整式计算专项练习200题及答案解析

人教版数学七年级上册整式计算专项练习200题及答案解析

1写出下列单项式的系数和次数:2找出下列各代数式中的单项式(画3把多项式4计算:5化简:6解答下列问题:7解答下列各题:8请回答下列问题:9先化简,再求值:10先化简后求值:已知11已知12化简:13化简:14已知15合并同类项.16“1718先化简,再求值:19已知当20已知21先化简再求值.22化简:23已知24课堂上李老师给出了一道整式求值的题目,李老师把要求的整式25若关于26先化简,再求值:27已知28有这样一道题29有这样一道题:30先化简,再求值31已知32小明做一道题33已知多项式34先化简,再求值:35已知老师在黑板上书写了一个正确的演算过程随后用手掌捂住了如图所示的一个二次三项式,形式如36化简:37计算:38计算:39计算:40计算:41化简下列各式4243先化简,再求值:44若多项式45已知46已知47小红做一道数学题48先化简,再求值:49先化简,再求值:50已知:51先化简,后求值:已知52若53先化简再求值:54先化简,再求值:55解答下列各题:56完成下列小题.57化简求值,先化简代数式:58先化简,再求值:59先化简,再求值:60小明同学做数学题:已知两个多项式61回答问题.62先化简,再求值:63先化简,再求值:64先化简,再求值:65先化简,再求值:66化简:67先化简,再求值:68先化简,再求值:先化简,再求值:69化简:70已知:多项式71先化简,再求值:72先化简,再求值:73化简求值:74先化简,再求值:7576化简:77计算:78先化简,再求值:79化简:80已知81化简:82先化简,再求值:83阅读下面的解题过程并回答问题.84计算:8586解答下列问题.先化简,再求值:87先化简,再求值:88下列去括号正确的是(89下列去括号或添括号:90当9192如果单项式93单项式9495关于多项式9697先化简,再求值:98若代数式99若100观察下列运算并填空.1 23 4 5 67 8 9 10 11 1213 14 15 16 17 18 1920 21 22 23 24 25 26 2728 29 30 31 32 33 34 3536 37 38 39 40 41 4243 44 45 46 47 48 4950 51 52 53 54 55 5657 58 59 60 61 62 63 6465 66 67 68 69 70 7173 74 75 76 77 78 7981 82 83 84 85 8687 88 89 90 91 9293 94 9596 9798 99 100。

七年级数学上册第二单元《整式加减》-解答题专项测试题

七年级数学上册第二单元《整式加减》-解答题专项测试题

一、解答题1.让我们规定一种运算a b ad cb c d=-, 如232534245=⨯-⨯=-. 再如14224x x =-. 按照这种运算规定,请解答下列问题,(1)计算60.5142= ;-3-245= ;2-335x x=- (2)当x=-1时,求223212232x x x x -++-+---的值(要求写出计算过程).解析:(1)1;-7;-x ;(2)-7 【分析】(1)根据新运算的定义式,代入数据求出结果即可;(2)根据新运算的定义式将原式化简为-x-8,代入x=-1即可得出结论. 【详解】解:(1)60.5160.543211242=⨯-⨯=-=; -3-23524158745=-⨯--⨯=---=-()(); 2-3253310935xx x x x x x=⨯---⨯=---=--()()().故答案为:1;-7;-x .(2)原式=(-3x 2+2x+1)×(-2)-(-2x 2+x-2)×(-3), =(6x 2-4x-2)-(6x 2-3x+6), =-x-8,当x=-1时,原式=-x-8=-(-1)-8=-7.∴当x=-1时,223212232x x x x -++-+---的值为-7.【点睛】本题考查了整式的化简求值以及有理数的混合运算,读懂题意掌握新运算并能用其将整式进行化简是解题的关键. 2.若单项式21425m n x y +--与413n mx y +是同类项,求这两个单项式的积 解析:10453x y -【分析】根据题意,可得到关于m ,n 的二元一次方程组,求出m ,n 的值,即可求得答案. 【详解】∵单项式21425m n x y +--与413n mx y +是同类项, ∴21442m n n m +=+⎧⎨-=⎩,解得21m n =⎧⎨=⎩,∴21425252441011355533n m m n x y xy x y x y x y ++--⋅-⋅=-=【点睛】本题主要考查同类项的定义和单项式乘单项式的法则,根据同类项的定义,列出关于m ,n 的二元一次方程组,是解题的关键.3.已知22332A x y xy =+-,2222B xy y x =--. (1)求23A B -.(2)若|23|1x -=,29y =,且||x y y x -=-,求23A B -的值.解析:(1)2212127x y xy +-;(2)114或99.【分析】(1)把22332A x y xy =+-,2222B xy y x =--代入23A B -计算即可;(2)根据|23|1x -=,29y =,且||x y y x -=-求出x 和y 的值,然后代入(1)中化简的结果计算即可. 【详解】 解:(1)()()2222232332322A B x y xy xy y x-=+----2222664366x y xy xy y x =+--++ 2212127x y xy =+-;(2)由题意可知:231x -=±,3=±y , ∴2x =或1,3=±y ,由于||x y y x -=-, ∴2x =,3y =或1x =,3y =. 当2x =,3y =时,23114A B -=. 当1x =,3y =时,2399A B -=. 所以,23A B -的值为114或99. 【点睛】本题考查了整式的加减运算,绝对值的意义,以及分类讨论的数学思想,熟练掌握整式的加减运算法则是解(1)的关键,分类讨论是解(2)的关键.4.为鼓励居民节约用电,某市采用价格调控手段达到省电目的,该市电费收费标准如下表(按月结算):(2)设某月的用电量为x 度(0300x <≤),试写出不同电量区间应缴交的电费.解析:(1)该居民12月份应缴电费94.5元;(2)0.5,01500.6522.5,1502500.860,250300x x x x x x <≤⎧⎪-<≤⎨⎪-<≤⎩【分析】(1)根据用电量类型分别进行计算即可;(2)分三种情况进行讨论,当x 不超过150度时,x 超过150度,但不超过时250度时和x 超过250度时,再分别代入计算即可. 【详解】解:(1)由题意,得150×0.50+(180-150)×0.65=94.5(元) 答:该居民12月应缴交电费94.5元;(2)若某户的用电量为x 度,则当x≤150时,应付电费:0.50x 元; 当150<x≤250时,应付电费:0.65(x -150)+75=0.65x 22.5-(元); 当250<x <300,应付电费:0.80(x -250)+140=0.8x 60-(元).∴不同电量区间应缴交的电费为:0.5,01500.6522.5,1502500.860,250300x x x x x x <≤⎧⎪-<≤⎨⎪-<≤⎩.【点睛】本题考查了列代数式,读懂题目信息,理解阶梯电价的收费方法和电费的计算方法是解题的关键.5.已知一个多项式加上223x y xy -得222x y xy -,求这个多项式. 佳佳的解题过程如下:解:222223x y xy x y xy ---①224x y xy =-②请问佳佳的解题过程是从哪一步开始出错的?并写出正确的解题过程. 解析:是从第①步开始出错的,见解析 【分析】根据多项式的加减运算法则进行运算即可求解. 【详解】解:佳佳是从第①步开始出错的,正确的解题过程如下: 根据题意,得:()()222223x y xyxy xy ---222223x y xy x y xy =--+222x y xy =+,∴这个多项式为222x y xy +. 故答案为222x y xy +. 【点睛】本题考查了多项式的加减混合运算,注意:只有同类项才能进行加减运算. 6.已知222242,325A ab b a B b a ab =--=-+,当11.5,2a b ==-时,求34B A -的值.解析:12【分析】根据题意,先根据整式的混合运算法则化简34B A -,再将a ,b 的值代入即可. 【详解】()()2222222234332544296151684B A b a ab ab b a b a ab ab b a -=-+---=-+-++=22172b a ab --,当11.5,2a b ==-时,原式22111931172 1.5 1.517224242⎛⎫⎛⎫=⨯--⨯-⨯-=⨯-+= ⎪ ⎪⎝⎭⎝⎭. 【点睛】本题主要考查了整式的化简求值,熟练掌握整式的混合运算法则以及有理数的运算是解决本题的关键.7.有这样一道题“求多项式3323323763363101a a b a b a a b a b a -+++--+的值,其中99.01,123.89a b ==-”,有一位同学把99.01a =抄成99.01,123.89a b =-=-抄成123.89b =,结果也正确,为什么?解析:见解析 【分析】原式合并同类项得到最简结果为常数1,这个多项式的值与a 、b 的值无关,故a ,b 的值抄错后,答案仍然是1 【详解】解:∵3323323763363101a a b a b a a b a b a -+++--+()()()33333227310663311a a a a b a b a b a b =+-+-++-+=;∴这个多项式的值与,a b 的值无关,故,a b的值抄错后结果也正确.【点睛】此题考查了整式的加减——化简求值,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握运算法则是解本题的关键.8.(规律探究题)用计算器计算下列各式,将结果填写在横线上.99999×11=__________;99999×12=__________;99999×13=__________;99999×14=__________.(1)你发现了什么?(2)不用计算器,你能直接写出99999×19的结果吗?解析:1099989;1199988;1299987;1399986;(1)如果n是11,12,13,…,20中的任何一个数,则:99999×n=(n-1)9998(20-n),其中(n-1)9998(20-n)是1个7位数,前2位是n-1,个位是20-n,中间4个数字总是9998;(2)99999×19=1899981【分析】用计算器分别进行计算,再根据结果找出规律,最后根据规律即可直接写出99999×19的结果.【详解】解:99999×11=1099989;99999×12=1199988;99999×13=1299987;99999×14=1399986.故答案为:1099989;1199988;1299987;1399986.(1)通过计算观察可发现以下规律:如果n是11,12,13,…,20中的任何一个数,则:99999×n=(n-1)9998(20-n),其中(n-1)9998(20-n)是1个7位数,前2位是n-1,个位是20-n,中间4个数字总是9998.(2)根据以上规律可直接写出:99999×19=1899981.【点睛】此题考查了计算器−有理数,解题的关键是通过用计算器计算,找出规律,通过规律进行解答.9.上海与南京间的公路长为364km,一辆汽车以xkm/h的速度开往南京,请用代数式表示:(1)汽车从上海到南京需多少小时?(2)如果汽车的速度增加2km/h,从上海到南京需多少小时?(3)如果汽车的速度增加2km/h,可比原来早到几小时?解析:(1)364xh;(2)3642x+h;(3)3643642x x⎛⎫-⎪+⎝⎭h【分析】(1)根据题意,可以用代数式表示出汽车从上海到南京需要的时间;(2)根据题意,可以用代数式表示出汽车的速度增加2千米/时,从上海到南京需要的时间;(3)根据题意,可以用代数式表示出如果汽车的速度增加2千米/时,可比原来早到几小时. 【详解】解:(1)汽车从上海到南京需364xh ; (2)如果汽车的速度增加2km/h ,从上海到南京需3642x +h ; (3)如果汽车的速度增加2km/h ,可比原来早到3643642xx ⎛⎫- ⎪+⎝⎭h . 【点睛】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式. 10.先化简,再求值:-2x 2-2[3y 2-2(x 2-y 2)+6],其中x =-1,y =-2. 解析:2221012x y --,-50. 【分析】根据整式的加减及合并同类项先对原式进行化简,得到2221012x y --,再将1,2x y =-=-代入即可求解,需要注意本题中两次遇到去括号,注意符号的改变.【详解】原式=2222223226x y x y ⎡⎤---++⎣⎦ =2222264412x y x y --+-- =2222246412x x y y -+--- =2221012x y --,当1,2x y =-=-时,原式=222(1)10(2)1250⨯--⨯--=-.【点睛】本题主要考查了去括号,整式的加减,合并同类项,乘法的分配律等相关内容,熟练掌握各项计算法则是解决本题的关键,注意去括号中符号的改变原则. 11.数学课上,老师出示了这样一道题目:“当1,22a b ==-时,求多项式3233233733631061a a b a a b a b a a b +++----的值”.解完这道题后,张恒同学指出:“1,22a b ==-是多余的条件”师生讨论后,一致认为这种说法是正确的,老师及时给予表扬,同学们对张恒同学敢于提出自己的见解投去了赞赏的目光. (1)请你说明正确的理由;(2)受此启发,老师又出示了一道题目,“无论x 取任何值,多项式2233x mx nx x -++-+的值都不变,求系数m 、n 的值”.请你解决这个问题.解析:(1)见解析;(2)3n =,1m =.【分析】(1)将原式进行合并同类项,然后进一步证明即可;(2)将原式进行合并同类项,根据“无论x 取任何值,多项式值不变”进一步求解即可. 【详解】(1)3233233733631061a a b a a b a b a a b +++---- =3332233731033661a a a a b a b a b a b +-+-+-- =1-,∴该多项式的值与a 、b 的取值无关, ∴1,22a b ==-是多余的条件. (2)2233x mx nx x -++-+ =2233x nx mx x -++-+ =2(3n)(1)3x m x -++-+ ∵无论x 取任何值,多项式值不变, ∴30n -+=,10m -=, ∴3n =,1m =. 【点睛】本题主要考查了多项式运算中的无关类问题,熟练掌握相关方法是解题关键.12.已知多项式234212553x x x x ++-- (1)把这个多项式按x 的降冥重新排列;(2)请指出该多项式的次数,并写出它的二次项和常规项.解析:(1)432215253x x x x -+++-;(2)该多项式的次数为4,二次项是22x ,常数项是13-. 【分析】(1)按照x 的指数从大到小的顺序把各项重新排列即可;(2)根据多项式的次数的定义找出次数最高的项即是该多项式的次数,再找出次数是2的项和不含字母的项即可得二次项和常数项. 【详解】(1)按的降幂排列为原式432215253x x x x -+++-. (2)∵234212553x x x x ++--中次数最高的项是-5x 4, ∴该多项式的次数为4,它的二次项是22x ,常数项是13-.【点睛】本题考查多项式的定义,正确掌握多项式次数及各项的判定方法及多项式升幂、降幂排列方法是解题关键.13.国庆期间,广场上设置了一个庆祝国庆70周年的造型(如图所示).造型平面呈轴对称,其正中间为一个半径为b 的半圆,摆放花草,其余部分为展板.求: (1)展板的面积是 .(用含a ,b 的代数式表示) (2)若a =0.5米,b =2米,求展板的面积.(3)在(2)的条件下,已知摆放花草部分造价为450元/平方米,展板部分造价为80元/平方米,求制作整个造型的造价(π取3).解析:(1)12ab 平方米;(2)12 (平方米);(3)3660元. 【分析】(1)利用分割法求解即可.(2)把a ,b 的值代入(1)中代数式求值即可.(3)分别求出摆放花草部分造价,展板部分造价即可解决问题. 【详解】(1)由题意:展板的面积=12a •b (平方米). 故答案为:12ab (平方米).(2)当a =0.5米,b =2米时,展板的面积=12×0.5×2=12(平方米). (3)制作整个造型的造价=12×8012+π×4×450=3660(元). 【点睛】本题考查轴对称图形,矩形的性质,圆的面积等知识,解题的关键是熟练掌握基本知识. 14.化简与求值:(1)若1a =-,则式子21a -的值为______; (2)若1a b +=,则式子12a b++的值为______; (3)若534a b +=-,请你仿照以上求式子值的方法求出()()2422a b a b +++-的值. 解析:(1)0;(2)32;(3)-10. 【分析】(1)把a 的值代入计算即可; (2)把a+b 的值代入计算即可;(3)原式去括号转化为含有(5a+3b)的式子,然后代入5a+3b 的值计算即可. 【详解】解:(1)()221110a -=--=;(2)1311222a b ++=+=; (3)()()()()24221062253224210a b a b a b a b +++-=+-=+-=⨯--=-. 【点睛】本题考查的是整式的化简求值和整体代换的思想.只要原式化简出含有已知的式子,再代入求值即可.15.如图,某市有一块长为(3a+b )米,宽为(2a+b )米的长方形地块,中间是边长为(a+b )米的正方形,规划部门计划将在中间的正方形修建一座雕像,四周的阴影部分进行绿化,(1)绿化的面积是多少平方米?(用含字母a 、b 的式子表示) (2)求出当a =20,b =12时的绿化面积.解析:(1)(5a 2+3ab )平方米;(2)2720平方米 【分析】(1)根据割补法,用含有a,b 的式子表示出整个长方形的面积,然后用含有a,b 的式子表示出中间空白处正方形的面积,然后两者相减,即可求出绿化部分的面积. (2)将a =20,b =12分别代入(1)问中求出的关系式即可解决. 【详解】解:(1)(3a+b )(2a+b )﹣(a+b )2=6a 2+3ab+2ab+b 2﹣(a 2+2ab+b 2)=6a 2+3ab+2ab+b 2﹣a 2﹣2ab ﹣b 2=5a 2+3ab , 答:绿化的面积是(5a 2+3ab )平方米; (2)当a =20,b =12时 5a 2+3ab =5×202+3×20×12=2000+720=2720, 答:当a =20,b =12时的绿化面积是2720平方米. 【点睛】(1)本题考查了割补法,多项式乘多项式和完全平方式的运算法则,解决本题的关键是正确理解题意,能够熟练掌握多项式乘多项式的运算法则.(2)本题考查了整式的化简求值,解决本题的关键是熟练掌握整式的运算法则和步骤. 16.在数学活动课上,李老师设计了一个游戏活动,四名同学分别代表一种运算,四名同学可以任意排列,每次排列代表一种运算顺序,剩余同学中,一名学生负责说一个数,其他同学负责运算,运算结果既对又快者获胜,可以得到一个奖品. 下面我们用四个卡片代表四名同学(如下):(1)列式,并计算:①3-经过A ,B ,C ,D 的顺序运算后,结果是多少? ②5经过B ,C ,A ,D 的顺序运算后,结果是多少?(2)探究:数a 经过D ,C ,A ,B 的顺序运算后,结果是45,a 是多少? 解析:(1)①7;②206;(2)256a =或256a =- 【分析】(1)把-3和5经过A ,B ,C ,D 的运算顺序计算即可; (2)根据已知条件列列出关于a 的方程计算即可; 【详解】(1)①2[(3)2(5)]67-⨯--+=;②2[5(5)]26206--⨯+=;(2)()()226545a +--=,()2620a +=, 解得256a =或256a =-. 【点睛】本题主要考查了规律型数字变化类,一元二次方程的求解,准确计算是解题的关键. 17.观察下列单项式:﹣x ,2x 2,﹣3x 3,…,﹣9x 9,10x 10,…从中我们可以发现: (1)系数的规律有两条: 系数的符号规律是 系数的绝对值规律是 (2)次数的规律是(3)根据上面的归纳,可以猜想出第n 个单项式是 .解析:(1)奇数项为负,偶数项为正;与自然数序号相同;(2)与自然数序号相同;(3)(1)n nnx -【分析】通过观察题意可得:奇数项的系数为负,偶数项的系数为正,且系数的绝对值与自然数序号相同,次数也与与自然数序号相同.由此可解出本题. 【详解】(1)奇数项为负,偶数项为正, 与自然数序号相同; (2)与自然数序号相同;(3)(1)n nnx -.【点睛】本题考查了单项式的有关概念.确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.分别找出单项式的系数和次数的规律也是解决此类问题的关键.18.若关于x ,y 的多项式my 3+3nx 2y +2y 3-x 2y +y 不含三次项,求2m +3n 的值. 解析:-3.【分析】先合并同类项,根据已知得出m+2=0,3n-1=0,求出m 、n 的值后代入进行计算即可.【详解】my 3+3nx 2y +2y 3-x 2y +y =(m +2)y 3+(3n -1)x 2y +y ,∵此多项式不含三次项,∴m +2=0,3n -1=0,∴m =-2,n =13, ∴2m +3n =2×(-2)+3×13=-4+1=-3. 【点睛】本题考查了合并同类项和解一元一次方程的应用,关键是求出m 、n 的值.19.数a 、b 、c 在数轴上对应的位置如图所示,化简a c c b a b +-++-.解析:0;【分析】由数轴可得a >0>b >c ,并从数轴上可得出a ,b ,c 绝对值的大小,从而可以得出各项式子的正负,去绝对值可得出答案.【详解】解:由数轴得,c b 0a <<<,且c a b >>,a c cb a b +-++-a c cb a b =--+++-0=.【点睛】本题考查了数轴上数的大小,去绝对值,熟悉掌握定义是解决本题的关键.20.父母带着孩子(一家三口)去旅游,甲旅行社报价大人为a 元,小孩为a 2元;乙旅行社报价大人、小孩均为a 元,但三人都按报价的90%收费,则乙旅行社收费比甲旅行社贵多少元?(结果用含a 的代数式表示)解析:乙旅行社收费比甲旅行社贵0.2a 元.【分析】根据题意分别表示出甲乙两旅行社的费用,相减即可得到结果.【详解】根据题意得:(a+a+a )×90%-(a+a+12a ) =2.7a-2.5a=0.2a (元), 则乙旅行社收费比甲旅行社贵0.2a 元.【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.21.已知多项式﹣3x 2+mx+nx 2﹣x+3的值与x 无关,求(2m ﹣n )2017的值.解析:-1【分析】先把多项式进行合并同类项得(n-3)x 2+(m-1)x+3,由于关于字母x 的二次多项式-3x 2+mx+nx 2-x+3的值与x 无关,即不含x 的项,所以n-3=0,m-1=0,然后解出m 、n ,代入计算(2m-n )2017的值即可.【详解】合并同类项得(n ﹣3)x 2+(m ﹣1)x+3,根据题意得n ﹣3=0,m ﹣1=0,解得m=1,n=3,所以(2m ﹣n )2017=(﹣1)2017=﹣1.【点睛】考查了多项式及相关概念:几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数. 22.国庆期间,王老师计划组织朋友去晋西北游览两日.经了解,现有甲、乙两家旅行社针对组团两日游的游客报价均为每人500元,且提供的服务完全相同.甲旅行社表示,每人都按八五折收费;乙旅行社表示,若人数不超过20人,每人都按九折收费,超过20人,则超出部分每人按八折收费.假设组团参加甲、乙两家旅行社两日游的人数均为x 人. (1)请列式表示甲、乙两家旅行社收取组团两日游的总费用;(2)若王老师组团参加两日游的人数共有30人,请你通过计算,在甲、乙两家旅行社中,帮助王老师选择收取总费用较少的一家.解析:(1)甲旅行社收取组团两日游的总费用为425x 元;若人数不超过20人时,乙旅行社收取组团两日游的总费用为450x 元;若人数超过20人时,乙旅行社收取组团两日游的总费用为(4001000x +)元;(2)王老师应选择甲旅行社.【分析】(1)根据总费用等于人数乘以打折后的单价,易得甲旅行社的费用=500 x×0.85,对于乙家旅行社的总费用,应分类讨论:当0≤x≤20时,乙旅行社的费用=500 x×0.9;当x >20时,乙旅行社的费用=500×20×0.9+500(x-20)×0.8;(2)把x=30分别代入(1)中对应关系计算甲旅行社的费用和乙旅行社的费用的值,然后比较大小即可.【详解】(1)甲旅行社收取组团两日游的总费用为:5000.85425x x ⨯=元若人数不超过20人时,乙旅行社收取组团两日游的总费用为:5000.9450x x ⨯=元 若人数超过20人时,乙旅行社收取组团两日游的总费用为:()500(20)0.8500200.94001000-⨯+⨯⨯=+x x 元(2)因为王老师组团参加两日游的人数共有30人,所以甲旅行社收取组团两日游的总费用为:4253012750⨯=元乙旅行社收取组团两日游的总费用为40030100013000⨯+=元1275013000<,王老师应选择甲旅行社.【点睛】本题考查了代数式,能根据具体情境列代数式并求代数式的值是关键.23.将正整数1,2,3,4,5,……排列成如图所示的数阵:(1)十字框中五个数的和与框正中心的数11有什么关系?(2)若将十字框上下、左右平移,可框住另外五个数,这五个数的和与框正中心的数还有这种规律吗?请说明理由;(3)十字框中五个数的和能等于180吗?若能,请写出这五个数;若不能,请说明理由; (4)十字框中五个数的和能等于2020吗?若能,请写出这五个数;若不能,请说明理由.解析:(1)十字框中五个数的和是正中心数的5倍;(2)十字框中五个数的和是正中心数的5倍,理由见解析;(3)不能,理由见解析;(4)这五个数是404,403,405,397,411.【分析】(1)把框住的数相加即可求解;(2)设中心的数为a ,则其余4个数分别为1a -,1a +,7a -,7a +,相加即可得到规律;(3)由(2)得五个数的和为5a ,令5a=180,根据解得情况即可求解;(4)由(2)得五个数的和为5a ,令5a=2020,根据解得情况即可求解;【详解】解:(1)十字框中五个数的和是正中心数的5倍.∵十字框中五个数的和41011121855511=++++==⨯,∴十字框中五个数的和是正中心数的5倍.(2)五个数的和与框正中心的数还有这种规律.设中心的数为a ,则其余4个数分别为1a -,1a +,7a -,7a +.11775a a a a a a +-+++-++=,∴十字框中五个数的和是正中心数的5倍.(3)十字框中五个数的和不能等于180.∵当5180a =时,解得36a =,36751÷=,36在数阵中位于第6排的第1个数,其前面无数字,∴十字框中五个数的和不能等于180.(4)十字框中五个数的和能等于2020.∵当52020a =时,解得404a =,4047575÷=,404在数阵中位于第58排的第5个数,∴十字框中五个数的和能等于2020,这五个数是404,403,405,397,411.【点睛】此题主要考查一元一次方程的应用,解题的关键是设中心的数为a ,求出十字框中五个数的和为5a.24.已知A =2a 2+3ab ﹣2a ﹣1,B =﹣a 2+1223ab + (1)当a =﹣1,b =﹣2时,求4A ﹣(3A ﹣2B )的值;(2)若(1)中式子的值与a 的取值无关,求b 的值.解析:(1)4ab ﹣2a+13;(2)b=12 【分析】(1)将a=﹣1,b=﹣2代入A=2a 2+3ab ﹣2a ﹣1,B=﹣a 2+12ab+23,求出A 、B 的值,再计算4A ﹣(3A ﹣2B )的值即可;(2)把(1)结果变形,根据结果与a 的值无关求出b 的值即可.【详解】(1)4A ﹣(3A ﹣2B )=4A ﹣3A+2B=A+2B ,∵A=2a 2+3ab ﹣2a ﹣1,B=﹣a 2+12ab+23, ∴A+2B=2a 2+3ab ﹣2a ﹣1+2(﹣a 2+12ab+23) =2a 2+3ab ﹣2a ﹣1﹣2a 2+ab+43 =4ab ﹣2a+13; (2)因为4ab ﹣2a+13 =(4b ﹣2)a+13, 又因为4ab ﹣2a+13的值与a 的取值无关, 所以4b ﹣2=0,所以b=12. 【点睛】本题考查了整式的加减、化简求值,熟练掌握运算法则是解答本题的关键.25.学习了整式的加减运算后,张老师给同学们布置了一道课堂练习题“当2a =-,2018b =,求222221(324)2(23)2()12a b ab a a b a ab a b -+--++-的值”.小明做完后对同桌说:“老师给的条件2018b =是多余的,这道题不给b 的值,照样可以求出结果来”.同桌不相信他的话.亲爱的同学们,你相信小明的说法吗?解析:-21【分析】首先化简代数式,通过去括号、合并同类项,得出结论即含有b 的代数式相加为0,即可说明.【详解】解()()222221324223212a b ab a a b a ab a b ⎛⎫-+--++- ⎪⎝⎭=222223244621a b ab a a b a ab a b -+-+++-=101a -当2a =-时原式=()1021⨯--=-21.【点睛】考查整式的化简求值,熟练掌握去括号法则以及合并同类项法则是解题的关键. 26.已知230x y ++-=,求152423x y xy --+的值. 解析:-24.【分析】首先根据绝对值的非负性求出x ,y ,然后代入代数式求值.【详解】解:∵230x y ++-=,∴x+2=0,y-3=0,∴x=-2,y=3, ∴152423x y xy --+ ()()552342323=-⨯--⨯+⨯-⨯ ()5524=-+-24=-.【点睛】本题考查了代数式求值,利用非负数的和为零得出x 、y 的值是解题关键.27.已知:A=2x 2+ax ﹣5y+b ,B=bx 2﹣32x ﹣52y ﹣3. (1)求3A ﹣(4A ﹣2B )的值;(2)当x 取任意数值,A ﹣2B 的值是一个定值时,求(a+314A )﹣(2b+37B )的值. 解析:(1)(2b ﹣2)x 2﹣(a+3)x ﹣(b+6);(2)﹣312. 【分析】(1)先化简原式,再分别代入A 和B 的表达式,去括号并合并类项即可;(2)先代入A 和B 的表达式并去括号并合并类项,由题意可令x 和x 2项的系数为零,求解出a 和b 的数值,再化简原式后代入相关数值即可求解.【详解】解:(1)∵A=2x 2+ax ﹣5y+b ,B=bx 2﹣32x ﹣52y ﹣3, ∴原式=3A ﹣4A+2B=﹣A+2B=﹣2x 2﹣ax+5y ﹣b+2bx 2﹣3x ﹣5y ﹣6=(2b ﹣2)x 2﹣(a+3)x ﹣(b+6);(2)∵A=2x 2+ax ﹣5y+b ,B=bx 2﹣32x ﹣52y ﹣3, ∴A ﹣2B=2x 2+ax ﹣5y+b ﹣2bx 2+3x+5y+6=(2﹣2b )x 2+(a+3)x+(b+6),由x 取任意数值时,A ﹣2B 的值是一个定值,得到2﹣2b=0,a+3=0,解得:a=﹣3,b=1,则原式=a ﹣2b+314(A ﹣2B )=﹣3﹣2+32=﹣312. 【点睛】理解本题中x 取任意数值时A ﹣2B 的值均是一个定值的意思是整式化简后的x 和x 2项的系数均为零是解题关键.28.有一长方体形状的物体,它的长,宽,高分别为a ,b ,c(a>b>c),有三种不同的捆扎方式(如图所示的虚线).哪种方式用绳最少?哪种方式用绳最多?说明理由.解析:方式甲用绳最少,方式丙用绳最多.【解析】试题分析:根据长方形的对称性分别得到三种方式所需要的绳子的长度,然后将这三个代数式进行作差比较大小.试题方式甲所用绳长为4a +4b +8c ,方式乙所用绳长为4a +6b +6c ,方式丙所用绳长为6a +6b +4c ,因为a>b>c ,所以方式乙比方式甲多用绳(4a +6b +6c)-(4a +4b +8c)=2b -2c ,方式丙比方式乙多用绳(6a +6b +4c)-(4a +6b +6c)=2a -2c.因此,方式甲用绳最少,方式丙用绳最多.29.先化简,再求值(1)()223421332a a a a -+-+-,其中23a =- (2)()()22352542m mn mn m -+--+,其中22m mn -=解析:(1)原式=23362a a --+;256;(2)原式()2111m mn =-+;23. 【分析】(1)根据整式的运算法则,先将整式进行化简,再将字母的值代入计算求值即可.(2)根据整式的运算法则,去括号合并同类项,将整式化成最简,然后将字母的值代入计算即可.【详解】解(1)原式=22333-4233222a a a a ⨯-⨯++-=22363332a a a a --++-=23362a a --+ 将23a =-代入得:222336332⎛⎫⎛⎫-⨯--⨯-+ ⎪ ⎪⎝⎭⎝⎭=256; (2)原式=()()2222352542351084m mn mn m m mn mn m -+--+=+-+-- ()2111m mn =-+将22m mn -=代入得:11×2+1=23【点睛】本题考查了整式的化简求值,解决本题的挂件是正确理解题意,熟练掌握整式的运算法则,将整式正确进行化简.30.先化简,再求值:()()22222322a b ab a b ab a b -+---,其中1a =,2b =-. 解析:2ab -,4-.【分析】先去括号,再合并同类项,再将1a =,2b =-代入原式求值即可.【详解】原式22222423a b ab a b ab a b +=-+-- 22(112)(34)a b ab =--++-2ab =-,当1a =,2b =-时,原式21(2)4=-⨯-=-【点睛】本题考查了整式的化简求值问题,掌握整式化简的方法、合并同类项的方法是解题的关键.。

北师大版七年级数学上册整式计算题专项练习(附答案)

北师大版七年级数学上册整式计算题专项练习(附答案)

北师大版七年级数学上册整式计算题专项练习(附答案)1.将表达式化简:$-a-b+2a-b=-b+a$2.将表达式化简:$(x+2)(y+3)-(x+1)(y-2)=xy+3x+2y+6-xy+x-2y+2=x+3x+2+6+x-2y+2=4x-2y+10$3.将表达式化简:$(2x-y)(2x+y)+2y2=4x2-y2+2y2=4x2$4.将表达式化简:$\frac{x(x-y)}{x-2}+\frac{2y}{x-2}=\frac{x(x-y)+2y}{x-2}=\frac{x^{2}-xy+2y}{x-2}$6.将表达式化简:$(2a+1)^{2}-2(2a+1)+3=4a^{2}+8a+4-4a-2+3=4a^{2}+4a+5$8.将表达式化简:$-(x-5)(x+5)-\frac{(3x-2y)(-2y-3x)}{x+1}=\frac{-(x^{2}-25)(x+1)+(9x^{2}-12xy+4y^{2})}{x+1}=\frac{-x^{3}-10x^{2}-21x+4y^{2}}{x+1}$10.将表达式化简:$3(x+1)(x-1)-(2x-1)(x+y)2(x-y)2=3(x^{2}-1)-2x^{3}+x^{2}y+xy^{2}-2xy^{2}+2y^{3}=3x^{2}-3-2x^{3}+x^{2}y-y^{2}$15.将表达式化简:$-\frac{1}{2}-(-1)^{2006}+\frac{2^{11}\times(-3)^{432}}{2}= -\frac{1}{2}-1+2^{10}\times3^{432}=2^{10}\times3^{432}-\frac{3}{2}$20.将表达式化简:$(2a-1)^{2}+(2a-1)(a+4)=4a^{2}-4a+1+2a^{2}+7a-4=6a^{2}+3a-3$21.将表达式化简:$(x+2y)^{2}-2(x-y)(x+y)+2y(x-3y)=x^{2}+4xy+4y^{2}-2(x^{2}-y^{2})+2xy-6y^{2}=x^{2}+6xy-8y^{2}$22.将表达式化简:$5(x-1)(x+3)-2(x-5)(x-2)=5(x^{2}+2x-3)-2(x^{2}-3x+10)=3x^{2}+16x-40$23.将表达式化简:$(a-b)(a^{2}+ab+b^{2})=a^{3}-b^{3}$24.将表达式化简:$(3y+2)(y-4)-3(y-2)(y-3)=3y^{2}-5y-18$25.将表达式化简:$a(b-c)+b(c-a)+c(a-b)=ab-ac+bc-bc+ac-ab=0$26.将表达式化简:$(-2mn^{2})^{2}-4mn^{3}(mn+1)=4m^{2}n^{4}-4m^{2}n^{4}-4mn^{3}= -4mn^{3}$28.将表达式化简:$-(x+2)(x-2)=-(x^{2}-4)=-x^{2}+4$30.将表达式化简:$(x-3y)(x+3y)-(x-3y)=x^{2}-9y^{2}-x+3y$1.原式=2.原式=-400+4=9604;原式=-+1=13.原式=900×219;原式=-(2009+1)(2009-1)=2xxxxxxxxxxxx=-xxxxxxx4.原式=6a^2+3a-3,当a=2时,原式=6×(-2)^2+3×(-2)-3=24-6-3=155.原式=-x^2+6xy,当x=2,y=2时,原式=-(-2)^2+6×(-2)×2=-4-24=-286.原式=-3x^2+24x-357.原式=a^3-b3=(a-b)(a^2+ab+b^2)8.原式=5y-269.原式=6xy-18y210.原式=(a-c+b)^2-b^2=a^2-2ac+2bc+c^2-b^211.原式=15×10^912.原式=2a+2解答题:1.①原式=12-(-8)+(-7)-15=38②原式=-1+2×(-5)-(-3)÷(-1)=-1+(-10)-3=-14③原式=2x-3y+5x+4y=7x+y④原式=5a+2a^-1-4(3-8a+2a)=5a+2a^-1-12+32a-8a=34a+2a^-1-122.1) 原式=4-2×2-(-36)÷4=4-4+9=92) 原式=9a-6b-2a+6b=7a3.①原式=7x+4(x-2)-2(2x-x+3)=7x+4x-8-2x+2=9x-6②原式=4ab-3b-[(a+b)-(a-b)]=4ab-3b-a-b+a+b=4ab-3b-a③原式=3mn-5m-3m+5mn=8mn-8m④原式=2a+2(a+1)-3(a-1)=2a+2a+2-3a+3=4a+54.①原式=4a+18b-15a-12b=4a-15a+18b-12b=-11a+6b②原式=3x+6x^-1-3x-4x^-1=2x+2x^-15.原式=3(x-1)-(x-5)=3x-3-x+5=2x+26.原式=3(x+y)+4(x+y)-6(x+y)=7(x+y)=7(5+3)=567.原式=2(x-3y)-(x-y)=2x-6y-x+y=x-5y8.由6M=2N-4得M=N/3-2/3,代入M=x+3x-5和N=3x+5中得到:x+3x-5=N/3-2/3+3x-5解得x=7/69.原式=A+B=5a-2ab-4a+4ab=a先化简,再求值:3(A+B)﹣2(2A﹣B),其中A=﹣2,B=1.分析:先代入数值,再按照整式的加减运算顺序进行计算.解答:代入A=﹣2,B=1得:3(A+B)﹣2(2A﹣B)=3(﹣2+1)﹣2(2(﹣2)﹣1)=3﹣4﹣(﹣5)=9.点评:本题考查了整式的加减及代数式的化简,解答本题的关键在于熟练掌握整式的加减运算顺序及代入数值的方法.10.设a=14x﹣6,b=﹣7x+3,c=21x﹣1.1)求a﹣(b﹣c)的值;2)当x=时,求a﹣(b﹣c)的值.分析:先代入数值,再按照整式的加减运算顺序进行计算.解答:代入a=14x﹣6,b=﹣7x+3,c=21x﹣1得:1)a﹣(b﹣c)=14x﹣6﹣(﹣7x+3﹣21x+1)=14x﹣6﹣﹣7x+3﹣21x﹣1=6x﹣4;2)当x=时,a﹣(b﹣c)=6×﹣4﹣4=﹣28.点评:本题考查了整式的加减及代数式的化简,解答本题的关键在于熟练掌握整式的加减运算顺序及代入数值的方法.11.化简求值:已知a、b满足:|a﹣2|+(b+1)=0,求代数式2(2a﹣3b)﹣(a﹣4b)+2(﹣3a+2b)的值.分析:先化简|a﹣2|+(b+1)=0得a=2,b=﹣1,再代入求值.解答:代入a=2,b=﹣1得:2(2a﹣3b)﹣(a﹣4b)+2(﹣3a+2b)=2(2×2﹣3(﹣1))﹣(2﹣4(﹣1))+2(﹣3×2+2(﹣1))=4+9+6=19.点评:本题考查了整式的加减及代数式的化简,解答本题的关键在于熟练掌握绝对值的性质及代入求值的方法.12.已知(x+1)+|y﹣1|=0,求2(xy﹣5xy)﹣(3xy﹣xy)的值.分析:先解方程|x﹣1|+(y+1)=0,得x=﹣1,y=﹣2,再代入求值.解答:解方程得x=﹣1,y=﹣2,代入得:2(xy﹣5xy)﹣(3xy﹣xy)=2(﹣1×﹣2﹣5﹣1×﹣2)﹣(3﹣1×﹣2)=4﹣(3+2)=﹣1.点评:本题考查了整式的加减及代数式的化简,解答本题的关键在于熟练掌握绝对值的性质及代入求值的方法.解答:将3(x+y)+4(x+y)﹣6(x+y)化简得:(3+4-6)(x+y)=x+y=-2代入x=5,y=3,得到3(5+3)+4(5+3)﹣6(5+3)=24 所以,代数式3(x+y)+4(x+y)﹣6(x+y)的值为24.点评:本题考查了整式的加减、化简和求值,需要熟练掌握去括号、合并同类项和代入数值的方法。

部编数学七年级上册专题15整式加减运算特训50道(解析版)含答案

部编数学七年级上册专题15整式加减运算特训50道(解析版)含答案

专题15 整式加减运算特训50道1.化简:(1)32(5)a b a b +--(2)()22225332xy x y y x x y ---【答案】(1)-2a +3b ;(2)2223xy x y+【分析】(1)去括号后,合并同类项即可得到结果;(2)先将括号外边的数字因式乘到括号里边,去括号后,合并同类项即可得到结果.【详解】(1)32(5)a b a b +--325a b a b=+-+23a b =-+(2)()22225332xy x y y x x y ---22225336xy x y xy x y=--+22225336xy xy x y x y=--+2223xy x y=+【点睛】本题考查了整式的加减运算,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握运算法则是解本题的关键.2.化简:(1) ()()222121a a a a -+--+;(2) ()82252a b a b +--.【答案】(1)2a a +;(2)26-+a b【分析】(1)先去括号,再合并同类项即可;(2)先去括号,再合并同类项即可.【详解】(1)()()222121a a a a -+--+=222121a a a a -+-+-=2a a+(2)()82252a b a b +--=82104+-+a b a b=26-+a b【点睛】本题考查整式的加减,熟练掌握去括号与合并同类项是解题的关键.3.化简:(1)(2x ﹣3y +7)﹣(﹣6x +5y +2).(2)5a 2b ﹣[2a 2b ﹣(ab 2﹣2a 2b )﹣4]﹣2ab 2.【答案】(1)8x ﹣8y +5;(2)a 2b ﹣ab 2+4.【分析】(1)直接去括号,合并同类项即可;(2)先把中括号内的进行合并同类项,然后再去括号进而合并同类项即可得出答案.【详解】解:(1)原式=2x ﹣3y +7+6x ﹣5y ﹣2=8x ﹣8y +5;(2)原式222225(224)2a b a b ab a b ab =--+--22225(44)2a b a b ab ab =----=5a 2b ﹣4a 2b +ab 2+4﹣2ab 2=a 2b ﹣ab 2+4.【点睛】本题主要考查整式的加减,掌握去括号,合并同类项的法则是解题的关键.4.化简下列各式:(1)2a 2b ﹣3ab ﹣14a 2b +4ab(2)2(2a ﹣3b )﹣3(2b ﹣3a )【答案】(1)﹣12a 2b +ab ;(2)13a ﹣12b【分析】(1)直接合并同类项即可;(2)先去括号,然后合并同类项即可解答本题.【详解】解:(1)2a 2b ﹣3ab ﹣14a 2b +4ab2(214)(43)a b ab =-+-=﹣12a 2b +ab ;(2)2(2a ﹣3b )﹣3(2b ﹣3a )=4a ﹣6b ﹣6b +9a=13a ﹣12b .【点睛】本题主要考查整数的加减,掌握去括号,合并同类项的法则是解题的关键.5.化简:(1)32 2a a a a+--(2)2215(63)2(4)22b b b b -+---【答案】(1)2a ;(2)2921b b +-【分析】(1)合并同类项即可求解;(2)先去括号,然后合并同类项即可求解.【详解】(1)原式(3212)a =+-- 2a =.(2)原式226385b b b b =-+-++2921b b =+-.【点睛】本题考查了整式的加减,整式的加减步骤及注意问题:1.整式的加减的实质就是去括号、合并同类项.一般步骤是:先去括号,然后合并同类项.2.去括号时,要注意两个方面:一是括号外的数字因数要乘括号内的每一项;二是当括号外是“−”时,去括号后括号内的各项都要改变符号.6.计算(1)223247a a a a+--(2)2(2)3(2)a b a b ---【答案】(1)25a a --;(2)4a b--【分析】(1)根据整式的加减进行合并同类项即可求解;(2)先去括号,再合并同类项即可求解.【详解】解:(1)原式=3a 2−4a 2+2a −7a=−a 2−5a(2)原式=2a −4b −6a +3b=−4a −b【点睛】本题考查了整式的加减,解决本题的关键是去括号时注意符号的变化.7.计算:(1) [2()]x y x x y ---+(2) ()()232322332232334a b b ab a a b ab a b+-+--+-【答案】(1)4x ;(2)2ab 【分析】(1)直接去括号进而合并同类项得出答案;(2)直接去括号进而合并同类项得出答案.【详解】解:(1)原式=(2)x y x x y ----=(3)x x --=4x(2)原式=2323223324232334a b b ab a a b ab a b +-+---+=2ab 【点睛】此题主要考查了整式的加减,正确合并同类项是解题关键.8.整式的化简(1)(23)2(32)a ab b a --+-(2)222222134363a b ab ab a b ab a b éùæö--+--ç÷êúèøëû【答案】(1)59a b -+;(2)22a b-【分析】(1)按照去括号,合并同类项的法则进行化简即可;(2)先按照去括号,合并同类项的法则对括号内进行化简,然后再对括号外进行化简即可得出答案.【详解】(1)原式=(23)(64)a ab b a --+-2364a a b b a=-++-59a b =-+;(2)原式=22222234(3)6a b ab ab a b ab a béù--+--ëû2222223(43)6a b ab ab a b ab a b=-----2223()6a b a b a b=---22236a b a b a b=+-22a b=-【点睛】本题主要考查整式的加减混合运算,掌握去括号,合并同类项的法则是解题的关键.9.化简:(1)2272241x x x x ---+-;(2)222217(64)(3)2a a ab b ab a -+--+-.=22227323a a ab b ab a -+---+=22333a ab b ---.【点睛】本题主要考查整式的加减,掌握去括号,合并同类项的法则是解题的关键.10.化简:(1)()()22224534a b ab a b ab ---;(2)()()()222222222233x y x y x x y y --+++.【答案】(1)22a b ab -(2)22x y -+【分析】(1)去括号,再合并同类项即可求解;(2)根据整式的加减运算法则即可求解.【详解】(1)()()22224534a b ab a b ab ---=22224534a b ab a b ab --+=22a b ab -(2)()()()222222222233x y x y x x y y --+++=22222222223333x y x y x x y y ---++=22x y -+.【点睛】此题主要考查整式的加减,解题的关键是熟知其运算法则.11.计算:()221610125.x x x x -+-()()()22273254ab a ab ab a ----.【答案】(1)2x 2+x ;(2)2a 2-7ab .【分析】(1)合并同类即可得出结果;(2)先去括号,再合并同类项即可.【详解】解:(1)原式=2x 2+x ;(2)原式=7ab -3a 2+6ab -20ab +5a 2=2a 2-7ab .【点睛】本题考查了整式的加减,掌握基本运算法则是解题的关键.12.化简:①﹣6ab +ab +8(ab ﹣1)②2(5a ﹣3b )﹣(a ﹣2b )【答案】①3ab ﹣8;②9a ﹣4b .【分析】①直接去括号进而合并同类项得出答案;②直接去括号进而合并同类项得出答案.【详解】①﹣6ab +ab +8(ab ﹣1)=﹣6ab +ab +8ab ﹣8=3ab ﹣8;②2(5a ﹣3b )﹣(a ﹣2b )=10a ﹣6b ﹣a +2b=9a ﹣4b .【点睛】本题考查了整式的加减,正确合并同类项是解答本题的关键.13.化简:(1)(){}22225456789x x x x x éùëû--+-----(2)()(){}324238x y x x y x x y éù--+--+--û-ë【答案】(1)8x --;(2)254x y --.【分析】先按照去括号法则去掉整式中的小括号,再去掉中括号,最后去掉大括号,然后合并整式中的同类项即可.【详解】解:(1)原式=(){}22225456789x x x x x éùëû--+-----={}22225456789x x x x x éùëû-------={}22225456789x x x x x +++----=22225456789x x x x x ----++-=8x --(2)原式=()(){}324238x y x x y x x y éù--+--+--û-ë=[](){}3242238x y x x y x x y --+-++---={}3242238x y x x y x x y --+-++-+-=3242238x y x x y x x y -+-+--+--=254x y --【点睛】本题考查了整式的加减运算,主要包括去括号法则和合并同类项法则两个考点.解决此类题目的关键是熟记去括号、合并同类项法则,熟练运用法则进行计算.14.列式计算(1)求整式62a b +与33a b --+的和.(2)求整式122x y -+与314x y --的2倍的差.15.计算:(1)22475326x x x x -+-++(2)()()22235x x x -+--+【答案】(1)27x x -+;(2)512x --【分析】(1)合并同类项即可;(2)先去括号,再合并同类项即可.【详解】解:(1)22475326x x x x-+-++22437652x x x x =--+++=27x x -+(2)()()22235x x x -+--+22610x x x =-+---=512x --【点睛】本题考查了整式加减运算,找准同类项是解题的关键,在去括号时,括号外的项要和括号里的每一项都相乘,不能漏项.16.化简下列各题.(1)12m 2n -13mn 2-(14m 2n -15mn 2);(2)3(a 2-5a -2)+2(a 2-11a -3).【答案】(1)2222m n mn -+;(2)253712a a --.【分析】(1)直接去括号,合并同类项即可;(2)先把系数乘到括号里,然后再去括号,合并同类项.【详解】(1)原式=222212131415m n mn m n mn --+2222m n mn =-+;(2)原式=22(3156)(2226)a a a a --+--2231562226a a a a =--+--253712a a =--.【点睛】本题主要考查整式的加减混合运算,掌握去括号,合并同类项的法则是解题的关键.17.计算:(1)25a -[222(52)2(3)a a a a a +---];(2)22(521)4(382)a a a a +---+.【答案】(1)24a a -;(2)233413a a -+-【分析】(1)根据整式的加减混合运算法则进行去括号,移项,合并同类项即可得解;(2)根据整式的加减混合运算法则进行去括号,移项,合并同类项即可得解.【详解】(1)解:原式222255226a a a a a a=--++-222255226a a a a a a=--++-24a a =-;(2)解:原式2252112328a a a a =+--+-2258232112a a a a +-=-+-233413a a =-+-.【点睛】本题主要考查了整式的加减混合运算,熟练掌握整式加减的运算法则,去括号法则等方法是解决本题的关键.18.已知:2232A x y xy =+-,2222B xy x y =++.(1)求3A B -;(2)若1x =,12y =-.求(42)(3)A B A B +-+的值.【答案】(1)2288x y xy +-;(2)7【分析】(1)将2232A x y xy =+-,2222B xy x y =++代入3A B -,运算即可;(2)先化简(42)(3)A B A B +-+,然后将x ,y 代入即可.【详解】解:(1)3A B-=222239622x y xy xy x y +----=2288x y xy +-;19.合并同类项:(1)3a 2﹣2a +4a 2﹣7a .(2)﹣4x 2y +8xy 2﹣9x 2y ﹣21xy 2.(3)3(x ﹣3y )﹣2(y ﹣2x )﹣x .【答案】(1)279a a -;(2)221313x y xy --;(3)611x y-【分析】(1)先找到同类项合并即可;(2)先去括号,再合并同类项即可;(3)先去括号,再合并同类项即可.【详解】解:(1)原式=(3a 2+4a 2)+(﹣2a ﹣7a )=7a 2﹣9a .(2)原式=(﹣4x 2y ﹣9x 2y )+(8xy 2﹣21xy 2)=﹣13x 2y ﹣13xy 2.(3)原式=3x ﹣9y ﹣2y +4x ﹣x=(3x +4x ﹣x )+(﹣9y ﹣2y )=6x ﹣11y .【点睛】本题主要考查了合并同类项,解决此类体题目的关键是熟记去括号法则,熟练运用合并同类项的法则是解题的关键.20.化简()()()122a b 2b 3a ---.()()2225xy y 24xy y 1+--+.【答案】(1)7a 4b -;(2)23y 3xy 2--.【分析】根据去括号法则去括号,然后合并同类项即可;【详解】解:()1原式4a 2b 2b 3a 7a 4b =--+=-;()2原式225xy y 8xy 2y 2=+-+-23y 3xy 2=--.【点睛】本题主要考查了整式加减运算,准确计算是解题的关键.21.化简:(1)3232235x x x x --+-;(2)221622(3)2a ab a ab --+;【答案】(1)25x -;(2)3ab -.【分析】(1)根据合并同类项的法则计算即可;(2)根据去括号,合并同类项的法则计算即可.【详解】(1)原式=3322325x x x x -+--25x =-;(2)原式=22626a ab a ab---22662a a ab ab=---3ab =- .【点睛】本题主要考查整式的加减,掌握去括号,合并同类项的法则是解题的关键.22.计算下列各题(1)8a +7b ﹣12a ﹣5b ;(2)(5a ﹣3a 2+1)﹣(4a 3﹣3a 2);(3)2(x +x 2y )﹣23(6x 2y +3x );(4)13x 2﹣3(x 2+xy ﹣15y 2)+(83x 2+3xy +25y 2).23.化简:(1) 3a 2 -2a +4a 2-7a(2) (3x +1)-2(2x 2-5x +1)-3x 2【答案】(1) 7a 2-9a ; (2) -7x 2 +13x -1【分析】(1)合并多项式中的同类项即可;(2)先去括号,再合并同类项.【详解】解:(1)222324779a a a a a a +-=--;(2)()()22222312251314102711333x x x x x x x x x x =+-+--=-+--+--+.【点睛】本题考查了整式的加减运算,属于基础题型,熟练掌握整式的加减运算法则是关键.24.化简(1)6(22)(37)a a a -+---(2)2222334212x y xy xy x y éùæö---+ç÷êú(1)23321x y x y --+-+(2)(85)2(3)x y y x ----【答案】(1)532x y --;(2)6x y--【分析】去括号,合并同类项即可.【详解】解:(1)23321x y x y --+-+=532x y --;(2)(85)2(3)x y y x ----=8562x y y x-+-+=6x y--【点睛】本题考查了整式的加减运算,解题的关键是掌握合并同类项法则.26.合并同类项:(1)5(32)(37)a a a -+--- (2)3338(5)53a a a --+-【答案】(1)55a -+;(2)3105a +【分析】(1)去括号,合并同类项即可;(2)去括号,合并同类项即可.【详解】解:(1)5(32)(37)a a a -+---=53237a a a -+--+=55a -+;(2)3338(5)53a a a --+-=3338553a a a ++-=3105a +【点睛】本题考查了合并同类项,解题的关键是掌握运算法则.27.合并同类项.(1)3232254x x x x --++(2)()()22223242x y xy xy x y ---+【答案】(1)234x +;(2)222x y xy -+【分析】(1)直接合并同类项即可;(2)去括号,再合并同类项.【详解】解:(1)3232254x x x x --++(2)()()22223242x y xy xy x y ---+=22226348x y xy xy x y-+-=222x y xy -+【点睛】本题考查了合并同类项,解题的关键是找出式子中的同类项.28.化简与求值(1)22254x x x x -++;(2)()()222237a b ab a b ab ---;(3)先化简,再求值:()()()22412142x x x x --++-,其中3x =-.【答案】(1)23x x -;(2)24ab ;(3)2226x x +-,6.【分析】(1)合并同类项即可;(2)去括号,合并同类项即可;(3)去括号,合并同类项,最后代入求出即可.【详解】解:(1)22254x x x x-++23x x =-;(2)()()222237a b ab a b ab ---222237a b ab a b ab =--+24ab =;(3)()()()22412142x x x x --++-22442422x x x x-=--+-2226x x +=-当3x =-时,原式()()2232366=´-´--=+.【点睛】本题考查了整式的加减和求值,能正确根据整式的加减法则进行化简是解此题的关键.29.化简:(1)225147794a a a a +---+(2)()()223-ab -ab+21a a -【答案】(1)2253a a -+-;(2)241a ab -+;【分析】(1)根据合并同类项的法则计算即可;(2)根据去括号法则计算即可;【详解】(1)原式()()()2225714974253a a a a a a =-+-+-+=-+-;(2)原式222332141a ab ab a a ab =---+=-+;【点睛】本题主要考查了整式的加减运算,准确应用去括号法则计算是解题的关键.30.化简:(1)2243622x x x x -++-+(2)()()22222a ab ab a ---【答案】(1)222x x ++;(2)254a ab-【分析】(1)利用合并同类项的运算计算即可;(2)先用乘法分配率化简,再合并同类项即可.【详解】解:(1)2243622x x x x -++-+222x x =++(2)()()22222a ab ab a ---22224a ab ab a =--+254a ab=-【点睛】本题考查了整式的加减运算,熟悉相关性质是解题的关键.31.化简(1) -3xy -2y 2+5xy -4y 2 (2) 2(5a 2-2a )-4(-3a +2a 2)【答案】(1)2xy -6y 2;(2)2a 2+8a【分析】(1)直接依据合并同类项法则计算可得;(2)先去括号,再合并同类项即可得.【详解】解:(1)原式= -3xy +5xy -2y 2 -4y 2=2xy -6y 2;(2)原式=10a 2-4a +12a -8a 2=2a 2+8a .【点睛】本题主要考查整式的加减,整式的加减的实质就是去括号、合并同类项.一般步骤是:先去括号,然后合并同类项.32.化简:(1)2532x y x y -++-(2)22222(3)3(2)a b ab ab a b ---+【答案】(1)5x -4y -2;(2)2ab 【分析】(1)根据整式的加减运算进行求解即可;(2)先去括号,然后进行整式的加减运算即可.【详解】解:(1)原式=542x y --;(2)原式=222226236a b ab ab a b ab -+-=.【点睛】本题主要考查整式的加减混合运算,熟练掌握整式的加减运算是解题的关键.33.计算:(1)2222(86)2(34)a b ab a b ab ---(2)2213[5(3)2]2x x x x ---+34.化简:(1)3x 2-2xy -3x 2+3xy +1;(2)(8m -7n )-(4m -5n ).【答案】(1)xy +1;(2)4m -2n【分析】(1)根据整式的加减运算直接进行求解即可;(2)先去括号,然后进行整式的加减运算即可.【详解】(1)解:原式=3x 2-3x 2-2xy +3xy +1=xy +1(2)解:原式=8m -7n -4m +5n=4m -2n【点睛】本题主要考查整式的加减运算,熟练掌握整式的加减运算是解题的关键.35.化简:(1)x 2+5y ﹣4x 2﹣3y ﹣1(2)a 2+(5a 2﹣2a )﹣2(a 2﹣3a )【答案】(1)2321x y -+-;(2)244a a+【分析】(1)直接合并同类项即可;(2)先去括号再合并同类项即可.【详解】(1)x 2+5y ﹣4x 2﹣3y ﹣1=2321x y -+-(2)a 2+(5a 2﹣2a )﹣2(a 2﹣3a )=2222652a a a a a -++﹣244a a=+【点睛】本题考查整式的加减,一般先去括号再合并同类项即可解题,需要特别注意去括号时符号问题.36.化简:(1)223247a a a a-+-(2)3(23)(2)6ab a a b ab-+--+【答案】(1)279a a -;(2)7a b+【分析】(1)直接利用合并同类项的法则计算即可;(2)去括号,再利用合并同类项的法则计算即可.【详解】(1)223247a a a a-+-279a a =-;(2)3(23)(2)6ab a a b ab-+--+6926ab a a b ab=-+-++7a b =+.【点睛】本题考查了整式的加减运算,解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则.37.已知A =4x 2-4xy -y 2,B =-x 2+xy +2y 2,A +3B +C =0.(1)求C ;(2)若ax -1b 2与a 3by 是同类项,求C 的值.【答案】(1)C = -x 2+xy -5y 2 ;(2)-28.【分析】(1)将A 和B 代入A +3B +C =0,即可求出C ;(2)根据同类项的性质,求出x 和y ,即可求出答案.【详解】(1)将A 和B 代入A +3B +C =0,得4x 2-4xy -y 2+3(-x 2+xy +2y 2)+C =0,4x 2-4xy -y 2-3x 2+3xy +6y 2+C =0x 2-xy +5y 2+C =0C = -x 2+xy -5y 2 ;(2)∵ax -1b 2与a 3by 是同类项,∴x -1=3,y =2,∴x =4,y =2,∴C =-x 2+xy -5y 2=-42+4×2-5×22=-16+8-20=-28.【点睛】此题考查了整式的加减,以及同类项,熟练掌握运算法则是解本题的关键.38.化简:(1)()(52)57b a a b ---(2)()()223432x y xy x y xy -+-+-+【答案】(1)127b a -;(2)22610x y xy -+【分析】(1)先去括号,再合并同类项即可;(2)先去括号,再合并同类项即可.【详解】解:(1)()()5257=5257127b a a b b a a b b a-----+=-(2)()()223432x y xy x y xy -+-+-+2234336x y xy x y xy =--++-+22610x y xy =-+【点睛】本题考查了整式的加减法,解答关键是根据相关运算法则进行计算.39.计算:(1)223(83)52(32)xy x xy xy x ----(2)}{225[2(33)]x x x x ----【答案】(1)2513x xy --;(2)226x x +-【分析】(1)(2)去括号,合并同类项即可.【详解】解:(1)223(83)52(32)xy x xy xy x ----=22249564xy x xy xy x ---+=2513x xy --;(2)}{225[2(33)]x x x x ----=()22566x x x x éù---+ëû=()22566x x x x --+-=22566x x x x-+-+=226x x +-【点睛】本题考查了整式的加减,解题的关键是掌握去括号、合并同类项法则.40.计算:(1)5a 2-2ab +4b 2+ab -2a 2-7ab -4b 2;(2)-3(x +2y )-4(3 x -4y )+2(x -5y );(3)2(2a2b -ab2)-[3(a2b -4ab2)-(ab2-a2b )].【答案】(1)3a 2-8ab ;(2)-13x ;(3)11ab 2.【分析】(1)合并同类项,将系数合并,即可求出结果;(2)先去括号,将系数按照分配律法则分别乘以括号里的式子,再合并同类项即可求出结果;(3)先算中括号里面的小括号,再合并同类项即可解决问题.【详解】解:(1)原式=(5-2)a 2+(-2-7+1)ab +(4-4)b 2=3a 2-8ab ;(2)原式=-3x -6y -12x +16y +2x -10y=(-3-12+2)x +(-6+16-10)y=-13x ;(3)原式=4a2b -2ab2-[3a2b -12ab2-ab2+a2b ]=4a2b -2ab2-3a2b +12ab2+ab2-a2b=(4-3-1)a2b +(-2+12+1)ab2=11ab2.【点睛】本题主要考查了整式的去括号以及合并同类项,熟练其运算法则是解决本题的关键.41.化简(1)22254243-+-++m n mn mn m n n(2)()()222232252---a b ab a b ab 【答案】(1)-m 2n +4mn 2-2mn +3n ;(2)-4a 2b +ab 2【分析】(1)原式合并同类项即可得到结果;(2)原式去括号合并即可得到结果.【详解】(1)原式=(-5m 2n +4m 2n )+4mn 2-2mn +3n=-m 2n +4mn 2-2mn +3n ;(2)原式=6a 2b -3ab 2-10a 2b +4ab 2=-4a 2b +ab 2.【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.42.化简(1)(8a -7b )-(4a -5b ) (2)5xyz -2x 2y +[3xyz -(4xy 2-x 2y )]【答案】(1)4a -2b ;(2)8xyz -x 2y -4xy 2【分析】(1)原式去括号进而合并同类项得出答案;(2)原式去括号后,合并同类项即可得到结果;【详解】解:(1)原式=8a -7b -4a +5b=4a -2b ;(2)原式=5xyz -2x 2y +3xyz -(4xy 2-x 2y )=5xyz -2x 2y +3xyz -4xy 2+x 2y=8xyz -x 2y -4xy 2【点睛】此题考查了整式的加减-化简求值,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.43.化简:(1)233223323254x y x y x y x y -++(2)()()223331x y x y -+-+-【答案】(1)233282x y x y +;(3)779x y --+【分析】(1)根据整式的加减运算可直接进行求解;(2)先去括号,然后利用整式的加减运算进行求解即可.【详解】解:(1)原式=233282x y x y +;(2)原式=246933779x y x y x y -+--+=--+.【点睛】本题主要考查整式的加减运算,熟练掌握整式的加减运算法则是解题的关键.44.计算:(1)()()222433224ab b ab b +--+-;(2)()2323132424424433xy x xy x æö-+---+ç÷èø.(3)先化简,再求值:13(2)3(2)2a ab a b --+-+,其中4a =-,12b =.【答案】(1)2246b ab -+45.已知多项式2221A a ab a =+--,21B a ab =+-.(1)当12a =-,4b =时,求2A B -的值;(2)若多项式C 满足:230A B C --=,试用a ,b 的代数式表示C .【答案】(1)4(2)C =241a ab a --+46.在整式的加减练习课中,已知2232A a b ab =-,嘉淇错将“A B -”看成“A B +”,所算的错误结果是2243a b ab -.请你解决下列问题.(1)求出整式B ;(2)若1a =-,2b =.求B 的值;(3)求该题的正确计算结果.【答案】(1)a 2b -ab 2(2)6(3)2a 2b -ab 2【分析】(1)根据A B +=2243a b ab -即可得B =4a 2b -3ab 2-A ,从而可求出整式B ;(2)把1a =-,2b =代入(1)中的整式B 即可求解;(3)直接将整式A 、B 代入A -B ,利用整式的加减法则即可求解.(1)解:∵A B +=2243a b ab -,2232A a b ab =-,∴B =4a 2b -3ab 2-A =4a 2b -3ab 2-(3a 2b -2ab 2)=a 2b -ab 2;(2)解:当1a =-,2b =时,B =()()22-12-12=2+4=6´-´;(3)解∶∵2232A a b ab =-, B =a 2b -ab 2,∴A -B =3a 2b -2ab 2-(a 2b -ab 2)=2a 2b -ab 2.【点睛】本题考查了整式的加减以及求代数式的值,熟练掌握合并同类项法则是解题的关键.47.已知含字母x 、y 的多项式是:222232(2)3(2)4(1)x y xy x y xy x éù++--+---ëû.(1)化简此多项式;(2)小红取x 、y 互为倒数的一对数值代入化简的多项式中,恰好计算得多项式的值等于0,那么小红所取的字母y 的值等于多少?(3)聪明的小刚从化简的多项式中发现,只要字母y 取一个固定的数,无论字母x 取何数,整式的值恒为一个不变的数,请你通过计算求出小刚所取的字母y 的值.48.已知222,3A x xy B y xy =-=+.(1)求A -2B 的值;(2)若A -B +C =0,试求C ?(3)在题(2)基础上,若x =-2,y =-3时,求2A -B +C 的值?【答案】(1)x 2-8xy -2y 2(2)y 2+5xy -x 2(3)x 2-2xy ,-8【分析】(1)直接把A =x 2﹣2xy ,B =y 2+3xy 代入进行计算即可;(2)根据题意得出C 的表达式,再去括号,合并同类项即可;(3)把A 、B 、C 的表达式代入,合并同类项后,把x =﹣2,y =﹣3代入进行计算即可.(1)解:∵A =x 2-2xy ,B =y 2+3xy , ∴A -2B =(x 2-2xy )-2(y 2+3xy )=x 2-2xy -2y 2-6xy =x 2-8xy -2y 2;(2)解:∵A -B +C =0,∴C =B -A =(y 2+3xy )-(x 2-2xy )=y 2+3xy -x 2+2xy =y 2+5xy -x 2;(3)解:∵A =x 2-2xy ,B =y 2+3xy ,C =y 2+5xy -x 2,∴2A -B +C =2(x 2-2xy )-(y 2+3xy )+(y 2+5xy -x 2)=2x 2-4xy -y 2-3xy +y 2+5xy -x 2=x 2-2xy 当x =-2,y =-3时,原式=2(2)2(2)(3)--´-´- =4-2×6=-8.【点睛】此题主要考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.49.小明在计算一个多项式A 减去225a a +-的差时,忘了将两个多项式用括号括起来,因此减去后面两项没有变号,结果得到的差是231a a +-,据此你能求出这个多项式A 吗?这两个多项式的差应该是多少?【答案】2324,A a a =++ 两个多项式的差为29a a ++【分析】根据小明错误解法确定出A ,再列出正确的运算式,去括号合并同类项即可得到结果.【详解】解:根据题意得:A =a 2+3a -1+2a 2-a +5=3a 2+2a +4,这两个多项式的差应该是(3a 2+2a +4)-(2a 2+a -5)=3a 2+2a +4-2a 2-a +5=a 2+a +9.【点睛】本题考查了整式的加减运算,理解题意,列出正确的运算式,掌握整式的加减运算法则是解本题的关键.50.已知A =a 2﹣2ab +b 2,B =a 2+2ab +b 2.(1)求A +B .(2)求14(A ﹣B ),(3)若2A ﹣2B +9C =0,当a ,b 互为倒数时,求C 的值.【答案】(1)2a 2+2b 2。

七年级数学专题训练:整式的加减计算题100题(含答案)

七年级数学专题训练:整式的加减计算题100题(含答案)

题减整式的加计算1、已知A =4x 2-4xy +y 2,B =x 2-xy -5y 2,求3A -B2、已知A=x 2+xy +y 2,B=-3xy -x 2,求2A-3B.3、已知1232+-=a a A ,2352+-=a a B ,求BA 32-4、已知325A x x =-,2116B x x =-+,求:⑴A+2B;⑵、当1x =-时,求A+5B 的值。

5、)(4)()(3222222y z z y y x ---+-6、2(a 2b +2b 3-ab 3)+3a 3-(2ba 2-3ab 2+3a 3)-4b 3,其中a =-3,b =27、-)32(3)32(2a b b a -+-8、21x -2(x -31y 2)+(-23x +31y 2),其中x =-2,y =-32.9、222213344a b ab ab a b ⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭10、()()323712p p p p p +---+11、21x-3(2x-32y 2)+(-23x+y 2)12、5a-[6c-2a-(b-c)]-[9a-(7b+c)]13、2237(43)2x x x x ⎡⎤----⎣⎦14、-22225(3)2(7)a b ab a b ab ---15、2(-a 3+2a 2)-(4a 2-3a+1)16、(4a 2-3a+1)-3(1-a 3+2a 2).17、3(a 2-4a+3)-5(5a 2-a+2)18、3x 2-[5x-2(14x -32)+2x 2]19、7a +(a 2-2a )-5(a -2a 2)20、-3(2a +3b )-31(6a -12b )21、222226284526x y xy x y x xy y x x y+---+-22、3(2)(3)3ab a a b ab -+--+;23、22112()822a ab a ab ab ⎡⎤--+-⎢⎥⎣⎦;24、(a 3-2a 2+1)-2(3a 2-2a +21)25、x-2(1-2x+x 2)+3(-2+3x-x 2)26、)24()215(2222ab ba ab b a +-+-27、-4)142()346(22----+m m m m28、)5(3)8(2222xy y x y x xy ++--+-29、ba ab b a ab ab b a 222222]23)35(54[3--+--30、7xy+xy 3+4+6x-25xy 3-5xy-331、-2(3a 2-4)+(a 2-3a)-(2a 2-5a+5)32、-12a 2b-5ac-(-3a 2c-a 2b)+(3ac-4a 2c)33、2(-3x 2-xy)-3(-2x 2+3xy)-4[x 2-(2x 2-xy+y 2)]34、-2(4a-3b)+3(5b-3a)35、52a -[2a +(32a -2a)-2(52a -2a)]36、-5xy 2-4[3xy 2-(4xy 2-2x 2y)]+2x 2y-xy37、),23()2(342222c a ac b a c a ac b a +-+---38、(2)()xy y y yx ---+39、2237(43)2x x x x ⎡⎤----⎣⎦40、7-3x-4x 2+4x-8x 2-1541、2(2a 2-9b)-3(-4a 2+b)42、8x 2-[-3x-(2x 2-7x-5)+3]+4x43、)(2)(2b a b a a +-++;44、)32(2[)3(1yz x x xy +-+--]45、)32(3)23(4)(5b a b a b a -+--+;46、)377()5(322222a b ab b ab a a ---+--47、)45()54(3223--++-x x x x 48、)324(2)132(422+--+-x x x x49、)69()3(522x x x +--++-.50、)35()2143(3232a a a a a a ++--++-51、)(4)(2)(2n m n m n m -++-+52、]2)34(7[522x x x x ----53、(2)(3)x y y x ---54、()()()b a b a b a 4227523---+-55、()[]22222223ab b a ab b a ---56、2213[5(3)2]42a a a a ---++57、()()()xy y x xy y xy x -+---+-2222232258、-32ab +43a 2b +ab +(-43a 2b )-159、已知m+n =-3,mn=2,求116432n mn mn m ⎛⎫⎛⎫--+- ⎪ ⎪⎝⎭⎝⎭的值;60、(2x 2-21+3x )-4(x -x 2+21);61、2x -(3x -2y +3)-(5y -2);62、已知()()()2222A=232B=231A 22x xy y x xy y B A B A -++-+--,,求;63、已知()()222222120522422a b a b a b ab a b ab ⎡⎤++-=-----⎣⎦,求;64、1-3(2ab +a )十[1-2(2a -3ab )].65、3x 2-[7x -(4x -3)-2x 2].66、已知323243253A a a a B a a a =--++=--,,当a =-2时,求A-2B 的值.67、已知xy=2,x+y=-3,求整式(4xy+10y)+[5x-(2xy+2y-3x)]的值.68、已知2222224132a ab b ab a b a ab b +=+=--++,,求及的值.69、221131222223233x y x y x y ⎛⎫⎛⎫--+-+=-= ⎪ ⎪⎝⎭⎝⎭,,70、()()232334821438361a a a a a a a -+---+-=-,其中71、已知()()()()23412043535712714m n m m n m n m n ++--=---+++-,求的值72、已知222232542A b a ab B ab b a =-+=--,,当a=1,b =-1,求3A-4B 的值.73、已知222A=23B=25C=1276x x x x x ----+,,,求A-(B-4C)的值.74、已知22A=23211x kx x B x kx +--=-+-,,且2A+4B 的值与x 无关,求k 的值.75、()()2221254322x x x x x x -----+=,其中.76、已知()()()222222120745223a a b a b a b ab a b ab -++=--+--,求的值.77、2222220A=3B=23A B C a b c a b c ++=+---+已知,且,,求C.78、()()22221532722a b ab a b ab a b ---==,且,79、(5x-3y-2xy)-(6x+5y-2xy),其中5-=x ,1-=y 80、若()0322=++-b a ,求3a 2b-[2ab 2-2(ab-1.5a 2b)+ab]+3ab 2的值;81、233(4333)(4),2;a a a a a a +----+=-其中82、22222222(22)[(33)(33)],1, 2.x y xy x y x y x y xy x y ---++-=-=其中83、()()()2222223224b ab a ab b a b ab a +-+-+----其中4.0,41=-=b a 84、3-2xy +2yx 2+6xy -4x 2y ,其中x =-1,y =-2.85、(-x 2+5+4x 3)+(-x 3+5x -4),其中x =-2;86、(3a 2b -ab 2)-(ab 2+3a 2b ),其中a =-3,b =-287、已知222244,5A x xy y B x xy y =-+=+-,其中1122x y ==-,,求3A -B88、已知A =x 2+xy +y 2,B =-3xy -x 2,其中,113x y =-=-,,求2A -3B .89、有两个多项式:A =2a 2-4a +1,B =2(a 2-2a )+3,当a 取任意有理数时,请比较A 与B 的大小.90、x x x x x x 5)64(213223312323-++-⎪⎭⎫ ⎝⎛---其中x =-121;91、21x 2-2⎪⎭⎫ ⎝⎛+--⎪⎭⎫ ⎝⎛-222231322331y x y x ,其中x =-2,y =-3492、2(a 2b +2b 3-ab 3)+3a 3-(2ba 2-3ab 2+3a 3)-4b 3,其中a =-3,b =293、()()233105223xy x y xy y x xy y x =-+=++-+-⎡⎤⎣⎦已知,,求的值94、已知()()22222322322A x xy y B x xy y A B B A =-+=+-+---⎡⎤⎣⎦,,求95、已知()222232232M a ab b N a ab b M N M M N =-+=+-----⎡⎤⎣⎦,,化简96、小美在计算某多项式减去2235a a +-的差时,误认为加上2235a a +-,得到答案是24a a +-,问正确答案是多少?97、已知2222113532A a b abB ab a b x y =-=+==-,,当,,求5A-3B 的值.98、已知2223226mx xy y x nxy y +--+-+的值与x 的取值无关,求22m n -的值99、已知231x x -=,求326752019x x x +-+的值100、()()11111111321014122m n n m m n x y y x x y m n +--++-⎛⎫+---- ⎪⎝⎭,其中为自然数,为大于的整数整式的加减计算100题答案1、2211118x xy y -+2、225112x xy y ++3、2954a a -+-4、()()3231322122553084x x x x x --+--+;,5、222325x y z +-6、322312ab ab -+,7、-13a+12b8、24369x y -+,9、22122a b ab -10、325797p p p +--11、273x y -+12、-2a+8b-6c13、2533x x --14、22729a b ab -+15、3231a a -+-16、323232a a a ---17、22271a a ---18、2932x x --19、211a 20、-8a-5b 21、2224382x xy x y y x ---+22、3a+b23、2592a ab -24、32524a a a --+25、25148x x -+-26、2232a b ab+27、2261213m m --+28、22272x xy y --29、2231532a b ab+30、332615y xy x +++31、2723a a -++32、22122a b ac a c --33、224154x xy y -+34、-17a+21b 35、2112a a -36、226xy x y xy ---37、22474a b ac a c--38、xy39、2533x x --40、2128x x -+-41、21621a b -42、2108x -43、a-b44、1-3x-3xy-6yz45、-a+4b 46、2266a ab b -+47、32341x x -+48、-8x-249、2534x x -++50、32941a a a --++51、4m+4n 52、2733x x --53、4x-3y 54、4a-b 55、22710a b ab -56、2912a a -+57、225x xy y -+58、113ab -59、2660、21622x x --61、-x-3y-162、2222424109x xy y x xy y ---+;63、221462a b ab -+;64、2-7a 65、2533x x --66、7967、-2068、5,269、24369x y -+;70、-5371、-1.7572、2221716a ab b --+;73、2473026x x -+74、2/575、-2.576、22710a b ab +-;77、222a c --78、221352a b ab -;79、-x-8y;1380、212ab ab +;81、327353a a a -++-;5582、222x y xy -+;83、22478150a ab b --;84、224315x y xy -++;--21---21-85、3235137x x x -++-;86、2224ab -;87、22111388x xy y -+;88、228511289x y y ++;89、A<B90、323668x x x +-+;91、2211226x y --;827-92、232223a b ab ab -+;4893、2294、224611x xy y +-95、2221614a ab b -+96、2356a a --+97、23-98、-899、2022100、118m n x y +--+。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档