图论和函数总结梳理(离散数学,思维导图)
离散数学总结

离散数学总结离散数学学习总结一、课程内容介绍:1.集合论部分:集合论是离散数学中第一个抽象难关,在老师的生动讲解下,深入浅出,使得集合论成了相当有趣的知识。
只是对于以后的应用还不是很了解,感觉学好它很重要。
直观地说,把一些事物汇集到一起组成一个整体就叫集合,而这些事物就是这个集合的元素或成员。
例如:方程x2-1=0的实数解集合;26个英文字母的集合;坐标平面上所有点的集合;集合通常用大写的英文字母来标记,例如自然数集合N(在离散数学中认为0也是自然数),整数集合Z,有理数集合Q,实数集合R,复数集合C等。
表示一个集合的方法有两种:列元素法和谓词表示法,如果两个集合的交集为,则称这两个集合是不相交的。
例如B和C 是不相交的。
两个集合的并和交运算可以推广成n个集合的并和交:A1∪A2∪…∪An={x|x∈A1∨x∈A2∨…∨x∈An}A1∩A2∩…∩An={x|x∈A1∧x∈A2∧…∧x∈An}2.关系二元关系也可简称为关系。
对于二元关系R,如果∈R,可记作xRy;如果R,则记作x y。
例如R1={<1,2>,},R2={<1,2>,a,b}。
则R1是二元关系,R2不是二元关系,只是一个集合,除非将a和b定义为有序对。
根据上面的记法可以写1R12,aR1b,aR1c等。
给出一个关系的方法有三种:集合表达式,关系矩阵和关系图。
设R是A上的关系,我们希望R具有某些有用的性质,比如说自反性。
如果R不具有自反性,我们通过在R中添加一部分有序对来改得到新的关系R',使得R'具有自反性。
但又不希望R'与R相差太多,换句话说,添加的有序对要尽可能的少。
满足这些要求的R'就称为R的自反闭包。
通过添加有序对来构造的闭包除自反闭保外还有对称闭包和传递闭包。
3.代数系统代数结构也叫做抽象代数,主要研究抽象的代数系统。
抽象的代数系统也是一种数学模型,可以用它表示实际世界中的离散结构。
离散数学知识点总结

离散数学知识点总结总结离散数学知识点第二章命题逻辑1.→,前键为真,后键为假才为假;,相同为真,别同为假;2.主析取范式:极小项(m)之和;主合取范式:极大项(M)之积;3.求极小项时,命题变元的确信为1,否定为0,求极大项时相反;4.求极大极小项时,每个变元或变元的否定只能浮现一次,求极小项时变元别够合取真,求极大项时变元别够析取假;5.求范式时,为保证编码别错,命题变元最好按P,Q,R的顺序依次写;6.真值表中值为1的项为极小项,值为0的项为极大项;7.n个变元共有n2个极小项或极大项,这n2为(0~n2-1)刚好为化简完后的主析取加主合取;8.永真式没有主合取范式,永假式没有主析取范式;9.推证蕴含式的办法(=>):真值表法;分析法(假定前键为真推出后键为真,假定前键为假推出后键也为假)10.命题逻辑的推理演算办法:P规则,T规则①真值表法;②直截了当证法;③归谬法;④附加前提法;第三章谓词逻辑1.一元谓词:谓词惟独一具个体,一元谓词描述命题的性质;多元谓词:谓词有n个个体,多元谓词描述个体之间的关系;2.全称量词用蕴含→,存在量词用合取^;3.既有存在又有全称量词时,先消存在量词,再消全称量词;第四章集合1.N,表示自然数集,1,2,3……,别包括0;2.基:集合A中别同元素的个数,|A|;3.幂集:给定集合A,以集合A的所有子集为元素组成的集合,P(A);4.若集合A有n个元素,幂集P(A)有n2个元素,|P(A)|=||2A=n2;5.集合的分划:(等价关系)①每一具分划基本上由集合A的几个子集构成的集合;②这几个子集相交为空,相并为全(A);6.集合的分划与覆盖的比较:分划:每个元素均应浮现且仅浮现一次在子集中;覆盖:只要求每个元素都浮现,没有要求只浮现一次;第五章关系1.若集合A有m个元素,集合B有n个元素,则笛卡尔A×B的基2种别同的关系;数为mn,A到B上能够定义mn2.若集合A有n个元素,则|A×A|=2n,A上有22n个别同的关系;3.全关系的性质:自反性,对称性,传递性;空关系的性质:反自反性,反对称性,传递性;全封闭环的性质:自反性,对称性,反对称性,传递性;4.前域(domR):所有元素x组成的集合;后域(ranR):所有元素y组成的集合;5.自反闭包:r(R)=RUI;x对称闭包:s(R)=RU1-R;传递闭包:t(R)=RU2R U3R U……6.等价关系:集合A上的二元关系R满脚自反性,对称性和传递性,则R 称为等价关系;7.偏序关系:集合A上的关系R满脚自反性,反对称性和传递性,则称R 是A上的一具偏序关系;8.covA={|x,y属于A,y盖住x};9.极小元:集合A中没有比它更小的元素(若存在也许别唯一);极大元:集合A中没有比它更大的元素(若存在也许别唯一);最小元:比集合A中任何其他元素都小(若存在就一定唯一);最大元:比集合A中任何其他元素都大(若存在就一定唯一);10.前提:B是A的子集上界:A中的某个元素比B中任意元素都大,称那个元素是B的上界(若存在,也许别唯一);下界:A中的某个元素比B中任意元素都小,称那个元素是B的下界(若存在,也许别唯一);上确界:最小的上界(若存在就一定唯一);下确界:最大的下界(若存在就一定唯一);第六章函数2种别同的关系,有m n种别同的函1.若|X|=m,|Y|=n,则从X到Y有mn 数;2.在一具有n个元素的集合上,能够有22n种别同的关系,有n n种别同的函数,有n!种别同的双射;3.若|X|=m,|Y|=n,且m,满脚f(a*b)=f(a)^f(b),则f为由到的同态映射;若f是双射,则称为同构;第八章群1.广群的性质:封闭性;半群的性质:封闭性,结合律;含幺半群(独异点):封闭性,结合律,有幺元;群的性质:封闭性,结合律,有幺元,有逆元;2.群没有零元;3.阿贝尔群(交换群):封闭性,结合律,有幺元,有逆元,交换律;4.循环群中幺元别能是生成元;5.任何一具循环群必然是阿贝尔群;第十章格与布尔代数1.格:偏序集合A中任意两个元素都有上、下确界;2.格的基本性质:1) 自反性a≤a 对偶: a≥a2) 反对称性a≤b ^ b≥a => a=b对偶:a≥b ^ b≤a => a=b3) 传递性a≤b ^ b≤c => a≤c对偶:a≥b ^ b≥c => a≥c4) 最大下界描述之一a^b≤a 对偶avb≥aA^b≤b 对偶avb≥b5)最大下界描述之二c≤a,c≤b => c≤a^b对偶c≥a,c≥b =>c≥avb6) 结合律a^(b^c)=(a^b)^c对偶 av(bvc)=(avb)vc7) 等幂律a^a=a 对偶 ava=a8) 汲取律a^(avb)=a 对偶 av(a^b)=a9) a≤b a^b=a avb=b10) a≤c,b≤d => a^b≤c^d avb≤cvd11) 保序性b≤c => a^b≤a^c avb≤avc12)分配别等式av(b^c)≤(avb)^(avc) 对偶a^(bvc)≥(a^b)v(a^c)13)模别等式a≤c av(b^c)≤(avb)^c3.分配格:满脚a^(bvc)=(a^b)v(a^c)和av(b^c)=(avb)^(avc);4.分配格的充要条件:该格没有任何子格与钻石格或五环格同构;5.链格一定是分配格,分配格必然是模格;6.全上界:集合A中的某个元素a大于等于该集合中的任何元素,则称a为格的全上界,记为1;(若存在则唯一)全下界:集合A中的某个元素b小于等于该集合中的任何元素,则称b为格的全下界,记为0;(若存在则唯一)7.有界格:有全上界和全下界的格称为有界格,即有0和1的格;8.补元:在有界格内,假如a^b=0,avb=1,则a和b互为补元;9.有补格:在有界格内,每个元素都至少有一具补元;10.有补分配格(布尔格):既是有补格,又是分配格;11.布尔代数:一具有补分配格称为布尔代数;第十一章图论1.邻接:两点之间有边连接,则点与点邻接;2.关联:两点之间有边连接,则这两点与边关联;3.平庸图:惟独一具孤立点构成的图;4.简单图:别含平行边和环的图;5.无向彻底图:n个节点任意两个节点之间都有边相连的简单无向图;有向彻底图:n个节点任意两个节点之间都有边相连的简单有向图;6.无向彻底图有n(n-1)/2条边,有向彻底图有n(n-1)条边;7.r-正则图:每个节点度数均为r的图;8.握手定理:节点度数的总和等于边的两倍;9.任何图中,度数为奇数的节点个数必然是偶数个;10.任何有向图中,所有节点入度之和等于所有节点的出度之和;11.每个节点的度数至少为2的图必然包含一条回路;12.可达:关于图中的两个节点v,j v,若存在连接i v到j v的路,则称iv与j v相互可达,也称i v与j v是连通的;在有向图中,若存在i v到j v i的路,则称v到j v可达;i13.强连通:有向图章任意两节点相互可达;单向连通:图中两节点至少有一具方向可达;弱连通:无向图的连通;(弱连通必然是单向连通)14.点割集:删去图中的某些点后所得的子图别连通了,假如删去其他几个点后子图之间仍是连通的,则这些点组成的集合称为点割集;割点:假如一具点构成点割集,即删去图中的一具点后所得子图是别连通的,则该点称为割点;15.关联矩阵:M(G),m是i v与j e关联的次数,节点为行,边为列;ij无向图:点与边无关系关联数为0,有关系为1,有环为2;有向图:点与边无关系关联数为0,有关系起点为1终点为-1,关联矩阵的特点:无向图:①行:每个节点关联的边,即节点的度;②列:每条边关联的节点;有向图:③所有的入度(1)=所有的出度(0);16.邻接矩阵:A(G),a是i v邻接到j v的边的数目,点为行,点为ij列;17.可达矩阵:P(G),至少存在一条回路的矩阵,点为行,点为列;P(G)=A(G)+2A(G)+3A(G)+4A(G)可达矩阵的特点:表明图中任意两节点之间是否至少存在一条路,以及在任何节点上是否存在回路;A(G)中所有数的和:表示图中路径长度为1的通路条数;2A(G)中所有数的和:表示图中路径长度为2的通路条数;3A(G)中所有数的和:表示图中路径长度为3的通路条数;4A(G)中所有数的和:表示图中路径长度为4的通路条数;P(G)中主对角线所有数的和:表示图中的回路条数;18.布尔矩阵:B(G),v到j v有路为1,无路则为0,点为行,点为i列;19.代价矩阵:邻接矩阵元素为1的用权值表示,为0的用无穷大表示,节点自身到自身的权值为0;20.生成树:只拜访每个节点一次,通过的节点和边构成的子图;21.构造生成树的两种办法:深度优先;广度优先;深度优先:①选定起始点v;②挑选一具与v邻接且未被拜访过的节点1v;③从v动身按邻接方向接着拜访,当遇到一具节点所有邻接1点均已被拜访时,回到该节点的前一具点,再寻求未被拜访过的邻接点,直到所有节点都被拜访过一次;广度优先:①选定起始点v;②拜访与v邻接的所有节点1v,2v,……,k v,这些作为第一层节点;③在第一层节点中选定一具节点v为起点;1④重复②③,直到所有节点都被拜访过一次;22.最小生成树:具有最小权值(T)的生成树;23.构造最小生成树的三种办法:克鲁斯卡尔办法;管梅谷算法;普利姆算法;(1)克鲁斯卡尔办法①将所有权值按从小到大罗列;②先画权值最小的边,然后去掉其边值;重新按小到大排序;③再画权值最小的边,若最小的边有几条相同的,挑选时要满脚别能浮现回路,然后去掉其边值;重新按小到大排序;④重复③,直到所有节点都被拜访过一次;(2)管梅谷算法(破圈法)①在图中取一回路,去掉回路中最大权值的边得一子图;②在子图中再取一回路,去掉回路中最大权值的边再得一子图;③重复②,直到所有节点都被拜访过一次;(3)普利姆算法①在图中任取一点为起点v,连接边值最小的邻接点2v;1②以邻接点v为起点,找到2v邻接的最小边值,假如最小边值2比v邻接的所有边值都小(除已连接的边值),直截了当连接,否则退回1。
离散数学图论整理

离散数学图论整理总结第⼋章图论8.1 图的基本概念8.1.1 图定义8.1―1 ⼀个图G 是⼀个三重组〈V (G ),E (G ),ΦG 〉,其中V (G )是⼀个⾮空的结点(或叫顶点)集合,E (G )是边的集合,ΦG 是从边集E 到结点偶对集合上的函数。
⼀个图可以⽤⼀个图形表⽰。
定义中的结点偶对可以是有序的,也可以是⽆序的。
若边e 所对应的偶对〈a ,b 〉是有序的,则称e 是有向边。
有向边简称弧,a 叫弧e 的始点,b 叫弧e 的终点,统称为e 的端点。
称e 是关联于结点a 和b 的,结点a 和结点b 是邻接的。
若边e 所对应的偶对(a ,b )是⽆序的,则称e 是⽆向边。
⽆向边简称棱,除⽆始点和终点的术语外,其它术语与有向边相同每⼀条边都是有向边的图称为有向图。
每⼀条边都是⽆向边的图称为⽆向图。
有向图和⽆向图也可互相转化。
例如,把⽆向图中每⼀条边都看作两条⽅向不同的有向边,这时⽆向图就成为有向图。
⼜如,把有向图中每条有向边都看作⽆向边,就得到⽆向图。
这个⽆向图习惯上叫做该有向图的底图。
在图中,不与任何结点邻接的结点称为弧⽴结点。
全由孤⽴结点构成的图称为零图。
关联于同⼀结点的⼀条边称为⾃回路。
在有向图中,两结点间(包括结点⾃⾝间)若同始点和同终点的边多于⼀条,则这⼏条边称为平⾏边。
在⽆向图中,两结点间(包括结点⾃⾝间)若多于⼀条边,则称这⼏条边为平⾏边。
两结点a 、b 间互相平⾏的边的条数称为边[a ,b ]的重数。
仅有⼀条时重数为1,⽆边时重数为0。
定义8.1―2 含有平⾏边的图称为多重图。
⾮多重图称为线图。
⽆⾃回路的线图称为简单图。
仅有⼀个结点的简单图称为平凡图。
定义 8.1―3 赋权图G 是⼀个三重组〈V ,E ,g 〉或四重组〈V ,E ,f ,g 〉,其中V 是结点集合, E 是边的集合,f 是定义在V 上的函数,g 是定义在E 上的函数。
8.1.2 结点的次数定义 8.1―4 在有向图中,对于任何结点v ,以v 为始点的边的条数称为结点v 的引出次数(或出度),记为deg +(v );以v 为终点的边的条数称为结点v 的引⼊次数(或⼊度),记为deg -(v );结点v 的引出次数和引⼊次数之和称为结点v 的次数(或度数),记作deg (v )。
离散数学知识点总结

注意/技巧:析取符号为V,大写字母Vx + y = 3不是命题前件为假时,命题恒为真运用吸收律命题符号化过程中要注意命题间的逻辑关系,认真分析命题联结词所对应的自然语言中的联结词,不能只凭字面翻译。
也就是说,在不改变原意的基础上,按照最简单的方式翻译通用的方法:真值表法VxP(x)蕴含存在xP(x)利用维恩图解题证明两个集合相等:证明这两个集合互为子集常用的证明方法:任取待证集合中的元素<,>构造相应的图论模型第一章命题逻辑命题和联结词命题的条件:表达判断的陈述句、具有确定的真假值。
选择题中的送分题原子命题也叫简单命题,与复合命题相对简单联结词的真值表要记住非(简单)合取(当且仅当P,Q都为真时,命题为真)析取(当且仅当P,Q都为假时,命题为假),P,Q可以同时成立,是可兼的或条件(→)(当且仅当P为真,Q为假时,命题为假)P是前件,Q是后件只要P,就Q等价于P→Q只有P,才Q等价于非P→非Q,也就是Q→PP→Q特殊的表达形式:P仅当Q、Q每当P双条件(↔)(当且仅当P与Q具有相同的真假值时,命题为真,与异或相反)命题公式优先级由高到低:非、合取和析取、条件和双条件括号省略条件:①不改变先后次序的括号可省去②最外层的括号可省去重言式(永真式)、矛盾式(永假式)、偶然式可满足式:包括重言式和偶然式逻辑等价和蕴含(逻辑)等价:这是两个命题公式之间的关系,写作“⇔”,要与作为联结词的↔区分开来。
如果命题公式A为重言式,那么A⇔T常见的命题等价公式:需要背过被标出的,尽量去理解。
关键是掌握公式是将哪个符号转换为了哪个符号,这对于解证明题有很大的帮助!验证两个命题公式是否等价:当命题变元较少时,用真值表法。
当命题变元较多时,用等价变换的方法,如代入规则、替换规则和传递规则定理:设A、B是命题公式,当且仅当A↔B是一个重言式时,有A和B逻辑等价。
蕴含:若A→B是一个重言式,就称作A蕴含B,记作A⇒B常见的蕴含公式的运用方法同上面的命题等价公式证明A⇒B:①肯定前件,推出后件为真②否定后件,推出前件为假当且仅当A⇒B且B⇒A时,A⇔B,也就是说,要证明两个命题公式等价,可以证明它们相互蕴含联结词的完备集新的联结词:条件否定、异或(不可兼或)、或非(析取的否定)、与非(合取的否定)任意命题公式都可由仅含{非,析取}或{非,合取}的命题公式来等价地表示全功能联结词集合极小全功能联结词集合对偶式对偶式:将仅含有联结词非、析取、合取(若不满足,需先做转换)的命题公式A中的析取变合取,合取变析取,T变F,F变T得到的命题公式A*称为A的对偶式范式析取式:否定+析取合取式:否定+合取析取范式:(合取式)析取(合取式)……析取(合取式)。
离散数学的概念总结

图论基本概念重要定义:有向图:每条边都是有向边的图。
无向图:每条边都是无向边的图。
混合图:既有有向边又有无向边的图。
自回路:一条边的两端重合。
重数:两顶点间若有几条边,称这些边为平行边,两顶点a,b间平行边的条数成为(a,b)的重数。
多重图:含有平行边的图。
简单图:不含平行边和自回路的图。
注意!一条无向边可以用一对方向相反的有向边代替,因此一个无向图可以用这种方法转化为一个有向图。
定向图:如果对无向图G的每条无向边指定一个方向由此得到的有向图D。
称为的G定向图. 底图:如果把一个有向图的每一条有向边的方向都去掉,得无向图G称为的D底图。
逆图:把一个有向图D的每条边都反向由此得到的图称为D的逆图。
赋权图:每条边都赋上了值。
出度:与顶点相连的边数称为该定点的度数,以该定点为始边的边数为出度。
入度:以该定点为终边的边数为入度。
特殊!度数为零的定点称为孤立点。
度数为一的点为悬挂点。
无向完全图:在阶无向图中如果任何两点都有一条边关连则称此图是无向完全图。
Kn完全有向图:在阶有向图中如果任意两点都有方向相反的有向边相连则称此图为完全有向图。
竟赛图:阶图中如果其底图是无向完全图,则程此有向完全图是竟塞图。
注意!n阶有向完全图的边数为n的平方;无向完全图的边数为n(n-1)/2。
下面介召图两种操作:①删边:删去图中的某一条边但仍保留边的端点。
②删点:删去图中某一点以及与这点相连的所有边。
子图:删去一条边或一点剩下的图。
生成子图:只删边不删点。
主子图:图中删去一点所得的子图称的主子图。
补图:设为阶间单无向图,在中添加一些边后,可使成为阶完全图;由这些添加边和的个顶点构成的图称为的补图。
重要定理:定理5.1.1 设图G是具有n个顶点m条边的有向图,其中点集V={v,v, (v)deg+(vi)=deg-(vi)=m定理5.1.2 设图G是具有n个顶点m条边的无向图,其中点集V={v,v,v, (v)deg(vi)=2m推论在无向图中,度数为积数的顶点个数为偶数。
《离散数学》图论 (上)

无向图与有向图
v2
e1
e2
e3
v3
e4
v1
e5 (e1)={( v42, v24 )}
v4
(e2)={( v32, v23 )} (e3)={( v3, v4 )}
(e4)=({ v43, v34 )}
(e5)=({ v4,}v4 )
13
无向图与有向图
A B C
D E F
14
无向图与有向图
第八章 图论
第八章 图论
§8.1 基本概念
§8.1.1 无向图、有向图和握手定理 §8.1.2 图的同构与子图 §8.1.3 道路、回路与连通性 §8.1.4 图的矩阵表示
§8.2 欧拉图 §8.3 哈密尔顿图 §8.4 平面图 §8.5 顶点支配、独立与覆盖
2
无向图与有向图
3
无向图与有向图
一个无向图(undirected graph, 或graph) G 指一个三元组 (V, E, ),其中
vV
vV
24
特殊的图
假设 G=(V, E, ) 为无向图,若 G 中所有 顶点都是孤立顶点,则称 G 为零图(null graph)或离散图(discrete graph);若 |V|=n,|E|=0,则称 G 为 n 阶零图 所有顶点的度数均相等的无向图称为正 则图(regular graph),所有顶点的度数 均为 k 的正则图称为k度正则图,也记作 k-正则图 注:零图是零度正则图
19
握手定理
定理(图论基本定理/握手定理)
假设 G=(V, E, ) 为无向图,则deg(v) 2 E , vV
即所有顶点度数之和等于边数的两倍。
推论
在任何无向图中,奇数度的顶点数必是偶 数。
离散数学图的基本概论

边连通度:设G为无向连通图,记(G) =
min{| E' | E'是G的边割集},
(G)为G的边连通度。
连通度的性质:k(G) (G) (G)
五、有向图的连通性:
(1) 如果有向图 D = < V,E >中所有有向边的方 向去掉后所得图为无向连通图,则说D为 弱连通图。
(2) u,vV,如果存在u到v的一条通路,则说u 可达v。
出度与入度的关系:在有向图中,各顶点的 出度之和等于各顶点的入度之和。
n
n
d(vi) d(vi)m
i1
i1
度数序列:设V = {v1,v2,…,vn}为图G的顶点集, 称(d(v1), d(v2),…, d(vn))为G的度数 序列。
度数序列之和必为偶数(?)。
例8.1 (3,3,2,3),(5,2,3,1,4)能成为图的度数 序列吗?为什么?
8.1 无向图及有向图
一、基本图类及相关概念
1. 无向图 无序积:设A,B为二集合,称{{a,b} | aAbB}
为A与B的无序积,记作:A&B。 习惯上,无序对{a,b}改记成(a, b)
有序组(a,b)均用< a,b >
无向图:无向图G是一个二元组< V,E >,其中
(1) V是一个非空集 ––– 顶点集V(G),每个元 素为顶点或结点;
三、图的连通性
两顶点连通:u,v为无向图G的两个顶点,u到v 存在一条通路。
连 通 图:G 中任何两个顶点是连通的;否 则是分离图。
连通性的性质:无向图中顶点之间的连通关系是 顶点集V上的等价关系。
证明: (1) 自反性:由于规定任何顶点到自身总是连通的; (2) 对称性:无向图中顶点之间的连通是相互的; (3) 传递性:由连通性的定义可知。
离散数学思维导图第一章

重言式
矛盾式可满足式非重言式的可满足式直接应用规则推理附加前提证明法
归谬法命题
命题变项和命题常项
简单命题(原子命题)、复合命题
联接词:否定、合取、析取、异或、蕴含、等价、与非、或非
什么是命题公式?
分类
真值表简单合取式、简单析取式
合取范式和析取范式
极小项和极大项
用途:
联接词可以等价替换
联接词全功能集
联接词的极小全功能集构造证明法真值表法
主合取范式和主析取范式
命题符号化及联接词命题公式及分类等值演算范式联接词及其全功能集推理理论第一章:命题逻辑。
离散数学——图论

2021/10/10
11
哥尼斯堡七桥问题
❖ 把四块陆地用点来表示,桥用点与点连线表 示。
2021/10/10
12
❖ 欧拉将问题转化为:任何一点出发,是否存在通过 每条边一次且仅一次又回到出发点的路?欧拉的结 论是不存在这样的路。显然,问题的结果并不重要, 最为重要的是欧拉解决这个问题的中间步骤,即抽 象为图的形式来分析这个问题 。
2021/10/10
2
图论的发展
❖ 图论的产生和发展经历了二百多年的历史, 从1736年到19世纪中叶是图论发展的第一阶 段。
❖ 第二阶段大体是从19世纪中叶到1936年,主 要研究一些游戏问题:迷宫问题、博弈问题、 棋盘上马的行走线路问题。
2021/10/10
3
❖ 一些图论中的著名问题如四色问题(1852年)和哈密 尔顿环游世界问题(1856年)也大量出现。同时出现 了以图为工具去解决其它领域中一些问题的成果。
❖ P(G)表示连通分支的个数。连通图的连通 分支只有一个。
2021/10/10
40
练习题---图的连通性问题
❖ 1.若图G是不连通的,则补图是连通的。 ❖ 提示:直接证法。
根据图的不连通,假设至少有两个连通分 支;任取G中两点,证明这两点是可达的。
2021/10/10
41
❖ 2.设G是有n个结点的简单图,且 |E|>(n-1)(n-2)/2,则G是连通图。
❖ 例子
2021/10/10
29
多重图与带权图
❖ 定义多重图:包含多重边的图。 ❖ 定义简单图:不包含多重边的图。 ❖ 定义有权图:具有有权边的图。 ❖ 定义无权图:无有权边的图。
2021/10/10
30
离散数学知识点总结

离散数学知识点总结离散数学是数学中的一个分支,研究离散对象及其关系的数学理论。
它与连续数学形成鲜明的对比,连续数学主要研究连续对象和其性质。
离散数学在计算机科学、信息科学、电子工程等领域具有重要的应用价值。
下面将对离散数学的主要知识点进行总结。
1.命题逻辑:命题逻辑研究由命题符号组成的复合命题及其逻辑关系。
其中命题是一个陈述性的语句,可以是真或假。
命题逻辑包括命题的逻辑运算、真值表、命题的等价、充分必要条件等。
2.谓词逻辑:谓词逻辑是对命题逻辑的扩充,引入了量词、谓词和项。
它的研究对象是命题函数,可以表示个体之间的关系。
谓词逻辑包括谓词的运算、量词的运算、公理化和推理规则等。
3.集合论:集合论是研究集合及其操作的数学分支。
集合是一种由确定的对象组成的整体。
集合论包括集合的基本运算(交、并、差、补)、集合的关系(包含、相等、子集、真子集)以及集合的运算律和推导定理等。
5.组合数学:组合数学是研究物体的组合与排列问题的数学分支。
它包括排列、组合、分配、生成函数等内容,经常应用于计数和概率问题中。
6.图论:图论是用来描述物体间其中一种关系的图形结构的数学理论。
它研究的对象是由顶点和边构成的图,包括无向图、有向图、带权图等。
图论研究的内容包括图的性质、连通性、路径、回路、树、图的着色等。
7.代数系统:代数系统是一种由一组元素及其相应的运算规则构成的数学结构。
常见的代数系统有群、环、域、格等,它们分别研究了集合上的不同运算规律和结构。
8.布尔代数:布尔代数是一种应用于逻辑和计算机的代数系统。
它以真和假为基础,通过逻辑运算(与、或、非)构成了布尔代数。
布尔代数在计算机硬件设计和逻辑推理中广泛应用。
9.图的同构与图的着色:图的同构是指两个图在结构上相同,也就是说,它们具有相同的顶点和边的连接关系。
图的同构判断是一个NP难问题,需要借助于图的着色等方法来判断。
图的着色是给图的顶点分配颜色,使得相邻顶点的颜色不同。
离散数学第八章一些特殊的图知识点总结

得证 m=k+1 时结论也成立. 证毕.
欧拉公式的推广
设 G 是有 p (p2) 个连通分支的平面图, 则
nm+r=p+1
证 设第 i 个连通分支有 ni 个顶点, mi 条边和 ri 个面.
对各连通分支用欧拉公式,
ni mi + ri = 2, 求和并注意 r = r1+…+rp+ p1, 即得
极大平面图: 定义 若 G 是简单平面图, 并且在任意两个不相邻的顶点之 间加一条新边所得图为非平面图, 则称 G 为极大平面图. 性质
• 若简单平面图中已无不相邻顶点,则是极大平面图. 如 K1, K2, K3, K4 都是极大平面图.
• 极大平面图必连通. • 阶数大于等于 3 的极大平面图中不可能有割点和桥.
8.2 欧拉图
欧拉通路: 图中行遍所有顶点且恰好经过每条边一次的通路. 欧拉回路: 图中行遍所有顶点且恰好经过每条边一次的回路.
欧拉图: 有欧拉回路的图. 半欧拉图: 有欧拉通路而无欧拉回路的图. 几点说明: 上述定义对无向图和有向图都适用. 规定平凡图为欧拉图. 欧拉通路是简单通路, 欧拉回路是简单回路. 环不影响图的欧拉性.
离散数学知识点笔记

离散数学知识点笔记离散数学是对数学理论与应用的整合,这里涉及到的知识点很多。
几乎涉及到数学中的涉及的任何一部分,每个知识点都有其特点,在此我们将介绍一些离散数学中常用的知识点。
一、定义、实例和性质定义、实例和性质是离散数学知识点的基本内容,也是学习离散数学的必备基础知识。
它们综合涵盖了数学中的定义、性质和实例的基本知识。
这些知识点是数学的基础,运用了数学中定义、证明和实例的相关方法,通过它们可以了解数学中丰富的定义、性质和实例。
二、集合基础集合基础是理解离散数学关系和操作的基本工具。
它涉及到集合的性质、运算、概念等,是离散数学中最基础的概念,并且可以用来解决很多实际问题。
因此,掌握和深入学习离散数学中的集合基础非常重要。
三、函数、逻辑和图论函数、逻辑和图论在离散数学中占据重要的地位,函数是表达数学关系的基本方式,逻辑是分析离散数学关系的基本方法,图论是表示离散数学关系的基本工具。
熟悉函数、逻辑和图论知识可以帮助我们更好地理解数学中的关系并解决相关问题。
四、数学归纳法数学归纳法是离散数学的经典方法,它包括逐步归纳和变量归纳,是归纳和证明离散数学性质的基本方法。
它可以用来解决复杂的离散数学问题,是离散数学的重要工具。
五、数据结构和算法数据结构和算法是离散数学的重要组成部分,是运用离散数学解决实际问题的基本方法。
它们可以帮助我们更好地理解离散数学中的概念,并且可以用来设计出有效的数据结构和算法,解决复杂的离散数学问题。
六、数学建模数学建模是运用离散数学解决问题的重要方法,它可以帮助我们更好地理解实际问题,并通过建模、分析和推理形成有效的解决方案。
它是一种基于离散数学方法的复杂思维,也是理解和应用离散数学概念的基础要求。
综上所述,离散数学涉及到了定义、实例和性质、集合基础、函数、逻辑和图论、数学归纳法、数据结构和算法以及数学建模等知识点。
这些知识点是离散数学的基础,掌握了这些知识点,我们就可以更好地理解和运用离散数学解决实际问题。
人教版高中数学知识框架思维导图(04)-按章节整理(含目录高清版)

几何意义
归纳
合情推理
猜想
类比
推理
演绎推理
推理与证明
三段论
大前提、小前提、结论
综合法
由因导果
分析法
执果索因
直接证明
证明
间接证明
1.验证 = 0 (初始值)命题成立;
2.若 = ( ≥ 0 )时命题成立,证明 = + 1时命题也成立.
数学归纳法
两个原理
反设、归谬、结论
反证法
分类加法计算原理和分步乘法计算原理
1.f (a+x)=f (b-x),对称轴为 =
对称性
2.f (a+x)+f (b-x)=c,对称中心为(
2
+
2
, )
2
二次函数、基本不等式、双勾函数、三角函
数有界性、数形结合、单调性、导数.
最值
一次、二次函数、反比例函数、双勾函数
基本初等函数
指数函数、对数函数、幂函数、三角函数
分段函数
利用对称性求函数
对称变换: = () → = −(), = () → = (−), = () → = −(−)
函数图象
及其变换
翻折变换: = () → = |()|, = () → = (||)
伸缩变换: = () → = (), = () → = ()
②减法:( + i)-( + i)=(-c)+(b-d)i;
③乘法:( + i)·( + i)=(c-bd)+(d+bc)i;
运算
④除法:
+i
+i
=
(+i)(−i)
(+i)(−i)
离散数学知识点总结(最新)

离散数学知识点总结离散数学是计算机科学基础理论的核心课程之一,是计算机及应用、通信等专业的一门重要的基础课。
它以研究量的结构和相互关系为主要目标,其研究对象一般是有限个或可数个元素,充分体现了计算机科学离散性的特点。
学习离散数学的目的是为学习计算机、通信等专业各后续课程做好必要的知识准备,进一步提高抽象思维和逻辑推理的能力,为计算机的应用提供必要的描述工具和理论基础。
1、定义和定理多离散数学是建立在大量定义、定理之上的逻辑推理学科,因此对概念的理解是学习这门课程的核心。
在学习这些概念的基础上,要特别注意概念之间的联系,而描述这些联系的实体则是大量的定理和性质。
在考试中有一部分内容是考查学生对定义和定理的识记、理解和运用,因此要真正理解离散数学中所给出的每个基本概念的真正的含义。
比如,命题的定义、五个基本联结词、公式的主析取范式和主合取范式、三个推理规则以及反证法;集合的五种运算的定义;关系的定义和关系的四个性质;函数(映射)和几种特殊函数(映射)的定义;图、完全图、简单图、子图、补图的定义;图中简单路、基本路的定义以及两个图同构的定义;树与最小生成树的定义。
掌握和理解这些概念对于学好离散数学是至关重要的。
2、方法性强在离散数学的学习过程中,一定要注重和掌握离散数学处理问题的方法,在做题时,找到一个合适的解题思路和方法是极为重要的。
如果知道了一道题用怎样的方法去做或证明,就能很容易地做或证出来。
反之,则事倍功半。
在离散数学中,虽然各种各样的题种类繁多,但每类题的解法均有规律可循。
所以在听课和平时的复习中,要善于总结和归纳具有规律性的内容。
在平时的讲课和复习中,老师会总结各类解题思路和方法。
作为学生,首先应该熟悉并且会用这些方法,同时,还要勤于思考,对于一道题,进可能地多探讨几种解法。
3、抽象性强离散数学的特点是知识点集中,对抽象思维能力的要求较高。
由于这些定义的抽象性,使初学者往往不能在脑海中直接建立起它们与现实世界中客观事物的联系。
离散数学 第三章 函数

于是我们有 χA′(x)=1- χA(x) χA∩B(x)= χA(x) .χB(x) χA∪B(x)= χA(x) +χB(x) - χA∩B(x)
16
离散数学
A⊆B⇔(∀x∈X)(χA(x) ≤χB(x)) A=B⇔(∀x∈X)(χA(x) =χB(x)) A=∅⇔(∀x∈X)(χA(x) =0) A=X⇔(∀x∈X)(χA(x) =1) 。 例11.谓词的特征函数:设P是X上的谓词,我们定义P的 特征函数 χP :X→{0,1} 如下
14
离散数学
设f ,g是由X到Y的两个函数,f ,g :X→Y,则 f = g ⇔ (∀x∈X)(f(x) = g(x) ) 。 定义3.运算(operation) 定义 对于任何自然数n≥1,n元运算f是一个从n维叉积Xn到 X的函数。 即 f :Xn →X 。 一般说来,运算具有以下两个特点: (1)定义较一般函数特殊; (2)易可操作性; 特别地,一元运算 f :X→X; 二元运算 f :X × X→X。 例9.集合的余运算 ′ :2X → 2X 是一元运算; 集合的交,并运算 ∩ ,∪ :2X × 2X → 2X 是二元运算。
1 χP(x)= 0 当P(x)为真时 当P(x)为假时
于是我们有 χ¬P(x)=1- χP(x) χP∧Q(x)= χP(x) .χQ(x) χP∨Q(x)= χP(x) +χQ(x) - χP∧Q(x)
17
离散数学
(P⇒Q)⇔(∀x∈X)(χP(x)≤χQ(x)) (P⇔Q)⇔(∀x∈X)(χP(x)=χQ(x)) F⇔(∀x∈X)(χF(x) =0) T⇔(∀x∈X)(χT(x) =1) 。
。
《离散数学(第三版)》期末复习知识点总结含例题(呕心沥血整理).doc

6、理解函数概念:函数、函 数相等、复介畅数和反畅数。
7、理解单射、满射、双射等 概念,学握其判别方法。 [木章重点习题]
P25,1;P32〜33, 4, 8, 10;P43,2, 3, 5;
2、考核试卷题量分配
试卷题量在各部分的分 配是:集合论约i'40% ,数理 逻辑约占40%,
设R是篥合A上的二元 关系,如果关系R同时 具有性.对称性
和性,则称R是
等价关系。
命题公式G=(PaQ)->R,则G共冇个
不同的解释;把G在其 所有解释下所取真值列 成一个表,称为G的;解
释(「P, Q, ->R)或(0,
(al9a2)e R. \a2,a3)e R,,则(R。如若(a,b)w R,R ,
则有,且(b,b)w R。
R=心)血2)伽)‘(3,4),(4,4啊織劇命题与联
念的基础上,主要掌握闭包的 求法。关键是熟记三个定理的 结论:定理2 ,
=R5a;定理3,s(R)=R o R ';定理4,
n
推论/(/?) =Ijx。
1 , 0)使G的真值 为,
设G二(P, L)是图.如 果G是连通的,并 口,则G
是树。如果根树T的每 个点V最多有两棵子树, 则称T
为O
[单项选择题](选择一个正确 答案的代号,填入括号中)
1.由集合运算定义,下列 各式正确的冇
()O
A.XcXuY
B.XoXuY
C.XcXnY
D.YcXnY
2.设Rp R?是集合A={a, b, c, d)±的两个关系,其中Ri={ (a. a) , (b, b) , (b, c) , (d, d)), R2={ (a, a) , (b, b),