零件的工艺结构

合集下载

零件结构的工艺性分析

零件结构的工艺性分析

零件结构的工艺性分析
2. 零件组成要素的结构要便于加工
5)表面形状尽量与刀具形状相一致
零件结构的工艺性分析
零件结构的工艺性分析
零件结构的工艺性分析
2. 零件组成要素的结构要便于加工
6、尽量采用标准化参数
零件结构的工艺性分析
3. 便于安装拆卸
零件结构的工艺性分析
零件结构的工艺性分析
零件结构的工艺性分析
3) 便于进刀和退刀
必要时,留出足够的退刀槽、空刀槽或越程槽等
零件结构的工艺性分析
零件结构的工艺性分析零源自结构的工艺性分析尽可能避免弯曲的孔
零件结构的工艺性分析
零件结构的工艺性分析
零件结构的工艺性分析
2.零件组成要素的结构要便于加工
4) 减小加工困难
零件结构的工艺性分析
零件结构的工艺性分析
零件结构的工艺性分析
内容
一、零件结构的工艺性概念 二、零件结构的工艺性分析方法 三、具体实例分析
零件结构的工艺性分析
一、零件结构的工艺性概念
零件结构的工艺性 是指这种结构的零件被加工 的难易程度。
零件结构的工艺性良好,是指所设计的零件, 在保证使用要求的的前提下,能较经济、高效、 合格地加工出来。
零件结构的工艺性分析
2. 零件组成要素的结构要便于加工
1)尽量避免内表面的加工
Ra1.6
Ra1.6
零件结构的工艺性分析
2. 零件组成要素的结构要便于加工
2) 尽量减少加工面积
零件结构的工艺性分析
零件结构的工艺性分析
Ra0.8
Ra0.8 Ra12.5
Ra0.8
零件结构的工艺性分析
2. 零件组成要素的结构要便于加工

零件上常见的工艺结构

零件上常见的工艺结构

(c)正确
(d)错误
图8-58 钻孔应注意的问题
(e)正确
(a)不合理 (b)合理
图8-59 钻孔的方便性
机械制图
谢谢观看!
(a)
(b)
图8-55 退刀槽和砂轮越程槽
(c)
1.2 机械加工工艺结构 3.凸台和凹坑
为了保证零件表面在装配时接触良好和减少机械加工 的面积,常在零件表面上设计出凸台或凹坑,并尽量使多 个凸台在同一水平面上,以便于加工,如图8-56所示。
图8-56 凸台和凹坑
1.2 机械加工工艺结构
4.钻孔结构
1.2 机械加工工艺结构
2.退刀槽和砂轮越程槽
切削时(主要是车削和磨削),为了便于退出刀具或 砂轮,常在待加工面的轴肩处预先车出退刀槽和砂轮越程 槽。这样既能保证加工表面满足加工技术要求,又便于装 配时相关零件间靠紧。常见退刀槽和砂轮越程槽的简化画 法及尺寸标注如图8-55所示。
1.2 机械加工工艺结构机 Nhomakorabea制图零件上常见 的工艺结构
零件上常见的工艺结构
零件的结构形状主要是由零件在机器中的作用以及 其制造工艺所决定的。因此,零件的结构除满足使用要 求外,还应具有合理的工艺结构。零件上常见的工艺结 构有铸造工艺结构、机械加工工艺结构等。
1.1 铸造工艺结构
铸造是指将熔融的液态金属或合金浇入砂型型腔中, 待其冷却凝固后获得的具有一定形状和性能的铸造零件 的方法。铸造的工艺结构包括铸造圆角、起模斜度和铸 件壁厚等。
1.2 机械加工工艺结构
(a)45°倒角 (b)非45°倒角
图8-54 倒角和圆角
1.2 机械加工工艺结构
为了避免因应力集中而产生裂纹,在轴或孔中直径不 等的交接处,常加工成环面过渡,称为倒圆,如图8-54(c )所示。

制图-零件图的内容及工艺结构

制图-零件图的内容及工艺结构
小都必须按部件的性能和结构要求设计。 一般零件都要画出零件图。
(2)传动零件 如齿轮、蜗轮、蜗杆等。一般起传动作用的结构要素
(如:轮齿等)大多已经标准化,并有规定画法。 传动零件一般亦要画出零件图。
(3)标准件 只要根据已知的条件,查阅有关标准,即能得到全 部尺寸,不必画出零件图。
3/95
Wang-chenggang
(4)标题栏——需填写零件名称、材料、数量、比 例、编号、制图和审核者的姓名、日期等。
Wang-chenggang
5/95
Wang-chenggang
6/95
Wang-chenggang
7/95
(2)外形与内形相呼应 (3)相邻零件形状相互协调
Wang-chenggang
8/95
(4)与安装使用条件相适应
零件图的内容及工艺结构
Wang-chenggang
1/95
概述
任何机器或部件都由零件 装配而成。
表达单个零件的图样称为 零件图,它是制造和检验零件 的主要依据,是设计和生产过 程中的主要技术资料。
Wang-chenggang
2/95
§1 零件图的内容
1.1 零件的分类
(1)一般零件 如箱体、箱盖、轴等。这些零件的形状、结构、大
错误
11/95
壁 厚:
为避免铸件冷却时产生内应力而 造成裂纹或缩孔,铸件壁厚应尽量均 匀一致,不同壁厚间应均匀过渡 。
正确
Wang-chenggang
错误
12/95
凹槽、凹坑和凸台
为了保证加工表面的质量,节省 材料,降低制造费用,应尽量减少加 工面。常在零件上设计出凸台、凹槽、 凹坑或沉孔。
正确
2.2.3 符合工艺要求的结构

轴类零件常见的工艺结构有

轴类零件常见的工艺结构有

轴类零件常见的工艺结构一、引言轴类零件是机械装置中起到连接和传递运动的重要部件。

在机械制造过程中,为了满足不同的工作条件和性能要求,轴类零件常常需要经过一系列工艺结构的加工和处理。

本文将对轴类零件常见的工艺结构进行全面、详细、完整地探讨。

二、工艺结构一:轧制轧制是一种常见的轴类零件制造工艺结构。

通过将金属材料放置在轧机中,利用辊的旋转作用对材料进行挤压、拉伸和变形,从而达到加工零件尺寸和形状要求的目的。

轧制工艺结构具有以下特点:1. 轧制过程1.1 材料准备1.2 热轧与冷轧1.3 轧机配置1.4 轧制参数控制2. 轧制工艺结构的优缺点2.1 优点:高效、成本低、加工精度高2.2 缺点:对材料性能有一定要求、易产生应力和变形三、工艺结构二:车削车削是另一种常见的轴类零件制造工艺结构。

通过将旋转工件固定在车床上,利用切削刀具对工件进行切削、削除材料,从而得到所需尺寸和形状的轴类零件。

车削工艺结构具有以下特点:1. 车削过程1.1 刀具选择1.2 车刀的进给与转速控制1.3 表面质量控制1.4 切削力和切削温度的控制2. 车削工艺结构的优缺点2.1 优点:适用范围广、加工精度高、表面质量好2.2 缺点:加工效率低、能耗大、对车床和刀具的要求较高四、工艺结构三:热处理轴类零件常常需要通过热处理工艺结构进行改善材料性能和提高使用寿命。

热处理工艺通过控制零件的加热、保温和冷却过程,改变材料的晶体结构和组织状态,从而达到增加硬度、强度和耐磨性等目的。

1. 热处理过程1.1 加热方式与温度控制1.2 保温时间与冷却速率控制1.3 热处理工艺参数对性能的影响2. 热处理工艺结构的优缺点2.1 优点:改善材料性能、提高零件寿命2.2 缺点:加工周期长、成本高、可能引起尺寸变化五、工艺结构四:焊接焊接是一种常见的轴类零件连接工艺结构,通过熔化母材和填充材料,使其相互结合。

焊接工艺结构分为多种类型,常用的包括电弧焊、气体保护焊和激光焊等。

零件上常见的工艺结构

零件上常见的工艺结构
2)不同壁厚的连接处要逐渐均匀地过渡,如图8.7(b)所 示。
3)在需要增强铸件强度时,可采用加肋的办法,而不是 单纯增加壁厚,如图8.7(c)所示。
4)为了便于清砂,铸件的内腔应当做成开式的,不要做 成封闭的,如图8.7(d)所示。
(c)
图8.7 铸件的壁厚
(d)
1.2机械加工零件的工艺结构
1. 倒角和圆角:为了去除毛刺、锐边,以防伤人及便 于装配,在轴端、孔口及零件的端部常加工出倒角。为 了避免应力集中而引起断裂,在孔、轴的台肩转折处, 常加工成圆角过渡的形式,称为倒圆。倒角宽度和圆角 半径可根据轴径和孔径查表确定。如图8.8所示。
图8.14 过渡线(二)
机械制图
1、铸造圆角 在铸件各表面的相交处应当做成 圆角.如图8.5所示。否则砂型在尖 角处容易落砂,同时由于金属冷却 时要收缩,在尖角处容易产生裂纹 或缩孔。
图8.5 铸造圆角
2、起模斜度
造型时,为了能将木模顺利地从砂型中提取出来,一般
常在铸件的内外壁上沿着起模方向设计出斜度,这个斜度 称为起模斜度,如图8.6所示。起模斜度一般按1:20选取, 也可以角度表示(木模造型约取1°~3°)。该斜度在零 件图上一般不画、不标。如有特殊要求,可在技术要求中 说明。
图8.8 倒角和圆角
2. 凸台和凹坑: 零件与零件相互接 触和配合的表面一般 应切削加工,为了降 低机械加工量及便于 装配,应尽可能缩小 加工面积及接触面积, 如图8.9所示。常见的 办法即在零件表面作 出凸台或凹坑。同一 平面上的凸台应尽量 同高,以便于加工。
图8.9 减少加工面积
3.退刀槽和越、
边受力,产生
偏斜或钻头折
断,因此,在与
孔轴线倾斜的
零件表面处,

轴上零件的固定及工艺结构

轴上零件的固定及工艺结构
非定位轴肩:
注: C孔 —轴上零件内孔倒 角深(见右图) r轴、R孔—轴、孔圆角
要求轴肩高度<滚动轴承内圈高度 (0.07d+3)~(0.1d+5)
错误
正确
4)轴端挡圈
当用轴肩、轴环、套 筒、圆螺母、轴端挡圈 进行零件的轴向定位时, 为保证轴向1 定位可靠, 要求L2轴<L毂
③ 错误 ④
II
III
• 2)、每段轴端应有倒角,以便轴上零件导入及防止伤人。
2、切削加工工艺性 1)螺纹退刀槽
砂轮越程槽
具体数据查手册
3)轴端倒角 4)多个键槽
思考题:指出图中结构不合理地方,并予以改正。
讨论题
1、分析如图2所示的1、2、3、三处的结构错误,并将错误原因和 改进方案填入下表:
序号 1
2 3
错误原因 ①键太长

I
正确
I


II
正确 II
二、各段轴径和长度的确定
1、轴径的确定原则
确定各段直径时 应遵循以下原则
1)有配合要求的轴段(图中④段)取标准直径(值见表
16-4)。
2)安装标准件
的轴段(图中②
③段)应符合相
应的标准尺寸系

①④


3)用作固定或
定位的轴肩或轴
环(图中①段)
的高度应满足表
16-2序号1的要
轴上零件的固定及工艺结构
1、轴的轴向尺寸的确定
轴头长度由其上所装传动零件的轮毂宽度决定,但轴头长 度应分别比传动零件的宽度短13,以保证轴上零件可靠的轴 向定位和固定。轴颈长度可与轴承宽度相同,但有时亦应比 轴承宽度短13。
上图为单级圆柱齿轮减速器的输出轴,主要由轴颈、 轴头、轴身三部分组成。与轴承相配合的轴段称为轴颈; 安装传动零件的部分称为轴头;联接轴颈和轴头的非配 合部分称为轴身。

零件结构工艺性的知识

零件结构工艺性的知识

凸台
凹坑
凹腔
3.钻孔结构
用钻头钻盲孔,在底部有一个120ο的锥角,钻孔深度指的是圆柱 部分的深度,不包括锥角。
在阶梯形钻孔的过渡处,也存在锥角120度的圆台。
d
d
h h
H
对于斜孔、曲面上的孔,为使钻头与钻孔端面垂直,应制成与钻 头垂直的凸台或凹坑。
90°
做出凹坑
做出凸台
4.凸台和凹坑
为了使配合面接触良好,并减少切削加工面积,在接触 处加工成凸台或凹坑等结构。
倒角尺寸系列及孔、轴直径与倒角值的大小关系可查 阅GB6403.4—86;圆角查阅GB6403.4—86。
2.退刀槽和砂轮越程槽
零件在切削加工中(特别是在车螺纹和磨削时),为了便 于退出刀具或使被加工表面完全加工,常常在零件的待加工面 的末端,加工出退刀槽或砂轮越程槽。
b
b
砂轮
b
b——退刀槽的宽度; φ——退刀槽的直径。 退刀槽查阅GB/T3—1997 砂轮越程槽查阅GB6403.5--86
过渡线
两圆柱相交
肋板与平 面相交
连杆头与 连杆相交
连杆头与 连杆相切
二、零件机械加工的工艺结构
1.倒角和倒圆 为了去除零件加工表面的毛刺、锐边和便于装配,在轴 或孔的端部一般加工成45ο倒角;为了避免阶梯轴轴肩的根部 因应力集中而产生的裂纹 ,在轴肩处加工成圆角过渡,称为 倒圆。
C
C×45ºபைடு நூலகம்R
α
§7-3 零件结构工艺性的知识
一、铸造零件的工艺结构
1.拔模斜度 用铸造的方法制造零件毛坯时,为了便于在砂型中取 出木模,一般沿木模拔模方向作成约1:20的斜度,叫做 拔模斜度。
斜度1:20

简述零件的常见工艺结构

简述零件的常见工艺结构

简述零件的常见工艺结构
零件的常见工艺结构包括以下几种:
1. 铸造结构:铸造是将熔融金属或合金注入到模具中,通过凝固和冷却来制造零件的工艺。

常见的铸造方法包括砂型铸造、金属型铸造、压铸等。

2. 锻造结构:锻造是通过将金属材料加热至一定温度后,在模具的作用下施加压力使其变形,从而制造出所需形状的零件。

常见的锻造方法包括冲击锻造、压力锻造、自由锻造等。

3. 加工结构:加工是通过对原材料进行切削、打磨、车削、铣削、钻孔等机械加工操作来制造零件的工艺。

常见的加工方法包括数控加工、传统加工等。

4. 焊接结构:焊接是将两个或多个零件通过加热熔化焊接材料使其相互连接的工艺。

常见的焊接方法包括电弧焊、气焊、激光焊等。

5. 塑料成型结构:塑料成型是将熔化的塑料注入模具中,经过冷却凝固后制造零件的工艺。

常见的塑料成型方法包括注塑成型、吹塑成型、挤塑成型等。

6. 印刷结构:印刷是通过将油墨或颜料涂刷在材料表面,再通过机械或化学方法将图案或文字转移到零件上的工艺。

常见的印刷方法包括丝网印刷、胶印、凹版印刷等。

这些工艺结构可以根据零件的不同要求和制造流程选择合适的方法,从而制造出具有所需功能和外观的零件。

零件的结构工艺路线一般为

零件的结构工艺路线一般为

零件的结构工艺路线一般为
1.设计和制定技术规范:根据产品的设计要求和使用条件,确定制造工艺和技术规范,明确零件制造的前提条件。

2.选择原材料:根据工艺规范和设计要求选择适合的原材料。

3.材料预处理:进行除油、除锈、酸洗或者碱洗等预处理,控制材料的表面状态,为下一步的加工做好准备。

4.粗加工:根据工艺规范和零件的设计要求进行粗加工,将材料切削或者锻造成最初的形状。

5.热处理:根据零件的材质和使用要求进行热处理,提高材料的力学性能,改善其组织结构。

6.精加工:对零件进行精细加工,包括车、铣、钻、磨、铸造等各种加工工艺,以满足零件的几何要求和表面质量要求。

7.表面处理:进行镀、喷涂、氧化等表面处理,增加零件的耐腐蚀性和美观性。

8.质检:根据规范进行严格的质检,确保零件的质量符合要求。

9.包装和储运:对零件进行包装和储运,保证零件不受损和便于运输。

零件结构工艺的含义包括

零件结构工艺的含义包括

零件结构工艺的含义包括
零件结构工艺是指对零部件进行加工和组装的工艺过程,包括了零件的设计、加工、装配、检验等一系列环节。

其含义主要包括以下几个方面:
1. 零件结构设计:零件结构设计是根据产品的功能要求和使用条件,在满足产品性能和质量要求的前提下,确定零件的形状、尺寸、材料、工艺要求等。

包括了零件的外形尺寸、工艺孔位、连接方式等设计内容。

2. 零件加工工艺:零件加工工艺是指根据零件的设计要求和产量要求,选择合适的加工方法、工艺路线和加工设备,对零件进行加工加工工艺涉及到零件的加工方法、工序、工艺参数、工艺装备等内容。

3. 零件装配工艺:零件装配工艺是指根据产品的装配要求和工艺标准,利用适当的装配工艺和装配工具,将零部件按照一定的次序和要求进行组装。

包括了零部件的配套精度、装配顺序、装配方法等。

4. 零件检验工艺:零件检验工艺是指对零件进行检验以验证其质量是否符合设计要求和产品标准。

包括了零部件外观质量检验、尺寸精度检验、材料性能检验等内容。

零件检验工艺还涉及到检验设备的选择和运用、检验方法和标准的制定等。

零件结构工艺的含义是全面的,并且与产品的设计、生产和质量密切相关。

通过
合理的结构设计、精确的加工工艺和严格的装配和检验工艺,可以保证零部件的质量和性能,为产品的性能和质量提供有力的保证。

同时,零件结构工艺的优化也可以提高产品的生产效率和降低生产成本,对企业的可持续发展具有重要意义。

零件结构的工艺性PPT课件

零件结构的工艺性PPT课件

零件结构工艺性的重要性
提高零件结构的工艺性可以提高生产 效率、降低制造成本、提高产品质量 和可靠性,从而增强企业的竞争力。
良好的零件结构工艺性可以减少制造 过程中的废品和次品率,降低材料和 能源的消耗,减少对环境的污染。
零件结构工艺性的评价标准
可加工性
零件的结构应便于加工,如切 削、铸造、锻造、焊接等,以
THANKS.
焊接工艺性改进案例
总结词
简化焊接过程
详细描述
通过优化零件结构,简化焊接过程和提高焊接效率。例如 ,减少焊缝数量和长度,采用连续焊接工艺,降低生产成 本。
总结词
提高焊接质量
详细描述
通过改进零件结构设计,提高焊接质量和减少焊接缺陷。 例如,合理布置焊缝位置和坡口形式,减少未熔合、气孔 等缺陷。
总结词
改善零件性能
详细描述
热处理工艺参数的选择包括加热温度、保温时间和冷却速度等,合适 的热处理工艺参数可以提高热处理质量和效率。
热处理设备的选用应根据热处理工艺要求进行选择,以保证热处理过 程的稳定性和可靠性。
零件结构工艺性改进
04
案例
铸造工艺性改进案例
总结词
优化零件结构,提高铸造效率
详细描述
通过简化零件结构,减少铸造过程中的模具复杂性和材料 消耗,提高铸造效率。例如,优化铸件的分型面和浇注系 统,减少砂芯的使用,降低生产成本。
提高制造效率和质量。
可装配性
零件的结构应便于装配,如连 接、固定、调整等,以保证装 配精度和可靠性。
可检测性
零件的结构应便于检测,如尺 寸、形状、位置等,以便在制 造过程中及时发现和纠正误差 。
可维修性
零件的结构应便于维修,如易 于拆卸、更换和修复等,以降 低维修成本和提高设备利用率

零件的工艺结构

零件的工艺结构

第五节零件的工艺结构零件的结构形状是根据它在机器(或部件)中的作用、位置及加工是否合理而确定的,加工的合理与方便是从制造工艺方面考虑的。

零件上一些为满足工艺需要而设计的结构形状称之为零件的工艺结构。

一、铸造工艺结构1、铸造壁厚铸件壁厚设计得是否合理,对铸件质量有很大的影响。

铸件壁越厚,冷却得越慢,就越容易产生缩孔;壁厚变化不均匀,在突变处易产生裂纹,如图1所示。

同一铸件壁厚相差一般不得超过2—2.5倍。

在图2中,图a、c结构合理,图b、d结构不合理,即铸件厚要均匀,避免突然变厚和局部肥大。

2、起模斜度铸造生产中,为便于从砂型中顺利取出木模,常沿模型的起模方向做成3-6的斜度,这个斜度称为起模斜度。

韦模斜度在图样上可以不必画出,不加标注,由木模直接做出,如图形3a所示。

3、铸造圆角为便于分型和防止夹角落砂,以避免铸件尖角处产生裂纹和缩孔,在铸件表面转角处做成圆角,称为铸造圆角。

一般铸造圆角为R3-R5(如图3b)二、机械加工工艺结构1、倒角和倒圆为了除去零件在机械加工年的锐边和手刺,常在轴孔的端部加工成45或30倒角;在轴肩处为避免应力集中,常采用圆角过渡,称为倒圆,如图4所示。

当倒乐、倒圆尺寸很小时,在图样上可不画出,但必须注明尺寸或在“技术要求”中加以说明。

2、退刀槽和砂轮越程槽零件在车削或磨削时,为保证加工质量,便于车刀的进入或退出,以及砂轮的越程需要,常在轴肩处、孔的台肩处预先车削出退刀槽或砂轮越程槽,如图4所示。

具体尺寸与构造可查阅有关标准和设计手册。

图5给出了退刀槽和越程槽的三种常见的尺寸标注方法。

3、凸台和凹坑两零件的接触面一般都要进行加工,为减少加工面积,并保证接触良好,常在零件的接触部位设置凸台或凹坑,如图6所示。

4、钻孔结构钻孔时,为保证钻孔质量,钻头的轴线应与被加工表面垂直。

否则,会使钻头折弯,甚至折断。

当被加工面倾斜时,可设置凸台和凹坑;钻头钻透时的结构,要考虑到不使钻头单边受力,如图7所示。

零件的常见工艺结构

零件的常见工艺结构

缩孔
裂纹
过渡线 : 由于铸造圆角的存在, 由于铸造圆角的存在,使得铸件表面的相贯线变得不明 为了区分不同表面, 过渡线的形式画出 的形式画出。 显,为了区分不同表面,以过渡线的形式画出。 (1)两曲面相交 ) 过渡线不与 圆角轮廓接触 铸造圆角
过渡线
(2)两等直径圆柱相交 )
铸造圆角
切点附近断开 (3)平面与平面过渡线画法 )
α
C= 45° ° b :宽度
⒉ 退刀槽和砂轮越程槽
退刀槽
b×α ×
砂轮越程槽
砂轮
b×φ ×
槽深; : 图中 b:槽宽 ; α :槽深;Φ:槽的直径 : 作用:便于退刀和装配相邻零件靠紧 作用:便于退刀和装配相邻零件靠紧
砂轮正在精磨斜齿轴的外圆面. 砂轮正在精磨斜齿轴的外圆面.
砂轮越程槽. 砂轮越程槽.
3、凸台和凹坑 为了零件表面接触良好和为了减少加工面积 为了减少加工面积, 为了零件表面接触良好和为了减少加工面积,常常在铸件上设 计出凸台和凹坑。 计出凸台和凹坑。
4、钻孔结构 钻孔结构
尽可能使钻头轴线与被钻孔的表面垂直
找出钻孔结构
找出钻孔结构
练习:找出零件的机械加工工艺结构
轴类
法兰盘类
3. 铸件壁厚: 铸件壁厚:
为了避免浇铸后铸件壁厚不均匀而产生缩孔、 为了避免浇铸后铸件壁厚不均匀而产生缩孔 、 裂纹 等缺陷, 等缺陷,尽可能壁厚均匀或逐渐过渡 壁厚逐渐变化
有缺陷
设计铸件图形时使其壁厚保持均匀 铸件图形时使其壁厚保持均匀; ① 设计 铸件图形时使其壁厚保持均匀;
当壁厚需要厚薄不一时,应逐渐过渡, 不可突变。 ② 当壁厚需要厚薄不一时,应逐渐过渡, 不可突变。
8-3 零件上的常见工艺结构
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图7-9 不通孔和阶梯孔
用钻头钻孔时,要求钻头轴线尽量垂直于被钻孔的零件端面,以保证钻孔 准确并避免钻头折断。图7-10所示为三种钻孔端面的结构。
图7-10 钻头要垂直于被钻孔的端面
4.凸台和凹坑
为了保证零件表面间有良好的接触,零件与其他零件的接触面一般都要进行 加工。为了降低零件的加工费用,就必须减少零件的加工面积,因此常在零件 上设计出凸台或凹坑。图7-11(a)、(b)所示为螺栓连接的支撑面做成凸台 和凹坑结构,图7-11(c)、(d)所示为减少加工面积而做成凹槽和凹腔结构。
图7-3 铸造圆角
铸件表面由于圆角的存在,使铸件表面的交线变得不很明显,如图7-4所示, 这种不明显的交线称为过渡线。
图7-4 过渡线及其画法 过渡线的画法与相贯线画法相同,按没有圆角的情况求出相贯线的投影,画 到理论交点为止,如图7-4(b)所示。
图7-5是常见的几种过渡线的画法。 图7-5 常见的几种过渡线
图7-7 倒角与倒圆
2.螺纹退刀槽和砂轮越程槽
在切削加工,特别是在车削螺纹和磨削时,为便于退出刀具,且不损坏刀具, 以及在装配时与相邻零件保证靠紧,常在待加工面的末端先加工出退刀槽或砂 轮越程槽,如图7-8所示。
图7-8 退刀槽与砂轮越程槽
3.钻孔结构
零件上有各种不同形式和不同用途的孔,多数是用钻头加工而成。钻头顶角 约为120°,如图7-9(a)所示。图7-9(b)所示为钻头钻出的不通孔,底部的锥顶角 约为120°。图7-9(c)所示的阶梯孔中,圆锥台的锥顶角也约为120°。尺寸 120°不必在图,为了避免各部分因冷却速度不同而产生缩孔或裂纹,铸件的 壁厚应保持大致均匀或采用渐变的方法,并尽量保持壁厚均匀,如图7-6所示。
图7-6 铸件壁厚的变化
二、机械加工零件的工艺结构
1.倒角与圆角
机械加工后,铸件的圆角被切去,出现了尖角。为了便于零件的装配和保护装 配面不受损伤,一般在轴、孔的端部加工出45°的倒角。为了避免应力集中产生 的裂纹,在轴肩处往往加工成圆角的过渡形式,称为倒圆。两者的画法和标注方 法如图7-7所示。
图7-11 凸台和凹坑等结构
工程制图
工程制图
零件的工艺结构
一、铸造零件的工艺结构
1.拔模斜度
为了在铸造时便于将铸件从砂型中取出,一般沿拔模的方向设计出1°~3°的 斜度,称为拔模斜度。如图7-2(a)所示,斜度在图上可以不标注,也可以不画 出,如图7-2(b)所示。必要时,可在技术要求中注明。
图7-2 拔模斜度
2.铸造圆角
为了满足铸造工艺要求,防止砂型落砂,避免铸件冷却时产生裂纹或缩孔, 在铸件各表面的相交处都做出铸造圆角,如图7-3所示。同一铸件上的圆角半 径应尽可能相同,铸造圆角的半径在图上一般不注出,而写在技术要求中。
相关文档
最新文档