模型的质量验证

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有行业经验的概念模型,里面凝聚了许多成功的经验,而且从规划上符合行业系统的长远发展,因此逻辑模型应当从概念模型上相对平滑的过度过来。此外,物理模型应当来自与逻辑模型,逻辑模型的建设应当具有一定的可操作性,便于向物理模型的转化。
逻辑模型中常犯的错误:
命名规范不统一
逻辑模型的质量标准
对逻辑模型的评估,就是对逻辑模型质量的考察,什么是逻辑模型的质量呢?从狭义的概念说,逻辑模型是否正确表达了业务规则,也就是准确,但是随着人们对数据仓库认识的加深,质量的含义不断延伸,现在对模型质量要求不仅仅单纯指单纯的业务规则,还包括模型满足用户分析需求的程度,它是一个包含丰富内涵、具有多维因素的综合性概念。相应地逻辑模型质量概念的认识也从狭义向广义转变,准确性已不再是衡量唯一标准。评估逻辑模型一般包括如下方面的标准
适用性
指收集的信息是否有用,是否符合用户的需求。它要求逻辑模型的粒度,分割方式符合用户的分析需求。
可解释性
是指在公布逻辑模型时,应同时公开逻辑模型的的补充解释信息或称为“元数据”,即关于模型数据的解释说明。内容包括所使用的建设方法,建设目标,以防止模型数据二义性导致错误解释和使用。
正确性
逻辑模型的建设方法是正确的,遵循了从上到下和从下到上相结合的方法,选择了正确的模型表示方式,对实际业务采用正确的概化抽象。
准确性(精度)
指逻辑模型和实际业务即“真值”之间的差异程度。误差越小,准确性就越高。这里,所谓的“真值”是可知的,尽管逻辑模型经过了抽象,概化等方法总结共性,但是模型的具体化后,与“真值”是应当符合的。可以通过范围误差、计数误差、不回答率、加工整理差错、模型假设误差等影响准确性的各个因素,测算统计估算值的变动系数、标准差、均方差、曲线配合吻合度、假设检验、偏差等,修正逻辑模型将其的误差控制在一个可接受的置信区间内。
总结
商业智能和数据仓库系统的建设作为一个渐进、迭代的过程,其发展趋势是从现有的初步应用如报表分析、数据集市,向深度和广度复杂分析和数据挖掘技术应用发展,其依赖的数据存储模型,包括逻辑模型和物理模型,也是一个不断发展,不断丰富完善的过程。
对于汇总数据,低粒度数据或历史数据采用已定义的命名规范。
粒度层次不统一
有的具体,有的过于抽象
不准确
业务关系表示错
不全面:
一些属性外键标识没有主表
无用关联关系多:
模型中各种对象所表示的内容,应当与用户的业务分析需求密切相关。
与行业通用模型移动的兼容性差:
与行业通用模型存在较大的差异,不利于系统的将来发展符合信息发展的趋势。
完备性
目前的业务需求和所用的业务规则完全包含在逻辑模型中。模型中不存在没有包含的需求业务对象(如实体,属性,以及之间的关系)
一致性
模型中的各个对象命名方式统一,有明确的命名规范。而且模型中各个相关对象的粒度一致,业务逻辑模型对象的划分标准应当统一。
扩展性
当新的业务产生时,仅仅是增加了相关逻辑模型对象的实例内容,不影响目前的逻辑模型,模型这些分类能够随统计分析需求的不同进行相应的调整,无需改变数据库结构,具有灵活的扩展性。仅在个别情况下,需要对逻辑模型的属性或者实体本身增加,支持分步骤的实施。
相关文档
最新文档